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Abstract In wireless sensor networks, beacons are

always treated as infrastructures for localization. After

beacons are deployed, non-beacon nodes can be located by

simple schemes such as multilateration and multidimen-

sional scaling (MDS). Deploying as many beacons as

needed is an efficient way to improve localization accuracy

where a global positioning system does not work well or a

higher location accuracy is required. With more beacons to

be deployed, the configuration of beacons’ positions will

have to be done manually. Therefore position auto-con-

figuration using measured distances between these beacons

can save a lot of efforts for the deployment. One challenge

of this auto-configuration is that the positions should be

uniquely determined based on the measured distances. In

graph theory, it is a problem of unique realization in which

the positions of vertices are determined by edges between

them. Addressing this problem is one major aspect of this

paper. To determine whether the topology of a network is a

unique realization, this paper proposes a novel category of

topology named Uniquely Determined Topology, with

which edges in a d-dimensional space can be reduced from

d þ 1 to d in each extension, which is less strict and more

suitable for beacon deployment. The other aspect of this

paper is to improve localization accuracy of the deployed

beacons. In MDS and curvilinear component analysis, a

shortest-path algorithm is adopted to approximately

reconstruct the distance matrix between each two nodes,

and our proposed Uniquely Determined Topology has a

feature that a distance calculation model can be adopted to

replace the shortest-path algorithm, therefore that the local

distance matrix can be reconstructed more accurately.

Theoretical analysis shows that it has a low computational

complexity to determine whether a deployment is a

Uniquely Determined Topology. Simulations show the

advantages of the improved localization scheme, in that

they do not depend on the connectivity level of the net-

works, and they can provide accurate localization when the

estimation accuracy of distances is high.

Keywords Network localization � Unique realization �
Beacon deployment � Wireless sensor network

1 Introduction

In recent years, network localization [1, 2] has become

more and more important in a great number of applications

emerging from the fields such as mobile ad hoc networking

(MANET) [3], wireless sensor networks (WSN) [4],

internet of things (IoT) [5] and vehicular communication

networks [6]. In the case of collecting data (e.g., temper-

ature levels) from a forest using a WSN, the data could be

useless if the accurate locations where they are gathered are

not known [7]. Although the global positioning system

(GPS) is a popular technique that is widely used in navi-

gation in our daily life, typically its localization accuracy is
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about 6–10 m [8] and it does not work well in indoor

environments or those WSN applications that need higher

location accuracy. In fact, even in outdoor applications,

since some of the intelligent transportation systems (ITS)

services have relatively demanding positioning require-

ments of 2 m or less, an efficient location information

service (LIS) is necessary to get more precise location

information [6].

To improve localization accuracy, one efficient way is to

deploy as many beacons as needed, whose locations are

highly accurate. In this case the first stage of the deploy-

ment of a localization systems would involve beacon

deployments to provide a network infrastructure for

localization of non-beacon-nodes. For example, Apple

iBeacons have a range of half a meter. If the deployment of

iBeacons can guarantee that there is an iBeacon within half

a meter of any point in the scenario, then after the

deployment the localization accuracy of mobile nodes can

be within a meter.

However, with the number of beacons to be deployed

getting bigger and bigger, the deployment of these nodes

becomes labor intensive [9, 10], which means the posi-

tions of beacons should precisely located first and then

configured one by one. Although there are multi-target

localization algorithms such as multidimensional scaling

(MDS) [11–13] and curvilinear component analysis

(CCA) [14, 15], which can be used for beacon deploy-

ment, the prerequisite is that the nodes must be uniquely

localizable. If the unique network localization cannot be

determined, multiple localization solutions may exist. In

graph theory, this is a problem of unique realization in

which the positions of vertices are determined by edges

between them. As shown in Fig. 1, the measured dis-

tances between nodes A, B, C, D and D0 are presented as

solid lines. The dash line between A and D0 means the

distance is within the transmission range of the nodes, and

no line between A and D means their distance is beyond

the transmission range. According to these constraints of

solid lines, D and D0 are two possible solutions and the

position of D cannot be determined with only these

constraints. This example give a concrete explanation that

if the unique network localization cannot be determined,

all the localization schemes cannot guarantee the accuracy

they claimed and will even lose the feasibility of local-

ization. Therefore the problem of beacon deployment with

position auto-configured can be divided into two parts;

one is to determine whether a deployment is uniquely

localizable, and the other is to use existing schemes to

locate all the nodes. The former can be used to determine

when the deployment should be finished, and the local-

ization accuracy of the latter has an important impact on

further localizations.

