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Abstract In this paper we provide an analytic framework

for computing the expected downlink coverage probability,

and the associated rate of cellular networks, where base

stations are distributed in a random manner. The provided

expressions are in computable integral forms that accom-

modate generic channel fading conditions. We develop

these expressions by modeling the cellular interference

using stochastic geometry analysis, then we employ them

for comparing the coverage resulting from various channel

fading conditions namely Rayleigh and Rician fading, in

addition to the fading-less channel. Furthermore, we

expand the work to accommodate the effects of random

frequency reuse on the cellular coverage and rate. Monte-

Carlo simulations are conducted to validate the theoretical

analysis, where the results show a very close match.

Keywords Stochastic geometry � Cellular network
modelling � Coverage probability � Network rate

1 Introduction

The vast deployment scale of cellular communication has

made it as one of the most ubiquitously available piece of

infrastructure. The notable expansion rate of cellular net-

works is referred to the accelerating demand generated by

mobile users, where network operators are endeavouring to

bridge the gap between traffic load and the available net-

work capacity by deploying additional base stations (BS).

It is anticipated that within the next 5 years a data-traffic

growth of around 10 folds will take place in cellular net-

works alone [1].

The locations of the deployed base stations, are usually

constrained by many factors such as economical, urban

planning codes, and the availability of land/utility etc. these

factors, are very difficult to control and to predict, which

leads to an increasing randomness in the BS locations,

where the theoretical hexagonal model is no longer feasible

[2, 3]. Due to the increasing complexity of cellular net-

work, designers and researchers utilize simulation tools for

predicting network coverage and performance. Such

approach is widely accepted in the industry, however it can

not give an analytical insight of the influence contributed

by the vast simulation parameters. Rather, it provides a

detailed case-specific solution with neither tractability nor

flexibility.

Analytical insight of network dynamics is an essential

enabler for strategic planning and long-term economical

modeling [4]. And in order to capture the increasing irreg-

ularity of the network deployment, stochastic geometry

models [5–9] are recently gaining a paramount interest for

studying wireless cellular networks. Stochastic geometry

allows the analytical understanding of the performance of

modern cellular technologies such as cognitive radios [10],

heterogeneous networks, fractional frequency reuse [11]

and device to device communications [12, 13], in addition to

the fundamental coverage and capacity of the cellular net-

work [2, 3, 14, 15]. The most popular assumption in the

literature for the radio power fading is the Rayleigh channel,

where the distribution function of the received power takes a

simple exponential shape. This assumption allows

tractability and enormously simplifies the computation of
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expressions. However, the desired link might favour a better

performance than Rayleigh model that is usually considered

as the worst case scenario fading [16].

Understanding this gap in the literature, we propose in

this paper an analytical approach for studying the coverage

and the rate of cellular networks under generic channel

fading conditions, accommodating not only the fast-fading

behaviour of the channel but also the possible effects of

shadowing variation. We first model the cellular interfer-

ence in a random cellular network, and then we study the

expected performance metrics as spatially averaged over

the entire network. In addition we demonstrate the effects

on the coverage probability resulting from different chan-

nel fading scenarios namely; (1) fading-less channel, (2)

Rayleigh channel and (3) Rician channel. We verify our

analytical approach using Monte-Carlo simulations by

running repeated random network deployments and

obtaining the spatial average of the signal-to-noise-plus-

interference ratio (SINR). These results are used to validate

the analytical calculations obtained using the integral

forms. The contribution of the paper could be summarized

in the following points:

• It provides a generic formula (the coverage equation)

for calculating the expected service success probability

(or the coverage probability) in random cellular

networks, under generic channel fading conditions.

• The coverage equation is flexible to allow different

fading models for the serving signal from one side and

the interfering signals from the other side.

• The paper provides a practical method to compute the

expected rate in a random cellular network, without

resorting to complicated simulations.

The rest of this paper is structured as the following: in

Sect. 2 we provide a literature background and identify the

key studies that our work is based upon. In Sect. 3 we build

the network model and illustrate the implemented channel

models. The analytical study of the cellular interference is

presented in Sect. 4, while in Sect. 5 we derive the cover-

age equation that describes the probability of successful

communication in a computable integral form, we employ

this equation for studying three different radio channels in

Sect. 6. Section 7 explains our approach in estimating the

network rate. A comparison with Monte-Carlo simulations

is provided in Sect. 8. Finally in Sect. 9 we draw our con-

clusion remarks and the prospective research paradigms.

