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Abstract Clustering has been accepted as one of the most

efficient techniques for conserving energy of wireless

sensor networks (WSNs). However, in a two-tiered cluster

based WSN, cluster heads (CHs) consume more energy due

to extra overload for receiving data from their member

sensor nodes, aggregating them and transmitting that data

to the base station (BS). Therefore, proper selection of CHs

and optimal formation of clusters play a crucial role to

conserve the energy of sensor nodes for prolonging the

lifetime of WSNs. In this paper, we propose an energy

efficient CH selection and energy balanced cluster forma-

tion algorithms, which are based on novel chemical reac-

tion optimization technique (nCRO), we jointly called

these algorithms as novel CRO based energy efficient

clustering algorithms (nCRO-ECA). These algorithms are

developed with efficient schemes of molecular structure

encoding and potential energy functions. For the energy

efficiency, we consider various parameters such as intra-

cluster distance, sink distance and residual energy of sensor

nodes in the CH selection phase. In the cluster formation

phase, we consider various distance and energy parameters.

The algorithm is tested extensively on various scenarios of

WSNs by varying number of sensor nodes and CHs. The

results are compared with original CRO based algorithm,

namely CRO-ECA and some existing algorithms to

demonstrate the superiority of the proposed algorithm in

terms of energy consumption, network lifetime, packets

received by the BS and convergence rate.

Keywords Clustering � NP-hard � Chemical reaction

optimization � Wireless sensor networks

1 Introduction

Clustering sensor nodes is one of the most effective tech-

niques for conserving the energy of wireless sensor net-

works (WSNs) [1, 2]. In the process of clustering, the

network is divided into several groups, called clusters.

Each cluster has a leader referred as cluster head (CH).

CHs are responsible to collect the local data from their

member sensor nodes within the clusters, aggregate them

and send it to the base station (BS) directly. As an example,

the functionality of a cluster based WSN is shown in

Fig. 1.

CH-selection [3] is an NP-hard problem as the selection

of m CHs among n sensor nodes gives ncm possibilities and

also computational complexity varies exponentially when

the size of a network increases. Note that, for a given

n sensor nodes and m CHs, if each sensor node has an

average of p CHs in the communication range, then the

valid number of assignments are pn. Therefore, the com-

putational complexity of assignment of n sensor nodes to

m CHs is also varies exponentially [4]. Brute force

approaches are inefficient to solve such kind of problems.

Chemical Reaction Optimization (CRO) [5] paradigm is

one of the efficient variable population based meta-

heuristics inspired from chemical reactions. It emerges

various engineering domains to tackle diverse hard opti-

mization problems and shows its superiority or competi-

tiveness over the existing popular meta-heuristics such as
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GA, ACO, PSO, etc. [6, 7]. This technique captures mag-

nus attention and strong directions in wireless communi-

cation [8]. In WSNs, very few problems were solved using

CRO, however, to the best of our knowledge, this is the

first attempt to address the one of the most promising

problems in WSN, i.e., clustering. Some nature inspired

techniques focus on either CH selection or cluster forma-

tion phase. Also, as far as we know, no nature inspired

technique was existed by considering these two essential

phases of clustering as we have taken care of both the phases

of clustering and propose two algorithms based on nCRO

based technique. A novel chemical reaction optimization

which is an improved technique of CRO by following the

theories and experimental chemical kinetics like collision

theory, kinetic molecular theory and Avogadro’s law [9, 10],

however, we assume that the collisions among themolecules

in a container are inelastic. Therefore, a novel CRO can be a

better choice for such NP-hard problem due to its ease of

implementation, high quality of solution, ability to escape

from the local optima and quick convergence.

In this paper, we deal with the CH selection and cluster

formation phases with the help of novel CRO technique.

We first present a Linear programming (LP) formulation

for the CH selection problem and then propose an nCRO

based algorithm for the same. We also present the cluster

formation phase, which is also based on nCRO paradigm

before that we present an LP formulation. The proposed

nCRO-ECA algorithm is developed with efficient molecule

structure encoding schemes. The potential energy functions

are derived by considering various distance parameters and

residual energy to make the nCRO-ECA based approach

energy efficient. The algorithm is tested extensively to

demonstrate its superiority over other existing algorithms.

Therefore, our main contributions are summarized as

follows:

• LP formulations for the CH selection and cluster

formation problems.

• Introducing a novel mechanism by replacing the

random decision making during inter or uni-molecular

collisions with determined condition by following the

theories, experimental chemical kinetics and Avo-

gadro’s principle for faster convergence and better

quality of solution.

• nCRO based energy efficient CH selection algorithm

with an efficient scheme of molecular structure encod-

ing and a novel potential energy function.

• nCRO based energy balanced cluster formation algo-

rithm with an efficient scheme of molecular structure

encoding and a new potential energy function.

• Simulation of the proposed algorithm to demonstrate

the efficiency over existing algorithms.

The rest of the paper is organized as follows. Section 2

presents the review of related works. The preliminaries of

CRO, network model, energy model and terminologies are

provided in Sect. 3. The LP formulations, the proposed

approach for CH-selection and cluster formation algo-

rithms which are based on nCRO paradigm are provided in

Sect. 4. The simulation results are explained in Sect. 5

followed by the conclusion in Sect. 6.

2 Review of related literature

A large number of clustering algorithms have been devel-

oped for WSNs. We present the review of related work

based on both brute force and nature inspired approaches.

However, our main emphasis is on recent nature inspired

approaches as our proposed algorithm is based on it.

2.1 Brute force approaches

A large number of clustering algorithms [11–14] based on

brute force approaches have been developed for WSNs.

However, LEACH [15] is a well-known distributed

Sensor node

Cluster head

Base station

Fig. 1 A cluster based WSN

model

434 Wireless Netw (2017) 23:433–452

123



clustering algorithm in which the sensor nodes elect

themselves as a CH with some probability. However, the

main disadvantage of this algorithm is that it may select a

CH with very low energy, which can die quickly and thus

degrades the performance of the network. Therefore, the

more number of algorithms [16–22] have been developed

to improve LEACH. PEGASIS [16] and HEED [17] are

popular among them. PEGASIS organizes the nodes in the

form of chains so that each node transmits and receives the

data only from its neighbor nodes. However, it is unsta-

ble for large size networks. Numbers of hierarchical clus-

tering algorithms [23–26] have been also proposed to

improve the lifetime of network. In [27], the authors pro-

posed least distance clustering (LDC) for improving the

lifetime of WSN. The advantage of LDC is that it executes

faster, because of assigning of non-CH nodes to nearest

CH. The main drawback of LDC is the improper formation

of clusters. However, as the size of the network increases

the computational complexity varies exponentially for

finding the optimal clusters. In [4], the authors proposed a

clustering algorithm called GLBCA by considering BFS.