For the first part of beacon deployment, according to the

literature [1, 16], the network should satisfy the constraint

of generic global rigidity to guarantee unique localization,

which is NP-hard. In graph theory, the problem of finding

Euclidean positions for the vertices of a graph is known as

the graph realization problem. Saxe showed that finding a

realization is strongly NP-hard for the two-dimensional

case or higher [17].

In spite of this, Goldenberg et al. [18] found that there

may exist uniquely localizable nodes even in networks with

non-global rigid grounded graphs. Jackson et al. [19] pre-

sented a theoretical investigation of this phenomenon of

global linked nodes. Hendrickson [20] reported in his work

that in d-dimensional space with a set of n vertices, a

framework is rigid if and only if its rigidity matrix has rank

exactly equal to S(n, d) where

Sðn; dÞ ¼
nd � dðd þ 1Þ=2 if n� d

nðn� 1Þ=2 otherwise:

�

Trilateration [21] and Wheel [1, 22] are two special cate-

gories that can guarantee a network to be uniquely local-

izable, but the constraints are somewhat strict. The

constraints of Bilateration [23] is less strict, but unique

localization of Bilateration cannot be guaranteed.

All these studies imply that the generic global rigid

constraint can be made less strict, which inspires the idea

of this paper. If a special category of topology can be

formed with ranging information used effectively, the

computational complexity of determining unique localiza-

tion for beacon deployment could be reduced. We call this

class of topology Uniquely Determined Topology, which is

shown in Fig. 2. If a deployment is a Uniquely Determined

Topology, it should be uniquely localizable. For those

B C 

D 

A 

B C

D’ 

A 

Fig. 1 D and its mirroring vertex D0 both satisfy the distances

constraint denoted by solid lines

Bilateration

Uniquely Determined Topology

Trilateration and Wheel

Fig. 2 New topology category for beacon deployment
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deployments which are not within this special category, we

can adjust the network topology to comply with a Uniquely

Determined Topology using techniques such as extending

the transmission range or deploying more nodes in a given

area. In the scenarios that beacon deployment can be

controlled to some extent, this will be helpful before

localization schemes are taken.

To achieve this goal, whether a node is within the

transmission range of another is useful information that

should be taken advantage of. If there is a measurement

between two nodes, which means we can use techniques

such as TDoA [24–26] to measure the distances between

two nodes, they are supposed to be within their transmis-

sion range. If there is no measurement between them, then

these two nodes are considered to be beyond the trans-

mission range of each other. Here we make the assumption

that none of the measurements are Non-Line-of-Sight

(NLoS) [27] ones and all the nodes have the same trans-

mission range lower bound. We focus on the transmission

range lower bound because in real scenarios the transmis-

sion range will not be a idealistic circle, but we can use the

lower bound of the transmission range to tell whether a

node is within the transmission range of another. For those

networks that NLoS should be considered, the goal can be

achieved by deploying local maps and then merge them

together to form the global one as mentioned in [13].

For the second part of beacon deployment, another

contribution of this paper is that using the deployment

method proposed in this paper more accurate localization

results can be achieved. This is because compared to MDS

that uses the shortest path between each two nodes to

approximately reconstruct the distance matrix, Uniquely

Determined Topology has a feature that distances between

multi-hop nodes can be calculated accurately using a

simple calculation model as long as the ranging between

neighbor nodes is accurate.

The rest of this paper is organized as follows. In Sect. 2,

the definition of Uniquely Determined Topology is proposed

and detailed constraints are given on how to construct a

network to satisfy unique localizability given the transmis-

sion range. This lays a solid theoretical foundation on whe-

ther a Uniquely Determined Topology is uniquely

localizable. Then, the analysis of Uniquely Determined

Topology is presented in Sect. 3. In Sect. 4, the determinacy

scheme of Uniquely Determined Topology is proposed,

which is the core function to determine when the network is

uniquely localizable and the deployment should terminate.

The computational complexity of the determinacy scheme is

also analyzed in this section. The distance calculation model

of a Uniquely Determined Topology is proposed in Sect. 5,

which contributes to accuracy improvement of the final

localization. Section 6 shows the simulation results in 2-di-

mensional space and Sect. 7 concludes the paper.

2 Uniquely Determined Topology

As mentioned above, one problem addressed in this paper

is what constraint should be proposed to form an easily

determined network. This section begins with a simple

example to give the constraints and then prove the

uniqueness theoretically so that the constraints can be

extended to the whole network to guarantee unique

localizability.

