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Abstract In recent years, the number of applications

utilizing mobile wireless sensor networks (WSNs) has

increased, with the intent of localization for the purposes of

monitoring and obtaining data from hazardous areas.

Location of the event is very critical in WSN, as sensing

data is almost meaningless without the location informa-

tion. In this paper, two Monte Carlo based localization

schemes termed MCL and MSL* are studied. MCL obtains

its location through anchor nodes whereas MSL* uses both

anchor nodes and normal nodes. The use of normal nodes

would increase accuracy and reduce dependency on anchor

nodes, but increases communication costs. For this reason,

we introduce a new approach called low communication

cost schemes to reduce communication cost. Unlike MSL*

which chooses all normal nodes found in the neighbor, the

proposed scheme uses set theory to only select intersected

nodes. To evaluate our method, we simulate in our pro-

posed scheme the use of the same MSL* settings and

simulators. From the simulation, we find out that our pro-

posed scheme is able to reduce communication cost—the

number of messages sent—by a minimum of 0.02 and a

maximum of 0.30 with an average of 0.18, for varying node

densities from 6 to 20, while nonetheless able to retain

similar MSL* accuracy rates.

Keywords Adjacency matrix � Communication cost �
Localization � Mobile wireless sensor network � Range-
free � Sequential Monte Carlo

1 Introduction

Mobile Wireless Sensor Network (WSNs) enables remote

monitoring and data gathering in applications such as

healthcare monitoring [1, 2], flood detection, target track-

ing [3], vehicular networks [4, 5], ambient intelligence [6],

body area networks [7] routing protocols [8, 9] and creates

automatic mapping [10]. In these applications, the location

information is vital to ensure their reliability.

The location estimation of mobile WSNs is a complex

and costly process because of the resource constraints in

the sensor nodes, such as limited CPU processing capa-

bility memory, battery life, and communication range [11].

Moreover, the mobility of the sensor nodes causes its

locations [12] and system topology [13, 14] to change

dynamically over time.

The localization schemes are categorized as range-based

or range-free [15]. In range-based schemes, additional

hardware is required to find the absolute distance or angle

between two sensors. However, the range-based localiza-

tion schemes are costly and dissipate more energy.

Contrarily, range-free schemes can estimate a blind

node location through message exchanges between nodes

within an overlap area and without additional hardware. In

this study, the range-free schemes are studied as they are
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more energy saving and realistic for real-world imple-

mentation as it is unaffected by the environments. The

most prominent range-free schemes that effectively

approximate the location of blind node are sequential

Monte Carlo [16] approaches such as Monte Carlo local-

ization (MCL) [17], Monte Carlo localization boxed

(MCB) [18] and MSL* [19].

In the changing environment, three types of nodes can

be derived from the topology namely, anchor node, normal

node and blind node. An anchor node is a node with

location information obtained either from Global Posi-

tioning System (GPS) [20] or through manual configura-

tion, whereas a normal node establishes its location

information via message exchanges with its neighbors.

Additionally, a blind node is a node without location

information.

Generally, the location of a blind node can be estimated

either from anchor node or from a combination of anchor

and normal nodes. For example, MCL estimates the loca-

tion of blind node using its anchor nodes. However, the

accuracy of the scheme depends on the density of anchor

nodes; thus, the error of location estimation increases as the

density of anchor nodes decreases. The dependency on the

anchor nodes in estimating blind node can be reduced with

utilization of both anchor and normal nodes as in MSL*

[19]. As a result, size of sample sets and number of

parameters are adapted, and energy and cost are saved.

Nevertheless, MSL* approach increases the communica-

tion cost in the existing WSNs.

Therefore, Low Communication Cost (LCC) scheme for

localizing mobile WSNs is proposed to reduce communi-

cation cost but maintain a localization accuracy compara-

ble to MSL*. In the proposed LCC scheme, neighbor nodes

are selected based on the number of the intersecting ele-

ments between the neighbor nodes and the blind node

instead of using all the neighbor nodes as in MSL*.