The advantage of GLBCA is that it finds optimal solution

when the sensors have equal load. The demerit of this

algorithm is that the execution time is high for large scale

network. Some of the algorithms [28–30] have been

developed for topology control, delay tolerance and time

sensitive based data collection and [31, 32] have been

developed for WSNs for addressing on security issues and

also application based algorithms including mobile cloud

scheme for WSN were found in [33–35].

2.2 Nature inspired approaches

A plenty of clustering algorithms are also available in the

literature based on nature inspired approaches [36, 37].

Some of the fault-tolerance cluster based routing algo-

rithms are found in [38, 39]. Centralized LEACH

(LEACH-C) [40] is implemented using simulated anneal-

ing. LEACH-C performs better than LEACH. Tillett et al.

[41] have proposed a PSO approach to select the optimal

location of CHs. However, it completely ignores the dis-

tance to the sink. Abbas et al. [42] have proposed an

algorithm based on fuzzy logic and chaotic based genetic

algorithm (FLCGA). However, it completely ignores the

cluster formation phase. Enan et al. [43] have presented an

energy-aware evolutionary routing protocol for dynamic

clustering in WSNs (EAERP). However, it may select the

sensor nodes as CHs which may not have sufficient energy

and also may assign the non-CH sensors to nearer CHs with

low energy. Guru et al. [3] have proposed a PSO based

cluster formation. However, it does not consider the

residual energy of the sensor nodes.

Latiff et al. [44] have proposed an energy aware cluster

head selection using PSO called PSO-C by considering

various parameters such as average intra-cluster distance

and ratio of total initial energy of all nodes to the total

current energy of the all CHs. The advantage of PSO-C is

that it select the optimal CHs. The main drawback of this

algorithm is that it assigns the non-CH sensor nodes to the

nearest CH in the cluster formation phase, which may

cause the energy inefficiency in the network and can

decrease the network lifetime. But, it does not consider the

sink distance, for the direct communication of CHs to BS

where sink distance plays a vital role to reduce the energy

consumption of the network. Buddha and Lobiyal [45]

have proposed a novel energy aware CH selection algo-

rithm using PSO. However, it completely ignores the

cluster formation phase. In [46], the authors proposed a

novel evolutionary approach for load balanced clustering

algorithm for wireless sensor networks. The main advan-

tage of this algorithm is that it improves the load of clusters

comparably LDC and some existing algorithms. The

demerit of this algorithm is that it selects the CHs randomly

and also energy and distance parameters are not considered

while balancing the load of clusters, which may cause

energy inefficiency of the network. In [47], the authors

proposed a novel differential evolution algorithm for

clustering in WSNs. The advantage of this algorithm is that

it efficiently extends the lifetime of first node death and

then improves the lifetime of WSN. However, the authors

form the clusters by considering the energy consumption

and network lifetime of CHs. But, it ignores the sink dis-

tance in cluster formation and also CHs are selected ran-

domly which may cause energy inefficiency of WSN.

Some of the algorithms have been developed for targeting

coverage problem [48, 49] and fuzzy based schemes for

ambient intelligence applications also found in [50].

Our proposed algorithm has the following advantages

over the existing algorithms:

• Compared with existing popular meta-heuristics which

shows our proposed nCRO-ECA converges quickly

with better quality of solution.

• It uses an efficient scheme for molecular structure

encoding and potential energy function by considering

various parameters, in contrast to the existing algo-

rithms [4, 27, 46, 47] in the CH selection phase.

• It also assigns the non-CH sensor nodes to the CHs

using an efficient molecular structure encoding and a

new potential energy function by considering energy

and various distance metrics, whereas, in the existing

algorithms [4, 27, 44, 46] non-CH sensor nodes simply

join the CHs by considering distance only, which may

cause imbalance load of the CHs and may lead to

serious energy inefficiency.
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3 Preliminaries

3.1 Chemical reaction optimization

The CRO is one of the recent variable population based

swarm intelligence meta-heuristics which inspired from the

chemical reaction process. In CRO, a molecule, i.e.,

molecular structure represents a complete solution. A

molecule possesses two kinds of energies, i.e., potential

energy (PE) and kinetic energy (KE). The former one is

characterized by the virtue of its structure, i.e., stability.

Means a molecule with less PE is having more

stable structure. The second one is the energy possessed by

the molecule of its virtue of motion. The quality of a

molecule is measured by the potential energy function. The

objective function value corresponds to the PE of a

molecule. In terms of mathematically the objective func-

tion can be expressed as

PEw ¼ f wð Þ ð1Þ

where f is an objective function also called as potential

energy function and w is the structure of a molecule. For

example, a molecule intends to change its structure from w
to w0 the change is always possible if PEw C PEw0 other-

wise we allow change only when PEw ?KEw C PEw0. The

KE of a molecule symbolizes its ability to escape from the

local optimum.

The collisions among the molecules in a container are

classified into two categories. The first one is uni-molecular

collision and other is inter-molecular collision. Uni-

molecular collisions are again classified into two types of

reactions: on-wall ineffective collision and decomposition.

Next, inter-molecular collisions are also classified into two

types of reactions: inter-molecular ineffective collision and

synthesis. We can describe each type of collision reaction

in a container of molecules visually and also mathemati-

cally as follows.

3.1.1 On-wall ineffective collision

If a molecule hits the wall of a container and it simply

bounces back. Some of the molecular attributes changes.

The collision can be explained graphically is shown in

Fig. 2.

Let us assume that the current molecular structure is w,
the obtained molecular structure is w0 which is the neigh-

bourhood structure of w. Therefore, the change is allowed

only if

PEw þ KEw �PEw0 ð2Þ

However, the collision is not so vigorous. The structure of

the resultant molecule is not so different from the original

molecule. We get, KEw0 = (PEw ? KEw - PEw0) 9 p, p [
[KELossRate, 1], where KELossRate is the system

parameter bounded by [0, 1] and (PEw ? KEw -

PEw0) 9 (1 - p) is the amount of energy lost to the envi-

ronment when a molecule hits the wall of a container. The

lost energy is stored in the central energy buffer. The stored

energy can be used to encourage decomposition reaction.

3.1.2 Decomposition

If a molecule hits the wall of a container and then splits

into two or more pieces is called as decomposition. The

collision is so vigorous, the structure of obtaining molecule

is very different from the original one. The collision can be

explained graphically is shown in Fig. 3.

The condition for the decomposition as: (NHits[w] -
MHits[w])[ a. Suppose the structure of an original

molecule is w and the obtained structures are w10 and w20. If

the original molecule w has sufficient energy (PE ? KE) to

endow the PE of the resulting molecules then the change is

allowed. That is as follows:

PEw þ KEw �PEw10 þ PEw20

Let temp1 ¼ PEw þ KEw � PEw10 � PEw20
ð3Þ

Therefore, KEw10 = temp1 9 q and KEw20 = temp1 9

(1 - q), where q is a random uniform number which is

generated from the interval [0, 1]. However, Eq. (3) is

unusual to happen. In general PEw, PEw10 and PEw20 are

having similar energy. Equation (3) holds only when KEw

is large enough. But due to sequence of on-wall ineffective

collisions the KE of molecules tend to decrease. Thus,

Eq. (3) is unusual to happen in normal cases. In this case,

some part of energy is drawn from the central energy buffer

to favour for the happening of decomposition reaction.