As shown in Fig. 1, there are two possible realizations

for the graph, but if we use a constraint to exclude one

possibility, then the graph is unique realization under this

constraint. Clearly, whether D and A are within the trans-

mission range of each other is such a constraint. In the

scenario of LoS, we can conclude that D0 could not be a

possible solution because A and D0 is within their trans-

mission range. However, the example of Fig. 3 shows a

mirroring vertex D0 for D that both satisfies the distance

condition and the transmission range constraint. In the

shadowed region there are innumerable examples of such

mirroring vertices. Therefore, only the constraint of trans-

mission range is not enough for unique realization.

Therefore, we focus on the constraints in addition to the

transmission range. To give concrete definitions and

proofs, we use the theory of unique realization as the

foundation theory [16, 19, 28].

2.1 Unique realization

Let G ¼ ðV ;EÞ be an undirected graph with the set of

vertices V and the set of edges E. A framework in d-di-

mensional Euclidean space is denoted by (G, p), where p is

a function mapping the vertices V into d-dimensional

Euclidean space p:V ! Rd:

Definition 1 Given the frameworks (G, p) and (G, q) in

d-dimensional Euclidean space X, (G, p) and (G, q) are

called equivalent in X if the following condition holds:

kpðuÞ � pðvÞk ¼ kqðuÞ � qðvÞk; 8uv 2 E;

where k � k is the Euclidean Norm.

Fig. 3 Only transmission range constraint is not enough for unique

localization
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Definition 2 Given the frameworks (G, p) and (G, q) in

d-dimensional Euclidean space X, (G, p) and (G, q) are

called congruent in X if the following condition holds:

kpðuÞ � pðvÞk ¼ kqðuÞ � qðvÞk; 8u; 8v 2 V

Definition 3 The framework (G, p) is called a unique

realization of G in d-dimensional Euclidean space X if

every framework that is equivalent to (G, p) is congruent to

(G, p).

Obviously, if a framework (G, p) is a unique realization

in X, the relative positions of all the points denoted by

pðuÞ; u 2 V can be determined, which means that in d-di-

mensional Euclidean space X, given beacons that are alge-

braically independent over the rationals, the network

localization problem has a unique solution [28]. A sequence

of trilateration extension can be carried out to obtain the

generic global rigid graph, and thus can be used to solve the

network localization problem [1]. However, the method

demands that for each new node added to the graph, there

are at least d þ 1 edges to the vertices earlier in the

sequence, which is relatively strict. The following theories

show that the number of the edges can be reduced from

d þ 1 to d with the constraint of the transmission range.

2.2 Deployment constraint for unique realization

Whether a node is within the transmission range of another

can be sufficiently used to reduce the number of edges

added in the sequence of trilateration extension. Before we

prove this reduction, the following definitions are

predefined.

Definition 4 In a given undirected graph G ¼ ðV ;EÞ, the
mirroring factor h of G is defined by:

hðGÞ ¼
X
u;v2V

Hðu; vÞ;Hðu; vÞ ¼
1; uv 62 E

0; uv 2 E _ u ¼ v

�

Definition 5 Let G ¼ ðV ;EÞ be an undirected graph with

d þ 2 vertices in d-dimensional Euclidean space X. The

framework (G, p) is called a unit triangle framework in X if

hðGÞ� 1 and the coordinates of any d þ 1 points are

algebraically independent over the rationals.

Figure 4 shows two examples of unit triangle frame-

works in 2-dimensional Euclidean space. Definition 5

means that in a unit triangle framework, there is at most

one edge missing for a complete graph.

Definition 6 In d-dimensional Euclidean space X, a quasi

trilateration extension of a graph G ¼ ðV ;EÞ where

jVj[ d produces a new graph G0, which is the merging of

G and ~G ¼ ðfv; u;w1;w2; . . .;wdg; fvw1; vw2; . . .; vwdg[
fmnjm; n 2 fu;w1;w2; . . .;wdg ^ mn 2 EgÞ, where v 62 V;

u;wi 2 V , and ( ~G, p) is a unit triangle framework in X. ~G is

called the merging graph.

With Definition 6, a quasi trilateration extension of a

graph can be formed by a sequence of extensions as long as

the merging graph is a unit triangle framework in X. Fig-

ure 5 shows an example in 2-dimensional Euclidean space

where the graph formed by vertices ABCE and the corre-

sponding edges is the merging graph.

Definition 7 In d-dimensional Euclidean space X, the

framework (G, p) is called a Uniquely Determined Topol-

ogy of G in X under condition C, if (G, p) satisfies either of

the following conditions:

(1) G is a complete graph.

(2) (G, p) is a unit triangle framework and a unique

realization under the condition C in X.