The rest of this paper is organized as follows: Sect. 2

provides a review on the literature of WSN localization.

Section 3 explains the proposed LCC scheme in detail.

Section 4 presents the simulation results of the proposed

scheme. Section 5 discusses the findings obtained from this

study. Finally, Sect. 6 concludes this paper.

2 Related work

Mobile WSNs produce a large amount of data. Collecting

and transmitting these, data are possible with intelligent

aggregation methods and efficient routing protocols inte-

grated into WSNs applications. However, such data with-

out location metadata is useless. In this section, we present

the related works and organize in three Sects. 2.1, 2.2 and

2.3.

2.1 Localization schemes

Location information in mobile WSNs is essential for most

WSN applications. The coordinates of the sensor node

embedded in the sensed message can be retrieved from the

GPS [20]. However, the quality and accuracy of GPS sig-

nals depend on the environment. Obstacles, such as unfa-

vorable indoor, underwater, and foliage conditions, can

negatively affect the reception of GPS signals. Moreover,

the use of the GPS is expensive and dissipates energy. Such

drawbacks make the GPS inefficient for implementation in

each sensor node.

Localization schemes are categorized as range-based or

range-free [15]. In range-based schemes, additional hard-

ware is required to find the absolute distance or angle

between two sensors. The time difference of arrival is used

in ultrasound devices [21], whereas the angle of arrival [22]

is used in directional antenna arrays. Another approach

employed in range-based schemes is using a received sig-

nal strength indicator (RSSI). The approach depends on the

relation between the distance range from the sender to the

receiver and the signal strength. RSSI has been used to find

the distance between nodes within the same range [23].

Using additional hardware in range-based schemes can

facilitate high-accuracy localization in an open environ-

ment but can be costly and dissipate more energy

Location estimation is a challenging task in range-free

schemes and essential for most mobile WSNs applications.

One of sequential Monte Carlo approaches is MCL

scheme [17] that allows each blind node to gather its

location information via message exchanges with the first-

and second-hop anchor nodes. First-hop neighbors are

nodes that can communicate directly with the blind node,

whereas second-hop neighbors communicate indirectly

with blind node over the first hop. Then, the MCL esti-

mates its blind node location by averaging all sample

coordinates collected from its neighboring anchors. The

process of MCL is described in three steps: the initial step,

the prediction step, and the filtering step. Overall, the MCL

improves the localization accuracy but suffer from high

density of anchor node and low sampling efficiency.

To improve the sampling efficiency in MCL, MCB [18]

uses anchor boxes, which are square boundaries drawn

around the anchors. The estimated location sets are con-

structed using random samples from the rectangle inter-

section area between the current time (t) and the previous

time slot (t - 1). The anchor location information set is

used in both prediction and filtering steps. Although MCB

effectively minimizes probability of selecting inappropriate

samples, it still experiences the same localization error as

in MCL and apply the same filtering constraint.

Sampling efficiency of MCB is further improves in

WMCL scheme [24] by reducing the scope of bounding
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box, and the candidate samples are selected from the

reduced area. Moreover, the WMCL uses normal nodes to

improve its location estimation. However, WMCL requires

higher communication and computational costs than MSL*

as each normal node broadcast their location, sample set

and maximum error on the x-axis and y-axis.

Orbit [25] uses a star graph that contains one root and five

leaves improve the localization accuracy of blind nodes.

However, Orbit is the most complex between the range-free

schemes. The drawback of having to find five independent

sets of nodes severely limits the feasibility and possible

applications of the Orbit scheme inWSN.Moreover, the star

graph with five leaves does not exist in actual WSN setups.

2.2 Coverage of WSNs (overlapping)

Ring overlapping based on comparison of RSSI

(ROCRSSI) [26] manipulates the signal strength of the

anchor nodes that are affected by their distances from the

blind node. However, a normal node may receive consec-

utive samples from the same anchor in the overlap area.

Accordingly, Chen et al. [27] applied a back off-based

broadcast mechanism to minimize redundancy and reduce

message overhead by finding a smaller hop count.

