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Abstract The deployment of 3G/LTE networks and

advancements in smart mobile devices had led to high

demand for multimedia streaming over wireless network.

The rapid increasing demand for multimedia content poses

challenges for all parties in a multimedia streaming system,

namely, content providers, wireless network service pro-

viders, and smart device makers. Content providers and

mobile network service providers are both striving to

improve their streaming services while utilizing advancing

technologies. Smart device makers endeavor to improve

processing power and displays for better viewing experi-

ence. Ultimately, the common goal shared by content

providers, network service providers, and smart device

manufactures is to improve the QoE for users. QoE is both

an objective and a subjective metric measuring the

streaming quality experience by end users. It may be

measured by streaming bitrate, playback smoothness, video

quality metrics like Peak to Signal Noise Ratio, and other

user satisfaction factors. There have been efforts made to

improve the streaming experiences in all these aspects. In

this paper, we conducted a survey on existing literatures on

QoE of video streaming to gain a deeper and more com-

plete understanding of QoE quality metrics. The goal is to

inspire new research directions in defining better QoE and

improving QoE in existing and new streaming services

such as adaptive streaming and 3D video streaming.

Keywords Quality of experience � Video streaming �
Wireless networks

1 Introduction

Multimedia streaming in all forms (including YouTube)

constitutes 58.6 % of peak Internet traffic in North Amer-

ica [1]. In addition, the deployment of 3G/LTE networks

and advancements in smart mobile devices (e.g., smart-

phones and tablets) has led to high demand for multimedia

streaming on smart devices. Strategy Analytic forecasts

that mobile traffic will increase by 300 % by 2017, and the

main driver of this increase is video streaming [2]. FCC’s

wireless bureau reported that the wireless demand is

inevitably going to exceed the available spectrum [3].

Meanwhile, content providers like YouTube and Netflix

are continuously increasing their service capacity to pro-

vide rich and diverse content to meet user demand. The

size of multimedia content is normally larger than other

types of content transmitted over the Internet. For example,

Netflix recommends customers to have at least 3, 5, and 25

Mbps connection for their standard-definition, high-defi-

nition, and ultra-high-definition videos, respectively.

According to Google, there are 72 h of video being

uploaded to YouTube every minute, and YouTube streams

4 billion hours of video each month. The large volume of
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video content and high bitrates make video streaming as

one of the most resource demanding Internet services.

Both network service providers and content providers

are challenged by the growing demand for video streaming.

Compare to wired networks, wireless networks are facing

additional challenges of reduced bandwidth capacity,

interference, and a higher loss rate. The single-path TCP

measurements in major U.S. cellular networks in the

Boston and Amherst Areas reports that mobile devices are

limited to 1.19–18.32 Mbps bandwidth, 39.92–348.02 ms

round-trip time (RTT), and a 0.03–0.27 % loss rate [4].

Though the delay and loss rate are tolerable for video

streaming, the bandwidth is not sufficient for high quality

video streaming experience. Moreover, limited processing

power and battery lifetime on smart devices introduce

another level of difficulties. A recent measurement study,

based on traces of 40,000 clients in a real ISP, revealed that

30 % of YouTube traffic is redundant due to replays [5].

Furthermore, limited memory on mobile devices also

causes 10–70 % of redundant traffic during regular play-

back [6]. Consequently, the perceived streaming quality

and Quality of Experience (QoE) are not comparable to

that of wired networks.

The increasing demand of unique challenges in mobile

video streaming have drawn attention in both industry and

academia. In industry, content providers and mobile net-

work service providers are both striving to improve their

streaming services while utilizing advancing technologies.

For instance, Netflix’s utilizes Amazon Web Services

(AWS) cloud’s computing power and storage space so that

its system can dynamically scale according to demand.

Network service providers like AT&T are working closely

with content providers like Netflix to better deliver the

video content to end users Smart device makers endeavor

to improve processing power and displays for better

viewing experience. Ultimately, the common goal shared

by content providers, network service providers, and smart

device manufactures is to improve the QoE for users.