Fig. 2 Visualization of on-wall ineffective collision Fig. 3 Visualization of decomposition
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PEw þ KEw þ buffer �PEw10 þ PEw20 ð4Þ

If Eq. (4) holds, the change is allowed and we can calculate

KEw10 ¼ temp1 þ bufferð Þ � q1 � q2 ð5Þ

and KEw20 ¼ temp1 þ buffer � KEw10
� �

� q3 � q4 ð6Þ

where q1, q2, q3 and q4 are random uniform numbers which

are independently generated from the interval [0, 1]. Multi-

plication with the two random numbers in both Eqs. (5) and

(6) is to ensure that the KE w10 and KE w20 are not too large.

Because the energy stored in the buffer is usually large. Also

the buffer is updated as buffer = buffer ? temp1 -

KEw10 - KEw20. If Eqs. (3) and (4) do not hold, the decom-

position reaction fails, then the molecule retains its original

molecular structure w, PE and KE.

3.1.3 Inter-molecular ineffective collision

If two or more molecules collide with each other and then

bounce back. The effect of change is similar to that in an

on-wall ineffective collision, but it involves more than one

molecule, in this case two molecules are considered. No

KE is drawn to the central energy buffer, in this collision

there is an exchange of energy take place between the

molecules. The collision can be shown graphically in

Fig. 4.

Suppose the structures of original molecules are w1 and

w2 and the obtained structures of two new molecules are

w10 and w20, where w10 and w20 are neighbourhood structures

of w1 and w2. The change is allowed only if the following

conservation of energy condition holds.

PEw1 þ KEw1 þ PEw2 þ KEw2 �PEw10 þ PEw20 ð7Þ

Let temp2 = (PEw1 ? KEw1 ? PEw2 ? KEw2 - PEw10 -

PEw20), Therefore, KEw10 = temp2 9 r and KEw20 =

temp2 9 (1 - r), where r is a random uniform number

generated in the interval [0, 1]. If Eq. (7) fails, the mole-

cules retain original structures such as w1 and w2.

3.1.4 Synthesis

If more than one molecule (here two molecules) collide

with each other an intermediate molecule or new molecule

is formed. The change is so vigorous. The structure of the

obtained molecule is very different from the original

molecule. The collision can be explained graphically is

shown in the following Fig. 5. The condition for synthesis

as KEw1 B b and KEw2 B b, suppose the original mole-

cules are w1 and w2, the obtained molecule is w0. The

change is allowed only if the following condition holds as:

PEw1 þ KEw1 þ PEw2 þ KEw2 �PEw0

we get, KEw0 ¼ PEw1 þ KEw1 þ PEw2 þ KEw1 � PEw0

ð8Þ

If Eq. (8) fails, the molecules retain the original structures.

Interestingly KE w0 is larger than KEw 1 or KEw 2 and PEw0

is similar to PEw1 or PEw2. The obtained molecule is

having greater ability to escape from the local minimum. In

each iteration any one of the above reaction can occur.

During the sequence of iterations the population of mole-

cules may increase or decrease. The population changes

only either decomposition or synthesis. If only one mole-

cule is present in the population a uni-molecular reaction

can occur.

3.2 Energy model

The energy model used in this paper is based on the same

radio model as used in [15]. In this model, transmitter

dissipates energy to run the radio electronics and the power

amplifier. The receiver dissipates energy to run the radio

electronics. The energy consumption of the node depends

on the amount of the data and distance to be sent. In this

model, energy consumption of a node is proportional to d2

when the propagation distance (d) less than the threshold

distance d0 otherwise it is proportional to d4. The total

energy consumption of each node in the network for

transmitting the l-bit data packet is given by the following

equations.

ETX l; dð Þ ¼
l � Eelec þ l � efs � d2; if d\d0

l � Eelec þ l � emp � d4; if d � d0

(

ð9Þ

where, Eelec is the energy dissipated per bit to run the

transmitter or receiver circuit, amplification energy for free

space model efs and for multi-path model emp depends on

Fig. 4 Visualization of inter-molecular ineffective collision Fig. 5 Visualization of synthesis
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the transmitter amplifier model and d0 is the threshold

transmission distance. In the same way to receive l bit of

data the energy consumed by the receiver is

ERX lð Þ ¼ l � Eelec ð10Þ

where, Eelec depends on several factors such as digital

coding, modulation, filtering and the signal spreading.

3.3 Terminologies

For better understanding of the proposed algorithm, we

tabulated the some terminologies as shown in Table 1.

The network lifetime can be defined in many ways, e.g.,

the time for first node dead (FND) or time elapsing from

the initial deployment of nodes to the predefined percent-

age of nodes runs out its energy or half of nodes death

(HNA) and last node death (LND) so on. However, in the

proposed algorithm we consider the first node death [51].

3.4 Network model

The WSN scenario used in this paper is similar to the

existing algorithms with the following properties. The

sensors are randomly deployed throughout the sensing field

and a node can compute the distance to the other node

based on the received signal strength. Same methodology

has been adopted in the literature [52]. Therefore, it does

not require any location finding system such as GPS. All

the sensor nodes are assumed to be stationary after

deployment and nodes are capable of operating in cluster

head and normal sensor mode. Each node performs sensing

periodically and has always data to send to its CH or BS.

The sensing and communication distances are circular

field, sensors use different levels of transmission power

depending upon the distance to which data to be sent to the

CH or BS; all the sensor nodes are homogeneous and have

equal capability for processing and communication. The

communication links are wireless, symmetric and estab-

lished between the nodes when they are within the com-

munication range of each other.