(3) (G, p) is a quasi trilateration extension of ðG0; pÞ
with the merging graph ð ~G; pÞ; ðG0; pÞ and ð ~G; pÞ are
both Uniquely Determined Topologies under condi-

tion C.

According to Definition 7, if in every sequential exten-

sion of graph G, there is a condition that can determine the

merging graph is a unique realization, then (G, p) is a

unique realization of G in X under condition C. And if we

can find such constraints, the number of the edges can be

reduced in each sequential extension of graph G. The

reduction can be guaranteed by the following theorem.

Theorem 1 In d-dimensional Euclidean space X, if a

framework (G, p) can be produced by a sequence of quasi

trilateration extensions froma framework ðG0; pÞ in whichG0

is a complete graph with d þ 1 vertices, and in each quasi

trilateration extension the merging graph is a Uniquely

Determined Topology under a condition C in X, then (G, p) is

a unique realization of G under condition C in X.

Proof

(1) Since G0 is a complete graph with d vertices, the

framework ðG0; pÞ is a unique realization of G0 in X,

therefore, the first quasi trilateration extension

ðG1; pÞ is a unit triangle framework and is a unique

realization under condition C in X.

B C

D 

A 

B 

D 

A 

Fig. 4 Examples of unit triangle frameworks in 2-dimensional

Euclidean space
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(2) Suppose ðGnðVn;EnÞ; pÞ denotes the nth quasi trilat-

eration extension and is a unique realization under

condition C in X. In the next quasi trilateration

extension, let the merging graph be ~Gð ~V; ~EÞ: ð ~G; pÞ
is also a unique realization of ~G under the condition

of C, therefore for any framework ðGnþ1; qÞ that is

equivalent to ðGnþ1; pÞ, we have:

kpðmÞ � pðnÞk ¼ kqðmÞ � qðnÞk; 8mn 2 En [ ~E

ð1Þ

Therefore, ðGnþ1; qÞ is equivalent to ðGnþ1; pÞ:

For the unique realization framework ð ~G; pÞ, ð ~G; pÞ is

congruent to ð ~G; qÞ under the condition of C, that is:

kpðmÞ � pðnÞk ¼ kqðmÞ � qðnÞk; 8m8n 2 ~V

In unit triangle framework ð ~G; pÞ, the coordinates of any
d þ 1 points are algebraically independent over the

rationals, therefore there exists a unique orthogonal

transformation T that satisfies:

P1T ¼ Q1

in which

P1 ¼ pðvÞ pðw1Þ pðw2Þ. . .pðwdþ1Þð Þ
Q1 ¼ qðvÞ qðw1Þ qðw2Þ. . .qðwdþ1Þð Þ

Here v 2 ~E ^ v 62 En;wiði ¼ 1; 2; . . .; d þ 1Þ 2 En:

For any vertex xðx 6¼ wi; i ¼ 1; 2; . . .; d þ 1Þ in Gn, let

G� ¼ ðV�;E�Þ, where E� ¼ fmnjm; n 2 V� ^ mn 2 Eng
and V� ¼ fx;w1;w2; . . .;wdþ1g: The framework ðGn; pÞ is

a unique realization of G in X concludes that the framework

ðG�; pÞ is congruent to ðG�; pÞ thus there exists a unique

orthogonal transformation ~T that satisfies:

P2
~T ¼ Q2

where

P2 ¼ pðxÞ pðw1Þ pðw2Þ. . .pðwdþ1Þð Þ
Q2 ¼ qðxÞ qðw1Þ qðw2Þ. . .qðwdþ1Þð Þ

Consider the following two matrices:

P0 ¼ pðw1Þ pðw2Þ. . .pðwdþ1Þð Þ
Q0 ¼ qðw1Þ qðw2Þ. . .qðwdþ1Þð Þ

Since these d þ 1 points are algebraically independent

over the rationals, the orthogonal transformation is unique,

which means T ¼ ~T : Hence,

PT ¼ Q

where

P ¼ pðvÞ pðxÞ pðw1Þ pðw2Þ. . .pðwdþ1Þð Þ
Q ¼ qðvÞ qðxÞ qðw1Þ qðw2Þ. . .qðwdþ1Þð Þ

Since orthogonal transformation is isometric, the following

can be obtained:

kpðxÞ � pðvÞk ¼ kqðxÞ � qðvÞk

Hence,

kpðmÞ � pðnÞk ¼ kqðmÞ � qðnÞk; 8m8n 2 Vn [ ~V ð2Þ

Notice that Enþ1 ¼ En [ ~E and Vnþ1 ¼ Vn [ ~V , therefore

by (1), (2), ðGnþ1; pÞ is a unique realization of Gnþ1 in

X under condition C. The result follows.