2 Related work

Several recent introductory works are available on

stochastic geometry in the context of wireless networks of

which we list [5, 17, 18]. However, some of the earliest

work on this regards dates back to the 1970–1990 such as

[4, 19, 20]. Since then, several leaps have taken place, for

example the work in [21] draws a mathematical framework

for the statistical distribution of the interference generated

by random wireless networks, where in our derivation of

cellular interference we follow a similar approach, but

taking into consideration the specific properties of cellular

networks. Other works related to interference can be found

in [22] addressing slotted ALOHA interference topic

assuming a Rayleigh fading channel, while the authors in

[23] address a general fading channel and obtain the opti-

mum transmission probability in slotted ALOHA network.

Also the work in [24] addresses inter-user interference in

an extensive experiment using both slotted and unslotted

CSMA/CA. In the context of interference also, the work in

[25] addresses clustered interferers but it is distinguished

by addressing the amplitude and phase of the interference

where the interfering signals can interact constructively or

destructively. Mentioning that the vast of the literature

deals with the aggregated power of the interferers, that is

the algebraic sum of the power of all interfering signals. In

[26] the authors employ stochastic geometry analysis on

studying intercell interference coordination (ICIC) by

muting the transmission from K number of neighbouring

stations on specific resource blocks.

The tractability facilitated by the Poisson point process

(PPP) attracts researchers to represent the BS locations

according to this process. However, other studies in this

field capture the possible repulsion between base stations,

utilizing determinantal point processes [2, 15]. The accu-

racy of PPP is proven to increase when heavy shadowing

conditions affect the network [27], making PPP a valid

assumption in most of practical network deployment

scenarios.

Applying stochastic geometry for studying cellular

communication is an appealing approach for what it can

yield of analytical estimations of the different attributes

affecting such networks. For example the work in [3]

addresses the probability of coverage in cellular networks

assuming a Rayleigh fading channel affecting the serving

signal, while the work in [28] extends the same approach

for multi-tier heterogonous cellular network, where base

stations are implemented with different power and capacity

levels. The work in [29] provides a mathematical frame-

work to compute the expected cellular rate without the

need to obtain the coverage probability, the utilized method

depends on the moment generating function of the

interference.

The main difference in our work presented here, is that

the coverage and capacity estimations can be obtained for

any stochastic fading channel model, with the freedom to

select different stochastic processes for the serving signal

and the for interfering ones.
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3 Network model

Achieving high accuracy in estimating network perfor-

mance requires system level simulation, usually performed

for a specific wireless technology that is implemented on a

deterministic geometrical environment. Such simulations

are quite useful in practical deployments of networks, for

example, when wireless operators are deploying a new

service, or when they are upgrading their infrastructure.

However, an analytical tractable approach is preferred to get

an insight of the different factors contributing to the network

performance [2, 3, 13, 15, 23, 30], these factors include (but

not limited to) base stations density, fading models, and

resource allocation. Although tractable analysis can be

achieved using simplified approximation of the determinist

hexagonal models [31], however, these models are very

simplistic and might not reflect the true behaviour of the

network, knowing that practical cellular network deploy-

ments include vast randomness in the location of base sta-

tions. From this perspective, stochastic geometry is widely

used in the research field to model the random location of

base stations, where for simplicity it is common to assume a

homogenous Poisson point process (PPP) to model the BS

locations, which emulate a complete randomness in

deployment locations. Accordingly, and in order to preserve

the tractability we adopt the PPP network model assuming

homogeneous BS intensity of value k (BS per unit area). The
point process itself is denoted as U ¼ fXn 2 R2gn2N and is

assumed to take place in the two dimensional Euclidian

space R2. Mobile users are typically associated to the BS of

highest received power, which is characterised with random

behaviour (fast fading and shadowing), accordingly the

cellular boundaries are rather probabilistic. However, taking

aside the fading effects, we can draw the average cellular

boundary of each of the PPP points, simply by taking its

Voronoi cell, defined as the region where all users are closer

to the serving BS from any other BS [5]:

VðXnÞ ¼
4 fu 2 R2 : jjXn � ujj � jjXi � ujj 8Xi 2 U n fXngg;

ð1Þ

where VðXnÞ is the Voronoi cell of a base station Xn, and U
is the set of base stations. The structure of the cellular

system will then be called the Poisson Voronoi tessellation

(PVT) [6], we depict a sample realization of a PVT layout

in Fig. 1.