4 Proposed approach

The flow process of the proposed algorithms is shown in

Fig. 6. From Fig. 6, it can be observed that after initial-

ization of molecular structures, we introduce a novel

deterministic decision making condition which is high-

lighted in orange colour. This condition can helpful for

achieving the better quality of solution and faster conver-

gence. We have extensively studied the theories and

experimental chemical kinetics like collision theory,

Table 1 Notations used in the

problem formulations and

proposed algorithms

Symbol Description

S The set of sensor nodes, i.e., S = {s1, s2, s3,…,sn}

C The set of CHs, i.e., C = {CH1, CH2, CH3,…,CHm}, where m\ n

pj Maximum no. of senors which are in the communication range of CHj

kij Maximum no. of CHj which are in the communication range of senor node si

dmax The maximum communication range of a sensor node

TH The threshold energy (average energy of the sensors) for being a CH

d0 The threshold distance

ESi The initial energy of the sensor node si, 1 B i B n

ECHj The current energy of cluster head CHj, 1 B j B m

EC (CHj) The energy consumed by the cluster head CHj

ER (CHj) The residual energy of a cluster head CHj

dis(si,CHj) The distance between a sensor node si and CHj

Comm(si) The set of nodes which are within the communication range of si, i.e.,

Comm(si) = {Sj|V Sje S} sj 8sj

�� 2 S ^ disðsi; sjÞ � dmax

� �

Pop Population of molecules

PopSize Initial population of molecules

UMR Uni-molecular reactions

NHits The number of times a molecule undergoes collisions over the iterations

MHits The number of collisions such that a molecule experience a minimum PE

a The threshold value for decomposition

b The threshold value for synthesis

TR The maximum number of iterations for an acceptable minimum solution (minimum PE)

438 Wireless Netw (2017) 23:433–452
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kinetic molecular theory and Avogadro’s principle of dif-

fusion of gases [6, 7]. The theories and experimental

chemical kinetics proved that the number of uni-molecular

collisions are greater than the inter-molecular collisions in

a container, we follow the same natural phenomenon for

proper mixture of uni and inter-molecular collisions which

is an essential condition for the quick converge and better

quality of solution. The value of UMR is different for the

two proposed algorithms. In each iteration any one of the

elementary reaction can occur as shown in dark yellow

coloured process blocks of the flowchart. Finally, stopping

criteria in our algorithms is the number of iterations until

no further change in the potential energy value is shown in

the green colour process block. The decomposition and

synthesis collisions make the molecules to diversify the

search space, whereas the on-wall and inter-molecular

ineffective collisions intensify the search space. After each

collision, we check the energy conservation condition, if it

satisfies we add the molecules to the Pop otherwise we

keep the initial molecules. For diversifying the search

space we use the half-random change operator in decom-

position and half-recombination for synthesis, for intensi-

fying the search space we use the two-exchange operator.

4.1 A novel CRO based energy efficient cluster head

selection algorithm

The algorithm is developed with an efficient molecular

structure encoding and a new potential energy function

which can efficiently select the CHs from the sensor nodes.

The potential energy function is developed using various

Synthesis
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Satisfy the criteria of 
Synthesis

END

No

START

Termination

Iterations

Initialization Initialization

TR is divisible by
UMR

One Molecular 
structure chosen

Yes No
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Decomposition

Two Molecular 
structures chosen

No
Yes

Decomposition
On-wall 

ineffective 
collision

Inter-molecular 
ineffective 
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Obtain 
global min 

solution
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Fig. 6 Flow process of the proposed novel CRO based clustering algorithms
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Fig. 7 Representation of a sample molecular structure
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parameters such as intra-cluster distance, sink distance and

energy ratio.

4.1.1 LP formulation for CH selection

The main objective of the proposed algorithm is to select

CHs among the normal sensor nodes by considering energy

efficiency so that the network lifetime can be prolonged

For the efficient CH selection with energy efficiency, we

consider various distance and energy parameters which

include the minimum intra-cluster distance, minimum sink

distance and maximum residual energy of the nodes. Let f1
be a function of the minimum distance from their neighbor

sensor nodes. We need to minimize f1 for optimal CH

selection. Let f2 be a function of minimum sink distance

and f3 be a function of energy ratio, i.e., the ratio of the

energy consumption of the sensor nodes to the remaining

energy of the sensor nodes. Note that this ratio should be

minimized for the optimal CH selection. We have nor-

malized the all three objective functions between the range

of 0 and 1 for efficient optimization of the function.

Therefore, the Linear Programming (LP) of the optimal CH

selection problem is as follows:Minimize F = a1 9
f1 ? a2 9 f2 ? a3 9 f3 Subject to

disðsi;CHjÞ� dmax; 8si 2 S; and CHj 2 C ð11Þ

ECHj
[ TH ; 1� j�m ð12Þ

a1 þ a2 þ a3 ¼ 1; a1; a2 and a3 2 0; 1ð Þ ð13Þ

The constraint (11) states that the sensor node Si is within

the maximum communication range of CHj.The constraint

(12) states that the energy of CHj nodes must be greater

than the threshold energy TH. In the constraint (13), a1, a2
and a3 are the control parameters (weights) of the function

f1, f2 and f3 respectively, and it also ensures that those

values must not be 0 or 100 % weight.

4.1.2 Molecular structure representation and initialization

A molecular structure represents a complete solution. In

this problem, the structure of a molecule represents the set

of CHs have to choose from the sensor nodes. The char-

acteristics (dimensions) of a molecular structure are the

number of CHs. Let Mi = [Xi,1(t), Xi,2(t), Xi,3(t), Xi,4

(t),…,Xi,D(t)] be the ith molecule of the population of

molecules, where each component Xi,d(t) represents the

node ID of CH, 1 B i B NM, 1 B d B D. Then the struc-

ture of a molecule can be represented as follows.

Mi ¼ Xi;1 tð Þ;Xi;2 tð Þ;Xi;3 tð Þ;Xi;4 tð Þ; . . .;Xi;D tð Þ
� �

ð14Þ

We illustrate it by means of a figurative example as

shown in Fig. 7 in which CH denotes the index of cluster

heads and s indicates the index of sensor nodes. We ini-

tialize the each component by a randomly generated sensor

node ID. For example, let us assume that 100 sensor nodes

are deployed in the network with node IDs ranges from 1 to

100. Therefore, the value of each component Xi,d such as,

1 B Xi,d B 100. In the CH selection algorithm, we consider

the uni-molecular reaction occurs. Let us assume that the

decomposition reaction happens. The process of decom-

position reaction can be explained in illustration

Sect. 4.1.4.

4.1.3 Derivation of potential energy function

The derivation of the potential energy function depends on

the following parameters:

a. Intra-cluster distance We need to select the CHs such

that minimum distance from its neighbor nodes. In the

intra-cluster communication process, sensor nodes

consume some energy to communicate data to the

CHs. If we minimize intra-cluster distance, energy for

the intra-cluster communication also reduces.

Objective 1 : Minimize f1 ¼
Xm

j¼1

Xpj

i¼1

disðCHj; siÞ
 !

ð15Þ

b. Sink distance It is defined as the distance between a

cluster head CHj and the base station BS, i.e.,

dis(CHj, BS). Sink distance plays an important role

for the direct communication of CHs to the sink. If we

minimize the sink distance, energy for the communi-

cation cost of CHs to the sink also reduces.

CH 1          2         3      4          5          6         7          8           9 10

15         4         51 18       92        42       22        35        77 85s

Fig. 8 Input structure of a molecule

CH 1          2         3         4          5          6         7          8           9 10

15         4         51 18       12        12      33        19        49         89       91s

Fig. 9 Generated structure of a molecule 1

CH 1          2         3         4          5          6         7          8           9 10

36        19         17        80       67  42       22         35 77       85       s

Fig. 10 Generated structure of a molecule 2
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Objective 2 : Minimize f2 ¼
Xm

j¼1

disðCHj;BSÞ ð16Þ

c. Energy ratio It is defined as the ratio of energy

consumed by the CHs to the residual energy of the

CHs. If a CH consume less energy consumption during

sensing, computation and communication activities

and having more residual energy has lower energy

ratio. Lower the energy ratio greater is the chance to

the selection of CHs.

