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Abstract Topology control is a technique to assign per-

node’s transmit parameters so as to get the network

topology with the best possible network performance given

some optimization criteria, such as energy-efficient con-

nectivity. In this paper, we investigate energy-efficient

topology control for wireless ad-hoc networks in the

presence of selfish nodes. A non-cooperative game aided

topology control approach is developed for minimizing the

potential transmit power, whilst maintaining the network

connectivity. The utility function is conceived by virtue of

algebraic connectivity, which is a fine metric to measure

the connectivity redundancy of a network. We prove the

existence of Nash Equilibrium (NE) and demonstrate that

the NE is Pareto optimal as well. Specifically, two fully

distributed topology controls—algebraic connectivity-

based Max-Improvement (ACMI) algorithm and d-Im-

provement (ACDI) algorithm—are proposed to find the NE

topologies. Both ACMI and ACDI can easily construct the

stable topologies with a low information-overhead of the

order O(n), where n is the number of nodes. Simulations

demonstrate that our algorithms observably eliminate the

redundancy of the maximum power topology and embrace

several other attractive topological features.

Keywords Ad hoc network � Topology control � Energy-

efficiency � Selfishness � Game theory � Algebraic

connectivity

1 Introduction

Topology control becomes a prevalent technique to assign

per-node’s transmit parameters, such that the topology has

the best possible network performance, such as energy-

efficient connectivity. It plays an important role in

managing the complexity of large-scale systems through

self-organizing capabilities. Involving selfish nodes whose

actions are to optimize their own objectives, topology

control then turns into an intractable topic. A challenge of

topology design is that individual nodes selfishly act in

their self-interests with having access to local network

information, whereas the objective to guarantee the energy-

efficient connectivity is typically a global property of the

network.

Up to now, various topology control approaches have

been proposed to construct energy-efficiently connected

topologies, such as relay region method [1], localized

minimum spanning tree [2], directed local spanning sub-

graph [3]. A comprehensive survey of topology control can

be found in [4, 5]. However, these schemes are based on a

hidden assumption that network nodes are altruistic, and

they cooperate faithfully with each other to achieve the

desired global objective. Actually, this assumption does not

hold in general, since network nodes in most scenarios act

selfishly and are competing with each other in pursuit of

both energy-efficiency and network connectivity. It is
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intuitive that the actions of a node, in response to other

nodes’ actions, would focus on minimizing its individual

energy consumption in constructing a connected network,

perhaps at the sacrifice of some other nodes’, or even the

whole network’s, resources. Game theory provides a

powerful tool to describe the phenomenon of competition

and cooperation between intelligent rational decision-

makers [6, 7]. The research efforts to address topology

control in the presence of selfish nodes have been firstly

made in [8]. Komali et al. [9, 10] formulated the topology

control as non-cooperative potential games, which guar-

antee the existence of at least one Nash Equilibrium (NE).

However, the game-based approaches in [9] require

excessively large information-overhead, and the approach

in [10], due to the fact that all nodes’ preferences are

maintaining the number of their k-hop neighbors1, is low

efficient for nodes to adapt the power levels when k[ 1,

and even unfeasible for k ¼ 1.

The focus of our work is on distributed topological

decision from each selfish node’s perspective with the

network-wide goal to minimize the potential transmit

powers at nodes, whilst maintaining the connectivity of the

network. To this end, we investigate an energy-efficient

topology control for wireless selfish ad hoc networks with

the aid of the non-cooperative game approach. The work in

this paper is inspired by some of the contributions in [9].

We conceive a more practical utility function, which

characterizes the real interests of nodes in pursuit of both

energy-efficiency and network connectivity by virtue of the

algebraic connectivity. The existence of NE is proved in

our theoretic analysis. The features of the algebraic con-

nectivity allow us to design two fully distributed topology

control algorithms—algebraic connectivity-based Max-

Improvement (ACMI) algorithm and d-Improvement

(ACDI) algorithm—for iterating elegant solutions, i.e.,

energy-efficient network topologies. Simulations demon-

strate that our algorithms also capture the tradeoffs

between energy efficiency and connectivity redundancy,

which is flexible for the network design.

The rest of the paper is organized as follows: in Sect. 2,

we introduce some preliminaries including the key con-

cepts and properties of game theory and algebraic con-

nectivity theory. Section 3 presents our system model,

assumptions and definitions. The game formulation and

theoretic analysis are provided in Sect. 4 and the game-

based TC algorithms are proposed in Sect. 5. We conduct

some simulations to illustrate our algorithms in Sect. 6, and

conclude the paper in Sect. 7.