The reason that we can rely on PVT for determining the

cell association is that the mean path-loss is monotonically

increasing with respect to distance, so having a closer

distance to a certain BS will result better average received

power, than any other BS.

We consider that all base stations are having the same

transmit power Po, that is a homogeneous network, rather

than a multi-tier heterogenous network composed of base

stations of variable power capabilities. No power control is

accounted in our model, such that base stations are

assumed to continuously transmit a constant power level.

Without loss of generality, we study a user located at the

origin, where its statistical behaviour is typical for all other

users in the network. We call this mobile user as the typical

user, where we estimate the network performance of this

user for all possible spatial realizations of the random

network. In other words, we implicitly assume a homoge-

nous distribution of network users, so that having the

performance of the typical user will reflect the spatial

average of all users in the network.

3.1 Channel model

Electromagnetic signals traveling between a BS and a

receiver encounter power losses due to the propagation

nature of the surrounding environment, resulting mainly

from scattering, diffraction, reflection and absorbtion.

These power losses are characterized with random beha-

viour and usually categorized into two distinct groups

according to their rate of change, namely fast fading and

slow fading or shadowing, where the random effect of these

two categories is independent. Slow fading results mainly

from the electromagnetic shadowing of obstacles, the

random behaviour of the slow fading is modeled here as a

random variable denoted as g, where it is widely accepted

to be considered to follow a log normal distribution

according to the following:

g ¼ exp rNð Þ : N�Nð0; 1Þ ð2Þ

and r ¼ lnð10Þ
10

rdB represents the standard deviation, usually

rdB is provided, representing the standard deviation in

Decibel. The Gaussian distribution of zero mean and unity

standard deviation is denoted as Nð0; 1Þ.
On the other hand, the random interaction of multipath

components at the receiver has a fast varying nature,

causing rapid changes in the signal power, this effect is

termed as the fast fading and modeled here by a generic

random variable h, that can represent any of the common

fast fading channel models, such as Rayleigh, Rician and

m-Nakagami [32].

While the mean loss due to the distance (the path-loss)

is modeled in a log-distance relation [16, 33], so that at a

location x the mean path-loss between the origin and x is

given by the following:

lðxÞ¼4 jjxjj�a; ð3Þ

where ||.|| represents the Euclidian measure in R2, i.e. the

distance between a source base station and the mobile

station under study. Accordingly the resulting received
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power at a certain location will have the following

expression:

PRX ¼ Po:g:h:lðxÞ; ð4Þ

where Po represents the common power at which all base

stations are transmitting. Noting that in this paper we

represent random variables in bold for convenience and

ease of interpretation.

4 Modeling cellular interference

In our model, we assume that the BSs have a unity reuse

factor. That is, for the typical mobile user, all BSs except

the serving one are interfering the downlink signal. Then

the aggregated interference is given by

I ¼
X

UI

PognhnlðxÞ ¼
X

UI

PnlðRnÞ; ð5Þ

where UI ¼ U n fXog is the set of interferers, Xo represents

the serving BS, and fPngn2Nþ is a random variable vector

having identical and independently distributed (i.i.d) ele-

ments, so that P ¼ Pogh. The BSs’ distances fRngn2Nþ

constitute a random vector.

The illustration of a typical receiver located at the origin

is shown in Fig. 2, where it is important to note that

according to the assumed cellular association, all interfer-

ing BSs should be located outside the ball bðo;RoÞ of

radius Ro and centred at the origin, where Ro is the distance

to the serving BS, which is the contact distance to U [18].