QoE is both an objective and a subjective metric mea-

suring the streaming quality experience by end users. It

may be measured by streaming bitrate, playback smooth-

ness, video quality metrics like Peak to Signal Noise Ratio

(PSNR), and other user satisfaction factors. There have

been efforts made to improve the streaming experiences in

all these aspects. For instance, new streaming protocols [7],

streaming proxy [8], and cache management [9] have been

proposed to improve the streaming bitrate. Cross-layer

optimization [10], rate adaptation algorithms [11], buffer

management [12], and scheduling algorithms [13, 14] have

been suggested to improve the smoothness of playbacks. In

terms of video quality perceived by end users, on one hand,

researchers and developers are investigating into enhancing

common objective quality metrics [e.g., PSNR, Structural

Similarity Metric (SSIM), and Video Quality Metric

(VQM)] [15–22]. On the other hand, subjective quality

metrics such as Mean Opinion Score (MSO) are being

developed to quantify user satisfactory. Moreover, there

are also advancements in video codec for better adaptive

streaming quality [10].

In order to enhance QoE of video streaming, it is

essential to understand all QoE measurements and to

determine the key quality metrics as well as their impli-

cations in end-user satisfaction. In this paper, we conducted

a survey on existing literatures on QoE of video streaming

to gain a deeper and more complete understanding of QoE

quality metrics. Knowing the QoE of video streaming

problem is basically a resource allocation problem, the

main contribution of this survey is to group separated QoE

metrics into seven categories and analyze their importance

and complexity in video source coding and wireless net-

works. The paper then provides a comprehensive review of

efforts made to improve all categories of QoE metrics,

based on which we summarize challenges and opportuni-

ties in improving QoE of video streaming over mobile

networks. The goals are to provide system designers

guidelines to select the QoE according to available system

resources; and to inspire new research directions in defin-

ing better QoE and improving QoE in existing and new

streaming services such as adaptive streaming and

advanced video representation streaming.

The paper is organized as follows. In Sect. 2, we will

provide a comprehensive background review for wireless

networks and video codecs, the two key enabling tech-

nologies determining the QoE of streaming videos. We will

discuss major challenges of transmitting video via streams

and providing QoE over wireless networks to mobile

devices. In Sect. 3, we will review current and state-of-the-

art network solutions and video coding techniques for QoE

enhancement. Section 4 summarizes current achievements

and challenges in providing QoE of video streaming, fol-

lowed by an outlook of future research directions. Sec-

tion 5 concludes the paper.

2 Background

A mobile video streaming system consists of three major

components: the video compression component, the wire-

less network; and the human visual system (HVS). The

characteristics of wireless networks and video codec play

critical roles in the mobile video streaming services. Dif-

ferent wireless networks provide different bandwidth and

transmission reliability; and different video codec provides

different compression ratios and robustness to errors. The

adaptation of different wireless network and video codec

directly impacts the receiving the perception by humans, or
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QoE. In this section, we will first look at a overview of

wireless networks and video coding to understand how

different systems affect the received video quality experi-

ence. Then, we will discuss different QoE used in the end-

to-end system.

2.1 Wireless and mobile networks

Wireless networks and mobile cellular networks are two

types of access technologies, enabling people to access

networks without the constraints of cables and wires.

2.1.1 Wireless networks

Wireless networks can be categorized into three types,

based on the transmission range of the networks: wireless

PAN (Personal Area Network), wireless LAN (Local Area

Network), and wireless MAN (Metropolitan Area

Network).

The wireless LAN is the most pervasive type of the

three, available at home, workspaces, at cafes and airports.

Although many standards for wireless LANs were devel-

oped in the 1990s, the IEEE 802.11 standard, also known

as WiFi, has emerged as the clear market winner. The

802.11 suite has evolved into several standards, including

802.11b, 802.11a, 802.11g, and 802.11n. The 802.11b, an

earlier standard, uses the radio frequency band of 2.4 GHz

and transmits up to 11 Mbps. Both 802.11a and 802.11g

transmit up to 54 Mbps, with 802.11a operating in 5 GHz

band and 802.11g using 2.4 GHz band. The more recent

802.11n operates on both 2.4 and 5 GHz bands, uses

multiple antennas at the transmitter and receiver, and

transmits up to 600 Mbit/s.

The wireless LANs can transmit up to several hundred

meters in range. Compared to wireless LANs, wireless

PANs have a lower transmission range, with a typical

maximum range of 10 meters. A popular wireless PAN

standard is IEEE 802.15.1—Bluetooth. The effective range

and transmission rate of Bluetooth varies based on radio

propagation, antenna and battery conditions. Most Blue-

tooth applications are indoor, low power communications

in short ranges, and transmit up to 1 Mbps.