Theorem 1 implies that in each quasi trilateration

extension, it is not necessarily d þ 1 edges if the frame-

work (G, p) is a Uniquely Determined Topology of G in

X under condition C.

Let (G, p) be a framework in 2-dimensional Euclidean

space X and can be produced by a sequence of quasi

trilateration extensions from a framework ðG0; pÞ in which

G0 is a complete graph with 3 vertices. For each merging

graph ~Gð ~V; ~EÞ, in which ~V ¼ fu; v;w; kg and ~E ¼ fmnjm;
n 2 ~V ^ mn 2 Eg, denote duv ¼ kpðuÞ � pðvÞk and

r ¼ maxðduv; duw; dvw; duk; dvkÞ, constraints that can be

adopted for Uniquely Determined Topology are shown in

Corollary 1–3.

Corollary 1 (G, p) is a unique realization if for each

merging graph ~Gð ~V ; ~EÞ, we have ~dkw � r and dkw [ r

where

B C 
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A 

B 

D 

A 

C

E 

Fig. 5 Quasi trilateration

extension of a graph in

2-dimensional Euclidean space
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Proof In X, for each merging graph ~Gð ~V ; ~EÞ, ð ~G; pÞ is a
unit triangle framework, therefore for any framework

ð ~G; qÞ that is equivalent to ð ~G; pÞ, we have:

kpðmÞ � pðnÞk ¼ kqðmÞ � qðnÞk; 8mn 2 ~E

If kw 62 ~E, there are two possible solutions ~dkw and d0kw
for kpðwÞ � pðkÞk which are shown in Fig. 6. Here,

d0
2
kw ¼ d2wu þ d2uk � 2dwudwk cosð\wuvÞcosð\kuvÞð

�sinð\wuvÞsinð\kuvÞÞ

Recall that ~dkw � r and dkw [ r, thus dkw has a unique

solution d0kw [ r, which implies:

kpðkÞ � pðwÞk ¼ kqðkÞ � qðwÞk

Thus any quasi trilateration extension will produce a

Uniquely Determined Topology. Therefore, by Theorem 1

(G, p) is a unique realization of G in X under the given

conditions.

Specifically, in 2-dimensional Euclidean space the fol-

lowing corollaries can be proved:

Corollary 2 (G, p) is a unique realization if for each

merging graph ~Gð ~V ; ~EÞ, we have:if kw 62 ~E, then Duvw and

Duvk are both acute triangles and dkw [ r:

Proof In X, if kw 62 ~E, for each merging graph ~Gð ~V ; ~EÞ
where ~V ¼ fu; v;w; kg shown in Fig. 6, suppose w, k are

on the same side of line uv. Recall that Duvw and Duvk are
both acute triangles, by Principle Ramsey, there is at least

one obtuse angle in \ukw and \vwk: If \ukw[ p=2, then
dkw\duw: And if \vwk[ p=2, then dkw\dvk: The two

hypothesis both disagree with the conditions Corollary 2

demands, therefore w, k can only be on the different side of

uv, thus ~G is a Uniquely Determined Topology and by

Theorem 1 (G, p) is a unique realization.

Corollary 3 (G, p) is a unique realization if for each

merging graph ~Gð ~V ; ~EÞ, we have:if kw 62 ~E, then dkw [ r

and \uwv� p=2 _ \ukv� p=2:

Proof In X, if kw 62 ~E, for each merging graph ~Gð ~V ; ~EÞ
where shown in Fig. 6, suppose w, k are on the same side

of line uv. If \uwv� p=2, then:

(1) If w is inside Duvk or k is inside Duvw, then

obviously dkw\r:

(2) If w is outside Duvk and k is outside Duvw then

\kwv� p=2 or \kwu� p=2 which implies dkw\dvk
or dkw\duk respectively and further dkw\r:

The same disagreement appears if \uwv� p=2: There-

fore w, k can only be on the different side of uv, thus ~G is a

Uniquely Determined Topology and by Theorem 1

(G, p) is a unique realization.

Explanation: In 2-dimensional Euclidean space, there

does exist a counter-example scenario which satisfies

dkw [ r but fails to guarantee a unique solution of a node’s

position. Figure 3 shows such a scenario in which D and its

mirroring vertex D0 both satisfy the distance condition and

in the filled region there are innumerable examples of such

mirroring vertices. Therefore the constraints in Corol-

lary 1–3 are necessary.

3 Analysis of Uniquely Determined Topology

The constraint that Theorem 1 demands can be achieved by

means such as adjusting the transmission range of the

nodes, deploying redundant nodes and giving a secondary

deployment. All these methods will increase the connec-

tivity level of the network, thus raising a problem on

whether the constraint is hard to satisfy. The following

theorem shows that our constraint is indeed less strict.