The statistical distribution of the interference cannot be

obtained for a generic case [21]; however, we can still

deduce its characteristic function (CF) /IðxÞ, where the

CF for a random variable X is defined as uXðxÞ ¼ E e|xX½ �,
where | ¼

ffiffiffiffiffiffiffi
�1

p
. If the characteristic function is identified,

we can utilize the Gil-Pelaez’s inversion theorem [34] to

compute the Cumulative Distribution Function (CDF) of X

according to the following:

FXðxÞ ¼
1

2
� 1

p

Z 1

0

1

x
Im uXðxÞ expð�|xxÞ½ �dx: ð6Þ

Proposition 1 The characteristic function of the aggre-

gated interference in a cellular network is given by:

R
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Fig. 1 Cellular Poisson

Voronoi tessellation, indicating

the typical user located at the

origin
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uIðxÞ ¼ exp �2pkbð Þ; where ð7Þ

bðxÞ ¼
Z 1

Ro

1� uP xlðrÞð Þ½ �rdr: ð8Þ

Proof We start from the definition of the characteristic

function of the interference, where the expectation should

be performed over (i) the stochastic processes in P and (ii)

over the geometrical stochastic process of UI :

uIðxÞ ¼ E e|xI
� �

¼ EUIEP exp |x
X

UI

PnlðRnÞ
 !" #

¼ EUIEP
Y

UI

exp |xPnlðRnÞð Þ
" #

¼ðaÞ EUI

Y

UI

EP exp |xPnlðRnÞð Þ½ �
" #

¼ðbÞ EUI

Y

UI

uP xlðRnÞð Þ
" #

;

ð9Þ

where (a) follows from the fact that the combined channel

process P ¼ Pogh is independent of the geometrical pro-

cess and (b) follows directly from the definition of the CF.

Now we can apply the probability generating functional of

a homogeneous PPP on R2 [5], where for a function f(x) the

following relation is satisfied:

E
Y

UI

f ðxÞ
" #

¼ exp �2pk
Z

I
½1� f ðxÞ�rdr

� �
: ð10Þ

The integration variable r 2 I is the distance range where

the active interferers are located, that is I ¼ ðRo;1Þ.
Accordingly, we can write (9) as the following:

uIðxÞ ¼ exp �2pk
Z 1

Ro

1� uP xlðrÞð Þ½ �rdr
� �

: ð11Þ

Hence, Proposition 1 is proved. h

For a log-distance mean path-loss model, (8) yields:

bðxÞ ¼
Z 1

Ro

1� uP xr�að Þrdr½ �; noting that ð12Þ

uP xr�að Þ ¼ Eg;h exp |xr�aPoghð Þ½ �: ð13Þ

Accordingly, we can rewrite b as the following:

bðxÞ¼Eg;h

Z 1

Ro

1�exp |xr�aPoghð Þ½ �
� �

rdr

¼Eg;h

"
�R2

o

2
þð�|PoghxÞ2=a

a

"
C

�2

a
;�|PoghR

�a
o x

� �

�C
�2

a

� �##
;

ð14Þ

where Cð:Þ and Cð:; :Þ are the Gamma and the incomplete

Gamma functions respectively.

5 Modeling coverage probability

Signal to interference and noise ratio (SINR) is an impor-

tant measure that can determine the link throughput and the

availability of the wireless service. The SINR represents

the strength of the target signal compared to the counterpart

interferers’ combined power plus the thermal noise gen-

erated inside the receiver’s electronics. The latter can be

Fig. 2 All interfering base

stations are located outside the

ball bðo;RoÞ
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represented as an additive white Gaussian noise (AWGN).

The SINR is expressed as: SINR ¼ S
IþW

, where S ¼
PohogolðRoÞ is the desired signal which carries the needed

information from the serving BS, I is the aggregate inter-

ference power, and W is the AWGN noise power. The

random variables ho and go model the fast and slow fading

respectively of the serving BS channel.

Theorem 1 The probability that a receiver to be covered

by a certain level of cellular wireless service is given by:

pc ¼ Eho;go

Z

r[ 0

FI
Pohogo
Tra

�W

� �
fRo

ðrÞdr
� �

: ð15Þ

Proof The outage of wireless service occurs when the

SINR level at a receiver falls below a threshold T.