2 Preliminaries

In this section, we present a brief overview of important

concepts together with the lemmas of the non-cooperative

game theory as well as the algebraic connectivity theory.

2.1 Non-cooperative game theory

Non-cooperative game theory provides analytical tools and

techniques to analyze interactive decision making situa-

tion. A formal representation of non-cooperative game is

given by C ¼ hN ;S; fuigi, where N ¼ f1; 2; . . .; ng is the

set of players with n the number of players in the game,

S ¼ S1 � S2 � � � � � Sn is the Cartesian product of the

strategy sets Si for all i 2 N , and ui is the utility function

ui : S ! R (R is the set of real numbers) that the ith player

desires to maximize. For each player i, the utility function

is not only dependent on the strategy si 2 Si that it has

selected, but also the decisions made by other players,

represented by s�i. Define the best response of a player as a

strategy that maximizes its utility function for some given

strategies of the other players. Mathematically, the strategy

si is said to be the best response to some fixed s�i, if it

satisfies the following inequality

uiðsi; s�iÞ� uiðs0i; s�iÞ; 8s0ii 2 Si: ð1Þ

A desired stable solution in non-cooperative game theory is

Nash Equilibrium in which no player may improve its

utility function by unilaterally deviating from it.

Definition 1 A strategy tuple s� ¼ ðs�1; s�2; . . .; s�nÞ is a

Nash Equilibrium, if s�i is the best response to s��i for every

player i. Formally, the strategy tuple s� is an NE if

uiðs�Þ� uiðsi; s��iÞ for 8i 2 N and 8si 2 Si.

A game may possess a large amount of NEs or none at

all. Thus, it is of interest to design the utility function in a

way such that the game has at least one NE point. Fortu-

nately, a kind of games called potential games with com-

pact strategy spaces are known to possess at least one NE

[11].

Definition 2 A strategic game C ¼ hN ;S; fuigi is an

ordinal potential game (OPG) if there exists a function

V : S ! R such that 8i 2 N ; 8p�i 2 S�i, and for all

pi; qi 2 Si

Vðpi; p�iÞ � Vðqi; p�iÞ[ 0 ,
uiðpi; p�iÞ � uiðqi; p�iÞ[ 0:

V is called the ordinal potential function (OPF) of C in the

following.

The following lemma (see [11] for the proof) establishes

how NE points of the game can be identified:

1 The k-hop neighbors of node i is defined as the set of nodes that are

reachable within k hops via a bi-directional path.
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Lemma 1 Let C be an OPG and V be its corresponding

OPF. If p 2 S maximizes V, then it is an NE.

Thus, potential function maximizers form a subset of the

NE of a potential game.

Another interesting concept is Pareto optimal: if there is

no other outcomes that make every player at least at well

off while making at least one player better off. Mathe-

matically, we say that a strategy tuple p ¼ ðp1; p2; . . .; pnÞ
is Pareto optimal if and only if there exists no other strategy

tuple q ¼ ðq1; q2; . . .; qnÞ such that uiðqÞ� uiðpÞ for 8i 2
N and for some k 2 N , ukðqÞ[ ukðpÞ.

2.2 Algebraic connectivity theory

In this subsection, we summarize some key notations from

the field of algebraic connectivity theory based on which

the nodes can learn some crucial knowledge about the

network topology or its topology-related properties. Let

GðV; EÞ be an undirected graph, where V ¼ f1; 2; . . .; ng
denotes the set of nodes and E � V � V is the link set. A

graph is said to be connected, if for every pair of nodes,

there exists a path—a collection of contiguous links—be-

tween them. The structure of the graph can be described by

a symmetric n� n adjacency matrix A ¼ ðaijÞ, whose

entries aij are either one or zero, depending on whether

there is a link between nodes i and j or not. Let N i be the

neighboring nodes (or neighbors) of node i, i.e., the set of

nodes that can directly exchange information with node i.

The degree matrix of the graph is a diagonal matrix defined

as

D ¼ diag jN 1j; jN 2j; . . .; jN njf gð Þ;

where jN ij is the degree of node i, i.e., jN ij ¼
Pn

j¼1 aij.