Chen and Lo [28] uses the overlap area to estimate the

location of the blind nodes. The location is estimated by

determining the overlap point between neighboring refer-

ence nodes (i.e., nodes whose locations are known) and

blind nodes. A square is then drawn around the reference

node to find an intersection rectangle containing a blind

node. The overlap point is the middle point of the centers

of two reference nodes. Moreover, an overlap degree that

counts the coverage areas that contain overlapping points is

used to reduce redundancy; as a result, the overlap points

with maximum overlap degrees are averaged to estimate

the blind node location.

In the scheme proposed by Sheu et al. [29], a blind node

estimates its position by gathering samples from both

anchor and normal nodes whose positions are evaluated

from anchor node samples. The distance between normal

nodes is used to select samples by narrowing the overlap

region between normal nodes. Therefore, if the distance is

long, the communication cost decreases; conversely, if the

distance is short, the communication cost increases because

a large overlap area between normal nodes results in

unnecessary and redundant messages. Moreover, the

scheme can estimate the movement direction of the nodes

to reduce the localization error.

Comparing the overlap area with a predefined threshold

value is another approach to reduce communication cost in

the overlap area [30]. When the distance value is greater

than the threshold value, a localization message can be

transmitted. By contrast, when the distance value is less

than the threshold value, the message cannot be sent. The

size of the overlap area and the degree of overlapping must

be considered to ensure the accuracy of the estimated

location and communication costs [28].

2.3 Challenges and issues in WSNs

Nodes in WSNs communicate and cooperate with each

other to present the real and current states of the system.

Thus, utilizing a large number of sensors will produce a

large amount of data. In this case, aggregating and for-

warding such data to the sink node in real-time will be

challenging [31–33]. For example, long transmission path

and congestion will result in delay. Such delay can destroy

a significant amount of data and impractical for imple-

mentation in critical systems such as healthcare [34–36],

firefighting and flood detection. Moreover, sending a large

number of data requires a great deal of power. Therefore, to

secure a successful transmission of a large data in WSNs,

an effective data compression method is needed [37].

Routing protocols used in traditional network are

incompatible with WSNs. This is due to hardware limita-

tions in sensors namely, small processors, small memories,

limited communication range and limited power resources

[38, 39]. Furthermore, battery life is short and in most

applications, changing the battery is not easily done. Thus,

to mitigate the hardware limitations in sensors, the routing

protocols must be designed to be precise, intelligent,

lightweight and energy efficient [40–42]. Additionally, the

designed routing protocols must consider robustness and

scalability factors in networks.

Another interesting challenge in WSNs is the realization

of WSNs as an intrinsic part of Internet of Things (IoT).

This allows the sensors to collect the data from physical

areas and connecting it with IoT elements [43]. The com-

munication between sensors and IoT elements are estab-

lished through TCP/IP routing protocols. However, the

implementation of TCP/IP routing protocol in sensor is

restricted, as sensor has limited resources [44]. Achieving

the full potential of WSNs in IoT require the issues such as

security and privacy [45], trust management and scalability

[46] to be addressed. These issues remain a challenge and

need to be explored further to improve the utilization of

WSNs in our daily life.

3 Proposed LCC scheme

This section explains the proposed LCC scheme, an

improvement of previous MSL*, that aimed at reducing the

communication costs. The normal nodes are utilized to

construct the location information set of the blind nodes in

a mobile WSN.
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3.1 MSL* scheme

MSL* estimates a blind node location through a set of

weighted samples drawn from neighboring anchor and

normal nodes. The quality of a sample is based on its

weight. The samples with high weights are chosen to

estimate a blind node location. Anchor nodes always have

high weights, whereas normal nodes have partial weights

ranging from 0 to 1. MSL* location estimation is divided

into three stages.

Initial stage: In this stage, sensor nodes are distributed

randomly in the area. The sample set is constructed ran-

domly from the whole area. The samples are then weighted

according to the anchor node samples within their range.