Accordingly, we can express the link-level success proba-

bility at a given distance Ro and a given ho, go as:

pL ¼P½SINR� T jho; go;Ro�

¼ P½I� S

T
�W � ¼ FI

S

T
�W

� �
;

ð16Þ

where FI is the cumulative distribution function (CDF) of

the interference I. Thus, the success probability is found by

averaging over Ro, ho, and go as:

pc ¼ ERo;ho;go pL½ � ¼ Eho;go ERo
pL½ �½ �: ð17Þ

Accordingly, we can conclude the result in (15) by

applying the expectancy rule over the contact distance Ro,

having a probability density function of fRo
ðrÞ ¼

2kpr exp �kpr2ð Þ in a PPP cellular network. We should

note that FI is computed using Gil-Pelaez’s inversion for-

mula given in (6). h

We call (15) the coverage equation, constituting the

main result of this work allowing the evaluation of the

averaged network-level success probability. The various

dynamics affecting the cellular service success probability

are visualized in Fig. 3, namely (1) the base station density,

(2) the common base stations’ power, (3) the path-loss

model, (4) slow fading model, (5) fast fading model, (6)

noise level, and finally (7) the target SINR threshold.

6 Network performance analysis

In this section, we first experiment a channel affected by a

path-loss only, then we account for the fast-fading impairing

both the serving BS signal and the interfering signals.

6.1 Path-loss only scenario

By taking the effect of the path-loss only (i.e. h ¼ 1 and

g ¼ 1) we can produce an initial understanding of the

cellular coverage dynamics, representing the upper bound

of the channel performance. According to (14), b can be

reduced to:

bðxÞ ¼ �R2
o

2
þ ð�|PoxÞ2=a

a

C
�2

a
;�|PoR

�a
o x

� �
� C

�2

a

� �� �
:

ð18Þ

We substitute different values of the path-loss exponent a,
assuming here that the cellular network is interference

limited, so that the noise can be neglected (i.e., W ! 0).

The results are counter-intuitive, since as indicated in

Fig. 4, a better coverage in a random cellular network is

achieved for higher values of the path-loss exponent,

indicating that a heavier path-loss environment affects the

aggregated interference more strongly than affecting the

serving signal power. Secondly, we compare the coverage

probability for different intensities of BSs assuming a

constant path-loss exponent. The results indicate that the

BS intensity has insignificant effect on the coverage

probability when the network is interference limited. Note

that the same observation was reported in [3] and [15] but

for a Rayleigh fading channel.

Fig. 3 The different dynamics

affecting the coverage

probability
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6.2 Rayleigh fading scenario

In this scenario, we assume that both the serving and the

interfering signals are impaired with Rayleigh fading.

Namely, an exponential distribution random variable with a

unity mean, where the probability density function PDF of

h is given by fhðxÞ ¼ expð�xÞ. Applying this to (14), and

by neglecting the shadowing variations (i.e. g ¼ 1), the

result can be reduced to the following form:

bðxÞ ¼ �R2
o

2
þ p

a
ð�|PoxÞ2=a csc

2p
a

� �

þ |
R2þa
o

ðaþ 2ÞPox
2 F1 1;

aþ 2

a
;
2

a
þ 2;� |Ra

o

Pox

� �
;

ð19Þ

where 2F1ð:; :; :; :Þ is the hypergeometric function.

We perform numerical integration to calculate the cov-

erage probability as per (15) for 5 different path-loss

exponent values. We observe that higher path-loss expo-

nent values have a favorable effect on the service success

probability. However, Rayleigh channel gives lower suc-

cess probability than fading-less channel, even though both

the interference and the serving signals are affected by the

same fading behaviour. We stress the point that the dif-

ference between the framework presented in this paper and

the one in [3] is the flexibility provided in choosing the

fading model of the serving channel, so it is not limited to

Rayleigh only. This comes at the cost of more complex

integral computation. We verify the results of the coverage

equation with the ones obtained in [3], and depict the

comparison in Fig. 5.

6.3 Rayleigh interferers with Rician serving signal

Rician distributed fading can represent a wireless channel

with more flexibility by tuning the K factor which repre-

sents the ratio of the LoS power to the sum of the powers

from the defused multipath components. The probability

distribution function describing a Rician fading channel

gain is given as:

fhðxÞ ¼ ðK þ 1Þe�xðKþ1Þ�KIo
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4xKðK þ 1Þ

p	 

; ð20Þ

where Ioð:Þ is the modified Bessel function of the first kind.