Compared to wireless PANs and wireless LANs, Wire-

less MANs can offer a higher transmission range and reach

up to 50 km. Wireless MANs provide mobile broadband

connectivity within or across metropolitan cities. The IEEE

802.16 network, i.e., WiMAX (Worldwide Interoperability

for Microwave Access), is one such standard that allows

devices to connect to the Internet through base-stations

connected to the main network. WiMAX targets to deliver

up to 70 Mbps.

Table 1 compares the transmission ranges and speeds of

different wireless access technologies. Note that the

wireless networks can either transmit at longer distances or

offer higher rates but not simultaneously. Operating at the

upper end of the transmission range results in a lower

transmission speed and a higher bit error rate.

2.1.2 Mobile cellular networks

The mobile cellular networks are pervasively used for wide

area voice and data communications. The number of cel-

lular subscribers has now surpassed the number of main

telephone lines. Since 1980s, the cellular network has gone

through several generations, from analog voice in 1G, to

digital voice in 2G, to digital voice and data in 3G, and

more recently to ultra-broadband speed of gigabit in 4G.

Table 2 summarizes the transmission rates and access

technologies used in digital cellular networks of 2G, 3G

and 4G.

The 1G cellular networks delivered analog voice and the

2G networks delivered digital voice. Digitizing signals

allows voice data to be compressed to reduce bandwidth

usage and to be encrypted to improve the security and

privacy. The dominant 2G system is GSM (the Global

System for Mobile Communications), first deployed in the

1990s in Europe. The GSM technology was quickly

adopted by countries outside Europe and it became a

worldwide success. The transmission speed is comparable

to a dial-up link.

Driven by the increasing demand of data traffic from

text messaging and video streaming, the 3G networks

support digital data service in addition to digital voice. The

3G networks no longer use TDMA, and instead use more

advanced technologies, such as CDMA 2000 and UMTS,

to support high-quality voice transmission, multimedia

applications, text messaging and web browsing. The 3G

networks can deliver transmission rates from 500 kbps to

3.1 Mbps in peak performance.

Currently 4G/4G LTE (Long Term Evolution) service is

available in every major cellular provider in the US. The

4G LTE networks promise higher bandwidth between 100

and 1000 Mbps, thus can potentially provide higher QoE

for streaming applications.

2.1.3 Challenges imposed by wireless and mobile networks

Streaming videos in wireless and mobile networks faces

unique challenges caused by the characteristics of the

networks.

2.1.3.1 Reduced and variable bandwidth As discussed

before, wireless and mobile networks offer lower band-

widths than wired networks. In most scenarios, wireless

transmission won’t be able to attain the constant speeds

listed in Tables 1 and 2, as transmission signals attenuates
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over distance. The limited and variable bandwidth capacity

presents a big challenge for bandwidth-demanding video

streaming applications.

2.1.3.2 Higher and bursty bit error rates Packet losses

could be the result of many factors, including link or node

failures, route changes, or bit errors [23], and bit errors

could be the result of interference or other characteristics of

wireless signals. Wireless networks face the challenge of

having to deal with interference caused by other wireless

devices or the environment degrading the signal. This

occurs on all network frequencies, as transmissions all

share the same medium. Licensed bands, such as cellular

bands, have restrictions that result in a more controlled

environment, compared to unlicensed bands such as WiFi

and Bluetooth. The wireless medium is much more sus-

ceptible to interference than wired mediums, resulting in a

much higher packet loss rate.

2.1.3.3 Larger transmission delays and jitters Real-time

interactive video applications are sensitive to transmission

delays and variations in packet delays, known as jitters. To

ensure continuous and high quality video playback, packets

have to arrive at constant intervals. Larger jitters result in

jerky and poor quality of videos. The interference, signal

fading, and multi-path propagation of wireless transmis-

sions result in larger delays and jitters compared to wired

networks. The problem is more serious in mobile networks.

When users are roaming from one mobile network to

another, the time taken to process mobile handoffs add to

both transmission delays and jitters.