Algorithm 1: A novel CRO based energy efficient CH selection

Input:   (1) Set of sensor nodes: S = {s1, s2, s3,….., sn}.

(2) Predefined PopSize of Molecules: NM.

(3) Number of characteristics of a Molecule: D = m.

Output: Optimal cluster heads CH = {CH1, CH2, CH3,…..,CHm}.

Step 1: Assign parameter values to PopSize, KELossRate and InitialKE. 
Step 2: for each of the molecules do 

2.1 Assign random molecular structures such as Mi =[Xi,1(t), Xi,2(t),…….., Xi,D(t)], 1≤ i ≤ 
NM,
1≤ Xi,d(t) ≤ n, 1≤ d ≤ D=m, number of CHs are supposed to be selected.

2.2 Calculate PE using Eq. (18 )
2.3 Assign InitialKE= KE

endfor
Step 3: Let the central energy buffer be buffer and assign buffer =0
Step 4: While t =1 to TR  do /*TR = Max. number of iterations*/

if (TR% UMR ==0)
Select a molecule, say ψ from Pop randomly
if (NHits[ψ]-MHits[ψ])>α) then

Decompose (ψ, buffer) into ψ ' 1 and ψ ' 2

if satisfies the energy conservation condition either Eq. (3) or (4) then
Remove ψ from Pop
Add ψ '1 and ψ '2 to Pop

endif
else

On-wall ineffective collision ( ψ, buffer) into ψ '
Add KELost to buffer
if satisfies the energy conservation condition from Eq. (2) then

Remove ψ from Pop
Add ψ ' to Pop

endif
else
Select two random molecules say ψ1 and ψ2 from Pop          

if (KE ψ 1 ≤ β and KE ψ 2 ≤ β) then
Synthesis (ψ1, ψ2) into ψ
if satisfies the energy conservation condition from Eq. (8) then

Remove ψ1, ψ2 from Pop
Add ψ '

'

to Pop
endif

else
Inter-molecular ineffective collision (ψ1, ψ2) into ψ1' and ψ2'
if satisfies the energy conservation condition from Eq. (7) then

Remove ψ1, ψ2 from Pop
Add ψ1' and ψ2' to Pop

endif 
4.1 Check for any new optimal value (Minimum)
endwhile

Step 5: Stop

Fig. 11 Pseudo code of the

proposed CH selection

algorithm
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Objective 3 : Minimize f3 ¼
Xm

j¼1

ECðCHjÞ
ERðCHjÞ

ð17Þ

In our nCRO approach, we use the weight summation

method to minimize all the above three objective functions

instead separately minimize them because all these objec-

tives are weakly conflicting each other, so there exists a

unique Pareto optimal solution. Therefore, we use the

following potential energy function.

Potential energy function ¼ a1 � f1 þ a2 � f2 þ a3 � f3

ð18Þ

where a1 ? a2 ? a3 = 1, Also 0\ f1, f2, f3\ 1Our

objective is to minimize the potential energy function. The

lower the value of PE, the better is the stability of the

molecule, i.e., the better is the CH selection.

4.1.4 Illustration

We can illustrate in terms of implementation point of view

as follows. Let us consider the structure of a molecule for

decomposition be w and the obtaining molecular structures

after decomposition are w1
0 and w2

0.

The condition for the decomposition as : NHits w½ �ð
�MHits w½ �Þ[ a

ð19Þ

Assume that NHits[w] = 7, MHits[w] = 1 and a = 5.

From Eq. (19), we get, (7–1)[ 5, so the reaction favours

for the decomposition. Assume that KEw = 0.1, Energy of

buffer = 5, PEw = 0.5, PEw10 = 0.3 and PEw20 = 0.4

PEw þ KEw �PEw10 þ PEw20 ð20Þ

From Eq. (20), we get, 0.5 ? 0.1 C 0.3 ? 0.4. Equa-

tion (20) unusual to happen and decomposition reaction

does not occurs. It can draw some part of energy stored in

the buffer for the happening of decomposition reaction.

PEw þ KEw þ buffer �PEw10 þ PEw20 ð21Þ

From Eq. (21), we get, 0.5 ? 0.1 ? 5 C 0.3 ? 0.4.

Equation (21) holds, the decomposition can occur. The

molecule splits into two others molecules. Calculate the KE

w10 and KE w20 as follows, assume the values of q1 = 0.25,

q2 = 0.67, q3 = 0.92 and q4 = 0.12. Also temp1 =

PEw ? KEw - (PEw10 ? PEw20) = -0.1

KEw10 ¼ temp1 þ bufferð Þ � q1 � q2 ð22Þ

From Eq. (22), we get, KE w10 = (-0.1 ? 5) 9 0.25 9

0.67 = (4.9) 9 0.167 = 0.82

KEw20 ¼ temp1 þ buffer � KEw10
� �

� q3 � q4 ð23Þ

From Eq. (23), we also get, KE w20 = (-0.1 ?

5 - 0.82) 9 0.92 9 0.1 = (4.08) 9 0.092 = 0.375.

Also, we can update the buffer = buffer ? temp1 -

(KEw10 ? KEw20) = 5 - 0.1 - (1.195) = 3.705.Hence,

the molecular structure w must be removed from the Pop

and the nascent molecules w1
0 and w2

0 can be added to the

Pop. We can also explains in terms of operators as follows.

Let us consider 10 randomly selected sensor nodes as

CHs and 100 sensor nodes are randomly deployed in a

region of interest. Consider a molecule from Fig. 7, i.e., an

initial random representation of a molecule as an input for

the decomposition. In the decomposition, we consider half-

random change operator to escape from the local search

and explore the search away from neighbouring region. In

the half-random change operator, we select the position of

slicing a molecule is exactly half of the characteristics in

case of an odd number of characteristics otherwise it slices

by considering the floor value. In this example the position

of slicing is the 5th position, i.e., sensor node 92. Input

molecule for decomposition is shown in Fig. 8 which is

decomposed into two molecules are shown in Figs. 9 and

10. The structures of obtaining molecules are very different

from the original molecule because the reaction is so vig-

orous. We check the conservation of energy condition for

the obtained molecules, which favour for the decomposi-

tion, we can remove a molecule from Fig. 8 and add the

molecules from the Figs. 9 and 10 to the Pop. Half-re-

combination operator is used in synthesis, means a new

molecule is formed from the first half of characteristics

from the first molecule and other half from the second

molecule. The pseudo code of proposed cluster head

selection algorithm is shown in Fig. 11.