In this scenario we assume that the serving signal follows a

Rician distribution, while the interfering signals follow a

Rayleigh distribution, thus bðxÞ follows (19). The only

difference will be in calculating the expectancy in the

coverage equation (15), that is over a Rician distributed ho.

The results are illustrated in Fig. 6, observing that the

coverage probability is more sensitive to the distribution of

the serving signal for lower SINR thresholds, a case which

represents the edge users of the cell.

6.4 Frequency reuse

It can be clearly noticed how low is the SINR performance in

the previous illustrated scenarios, also we note that

increasing the density of base stations does not lead to a

change in the coverage performance when the network is

interference limited. Accordingly, resource management

techniques should be applied to mitigate the co-channel

interference between cells [26]. The spatial reuse of radio

resource has been always the essence of cellular communi-

cation. However, there is a trade off between coverage
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Fig. 4 The coverage
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model without considering

fading effects
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performance and the spatial spectral efficiency. For example,

when applying a frequency reuse scheme, the spectral effi-

ciency will drop since the available spectrum for each cell

will reduce, however a frequency reuse scheme will lessen

the interference and boost the SINR performance.

In order to get a better insight of the expected network

performance and how it is affected by radio resource coor-

dination, we adopt the random frequency reuse scheme due

to its simplicity and tractability. In this scheme, base stations

can chose from some D available radio frequencies, so each

BS has a probability of a certain frequency assignment equal

to 1
D. In this case, the co-channel interference will only be

received from base stations utilizing the same frequency.

The layout of the PVT will appear similar to Fig. 7, where

co-channel base stations are colored the same. It is obvious

that this channel assignment is not optimal, since co-channel

cells are allowed to be mutual neighbours. But as mentioned

before, the random frequency reuse greatly facilitates the

mathematical analysis.

In Fig. 8 we plot the simulation results of the random

frequency reuse scheme, showing the probability of the

service success pc at an SINR threshold of T ¼ 10dB

verses a range of reuse factor D. An interesting observation

is that the channel fading effect becomes more obvious for

higher reuse factor, when comparing the three scenarios as

explained in the subsections of Sect. 5. Simulation proce-

dure will be explained in detail in Sect. 8.

For analytically studying the effect of random fre-

quency reuse, we examine the new distribution of the

interferers, noting that it follows a new PPP, since the

independent thinning of a PPP will also yield a PPP [8]

with a new intensity equal to k
D. In this case the coverage
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Fig. 5 The coverage
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fading, showing a comparison

with the results of [3]
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equation (15) resulted from Theorem 1, still holds the

same except that the aggregated interference follows a

different stochastic distribution; the new CDF of the

interference is denoted cFI so that its characteristic func-

tion is given by the following:

cuI ðxÞ ¼ exp �2p
k
D
b

� �
; ð21Þ

resulting a reduced interference effect, thus a better cov-

erage success probability.
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7 Network rate

A practical system would perform less than the maximum

limit set by Shannon capacity theorem. Accordingly we

utilize a practical method [35] to estimate the user’s

throughput (rate) per/Hz following the expression:

q ¼ ln 1þ SINR
SINRo

	 

, where SINRo is a system specific

parameter considered here as a constant, representing the

gap between Shannon limit and the achievable rate of the

system. The estimated network rate can be calculated as:

qc ¼ E½q� ¼ E ln 1þ c

co

� �� �
¼
Z 1

cmin

ln 1þ v

co

� �� �
fcðvÞdv;

ð22Þ

where the symbol c is used to represent the SINR, v is

merely the integration variable, while cmin is the effective

SINR limit where no useful communication can take place

below cmin. This proposed method can capture the effect of

adaptive modulation and coding schemes in communica-

tion systems. This method requires obtaining the PDF of

the SINR, i.e., fc, which can be approximated numerically

from the points calculated in plotting the service success

probability presented earlier, since fc ¼ � d
dv
Fc
cðvÞ, where

Fc
c is the complementary cumulative distribution function

(CCDF) of the SINR as plotted in Figs. 4, 5 and 6. By

means of trapezoidal integration, the resulting rate is pre-

sented in Fig. 9, showing the effect of cmin on the network

performance, where low influence of cmin can be noted at

the high extent of the cmin-axis.