3.1.1 Sampling stage

The movement of the nodes per time slot is based on the

following transition equation:

p StjSt�1ð Þ ¼
1

p Vmax þ að Þ2
if d St; St�1ð Þ�Vmax

0 if d St; St�1ð Þ�Vmax

8
<

:
ð1Þ

where (Vmax) represents the maximum speed of the node

from point to point and d (St, St-1) represents the distance

between nodes at time (t) and the previous time (t - 1). In

each time slot, a new sample set is constructed randomly

within a circle radius (Vmax ? a) centered at the coordi-

nates of a previous sample. For a static case, parameter a
with a value of a = 0.1 R, where R is the circle radius of

the transmission range, is used.

3.1.2 Resampling stage

In this stage, the elements of the current sample set are

reconstructed based on the sample weight. Samples with

high weights are retained, whereas samples with low

weights are removed.

The weight of a node sample is based on the location

estimation of its neighbors. A node selects neighbors

according to their closeness values. Closeness is the aver-

age of the distances between all valid samples and the

estimated blind node location. The closeness value for the

anchor node is always 0, and the closeness values of the

normal nodes are between 0 and 1.

closenessp ¼
PN

i¼1 Wi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xi � xð Þ2þ yi � yð Þ2
q

N
ð2Þ

where N is sample number of node p, (xi, yi) are the i-th

sample coordinates (i = 1, …, N), (Wi) is sample weight,

and (x, y) is estimated location of node p at the current

time.

3.2 Proposed LCC

The proposed approach is expected to have a localization

accuracy comparable with that of MSL*. Additionally,

LCC has a major advantage over MSL*, that is, lower

communication costs across different parameter ranges.

The LCC scheme presents normal nodes in an adjacency

matrix. Relations between normal nodes can be classified

into three types, namely, out of range, the neighbor in the

first hop, and the neighbor in the second hop, whose values

are 0, 1, and 2, respectively. In adjacency matrices, each

normal node has a row containing their neighbors, and this

row can be considered a set. The intersection between the

blind node set and its neighbor’s sets is employed to select

a normal node that shares more neighbors with the blind

node set to find the intersecting elements. Neighbors with

less than average intersecting elements are considered out

of range in the adjacency matrix. The adjacency matrix is a

simple matrix that represents the graph vertices according

to whether two nodes are adjacent (i.e., have an overlap

area).

Figure 1 presents an example of LCC scheme. The

nodes are labeled with an identity number (id). The blind

node has a set of neighbors, B = {0, 1, 6, 7, 8, 9}, and the

numbers of the intersecting elements between the blind

node set and its neighbor sets are two, five, two, three, four,

and four, respectively. For example, the intersecting ele-

ments between the blind node set, B = {0, 1, 6, 7, 8, 9},

and the neighbor set with (id = 0) = {1, 3, 4, 5, 8} is two,

B \ (id = 0) = {1, 8}.

The average number of the intersection elements

between the blind node and its neighbors is three. Nodes

(id = 0, 6) have intersecting elements that are less than the

average, thus, the relations of both nodes with the blind

node are considered out of range. A low number of

Fig. 1 Example of selecting normal nodes based on the LCC scheme
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intersecting elements indicate that the two nodes are far

away. The number of common neighbors between two

nodes can be used to measure the closeness between them

[47].

LCC improves MSL* by drawing an estimated location

set from both anchor and normal nodes. It selects a number

of normal nodes within the first- and second-hop neighbors.

LCC selects a number of normal nodes in neighbors to

achieve localization accuracy with minimum dependency

on anchor nodes and lower communication cost. The

selection is based on the intersecting elements between the

blind node set and its neighbor sets and unlike in MSL*

which considered all neighboring normal nodes.

3.3 Differences between LCC and MSL*

The main idea of MSL* [19] is to estimate the location of

blind nodes by drawing samples from the anchor nodes and

all normal nodes among the first-hop and second-hop

neighbors. Normal nodes are used to improve localization

accuracy and reduce dependency on the anchor nodes. The

use of all normal nodes in MSL* increases communication

cost without improving location estimation accuracy due to

redundant and low-weight samples.