4.2 A novel CRO based energy balanced cluster

formation algorithm

After the selection of optimal CHs, the cluster formation

algorithm is run at the BS for the optimal assignment of

non-cluster head sensor nodes to the CHs based on the

derived potential energy function.

4.2.1 LP formulation for cluster formation

Now we present the cluster formation problem, our main

objective is to prolong the lifetime of network and decrease

the energy consumption of the network. The network

1          2          3      4         5          6         7          8          9 10

5           3          2           1         4           1         2          5            2 2

s

CH

Fig. 12 Representation of a sample molecular structure
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lifetime can be maximized by minimizing the energy

consumption of the CH nodes, to assign the sensor nodes to

the CHs in such a way that to balance the energy con-

sumption of the CHs. And the lifetime of the network can

be maximized by minimizing the distance between the

sensor nodes and the CHs.

Let g1 be a function such that to assign a sensor node to

the CH with maximum residual energy. We need to max-

imize this for the optimal formation of clusters. Let g2 be a

function to minimize the distance from a sensor node to CH

and CH to BS. We have normalized these two objective

function values between the range of 0 and 1 in such a way

that we minimize the linear combinations of these two

functions in an efficient manner.

Let aij be a Boolean variable defined by

aij ¼
1 if si is assigned to CHj;8i; j : 1� i�n; 1� j�m

0 otherwise

(

ð24Þ

Minimize W = W1 9 g2 ?W2 9 1/g1 subject to

disðsi;CHjÞ � aij � dmax; 8si 2 S; and CHj

2 C

ð25Þ
Xm

j¼1

aij ¼ 1 ð26Þ

The constraint (25) states that the sensor node si can be

assigned to the CHj when it is in the maximum commu-

nication range of a sensor node si and (26) states that a

sensor node si can be assigned to only one CHj.

4.2.2 Molecular structure representation and initialization

The representation of molecular structure is different from

the CH selection algorithm. For the cluster formation algo-

rithm a structure of a molecule represents the assignment of

sensor nodes to the CHs. Let M1i = [Yi,1(t), Yi,2(t), Yi,3(t),

Yi,4(t),…,Yi,D(t)] be the ith molecule from Pop, where each

component Yi,d(t) maps the sensor nodes to the CH node IDs

which are in the communication range of each sensor node,

1 B i B NM1, 1 B d B D. Then the molecular structure can

be represented as follows and shown in Fig. 12. From

Fig. 12, it can be observed that the index of s denotes the set

of sensor nodes and CH indicates that set of CHs.

M1i ¼ Yi;1 tð Þ; Yi;2 tð Þ; Yi;3 tð Þ; Yi;4 tð Þ; . . .; Yi;D tð Þ
� �

ð27Þ

The generation of each characteristic of a molecule is

such that to assign a sensor node to the unique cluster head

within the communication range. Our proposed algorithm

does not depend on any particular algorithm for initial

generation of molecules. The idea for generating the initial

random population can be explained as follows.

Example 1 We consider a WSN with 10 sensor nodes and

5 cluster heads, i.e., S = {s1, s2,…,s10} and v = {CH1,

CH2, CH3, CH4, CH5}.

Table 2 shows the set of sensor nodes with their possible

cluster head nodes to which sensors to be assigned. Here,

the number of characteristics of the molecule is equal to the

(a)

(b)

4 2          5           1          1          3         2          5           2 1

1          2 3           4          5          6 7           8           9 10

2          1 5            1         3 1  2          5           4 4

1          2 3           4         5           6 7          8           9 10

s

CH

CH

s

Fig. 13 a, b Input structures of molecules

(a)

(b)

4 2          3            1         5          3         2          5           2 1

1           2 3           4          5          6 7          8           9 10s

CH

CH 2          1 1 1         5 1  2          5           4 4

1          2 3            4         5          6 7          8           9 10s

Fig. 14 a, b Generated structures of molecules

Table 2 Sensors with the possible list of cluster heads

Sensor node (si) Comm(si)

s1 v1 = {CH1, CH2, CH3, CH4, CH5}

s2 v2 = {CH1, CH3, CH4, CH5}

s3 v3 = {CH1, CH2}

s4 v4 = {CH1}

s5 v5 = {CH1, CH2, CH4, CH5}

s6 v6 = {CH1, CH5}

s7 v7 = {CH1, CH2, CH3}

s8 v8 = {CH1, CH2, CH3, CH4, CH5}

s9 v9 = {CH2, CH4}

s10 v10 = {CH2, CH4, CH5}
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10. Suppose for the 3rd characteristic of a molecule, a

number is generated randomly either 1 or 2, for the 5th

characteristic, the randomly generated number among the

1, 2, 4 or 5. In the same way for the 10th characteristic of a

molecule, a number is generated randomly amongst 2, 4 or

5. From the Fig. 12, s3 can be assigned to the cluster head

CH2, s5 can selects the CH4 and so on. It should be noted

that the structure of a molecule represents the potential

solution of the search space. This is due to that all sensor

nodes are assigned to their corresponding cluster head

nodes and also each sensor node is assigned to the unique

cluster head. In the cluster formation algorithm, we con-

sider the inter-molecular reaction occurs. The process can

be explained in illustration Sect. 4.2.4.

Algorithm 2: A novel CRO based energy balanced cluster formation

Input: (1) Set of sensor nodes: S = {s1, s2, s3,…..,sn}.
(2) Possible sets of CHs:χ ={χ1, χ2, χ3,….., χn} such that 

χi {CHd}, ∀ 1≤  i ≤ n, 1≤ d ≤ m
(3) Predefined PopSize: NM1.
(4) Number of characteristics of a Molecule: D = n.

Output: Optimal sensor assignment function ω: S χ

Step 1: Assign parameter values to PopSize, KELossRate and InitialKE. 
Step 2: for each of the molecules do 

2.1 Assign random molecular structures as M1i = [Yi,1(t), Yi,2(t),……..,Yi,D(t)], 1≤ i ≤ NM1, 
1≤ d ≤D=n, number of sensors are supposed to be assigned.