Alternatively, at the cost of additional computational

efforts we can utilize the following theorem to calculate the

expected rate directly from the system’s parameters:

Theorem 2 The expected rate of a cellular network can

be calculated from the following expression:

qc ¼ Eho;go

Z

r[ 0

Z 1

qmin

FI
Pohogo

coðev � 1Þra �W

� �
fRo

ðrÞdvdr
" #

:

ð23Þ

Proof Weneed to obtain the expectancy of the rate over three

stochastic processes: (1) the spatial properties of the point

process, (2) the channel fading distributions of the serving

signal, and (3) the distribution of the interfering signals. Hence

qc ¼ E ln 1þ c

co

� �� �

¼ Eho;go;Ro
EI ln 1þ PohogoR

�a
o

coðI þWÞ

� �� �� �

¼ðaÞ Eho;go;Ro

Z 1

qmin

P ln 1þ PohogoR
�a
o

coðI þWÞ

� �
[ v

� �
dv

" #

¼ Eho;go;Ro

Z 1

qmin

P I\
Pohogo

coðev � 1ÞRa
o

�W

� �
dv

" #
;

ð24Þ

where qmin ¼ ln 1þ cmin

co

	 

is the minimum achievable data

rates, (a) follows from the fact that, for a positive random

variable X, E½X� ¼
R1
0

PðX[ vÞdv, a method which was

also used in [3]. The final result of the theorem follows

from averaging over Ro. h

System Minimum SINR (γ
min

) [ ]
10-1 100 101

D
at

a 
R

at
e 

[n
at

s/
H

z]

0

0.2

0.4

0.6

0.8

1

1.2

Rayleigh Fading
Rician (S), Rayleigh (I)
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integration of equation (22),
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cmin and co ¼ 1. (S) refers to the

serving signal and (I) refers to

the interfering signals
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8 Simulation results

In order to verify the coverage equation presented in Sect. 5,

we perform Monte-Carlo simulations for more than 6500

users distributed uniformly within a PVT cellular network.

The entire simulation scenario is repeated for 80 runs, where

in each run we draw a large number of BS from a Poisson

distributed random variable, and deploy these BSs

homogenously over the test map, the simulation results

converge very quickly and simulating more that 20 runs has

no visual effect on the output plot, where the sum of the total

number of simulated links exceeds 500,000. The power

received from all BSs are combined at every mobile user

taking into consideration the stochastic effects of the radio

channel by randomly generating the individual channel gain.

The SINR value is stored for each receiver, and then we

obtain the resulting empirical Complementary Cumulative

Distribution Function (CCDF). Noting that the CCDF of the

SINR is equivalent by definition to the coverage probability,

because: Fc
cðTÞ ¼ 1� FcðTÞ ¼ Pðc[ TÞ ¼ pc.

The three different scenarios explained in Sect. 5 are

simulated, namely: in scenario (1) a deterministic channel is

used for all BSs, where the path-loss follows log-distance law

with exponent a ¼ 4. In scenario (2) the effect of Rayleigh

channel fading is added to all BSs including the serving BS.

While in scenario (3) the serving BS is assumed to favour a

Rician channel with a factor K ¼ 10 dB. The results of the

simulation runs for all three scenarios are shown in Fig. 10.

We observe a close match between the analytical integration

of the coverage equation from one side and Monte-Carlo

simulations from another side. Also we notice how the per-

formance seems to be bounded by the deterministic channel

conditions (fading-less scenario 1) as the upper bound and the

Rayleigh fading (scenario 2) as the lower bound. An

important conclusion can be drawn here that the performance

is strongly dependent on the serving channel fading condi-

tions rather than the interfering signals stochastic distribution.

9 Conclusion

This paper has provided a mathematical framework to

analytically compute the coverage and rate of random

cellular networks under generic channel fading conditions.

Two main observations have been made. Firstly, the

stochastic process of the radio channel largely affects the

coverage performance when considering lower SINR

thresholds (e.g., the performance of cell edge users). Sec-

ondly, the density of base stations does not affect the cel-

lular coverage when the network is interference limited,

regardless of the stochastic process of the channel. For

obtaining the expected rate of a cellular network two

methods have been illustrated. The first method is based on

trapezoidal integration and the second method is based on a

computable integration formula. Future work will include

the modelling of different cellular interference coordina-

tion schemes under this framework.
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