Theorem 2 In d-dimensional space (d ¼ 2; 3), the con-

nectivity lower bound of a Uniquely Determined Topology

with nðn[ dÞ nodes is:

~d2kw ¼ d2wu þ d2uk � 2dwudwk cosð\wuvÞcosð\kuvÞ þ sinð\wuvÞsinð\kuvÞð Þ

cosð\wuvÞ ¼ d2wu þ d2uv � d2wv
2dwuduv

cosð\kuvÞ ¼ d2ku þ d2uv � d2kv
2dkuduv

8>>>>><
>>>>>:

p (u) p (v)

p (k) 

p (w) 

p’ (k) 

Fig. 6 Different solutions of vertex k’s position denoted by p(k) and

p0(k)
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2nd � d2 � d

n

Proof In d-dimensional space (d ¼ 2; 3), a Uniquely

Determined Topology can be produced by a sequence of

quasi trilateration extensions from an initial unit triangle

framework. In the initial unit triangle framework, there are

d þ 2 vertices and at least ðd þ 1Þðd þ 2Þ=2� 1 ¼ dðd þ
3Þ=2 edges. During each quasi trilateration extension, at

least d edges will be added to the graph, which will totally

produce dðn� d � 2Þ edges. Therefore the average edges

of each node is:

dðd þ 3Þ þ 2dðn� d � 2Þ
n

which implies ð2nd � d2 � dÞ=n:
Theorem 2 reveals that connectivity can be controlled

lower than 4 in 2-dimensional space, which is not a strict

constraint for the network. Later experiments will show

that this connectivity level has no essential impact on the

accuracy of localization.

4 Uniquely Determined Topology decision
algorithm

With Theorem 1, whether a network has a unique local-

ization can be judged in a computational complexity of

polynomial time, which can be adopted easily in deploying

beacons in a large wireless sensor network. It gives a

feasibility guarantee of all the localization schemes. The

following algorithm named Deployment Conditioned

Localizable (DCL) is to determine unique localizability of

a Uniquely Determined Topology. DCL returns the result

whether a network is uniquely localizable in 2-dimensional

space.

Deployment Conditioned Localizable (DCL):

Input: edges with the distance measurements of the

network.

Output: the boolean result of whether the network is

Uniquely Determined Topology or not.

Steps:

(1) Make two sets TopologySet and VertexSet. Set

TopologySet NULL and let VertexSet be the set of

all the vertices of the network. Choose a node A as

the starting node.

(2) For any triangle with starting node A as one of its

vertex, mark the opposite edge of A as extending

edge, add the extending edge and the other two

edges of the triangle into TopologySet. Delete all the

vertices of the edges in TopologySet from VertexSet.

(3) While VertexSet is not NULL, choose an extending

edge T using breadth-first-search, find every vertex

w in VertexSet that is the neighbor vertex of both the

vertices of the marked edge of T, if there is a vertex

t that is the vertex of some edge in TopologySet, and

makes uvwt a Uniquely Determined Topology, then

unmark the extending edge of T, add uw and vw as

marked edges into TopologySet. Add tw into Topol-

ogySet if it is an edge in the input. Delete w from

VertexSet. If there is no vertex that can be added into

TopologySet, return false.

(4) Return true.

In step 2, the time complexity of finding all the triangles

is O(n), where n is the number of nodes. In each loop of

step 3, at least 1 vertex is deleted from VertexSet, therefore

the loop has at most n rounds. In each loop, finding the

added vertex will take time complexity of O(n), therefore

in step 3, the algorithm has complexity of Oðn2Þ: There-
fore, the total time complexity of DCL is Oðn2Þ:

Although a network could be uniquely localizable even

when DCL returns false, we can focus more on the cases

where DCL returns true. With the constraint of network

topology, Uniquely Determined Topology can be deter-

mined in polynomial time, this can improve the feasibility

of most localization schemes. For those cases where DCL

returns false, techniques such as enlarging nodes’ trans-

mission range or deploying new nodes in a given area can

be adopted to make the networks become Uniquely

Determined Topology, avoiding the NP hard problem to

determine unique localizability.

5 Distance calculation model of Uniquely
Determined Topology

Theorem 1 and its corollaries can be helpful to determine

unique localizability before the localization schemes are

deployed. Under such circumstances, the nodes’ positions

are fixed if there are enough beacons provided. Another

feature of such Uniquely Determined Topology is that it

provides a way to calculate distances between multi-hop

nodes with geometry relations.