In the filtering stage, MSL* uses a closeness value to

weight samples. A low closeness value indicates that the

node has a low localization error. Thus, the blind node can

use the closeness value to weight its samples. The use of

closeness values can minimally reduce communication cost

in the filtering stage when high-weight samples are selec-

ted. The LCC scheme can reduce communication costs by

selecting normal nodes that share a more neighbors with a

blind node before the location estimation process, which

starts by redefining the relation between a blind node and

its neighboring normal nodes.

4 Evaluation

In this study, MCL, MCB and MSL* are simulated using

the simulator code obtained from Hu and Evans [17], Aline

Baggio [18] and Rudafshani [19], respectively. The pro-

posed LCC is implemented in MSL*, and the original

parameters are retained.

4.1 Experimental parameters

The proposed scheme is tested in a simulation executed 50

times. The location estimations of all sensors were reset to

the same values in each simulation. The parameters in LCC

were set to the same values as those parameters in MSL*.

Sensor nodes were randomly distributed in a bounded

square of 500 units 9 500 units. The radio transmission

range for all nodes was set as a perfect circle with a radius

(R) of 50 units. The node density (Nd) is the mean density

of the normal nodes and the anchor nodes in the neigh-

borhood of a node, whereas the anchor node density (Ad) is

the mean density of the anchor nodes in the neighborhood

of a node. In our experiment, Nd = 10, Ad = 1,

Vmax = 0.20 R, and the number of sample sets was 50

unless otherwise specified. Sensors move according to a

modified waypoint model [48] in which the time paused is

0 [11, 49].

4.1.1 Node communication

WSN location is constructed from a set of nodes N, which

are distributed randomly in a two-dimensional Euclidean

space (E2). The space is presented as a bounded flat surface

area in E2 if any boundary exists. When nodes overlap with

each other, the Euclidean distance d (node g, node h)

between each pair of nodes can be derived by applying

RSSI [23, 26]. The node coordinates are a pair of dimen-

sion axes using the values x and y. Each sensor has a full

circle of radio range with a radius R. However, a sensor can

also use a heterogeneous radio range.

In the initial stage, sensor nodes are spread randomly

throughout the network region E2. The node movements

per time slot according to the modified random waypoint

mobility model [48, 49] are used in MCL and MSL*. In a

waypoint model, the movement direction and speed of a

node in a time slot are considered. Time is divided into

static slots and has the maximum speed (Vmax); speed

varies from 0 to Vmax.

4.2 Simulation results

In this section, LCC, MSL*, MCB and MCL are compared

at different network settings. The simulation results are

presented in two sections: accuracy and communication

costs.

4.2.1 Accuracy of LCC

Convergence of LCC The variation in the convergence of

LCC at various speeds and anchor node densities is pre-

sented in Figs. 2 and 3. The location estimation error

decreases in all cases until the error converges; the error

slightly changes around a constant value. The error under a

static condition rapidly converges because the node has the

same location when it receives a new observation. Mobile

sensors change locations per time unit, and new observa-

tions can be drawn from each of these locations. A new

observation can improve localization accuracy and reduce

localization error. This concept is suitable for low- and

medium-speed observations with an exception for high-
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speed observation. Thus, the observation in the previous

time step does not improve the localization of high-speed

moving sensors.

In our experiment, the localization error and the value of

closeness have quickly converged because the LCC

scheme received samples from normal nodes with more

neighbors the same as those of a blind node. This result

validates the concept presented in Sect. 3, that is, selecting

normal nodes that share more neighbors with a blind node

reduces localization error and communication costs.

4.2.1.1 Effect of sample size A Monte Carlo localization

technique using the average of valid samples is employed

to estimate the locations of blind sensors. A considerable

number of valid samples require more memory and

computation time; however, a low number of samples are

inadequate to estimate the blind sensor location. Therefore,

the optimum number of samples should be obtained to

estimate the blind sensor location [30]. Through simula-

tion, LCC is implemented using various numbers of sam-

ples, as shown in Fig. 4. From the LCC simulation results

and the results of MCL, MCB and MSL*, 50 samples is

considered adequate in estimating a blind node location in

LCC, MCL, MCB and MSL*.