The matrix L ¼ D� A is called the Laplacian matrix. All

eigenvalues of L are called the Laplacian eigenvalues that

can be arranged in an increasing order

k1 � k2 � � � � � kn:

The Laplacian matrix L is an important matrix in graph

theory with several interesting properties. It is a symmetric

positive semi-definite matrix, and by definition it has a zero

eigenvalue k1 ¼ 0. The multiplicity of the value 0 as an

eigenvalue of L is equal to the number of connected

components of G. Consequently, k2 ¼ k2ðGÞ is strictly

greater than 0 if and only if G is a connected graph. The

quantity k2 is known as the algebraic connectivity of the

graph.

The features of algebraic connectivity have been

exploited to make certain topology-related decisions, such

as consensus problem [12], backbone network construction

[13], base station or cluster head selection [14] and con-

nectivity maintenance [15]. Some basic characteristics of

algebraic connectivity which can be found in [16, 17] are

stated here.

Lemma 2 For G1ðV; E1Þ and G2ðV; E2Þ, if E1 � E2, i.e.,

G1 is obtained from G2 by deleting some edges, we have

k2ðG1Þ� k2ðG2Þ.

Lemma 3 For any undirected graph G, the value of

algebraic connectivity k2ðGÞ is upper bounded by the node

connectivity, which is equal to the minimum number of

nodes whose deletion from G causes the graph to be

disconnected.

As the algebraic connectivity k2ðGÞ does not drop when

the number of links increases from Lemma 2, and it has a

continuous value as well as a closely relationship with the

conventional connectivity measure, it could serve as a fine

metric to measure the connectivity redundancy of network

G. In this paper we propose to use the algebraic connec-

tivity as a parameter to provide a methodology for topology

control.

3 System model

Consider an ad hoc network GðV; EÞ, where V denotes the

set of nodes and E is the set of links connecting nodes

together. In order to communicate with node j, node i

should use a transmit power pi, such that the received

signal strength at j is above a threshold. That is, when a

packet is transmitted by node i at transmit power pi, it can

be detected and correctly decoded if the received power by

node j is greater than a common signal capture threshold

pth

pi � Gij � pth; ð2Þ

where Gij is the propagation factor which depends on the

propagation channel model, including the antenna gains at

both i and j, the distance between two nodes and the path

loss factor. We assume that Gij is a symmetric function,

i.e., Gij ¼ Gji. In the free space propagation model, as an

example, the propagation factor Gij from node i to j should

be satisfied Gij ¼ Cd�a
ij , where C is a constant, dij is the

distance between nodes i and j, and a is the path loss factor

typically in the range 2� a� 6. We do not consider uni-

directional links, given that the vast majority of channel

access and routing protocols use only bidirectional links for

their operations. Hence, we refer to undirected graph for

the rest of this paper, that is, all links in the network G are

bidirectional. Mathematically, a bidirectional link eij 2 E
between nodes i and j exists if and only if

minfpi; pjg� pth=Gij:
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We denote wði; jÞ,pth=Gij the minimum transmit power

which supports a connection from node i to j. Clearly, we

have wði; jÞ ¼ wðj; iÞ.
Let pmax

i be the maximum power value that can be used

by node i to transmit packets. We define the maximum

power network GmaxðV; EmaxÞ which is induced all nodes

transmitting at their maximum powers as

Emax ¼ eijjp ¼ pmax
1 ; . . .; pmax

n

� �� �
:

We assume that Gmax is a connected network with amount

of superfluous links. If so, it is necessary to introduce

topology control for constructing an energy-efficiently

connected network.

4 Game formulation and analysis

4.1 Game formulation

Nodes in a wireless network are envisioned to be endowed

with some autonomic functions, such as regulating their

transmit powers, for network operation according to their

self-interests. We focus our attention on topology control

from each individual node’s perspective in which nodes act

selfishly to minimize their own energy consumption in

constructing a connected network. Each node’s power

regulation could potentially affect the performance of the

other nodes and thereby influence their decisions. Figure 1

sketches the interaction among three nodes in the topology

control process. In this example, these three nodes consti-

tuting a network in Fig. 1a can communicate with each

other directly. In Fig. 1b, as node B decreases its power

level and breaks the link eAB with node A selfishly, nodes A

and C cannot lower their power levels further without

disconnecting the network.

In such a scenario, we formally describe the topology

control process as a noncooperative game C ¼ hV;S; fuigi,
where individual nodes form the player set V. For node

i 2 V, the transmit power pi 2 Si is regarded as its strategy.