2.2 Calculate PE using Eq. (30 )
2.3 Assign InitialKE= KE

endfor
Step 3: Let the central energy buffer be buffer and assign buffer =0
Step 4: While t =1 to TR do /*TR = Max. number of iterations*/

if (TR% UMR ==0)
Select a molecule, say ψ from Pop randomly
if (NHits[ψ]-MHits[ψ])>α) then

Decompose (ψ, buffer) into ψ ' 1 and ψ' 2

if satisfies the energy conservation condition either Eq. (3) or (4) then
Remove ψ from Pop
Add ψ ' 1 and ψ ' 2 to Pop

endif
else

on-wall ineffective collision ( ψ, buffer) into ψ '
Add KELost to buffer
if satisfies the energy conservation condition from Eq. (2) then

Remove ψ from Pop
Add ψ ' to Pop

endif
else

Select two random molecules say ψ1 and ψ2 from Pop          
if (KE ψ 1 ≤ β and KE ψ 2 ≤ β) then

Synthesis (ψ1, ψ2) into ψ '
if satisfies the energy conservation condition from Eq. (8) then

Remove ψ1, ψ2 from Pop
Add ψ ' to Pop

endif
else

Inter-molecular ineffective collision (ψ1, ψ2) into ψ1' and ψ2'
if satisfies the energy conservation condition from Eq. (7) then

Remove ψ1, ψ2 from Pop
Add ψ1' and ψ2' to Pop

end
4.1 Check for any new optimal value (Minimum)

endwhile
Step 5: Stop

Fig. 15 The pseudo code of

proposed cluster formation

algorithm

444 Wireless Netw (2017) 23:433–452

123



4.2.3 Derivation of potential energy function

The derivation of potential energy function depends on the

following parameters.

a. Residual energy of cluster head The primary objective

in the assignment of a sensor node to CH is the amount

of energy left in the CH, i.e., residual energy of CH.

The sensor node can choose a CH among possible CHs

such that it has more residual energy than others.

Objective 1 :Maximize g1 ¼
Xn

i¼1

max
kij

j¼1
ERðCHjÞ ð28Þ

b. Cluster head and sink distance The secondary objec-

tive in the formation of cluster is the distance from the

sensor node to the CH and CH to sink distance. A

sensor node can be assigned to the CH based on the

minimum distance from that node to CH and CH to

sink node. It can be expressed as mathematically as:

Objective 2 : Minimize

g2 ¼
Xn

i¼1

min
kij

j¼1
ðdisðsi;CHjÞ þ disðCHj;BSÞÞ ð29Þ

We use the weight summation approach to minimize all the

above two objective functions instead of separately mini-

mize them because these two objectives are weakly con-

flicting each other and there exists a unique Pareto optimal

solution. Therefore, we use the following potential energy

function as follows.

Potential energy function ¼ W1 � g2 þ W2 � 1=g1

Also 0\g1; g2\1; where W1 þ W2 ¼ 1
ð30Þ

Our objective is to minimize the potential energy

function. The lower the value of PE, better is the stability

of the molecule, i.e., optimal assignment of non-CH sensor

nodes to CHs for the formation of balanced clusters.

4.2.4 Illustration

We can illustrate in terms of implementation point of view

as follows. Assume that KEw1 = 1.8, KEw2 = 2.1 and

b = 1. The condition for synthesis is KEw1 B b and

KEw2 B b. Also consider the PEw1 = 0.89 and

PEw2 = 0.56. PE w10 = 0.85 and PE w20 = 0.55. The

molecules fails the condition for synthesis, therefore an

inter-molecular ineffective collision occurs. Check for the

conservation of energy condition.

PEw1 þ KEw1 þ PEw2 þ KEw2 �PEw10 þ PEw20

0:89 þ 1:8 þ 0:56 þ 2:1 � 0:85 þ 0:55
ð31Þ

Let temp2 = PEw1 ? KEw 1 ? PEw 2 ? KEw 2 - PE

w10 - PE w20 = 3.95, where KEw 10 = temp2 9 r and

KEw 20 = temp2 9 (1 - r) and r e [0, 1]. Therefore,

KEw 10 = 3.95 9 0.2 = 0.79 and KEw 20 = 3.95 9

0.8 = 3.16.

In terms of operators point of view can be explained as

follows.

Let us consider 10 sensor nodes and assumes that 5 CHs

are in the communication range of each sensor. Let us pick

up two molecules from the Pop which are shown in

Fig. 13(a, b). We consider the two-exchange or pair-ex-

change operator to find the neighbourhood molecules for

the local search. In this operation

We first pick two random positions of molecular char-

acteristics in each input molecule and exchange the ele-

ments as follows. For example, pick the two random

characteristics 5, 1 and 5, 3 from Fig. 13(a, b) respectively.

Exchange these two characteristics mutually, i.e., 5 ? 3

and 1 ? 5. Therefore, the nascent molecules are generated

as shown in Fig. 14(a, b). During on-wall ineffective col-

lision, within a molecule two random positions are

Table 4 CRO parameters

Parameters Value

Number of molecules 50–60

InitialKE 0.5 J

KELossRate 0.08 J

Initial energy of buffer 0.0 J

a1 0.22

a2 0.20

a3 0.58

W1 0.67

W2 0.33

UMR (Algorithm 1) 47–78

UMR (Algorithm 2) 42–70

Number of iterations 65–105

Table 3 Network parameters

Parameter Value

Target area 500 9 500 m2

Base station locations (250, 250) and (500, 250)

Number of sensor nodes 200–1000

Number of cluster heads 40–90

Energy of a sensor node 2 J

Eelec 50 nJ/bit

efs 10 pJ/bit/m2

emp 0.0013 pJ/bit/m4

dmax 120 m

d0 67 m

Packet length 4000 bits

Message size 500 bits
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exchanged. The pseudo code of the proposed cluster for-

mation algorithm is shown in Fig. 15.

5 Simulation results and performance evaluation

5.1 Simulation environment

The proposed algorithm was tested using C programming

and the results are plotted using MATLAB (version 7.11)

on an Intel core i7 processor with chipset 2600, 3.40 GHZ

CPU 2 GB RAM running on the platform Microsoft

Windows 7. The simulations were performed over varying

number of sensor nodes from 200 to 1000 with 40 to 90

CHs. In the simulation run, we have used the parameter

values as used by [15] is shown in Table 3. We have

considered various network scenarios, two of which are

presented here as follows. For the first scenario WSN#1 the

position of base station was taken in the center of the field,

i.e., at (250, 250), for the second scenario WSN#2 it was

placed at (500, 250).

We tested our algorithm at variable size of the initial

population of molecules ranging from 30 to 100, however,

we found that the proposed CH selection algorithm was

shown comparably better results at 60 molecules and

cluster formation algorithm at 50 molecules. We have

considered the decomposition constant (a) 4, 5 and Syn-

thesis constant (b) 2, 3 for the CH selection algorithm and

cluster formation algorithms respectively. The other

parameters to run our novel CRO based algorithms are

shown in Table 4.

We have run the proposed algorithms over 30 times and

considered the average of these instances of data for

evaluating the performance.

5.2 Performance metrics

To measure the performance of the proposed algorithms we

use the following metrics.

A. Energy consumption: This is the total energy con-

sumption for a certain number of rounds, in each

round, CHs collect data, aggregate and route it to the

BS. Note that energy consumption is increased as the

number of rounds increases.

B. Network lifetime: As earlier stated, we consider the

network lifetime as first node death (FND). More the

network lifetime, performance of the network is better.

C. Packets receiving: This is the total data packets received

by the BS in the whole life time of the network. More

packets received better is the performance.

D. Convergence rate: It is defined as the number of

iterations an algorithm takes to reach the global

optimal solution.