4.2.1.2 Effect of sensor node speed Figure 5 shows the

simulation results of LCC, MSL*, MCL and MCB at dif-

ferent sensor node speeds. The movement of the sensors

can improve localization accuracy by visiting more areas,

increasing observations, and obtaining new samples.

However, when sensors move at a high speed, the location

information at the previous time is no longer applicable.

Thus, the localization error increases.

Figure 5 shows that the optimum maximum speed for

LCC, MSL*, MCL and MCB schemes is 0.20 R. Thus, this

value is used as the default setting in the present experi-

ment unless another value is assigned.

4.2.1.3 Effect of normal nodes density The simulation

results presented in Fig. 6 are obtained when the node

density varies whereas the anchor node density is fixed.

The location estimation error in MCL and MCB decreases

with an increase in normal node density. This reduction in

location estimation error is twofold in LCC and MSL* with

an increment in normal node density. Each blind node in

LCC and MSL* has more neighboring normal nodes in

their first and second neighborhoods. Thus, a blind node

obtains more location information; consequently, the

location estimation error is reduced.

Fig. 2 Localization error and speed values of LCC in different

mobility cases

Fig. 3 Relation between closeness and speed of LCC in different

mobility cases

Fig. 4 Effect of sample size in LCC
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4.2.1.4 Effect of anchor node density In Fig. 7, the

anchor node density increases, whereas the normal node

density is constant. Increasing anchor node density per time

slot has affected the performance of all schemes. MCL and

MCB benefits the most from this increment because both

MCL and MCB only uses anchor location information to

determine a blind node location. LCC and MSL* are less

affected by anchor node density than MCL and MCB

because they both normal and anchor nodes are used in

LCC and MSL* to estimate a blind node location. As

shown in Fig. 7, the simulation results demonstrate that

using a small number of anchor nodes in the LCC is suf-

ficient to estimate a blind node location.

4.2.1.5 Effect of irregularity in radio range Using perfect

circles denoted by R in radio transmission during the simu-

lation cannot express the actual value of radio transmission.

Therefore, the degree of irregularity (DOI) is applied to

measure the variation in the range and direction of radio

transmission. For example, the actual range and direction of

radio transmission can randomly vary within the range [0.7

R, 1.3R] whenDOI = 0.03R. The variation inDOI obtained

in the simulation is depicted in Fig. 8, which indicates that a

high variation in the range and direction of radio transmis-

sion can increase localization errors. The simulation results

show that all schemes are negatively affected as DOI

increases. Thus, in the real-world implementation of WSN,

DOI is more critical than other obstacles due to environ-

mental conditions and antenna irregularities.

4.2.2 Communication cost of LCC

Communication overhead is measured according to the

number of messages sent by a sensor in each step of

Fig. 5 Effect of the sensor node speed on localization

Fig. 6 Effect of normal node density

Fig. 7 Effect of anchor node density

Fig. 8 Effect of degree of irregularity
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location estimation [17]. The number of messages varies

across location estimation schemes. The number of mes-

sages sent in both MCL and MCB is equal to the number of

anchor nodes while in MSL* is equal to the number of

anchor and normal nodes multiplied by the sample number,

which is by default 50 samples in this study. The number of

messages sent in LCC is set to the total number of anchor

and normal nodes that have more common neighbors with

a blind node. Thus, the number of messages sensor nodes

should send is reduced in LCC.

Figure 9 shows the correlation between the normal node

density and the number of messages sent. The LCC

scheme has a lower number of messages sent than MSL* as

the node density increases. In the total, LCC sends a lower

number of messages at a time than MSL*, as shown in

Fig. 10. In both Figs. 9 and 10, both MCL and MCB are

excluded in the analysis of number of messages sent

because of an inaccurate comparison. As the number of

messages sent by MCL is equal to the number of anchor

nodes only, MCL and MCB will always generate the

smallest number of messages sent at all times.