2.1.3.4 Limited resources in mobile devices Mobile

devices are constrained in computing power, battery life,

memory capacity, and display size. These resource limits

add more challenges to streaming applications that typi-

cally require large bandwidth, fast processing and large

buffering.

2.2 Video coding

A raw video stream will require a very high data rate to

stream, compared to a coded video stream. Coding tech-

niques can be used to compress the raw data, since much of

the video data is correlated to adjacent pixels or adjacent

frames.

Before we delve into details of spatial and temporal

coding, let us examine the structure of a coded video

sequence. Figure 1 shows that a video sequence is orga-

nized in hierarchies. At the top, the video sequence is

divided into groups of pictures (GOP). Each picture is

composed of a number of slices—the basic synchronization

unit in the sequence. A slice usually consists of a row of

16 9 16 macroblocks, which has four 8 9 8 blocks.

2.2.1 Intra-frame coding

Most video coding standards, including H.263, H.264/AVC

[24], H.265/HEVC [25], VP8, and VP9, use block-based

coding to remove correlations among adjacent pixels

Table 1 Comparison of

different wireless networks
Transmission range Speed (Mbps)

IEEE 802.11b (wireless LANs) 10–100 m 11

IEEE 802.11a/g 10–150 m 54

IEEE 802.11n 20–270 m 600

IEEE 802.15.1 (Bluetooth) 10 m 1

IEEE 802.16 (WiMAX) 50 km 70

Table 2 Comparison of

cellular network technologies
Speed Technology

2G Up to 14.4 kbps TDMA

3G 3.1 Mbps (peak); 500–700 kbps CDMA2000, EDGE, UMTS

4G 100–1000 Mbps (peak); 3–5 Mbps WiMAX, LTE

Group of Pictures

Picture
Slice

Macroblock

Block

8 
pi

xe
ls

8 pixels

Fig. 1 Bitstream structure in a video sequence
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within the same frame. The intra-frame coding uses an

N 9 N (e.g., 4 9 4, 8 9 8) block as a unit, and consists of

the following steps.

1. Intra-frame prediction: in modern codec, such as H.264

and H.265, block pixels are predicted using the

available reconstructed neighboring pixels. The pre-

dictions are chosen in the directional fashion for the

best fit of local context or minimizing the joint cost of

prediction error and prediction overhead. The differ-

ence between the original uncompressed pixels and the

predicted pixels are processed in the following steps.

2. Discrete Cosine Transform (DCT) to decorrelate the

signal so that only a few transformed coefficients are

large in magnitude and the rest coefficient values are

negligible.

3. Quantization to reduce the magnitude of the trans-

formed coefficients;

4. Applying entropy coding, such as Huffman coding or

arithmetic coding, to the quantized coefficients in a

zigzag scan order based on the local context. Note that

the entropy coding is variable length coding, and

synchronization is needed between the encoding and

decoding process to locate the correct compressed code

words. Thus, there exists a strong decoding depen-

dency to decode consecutive symbols correctly.

Note that in the above process, steps 1, 2, and 4 are

invertible and lossless. Step 3 is a lossy non-invertible

process, and this is where compression losses occur.

2.2.2 Inter-frame coding

In motion videos, oftentimes the background is kept con-

stant, requiring only the data for moving objects to be

transmitted. This can be accomplished by splitting frames

into three types: intra frames (I-frames), predictive frames

(P-frames), and bidirectional frames (B-frames). An

I-frame contains all the data necessary to display the frame,

while P and B-frames both depend on previous data to

display the frame. P-frames hold the changes between a

previous frame and the frame to be displayed, greatly

reducing the amount of data to be transmitted. B-frames are

extended from I/P-frames in that they hold changes from

previous and future frames, which result in even less data

being sent. Because of the dependencies from the different

types of frame, frames must be encoded with I-frames first,

followed by the P-frames that are required by B-frames,

and the B-frames.

Figure 2 shows the encoding and decoding order for a

sample set of frames. It shows a video sequence of 6

frames, in which frame 1 is coded first, followed by the

next P frame, 4, followed by two B frames in between

frame 1 and 4, and then followed by the next P frame 6,

and B frame (5) in between frame 4 and 6. The decoding

order is the same as the encoding sequence, which is 1, 4,

2, 3, 6, 5. Note that after decoding, the videos are displayed

in sequence, 1, 2, 3, 4, and so on.