5.2.1 Performance measurement in terms of energy

consumption

We have extensively tested performance of the proposed

algorithm in terms of the total energy consumption of the

network over various scenarios with varying number of

sensor nodes. The proposed algorithm outperforms the

existing algorithms over various scenarios with varying no.

of sensors and CHs. For example, we ran the proposed

algorithm for comparing the total energy consumption of

the network with 500 sensor nodes and 60, 90 CHs. The

comparison results of the proposed algorithm with PSO-C

[44], LDC [27], GLBCA [4], GALBCA [46], DECA [47]

and CRO-ECA are shown in Figs. 16 and 17. It can be

observed that the proposed algorithm outperforms some of
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(a) (b)Fig. 16 Comparison in terms of

energy consumption for a 60

CHs, b 90 CHs in WSN#1
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the existing algorithms in terms of total energy consump-

tion. This is due to the fact that our derived potential

energy functions taken care of energy consumption of the

normal sensor nodes by reducing the distance between

sensor nodes and their CHs in the cluster head selection

and non-CH sensor nodes can be assigned to the CHs with

less distance, it also considers the minimum distance from

assigned CHs to BS in the cluster formation algorithm.

In the existing algorithms the CHs are selected randomly

which may cause imbalance load of clusters. Also, there is

no rotation of CHs which may cause severe energy inef-

ficiency of the network and also in the cluster formation

various essential parameters like distance and energy were

not considered which may cause imbalance energy

consumption.

5.2.2 Performance measurement in terms of network

lifetime

Next, we ran the algorithms for comparing the network

lifetime in terms of rounds by varying number of sensor

nodes from 200 to 1000 and 60 to 90 CHs. From Figs. 18

and 19, it can be observed that the proposed algorithm

outperforms PSO-C, LDC, GLBCA, GALBCA, DECA

and CRO-ECA. The justification is that the selection of

CHs in the proposed method considers the residual energy

of the sensor nodes. As a CH, it actually consumes more

energy than the normal sensor nodes. Therefore, the energy

of CHs gets depleted more quickly than the normal sensor

nodes. If a sensor node is selected with low energy, it can

die quickly and hamper the network lifetime. In the pro-

posed algorithm for the CH selection, we select the CHs

from the non-CH sensor nodes with higher residual energy.

Also in the cluster formation algorithm we assigned the

non-CH sensor nodes to the CHs with higher residual

energy.

The above Figs. 18 and 19 explain the performance of

the proposed nCRO-ECA with the existing algorithms.

From Figs. 18 and 19, we can observe that the proposed

nCRO-ECA outperforms PSO-C, LDC, GLBCA,

GALBCA, DECA and CRO-ECA in all WSN scenarios

with varying number of sensor nodes. In the existing

algorithms LDC, GLBCA, GALBCA and DECA the

authors deployed the CHs randomly and also do not con-

sider the energy of CHs in the assignment sensors to the

CHs in the cluster formation phase. In PSO-C, the authors

selected CHs in an energy efficient manner. However,

normal sensor nodes are assigned to the CHs by consid-

ering distance only, does not taken care of the energy of

CHs. It causes serious energy imbalance. In nCRO-ECA,

the quality of the solution is obtained by the proper mixture

of uni and inter-molecular collisions, which is an essential

decision making condition for the quality of solution.

However, in original CRO based algorithm CRO-ECA the

decision making was done randomly during inter or uni-

molecular collision condition, which may not yield proper

mixture of collisions.

5.2.3 Performance measurement in terms of packets

received

We ran the algorithms for comparing the number of data

packets received by the base station by varying number of

sensor nodes from 200 to 1000 and 60 to 90 CHs. From

Figs. 20 and 21, it can be observed that the proposed

algorithm outperforms PSO-C, LDC, GLBCA, GALBCA,

DECA and CRO-ECA in terms of receipt of data packets.

The reason behind the number of packets received by

the BS depend on both the energy consumption and net-

work lifetime. The proposed algorithm receipt more num-

ber of data packets compared to existing algorithms

because it consumes less energy and has more network
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lifetime. It is also important to note that the number of

packets received is predominantly more, when the base

station is placed at the center of the target area compared to

the edge of a target region. If the position of the base

station is changed from the center to the edge of the target

region, the number of packets is fallen down.

This decline is more for the existing algorithms due to

the fact that the proposed algorithm takes care of proper
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selection of the CHs and also formation for cluster also

taken care with the help of efficient potential energy

functions.

5.2.4 Performance measurement in terms of convergence

rate

We have extensively tested the convergence rate of the

proposed algorithm with CRO-ECA and some existing

algorithms over varying number of sensors from 200 to

1000 and also varying number of CHs.

The proposed algorithm shows quick convergence and

better quality of solution over the various scenarios with

varying number of sensor nodes. For example, here we

present the convergence rate with 500 sensors and 40–60

CHs. From Figs. 22 and 23, we can observe that the pro-

posed algorithm nCRO-ECA converges quickly and

reaches better quality of the solution compared to some

existing algorithms PSO-C, GALBCA, DECA and CRO-

ECA. Note that, the number of iterations and potential

energy value for the convergence of nCRO-ECA is the

average number of iterations and potential energy value of

the two proposed algorithms. Because, the number of

iterations for the convergence of the two proposed algo-

rithms varies differently. The justification for the faster

convergence with better quality of solution of nCRO-ECA

is the incorporation of local improvement decision making

condition by following the theoretical and experimental

chemical kinetics. According to the NFL (No Free Lunch)

theorem, no meta-heuristic is neither superior nor inferior

to others, if a problem matches to a particular meta-

heuristic it outperforms, i.e., nCRO paradigm matches to

this problem. Therefore, it outperforms over the existing

algorithms.

6 Conclusion

In this paper, first the Linear Programmings have been

formulated for two optimization problems such as CH

selection and cluster formation. Then, two algorithms have

been presented for the same based on novel CRO tech-

nique using efficient molecular structure representations

and potential energy functions. For the energy efficiency of

the proposed nCRO-ECA, we considered various parame-

ters such as intra-cluster distance, sink distance and

residual energy of sensor nodes in the CHs selection phase.

In the cluster formation phase, we considered various dis-

tance and energy parameters. We have shown simulation

results along with their comparisons with various existing

algorithms, namely, PSO-C, LDC, GLBCA, GALBCA,

DECA and original CRO based algorithm CRO-ECA. The

algorithm has been extensively tested with several scenarios

of WSN and varying number of sensors and cluster heads.

The experimental results have shown that the proposed

algorithm performs better than the existing algorithms in

terms of total energy consumption, network lifetime,

number of data packets received by the base station and

convergence rate. However, we have not considered any

routing algorithm in the proposed algorithm. Our future

work will aim to develop a routing algorithm using the

same meta-heuristic approach. For such algorithm, we shall

consider various issues such as fault tolerance and hot spot

problem of WSNs.
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