Then the individual powers can be collected into a power

vector p ¼ ðp1; p2; . . .; pnÞ, called power profile, which

forms the strategy space S for the game. The strategy space

S can be also obtained by the Cartesian product of all

Si ð1� i� nÞ, where Si ¼ ½0; pmax
i 	 is the set of powers that

can be selected by node i. Each power profile p induces a

topology graph GpðV; EpÞ. Obviously, we have Ep � Emax.

Every node can benefit from connecting to other nodes

in network G, such as deliver a service packet, but it also

incurs an energy cost in the establishment of G. Each

node’s preference can be represented by a utility function

uiðpÞ ¼ uiðGpÞ � ciðGpÞ; ð3Þ

where ui represents the benefit that node i derives from the

network Gp, and ci is the energy consumption of node i for

the efforts to construct such a network Gp. Let k2ðGpÞ
denote the algebraic connectivity of the topology graph Gp.

Note that the network is connected if and only if

k2ðGpÞ[ 0. We define a specific utility function by

uiðpÞ ¼ MihKðpÞ � pi; ð4Þ

where hKðpÞ is the characteristic function of strategy pro-

file set K ¼ fp : k2ðGpÞ� �g with � a parameter which

indicates the connectivity redundancy of network Gp. Here,

we assume that node i can receive a fixed benefit Mi [ pmax
i

if the network is connected, and zero revenue if the net-

work loses connectivity. The transmit power pi is regarded

as the primary source of energy consumption for each node

i. This function captures the fact that nodes regulate their

power levels to ensure the network connectivity as a top

priority, but they would use the minimum power to

maintain such a connectivity. From [17], a theoretical

lower bound of the algebraic connectivity for a connected

network is given by k2 � 2ð1 � cosðp=nÞÞ. Therefore, if

� ¼ 2ð1 � cosðp=nÞÞ, the network nodes with their utility

functions try to maintain the minimum connectivity with

approximate tree structures. Additionally, by adjusting the

parameter � adaptively, we can also get the tradeoffs

between energy-efficiency and connectivity redundancy.

In our model, node selfishness is associated with its pref-

erence to minimize its energy consumption in constructing a

connected network, but not to other factors, e.g., for deter-

mining the packet forwarding. It is noteworthy that a selfish

node is actually interested in the connectivity with its desti-

nation nodes rather than that of the whole network. However,

as the network connectivity is a fundamental property for

network-wide operation, such as broadcasting for routing

discovery, all network nodes should collaboratively achieve

the global network connectivity. From this perspective, the

received fixed benefitMi for node i can also be understood as a

stimulation provided by the network manager. The effect of

the selfishness at routing decision is beyond the scope of this

work and will be reserved for the future work.

4.2 Game-theoretic analysis

With the strategy set and utility function defined, a game is

played by all nodes picking their individual powers. NE net-

work topologies in which no node has incentive to unilaterally

change its power, are desirable, because they are stable solu-

tions of the game. We show that the game C ¼ hV;S; fuigi
with the utility function of each node given by (4) is an ordinal

potential game, then the existence of NEs is guaranteed.

Theorem 1 The game C ¼ hV;S; fuigi is an ordinal

potential game. The ordinal potential function is given by

1334 Wireless Netw (2017) 23:1331–1341

123



VðpÞ ¼ MhKðpÞ �
Xn

i¼1

pi ð5Þ

where M ¼ maxfM1;M2; . . .;Mng.

Proof This proof is processed according to the definition

of OPG. For each sensor i 2 V; p�i 2 S�i and pi; qi 2 Si,

let pi [ qi. From the property of algebraic connectivity, we

immediately know k2ðGðpi;p�iÞÞ � k2ðGðqi;p�iÞÞ. Firstly, the

difference in sensor i’s utility is

Dui ¼uðpi; p�iÞ � uðqi; p�iÞ
¼MiðhKðpi; p�iÞ � hKðqi; p�iÞÞ � ðpi � qiÞ

Similarly,

DV ¼Vðpi; p�iÞ � Vðqi; p�iÞ
¼MðhKðpi; p�iÞ � hKðqi; p�iÞÞ � ðpi � qiÞ

It is not difficult to calculate that the difference

hKðpi; p�iÞ � hKðqi; p�iÞ is equal to 1 if ðpi; p�iÞ 2

K; ðqi; p�iÞ 62 K, and 0, otherwise. By the fact M�Mi [
pmax
i and our assumption pi [ qi, we have

Dui ðorDVÞ
\0 if ðpi; p�iÞ 2 K; ðqi; p�iÞ 2 K;
\0 if ðpi; p�iÞ 62 K; ðqi; p�iÞ 62 K;
[ 0 if ðpi; p�iÞ 2 K; ðqi; p�iÞ 62 K:

8
<

:

Therefore, the game C ¼ hV;S; fuigi is an OPG and V is

the OPF. h

Theorem 2 The NE p is Pareto optimal, if the network Gp

is connected.