The difference of display order and decoding order calls

for a buffer at the decoder side. For example, frame 2

cannot be displayed until it has decoded frame 4. On the

other hand, frame 4 cannot be displayed immediately after

being decoded; it will be displayed after both frame 2 and 3

are decoded and displayed.

When encoding P or B frames, the frames that they

depend on are called a reference frame; only the differ-

ences between P (or B) frame and its reference frame are

coded. To account for object movement in the sequence,

video coding uses motion estimation to find the best match

in the reference frame. Motion estimation process uses

macroblock as a unit, searches in a larger window of the

reference frame, and identifies the macroblock with the

smallest cost (such as differences and/or other encoding

overhead) as the best match macroblock. The movement of

the macroblock is recorded as motion vectors and will be

coded in the bitstreams. Then the differences between the

current macroblock and the best match macroblock in the

reference frame go through the steps 2–4 as in intra-frame

coding. Note that the video content having higher motion

often requires a higher bit rate to deliver similar perceived

video quality compared to lower motion video. This kind

of content dependency provides another dimension of

diversity to explore in the video streaming scenario. Sim-

ilar to the decoding dependency in the intra-frame coding,

inter-frame coding also exhibits decoding dependency on

the reference frames. A decoding error in the reference

frame will propagate within the current frame and to other

dependent frames.

2.2.3 Scalable coding

Wireless networks vary in throughput. To keep the QoE of

video streaming high, streams must be capable of being

scaled by bit rate. SVC (Scalable Video Coding) allows a

video to be encoded once and decoded and accessed many

times at different rates and ideally at any rate [26]. Possible

1 2 3 4 5 6

B B B PPI

Fig. 2 Encoding order for different frame types
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methods of scaling bitrate include scaling the resolution,

quality, or frame rate. One example of scalable coding is

layered encoding, where a video stream is encoded into

multiple layers—a base layer and one or more successive

enhancement layers to improve quality [27]. When the

network speed varies across devices, layers can be added or

dropped to adjust the quality according to the network

capability. This allows a video stream to be tuned based on

bandwidth and network conditions. Figure 3 shows the

encoding and decoding processes of a basic layered

encoding scheme.

Non-scalable video coding, as opposed to scalable video

coding, is optimized for a single bit rate. When the video

content is streamed across multiple connections with dif-

ferent bandwidth, the mileage varies. If the network cannot

handle the bit rate of the stream, the decoded videos will

have poor quality. However, compared to scalable coding,

non-scalable video coding has higher coding gain, i.e., it

can typically compress the video better, resulting in smaller

bit rate.

2.2.4 Challenges: error resilience

The limited bandwidth and error prone nature of wireless

networks presents big challenges to provide high QoE in

video streaming. For efficient transmission, a video stream

must be encoded to reduce its bit rate by removing

redundancies in the video. On the other hand, a video

stream depends on its inherent redundancies to recover

from lossy transmissions. These two challenges present

contradictory requirements in video streaming solutions.

Errors in the coded video stream will accumulate and

affect subsequent frames, since some frames are encoded

based on previous and future frames. One method to limit

frame degradation is by periodically inserting I-frames to

refresh the full video sequence. Incorporating error coding

and ARQ (Automatic Repeat Request) techniques can also

be used to ensure that the data received is correct, but this

will increase bandwidth usage and network delay. Com-

pression efficiency and error handling must be balanced to

achieve a good QoE. Figure 4 shows the effect of increased

transmission errors on a video frame.

When errors occur in the received data stream, their

impact can be reduced by using error concealment tech-

niques. Regions with errors can be corrected by using the

pixels surrounding the error region to estimate the actual

pixel values. A lost frame can be approximated by

replaying the previous frame. By concealing errors, a

higher loss rate can be tolerated while maintaining a sim-

ilar QoE. Figure 5 shows an image with and without con-

cealment applied.

2.3 QoE metric

The wireless network is often designed to optimize the data

transmission. As we have seen in the previous section,

compressed video exhibits different characteristics from

normal data, such as a significantly higher overall bit rate,

highly fluctuated bit rate from frame to frame, higher

sensitivity to transmission error, and higher sensitivity to

delay. Different quality of experience metrics should be

designed to address the unique video streaming issues.