Such calculations can be performed during the quasi

trilateration extensions. In this process, the network is

supposed to meet the conditions of Theorem 1 and dis-

tances between multi-hop nodes can be calculated simply

by the Law of cosines. In MDS-MAP(p), it is only needed

to calculate two-hop distances. The process of the calcu-

lation model is shown in Fig. 7.

In Fig. 7, the distance between A and F can be calcu-

lated step by step. The distance AD can be calculated from

DABC and DBCD under the condition that whether the

value of AD has a unique solution is determined, which is

shown in Fig. 7(a). In Fig. 7(b), AE can be calculated from
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DABD and DBDE, and finally in Fig. 7(c) the distance of

AF is calculated. It can also be noticed that using this

calculation model, the distance between each pair of nodes

can be ultimately obtained, which is helpful to reconstruct

distance matrix used in [13] or [15].

6 Simulation results

One core contribution of this paper is to propose a new

category of Uniquely Determined Topology, which can be

used easily for beacon-node deployment. One important

thing for beacon-node deployment is that it should take less

computational time complexity to determine whether a

network is uniquely localizable or not, this can be achieved

by DCL mentioned above. The other is to get accurate

locations for beacons. In this section, we will show that

using Uniquely Determined Topology and CL-based

schemes, the locations of deployed beacons can be more

accurate.

An advantage of Uniquely Determined Topology is that

distances between multi-hop nodes can be calculated

accurately using its distance calculation model. The dis-

tance calculation model can be used for trilateration or

local distance matrix in MDS-MAP(p). If such calculations

is performed during the quasi trilateration extensions, we

call this scheme Trilateration with Conditional Localiza-

tion (TCL). If the distance calculation model is used to

reconstruct the local distance matrix in MDS-MAP(P) and

CCA using distance calculation model instead of the

shortest path, we call the improved schemes Conditional

Localization Based Improved schemes [MDS-MAP(P)-CL

and CCA-CL for short].

Simulations are carried out in Matlab 7. To further

simplify the problem, all the simulations are performed in

2-dimensional space. 5 topologies are deployed in a

500 m � 500 m square region, which are shown in Fig. 8.

In Fig. 8, in order to study the impact of different net-

work shapes, the topologies are deployed as net-shape,

O-shape and C-shape, which is shown in Fig. 8(a–c) with

70, 68, 67 nodes and connectivity level 5.11, 5.35, 4.57

respectively. The transmission ranges of these three

deployments are set to 70, 70, 60 m. To demonstrate the

generality of our algorithm, a random topology with a

uniform distribution is deployed which is shown in

Fig. 8(d) with 100 nodes, transmission range 80 and con-

nectivity level 6.5. In each of these four deployments, 4

beacons are deployed at the corners of the topology

denoted by a triangle. Figure 8(e) illustrates a scenario with

3 beacons deployed inside the topology. In this deploy-

ment, there are totally 100 nodes, the transmission range is

set to 70 m, and the connectivity level is 5.29. All the to-

be-located nodes are denoted by black dots.

6.1 Results on accuracy affected by shapes

Simulations are first carried out by TCL based on the

assumption that there should be no ranging errors of esti-

mated distances between neighbor nodes. The results are

shown in Fig. 8 with circles representing the estimated

localizations. In Fig. 8(a) the node with the id number 57

happens to hold the largest absolute error between the

estimated position and the true position, which is

3:595� 10�13 m, and the average error of all the nodes is

1:0003� 10�13 m: Absolute errors are the distances

between the calculated positions of to-be-located nodes and

their true positions, average error is the average of all

absolute errors of to-be-located nodes. The localization

error of other topologies is in the same level.

All these simulations indicate that the localization

accuracy is nearly not affected by the shape of the network

or the location of the beacons. Such a result is coherent

with our theories on unique realization with Uniquely

Determined Topology constraint. It means that as long as

the network is a Uniquely Determined Topology, the

positions of the to-be-located nodes are definite and the

estimations will be accurate. Therefore it is significantly

helpful to deploy beacons that can form a Uniquely

Determined Topology.

6.2 Results on accuracy impacted by connectivity

level

Many localization algorithms such as DVhop and MDS

suggest that the accuracy of localization has something to

do with the connectivity of the network. That is, the
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Fig. 8 Five deployments and their localization result with no ranging error
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accuracy will apparently improve with the enhancement of

connectivity level. In order to illustrate the relationship

between accuracy and connectivity level in TCL, we make

a comparison through simulations in which the transmis-

sion range is altered to generate various connectivity

levels. The result is shown in Fig. 9 based on Fig. 8(a).