Proof Let p be an NE point and Gp be connected. We

assume p is not a Pareto optimal, there exists another

power profile q ¼ ðq1; . . .; qnÞ such that uiðqÞ� uiðpÞ for

8i 2 V and for some k 2 V; ukðqÞ[ ukðpÞ, i.e., qi � pi for

8i 2 V and for some k 2 V; qk\pk. The reduction from pk
to qk for any node k leads to a disconnected network

topology. Otherwise, the profile p is not an NE. This is a

contradiction. h

(a) (b)

Fig. 1 Example of the

interaction among nodes in

topology control process

Algorithm 1 ACMI at node i
Input: Gi, w(j, k), ∀ejk ∈ Ei;

Output: p∗
i ;

1: set a random wait time t;

2: if a HELLO message is received from any neighbor j ∈ Ni in t then

3: update Gi;

4: end if

5: choose a power level at time t according to

p∗
i = argmax

pi∈Si

ui(pi, p−i);

6: broadcast a HELLO message including the new power setting p∗
i at pmax

i ;

7: return p∗
i
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5 Game-based topology control

Since the topology control game is an ordinal potential

game, both the best response and the better response

converge to NE points [11]. Based on our game, we

propose two adaptation algorithms for topology control,

ACMI and ACDI. Ideally, each node is capable of

making decision about its operational parameter autono-

mously and in place without recourse to any knowledge

of the nodes which cannot be seen, i.e., which are out-

side its neighbors. By confining the domain of informa-

tion exchange, less control signaling is flooded through

the network which makes the algorithms practical.

Therefore, we assume that each node is only aware of

local topological information about its neighbors. Both

ACMI and ACDI which only depend on the neighboring

connectivity information are consist of two phases:

information collection phase and non-cooperative game

phase.

5.1 Information collection phase

Each node in distributed topology control algorithm mak-

ing topological decision needs to collect some topology-

related information. In ACMI and ACDI, the information

needed by node i in topology control process are the local

topology Gi ¼ ðV i; EiÞ, which is an induced subgraph of G
with V i ¼ N i [ fig, and the minimum transmit power

w(j, k) for all links ejk 2 Ei ðj; k 2 V iÞ.
To obtain these decision-information, node i initializes

its transmit power with the maximum power pmax
i and

discovers its neighbors N i by broadcasting ‘‘Neighbor

Request Message’’ and collecting the responses provided

by the receivers at pmax
j . Upon successful reception of

ACK from each responding neighbor j, node i adds

neighbor j and w(i, j) into its neighbor list. Here the

minimum transmit power w(i, j) required to establish link

connection by node i with its each neighbor j can be

determined by measuring the received power of request

(and/or reply) messages [2]. Then node i broadcasts

‘‘Neighbor List Request Message’’ at pmax
i to get the

connectivity relationship and the minimum transmit

power between its any two neighbors. Based on the col-

lected neighbor lists, node i can figure out the local

topology Gi described by a adjacent matrix Ai and the

minimum transmit power w(k, j) for each link ekj 2 Ei

ðj; k 2 V iÞ.

Algorithm 2 ACDI at node i
Input: Gi, w(j, k), ∀ejk ∈ Ei,

Output: p∗
i ;

1: mi = 1; p∗
i = pmax

i ;

2: while p∗
i is not an NE do

3: if mi ≤ mj , for all j ∈ Ni then

4: set a random wait time tmi ;

5: end if

6: if no HELLO message is received from neighbor j ∈ Ni in t then

7: choose a power level according to

p∗
i = argmax

pi∈{p∗
i ,p

(mi+1)
i }

ui(pi, p−i);

8: if p∗
i is not an NE then

9: mi = mi + 1;

10: end if

11: else

12: update Gi;

13: end if

14: if p∗
i is an NE then

15: mi = ∞;

16: end if

17: broadcast a HELLO message including the new power setting p∗
i and the new counter mi at pmax

i ;

18: end while

19: return p∗
i

5.2 Non-cooperative game phase

In non-cooperative game phase, node i initiates with the

maximum power topology Gmax and then try to update this

topology in an iterative manner according to a greedy best

response process and a restrained better response process,

which result in ACMI and ACDI, respectively. The pro-

cedures of ACMI and ACDI at node i are given in Algo-

rithm 1 and 2.