Resources, memory, and processing time are required

each time a message is sent in the networks. The compu-

tation and communication costs are low if the number of

messages is minimal. According to the results, a small

number of messages are sent over time in LCC. Therefore,

LCC is expected to reduce communication costs, save

energy, and work with manageable resources.

5 Discussion

Themain concept of the LCC scheme is to use a normal node

instead of relying solely on anchor nodes to improve location

estimation. This scheme works by discovering more over-

lapping areas to improve localization accuracy. Therefore, a

blind node can construct its location estimation set from both

anchor and normal nodes within the overlap area. A large

overlap area will negatively affect the location estimation

accuracy. This condition is particularly observed when all

normal nodes are used in localizing a blind node position.

When a small number of normal nodes are employed, the

small overlap area is insufficient for drawing samples.

In this study, we used normal nodes to estimate a blind

node location beside a limited number of anchor nodes as

in the MSL* scheme. However, MSL* requires high

communication cost. Therefore, we improved the MSL* by

selecting a number of normal nodes that is close to a blind

node. Then, we find their closeness value through the

number of common neighbors between a blind node and its

neighboring normal nodes.

In all simulation scenarios, the accuracies of LCC and

MSL* in locating the blind node are comparable. However,

LCC entails lower communication costs because a lower

number of messages are sent over time. The sample size,

speed, anchor node density, normal node density, and

degree of irregularity mainly affect localization accuracy in

mobile WSNs.

Drawing a sufficient number of valid samples is critical

for the Monte Carlo scheme. However, drawing a high

number of samples requires more energy without improv-

ing the accuracy. Therefore, a simulation is performed to

find the optimum number of valid samples. The simulation

results show that a sample size of 50 samples is the opti-

mum; thus, it was the default value used in MCL, MCB,

MSL*, and LCC. Moreover, the simulated results show

that even a limited number of samples are sufficient in LCC

to estimate a blind node location accurately.

Mobile sensors can receive more observations; thus,

localization accuracy can be increased by visiting new

Fig. 9 Effect of normal node density on the number of exchanged

messages in the LCC and MSL* schemes

Fig. 10 Number of exchanged message sent in speed 0.2 R
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areas. However, this mechanism holds true only if the

mobility of the node is at low and medium speeds.

Therefore, improving the accuracy of LCC in high-speed

cases can be explored in future studies.

The variation in anchor node density has minimal effect

on MSL* and LCC because both used normal and anchor

nodes to estimate a blind node location. By contrast, MCL

and MCB are significantly affected as the density of the

anchor nodes decreases because of the high dependency on

anchor nodes when estimating a blind node location.

Increasing normal node density has improved localization

accuracy of blind nodes and reduced dependency on anchor

nodes. In MSL*, each normal node needs to send its samples

in each time step. Therefore, the number of samples sent is

highly affected when normal node density increases. The

number of samples sent is reduced by selecting the closest

normal nodes to estimate a blind node location. The selec-

tion reduces communication costs but maintains the same

localization accuracy in all cases. Communication cost (i.e.,

the number of messages sent) is reduced by a minimum of

0.02, a maximum of 0.30, and an average of 0.18 at different

normal node densities ranging from 6 to 20.

The degree of irregularity affects all schemes. A slight

irregularity in the range and direction of radio transmission

can easily increase localization error. By contrast, more

controlled increments in errors are observed in MSL* and

LCC. Both schemes increase the number of overlapping

areas and the size of the overlap area to accommodate the

variation in the range and direction of radio transmission.

6 Conclusions

The proposed LCC for mobile WSNs is a range-free

localization scheme that reduces communication costs and

maintains a location estimation accuracy comparable with

that of MSL*. The LCC scheme selects normal nodes that

share more neighbors with a blind node. The results show

that the use of normal nodes improves localization accu-

racy and reduces communication cost and dependency on

anchor nodes. We will implement this novel scheme in a

real-life experiment in our future work.
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