It is implied in this simulation that the changes of

accuracy are minute when connectivity is above 5.11. Here

the connectivity level does not represent the lower bound

of connectivity; it is calculated when the transmission

range is 70 m. In the topology of Fig. 8(a), when connec-

tivity is smaller than 5, it is not a Uniquely Determined

Topology any more. At this point, most localization algo-

rithms will fail or their localization accuracy cannot be

guaranteed. Therefore a good way is to enlarge the trans-

mission range or deploy more nodes to make the topology

comply with a Uniquely Determined Topology.

6.3 Results on accuracy influenced by estimating

errors of distances

It is a fact that estimated distances are not accurate,

therefore we model the distance measure as the true dis-

tance blurred with Gaussian noise. Assume the true dis-

tance is d and range error is Er, the measured distance is a

random value drawing from a normal distribution ~d ¼
d � ð1þ Nð0;ErÞÞ: Here we use calculation model to

construct the local distance matrix instead of the shortest

path to improve MDS-MAP(P) and CCA.

In this simulation, MDS-MAP(P) is performed without

refinements because of two reasons. First, the refinements

can also be conducted based on our results, and second, the

refinements are more computational expensive. Figure 10

shows the different localization accuracy of the performed

schemes based on Fig. 8(a).

In Fig. 10, when the error of estimated distances is below

5 %, MDS-MAP(P)-CL outperforms the other schemes. Due

to the shortest paths adopted,MDS-MAP(P) and CCA cannot

get accurate results when estimating distances are accurate,

while using distance calculation model, the local distance

matrix can be accurately calculated, which will always work

when a network is a Uniquely Determined Topology. Given

accurate distance matrix, MDS-MAP(P) will get accurate

results. Therefore in the scenarios where high location accu-

racy is required, MDS-MAP(P)-CL is very competitive and

techniques such as TDoA [24–26] and magnetic position [29]

are all optional ranging techniques.

However, it is very strange that when we use a more

accurate calculation model instead of the shortest path in

MDS-MAP(P) and CCA, CL-schemes do not perform

better when estimated error is above 5 %. This can be

explained by the following analysis.

Although we can use calculation model to reconstruct

local distance matrix accurately, when we use estimated

distances to do the localization, we know nothing of the

details of the estimated error and try to minimize the least

square distance error:X
i;j

lij � dij
� �2

ð3Þ

where lij is the estimated distance between node i and j, and

dij is the true distance.

However, the location error is formulated by the

following:

X
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j

~xij � xij
� �2s

ð4Þ

where ~xi is the estimated coordinates of node i, xi is the true

coordinates.

When estimated error is 10 %, we have performed the

simulation for 5 times, the mean result of (3) is 1765 with

MDS-MAP(P)-CL and 3958 with MDS-MAP(P). This
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Fig. 10 Location error affected by estimated error
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means that MDS-MAP(P)-CL can get better results to

satisfy the distances. But when there is estimate error of

these distances, the coordinates that can achieve a mini-

mum of (3) may not necessarily achieve a minimum of (4).

7 Conclusion

In the scenarios such as indoor localization or those WSN

applications that need higher location accuracy, deploying

more beacons is one efficient way to improve the localization

accuracy. The new category of topology named Uniquely

Determined Topology proposed in this paper has revealed

that a lot of deploying efforts can be saved when ranging

information can be used efficiently. One contribution of this

paper is that by Theorem 1 and its corollaries the topology of

a network can be guaranteed to be a unique realization if it can

be formed by a series of quasi trilateration extensions, which

means that in d-dimensional space in some cases edges can be

reduced from d þ 1 to d in each extension. This not only

means the constraints of determining whether a topology is a

unique realization can be made less strict, but also lowers the

connectivity lower bound of a unique realization topology in

d-dimensional space to ð2nd � d2 � dÞ=n: We also give a

judgingmethodDCL to determine whether a deployment is a

Uniquely Determined Topology and can be finished, which is

efficient enough for deployment because the computational

time complexity of DCL is Oðn2Þ: The other contribution of
this paper is that distances between multi-hop nodes can be

calculated accurately using distance calculation model of

Uniquely Determined Topology, due to their topology fea-

ture. Therefore using the distance calculation model instead

of the shortest path inMDSor CCA, amore accurate distance

matrix can be reconstructed, which makes CL-schemes out-

perform the other schemes when the error of estimated dis-

tances is below 5 %. That means in the scenarios where high

location accuracy is required, CL-schemes are very com-

petitive. The analysis is given to explain whyCL-schemes do

not perform better when estimated error is above 5 %, and a

more detailed assessment will be in future work.
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