5.2.1 ACMI

In ACMI, when node i has a chance to revise its transmit

power, it chooses a power level which maximizes its utility

function (4), as shown in line 5 in Algorithm 1. Owing to

the limited horizon, node i could not calculated its utility

accurately. Let p�i denote the powers of node i’s neigh-

bors, as distinct from that of all the remaining nodes in

utility (4), and k2 similarly denote the algebraic connec-

tivity of the subgraph Gi. By redefining the power profile

p ¼ ðpi; p�iÞ, the utility of node i could be estimated.

According to the minimum powers required to establish

links between node i and its neighbors, node i knows which
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links are removed when it hears the new power settings of

its neighbors, and then updates Gi. Note that the update of

Gi also contains the deletion of node i’s neighbors. If one

neighbor of node i, denoted by node j, updates its power

setting, one special case may appear: the path from node j

to i may include one node k which is node j’s neighbor but

not node i’s. In this case, the local topology Gi is not

connected, as it does not contain the node k. Therefore, to

avoid appearing this case, node i should remove this

neighbor j for further power adjustment. The random wait

time t is to avoid two adjacent nodes updating their local

topologies simultaneously. Two feasible approaches could

be used to choose the wait time for node i: multiplying

i (for simplicity, i also refers to node i’ ID) by a constant

unit time which results in an ordinal update; taking graph

coloring technique and assigning a wait time for node

i according to its color.

5.2.2 ACDI

In ACDI, at the time that node i updates its transmit power,

it may choose a power level one step lower than its current

level if the chosen power gives a better payoff than its

current power, as shown in line 7 in Algorithm 2. The

strategy set Si of node i is discretized by the following

descending order set

Si ¼ pmax
i ¼ p

ð1Þ
i ; p

ð2Þ
i ; . . .; p

ðgÞ
i ¼ 0

n o
:

We confine the step size d as the power adaptation from

p
ðmÞ
i to p

ðmþ1Þ
i is sufficiently small such that at most one link

is dropped. Clearly, there are total g ¼ dpmax
i =de þ 1

strategy selections in the set Si. The definition of p�i and

the update of Gi in ACDI are identical with those in ACMI.

The constraint of the counter mi in the first if loop ensures

that all node i’s neighbors can have a chance to update their

power settings in the mith iteration. Algorithm 2 is termi-

nated if no power level can be chosen by node i to further

reduce its transmit power without dropping the connec-

tivity of Gi. If node i’s NE is achieved, we assign infinity to

mi, such that its neighbors j 2 N i can continue to update. It

should be noted that, the update of the local topology Gi

may force its current power (not an NE) into an NE point,

since maintaining connectivity is always the best response

for all nodes.

5.3 Algorithm analysis

Theorem 3 ACMI converges to a stable topology in

exactly one round, i.e., each node updates once; ACDI

converges to a stable topology no more than g rounds.

Proof The maximum power topology Gmax is assumed to

be connected, a positive utility ui could be obtained in this

topology for each node i. In the implementations of both

ACMI and ACDI, no node has incentive to reduce its

transmit power with disconnecting the local topology Gi

due to its limited connectivity information. Otherwise,

these decision-makers may regard negatives as their utili-

ties in a disconnected local network. ACMI at each node i

sets the minimum power p�i without disconnected Gi.

After the first round, the utility of each node i is

uiðp�Þ ¼ Mi � p�i . In the second round, no player can set a

power pi further lower than its current power p�i without

disconnected Gi. Otherwise, pi is the best response in the

first round. In each iteration of ACDI for node i, there are

total g strategies and it will not increase its transmit power

in a connected Gi. Therefore, the convergence of ACDI is

no more than g rounds. h

Theorem 4 The topologies derived under ACMI and

ACDI maintain the connectivity of Gmax, i.e., if Gmax is

connected, the derived topologies are connected.

Proof If Gmax is connected, the derived topology in which

each node i can reach all its initial neighbors (i.e., 8j 2 N i)

preserves the connectivity of Gmax. This state can be easily

verified by contradiction. Thus, it is sufficient to prove that,

in the derived topology (by ACMI or ACDI), each node i

keeps the connectivity with its initial neighbors. If node i

does not delete its neighbor j 2 N i in its topology update

stage, the power adaptation of node i could not disconnect

with j in terms of k2ðGiÞ[ �. If a neighbor j 2 N i is

deleted by node i, according to the deletion rule, a path

from j to i denoted by j ¼ w0;w1; . . .;wm ¼ i is existed. In

this path, there exists a node k ¼ wl (the subscript l may be

1; 2. . . or m� 2), such that k 2 N j but k 62 N i, and the

nodes after k, i.e., wlþ1; . . .;wm�1, belongs to N i. Since

node i updating its local topology keeps the connectivity

with the nodes wlþ1; . . .;wm�1, the node pair (i, j)

still connects with each other, and the path is j ¼ w0; . . .;
k ¼ wl;wlþ1;w

0
lþ2; . . .;w

0
m�1;wm ¼ i, with w0

lþ2; . . .;

w0
m�1 2 N i. Therefore, the topologies derived under both

local ACMI and ACDI maintain the connectivity of

Gmax. h

If k2ðGmaxÞ[ 0, and each node i updates its local

topology satisfying k2ðGiÞ[ 0, the resulting topology G
satisfies k2ðGÞ[ 0. This features of the algebraic connec-

tivity provide us a methodology to design fully distributed

topology control algorithms. Our topology control algo-

rithms only using neighboring information incur less

information-overhead in constructing the network. Actu-

ally, the information-overhead in the information collec-

tion phase is O(n) to get the neighboring information. The

worst cases of the information-overheads in ACMI and
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ACDI to broadcast the updates are O(n) and g � OðnÞ,
respectively. Accordingly, in both ACMI and ACDI, the

total information-overhead is on the order of O(n), where n

is the number of nodes. Compared against the topology

control algorithms in [9] which require larger information-

overhead on the order of Oðn2Þ, our algorithms have

excellent scalabilities. Additionally, our algorithms not

only derive the network topologies with the minimum

connectivity, but also can generate the network topologies

with certain desired connectivity redundancy by adjusting

parameter � adaptively.

6 Simulation results

In this section, computer simulations are provided to

illustrate the proposed algorithms. Nodes are randomly

distributed in a 500 � 500 m2 region in the simulation. The

maximum transmit power is pmax ¼ 160 mW for all of the

nodes and the step size d for power adaptation in ACDI is

set as d ¼ 4 mW. The minimum power w(i, j) required to

ensure the link ‘on’ denotes as wði; jÞ ¼ Cd2
ij, where dij is

the distance between nodes i and j, C ¼ pthð4pÞ2
f 2=c2 is a

constant with the signal capture threshold pth ¼ 7 � 10�10

W, the carrier frequency f ¼ 2:5 GHz and the light

velocity c ¼ 3 � 108 m/s [2]. Due to the one-to-one map-

ping relationship between the transmit range and the

transmit power, these two terms are used interchangeably

hereafter.

6.1 Analysis of connectivity parameter �

In order to investigate the impact of connectivity parameter �

on network performances, we execute ACMI and ACDI for

100 different topology scenarios with 50 nodes. If the ran-

domly generated network Gmax is disconnected, it would be

discarded. We use the following metrics which are important

to evaluate the performance of topology control algorithms:

1. Transmit power (range): it reflects the energy con-

sumption and the interference of the network. A

smaller transmit power implies lower energy con-

sumption and better network spatial reuse.

2. Node degree: it reflects the redundancy of a topology.

A higher node degree usually means more contention

and collision. Therefore, topology control attempt to

achieve a small average node degree.

3. Path length: it refers to the hop-distance of the shortest

path between two nodes. A larger path length implies a

more energy-efficient routing.

The variations of average transmit power, node degree,

and path length with different connectivity parameter � are

shown in Fig. 2a–c, respectively. Obviously, ACDI is

superior to ACMI in terms of energy-efficiency. An inter-

esting observation is that, these performance metrics by

ACDI increase almost linearly as the connectivity param-

eter � increases. This is, to some extent, because the

algebraic connectivity has a continuous value and is not too

sensitive to a small change of the network. Therefore, our

algorithms can derive the network topologies with certain

desired connectivity redundancy by adjusting parameter �

adaptively.

6.2 Results of the topology control algorithms

Consider 50 nodes randomly deployed in the simulation

region. We compare the topologies derived by our fully dis-

tributed algorithms to these by MIA and DIA in [9]. Both

ACMI and ACDI are implemented based on two different

values of the connectivity parameter �, that is, � ¼ 0:1 (trying

to obtain the minimum connectivity) and 0.3 (to get a tradeoff
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between energy-efficiency and connectivity redundancy).

The topologies generated by these algorithms are shown in

Fig. 3a–f, respectively. In the topologies by the best response

algorithms (MIA and ACMI), some particular nodes (such as

28, 37) influenced by their implement orders, still transmit at

exorbitant powers (i.e., with large transmit ranges). As

expected, the topologies by the better response algorithms

(DIA and ACDI) are much better than those by the best

response algorithms, as the phenomenon for some nodes

transmitting with large ranges is mitigated. Since nodes do

not have the connectivity information outside of the neigh-

bors in our algorithms, the topologies by ACMI and ACDI

with � ¼ 0:1 contain some big circles. Additionally, the

increase of connectivity parameter � results in more con-

nectivity redundancy.

6.3 Performance evaluation of the topology control

algorithms

In this simulation, we vary the number of nodes in the region

from 30 to 80 to change the node density. The results of all

parameters are averaged over 100 trials. The implementa-

tions of ACMI and ACDI are based on the connectivity

parameter � ¼ 0:1, which may result in the minimum

transmit power. MIA and DIA are used as benchmarks to

illustrate that our fully distributed algorithms do not have

much degradation in energy-efficiency, but reduce the

information-overhead significantly. Therefore, another per-

formance metric, information-overhead which refers to the

number of information exchange, is added in the perfor-

mance evaluation, for a smaller number of information

exchange means the topology control algorithm more prac-

tical. The average transmit power in the topologies generated

by MIA, DIA, ACMI and ACDI is shown in Fig. 4a. The

average transmit power derived under these algorithms

decreases gradually as the number of nodes increases. Due to

the limited topological decision information, the proposed

algorithms have a minor degradation in energy-efficiency in

contrast to the topologies by MIA and DIA. Especially, there

are no more than 10% excess of the average transmit power

in topologies by ACMI compared against MIA, and by ACDI

compared against DIA. Figure 4b illustrates that the average

node degree varies with the number of nodes. It depicts the

average node degree is relatively stable and no larger than

2.2. The average-hop of the shortest path between two nodes

is shown in Fig. 4c. We can observe that, there is a smaller

gap (about one-hop) of the path length by our algorithms than

that by MIA and DIA. In Fig. 4d, we show the variation of the
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Fig. 3 Network topologies derived under different algorithms. a MIA, b ACMI with � ¼ 0:1, c ACMI with � ¼ 0:3, d DIA, e ACDI with

� ¼ 0:1, f ACDI with � ¼ 0:3
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number of information exchange with the number of nodes.

Obviously, DIA and MIA suffers excessive information-

overheads, which increase quickly as the number of nodes

increases. Using global connectivity information does not

produce a noteworthy energy-efficiency improvement

compared with using neighboring connectivity information,

but an excessive information-overhead. Therefore, ACDI,

which has the sub-optimal topology performance but less

information-overhead, is the best choice for practical

applications.

7 Conclusions

Nodes in an ad hoc network have been restricted to local

communications and make topological decisions selfishly to

act in their self-interests. However, the network itself should

operate towards a global goal, i.e., energy-efficient con-

nectivity. A non-cooperative game aided topology control

approach was developed for minimizing the potential

transmit powers at nodes, whilst maintaining the connec-

tivity of the network. The existence of NE was proved in our

theoretic analysis. Two fully distributed topology opti-

mization schemes, ACMI and ACDI, were proposed to

construct the energy-efficiently connected network, which

are vital and practical as the nature of ad hoc network is self-

organizing. Both ACMI and ACDI with local information

achieved the network connectivity with lower information-

overhead and more practical implementation in contrast to

MIA and DIA with global information, though suffering a

little bit degradation in energy-efficiency. By adaptively

adjusting the connectivity parameter, the tradeoffs between

energy efficiency and connectivity redundancy were cap-

tured by our algorithms. However, there also exist some

interesting problems which we will be addressed in the

future research. For instance, how to prolong the network

lifetime by considering each node’s residual battery energy,

what happens if an expanding node selfishness (e.g.,

selfishness at routing layer) is taken into account.
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