We can categorize the mobile video streaming QoE into

the following categories according to the computation

complexity and applications:

1. Bit rate A bit stream with higher bit rate normally

provides better perceptual quality than lower bit rate

for the same video content from the same video codec.

Using bit rate is a convenient way to distinguish the

QoE. However, this simple metric is often misleading

Base-layer 
compression

Base-layer 
decompression

Enhancement
layer 

compression

Base-layer 
decompression

Enhancement
layer 

deompressim

Base-layer
bitstream

Enhancement
layer

bitstream

+
_

+
+

playback from
base-layer

playback from
base and

enhancement layers

Sender Receiver
Fig. 3 Layered encoding and

decoding process
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as it does not consider the video content complexity,

motion, and reflect the dynamics of error-prone

wireless network conditions

2. Playback smoothness playback smoothness is an

important measurement to check how humans perceive

the video quality in temporal domain. Playback that is

discontinuous and jitters significantly degrades the

viewing comfort. It is used to capture the QoE

contributed from the wireless network. The dynamics

of a wireless network will affect the arrival of video

packets and thus affect the timing and correctness to

display each corresponding video frame.

3. Classical objective quality metric The classical objec-

tive quality metric tries to measure the video quality

degradation in spatial domain between the decom-

pressed video and the original uncompressed video for

each time aligned video pair. The common metric is

Peak-to-Signal–Noise Ratio (PSNR), Structural Simi-

larity Metric (SSIM), and Video Quality Metric

(VQM). Unlike the bit rate metric, the objective

quality metric provides a better QoE metric to address

the content complexity and motion. On the other hand,

it takes more computation power to calculate the

objective quality metric, and often times it is not

feasible to evaluate the quality at the received side

owing to the lack of source content.

4. Subjective quality metric Subjective quality metrics

provides the true QoE since the evaluation is con-

ducted from a group of testing subjects. The metric is

the consensus from real human observers. However,

conducting subjective testing is both time consuming

and economically inefficient. This method cannot be

scaled to a large amount of video content with different

streaming scenario. A common way to tackle this issue

is to develop a mapping function from existing

objective quality metrics to the subjective quality

metrics with consideration to the features of video

content.

5. Subjective quality metric for scalable video coding

Owing to the highly dynamic network conditions, it is

often desired to choose scalable video coding to adapt

the bit rates to ensure the playback smoothness.

Developing a subjective quality metric for scalable

video coding can facilitate the QoE optimization. The

0% loss 3% loss

5% loss 10% loss

Fig. 4 Example reconstructed video frames after packet losses

Without concealment With concealment

Fig. 5 Example frame shows difference after concealment

Wireless Netw (2016) 22:1571–1593 1577

123



scalable video coding provides several scalabilities,

such as spatial, temporal, or PSNR. The subjective

quality metric will be a non-linear function to incor-

porate those scalability parameters.

6. Subjective QoE metric in lossy environment The

wireless network is not reliable and packet delay and

loss often occurs. The video quality degradation should

include both the video compression distortion and the

communication induced distortion. It is important to

model those network impacts to the subjective QoE

metric to truly reflect the end-user experience.

7. Video quality metric for advanced video coding In

recent years, there have been a lot of advanced video

coding to provide more realism video experience. One

of the examples is 3D video. 3D video has different

characteristics compared to the 2D video case since

left eye and right eye watch the same scene but from

different viewing angles. More importantly, a 3D video

should show reasonable depth for the foreground and

background. Viewing comfort and fatigue are also

important to address. Thus, 3D video needs a different

QoE metric for evaluation. Other advanced video

coding, such as high dynamic range video, which is in

its infant stage, also needs a new video quality metric.

Some QoE metrics are easier to compute, and potentially

have the real-time feedback from the received side. They are

easy to incorporate into a large scale end-to-end system

design. In this case, the entire QoE favors the optimization

in the wireless network resource utilization. Some QoE

metrics require extensive computation power to calculate to

reflect the perceived video quality for video over unreliable

channels. Although those QoE metrics provide higher

fidelity of measurement, the higher computation complexity

also limits the deployment in the practical system. We show

the distribution of these QoE metrics in Fig. 6 by analyzing

the required computation complexity in the wireless net-

work domain and in the video compression system domain.

Therefore, it is important to understand the characteristics of

wireless networks, video codec, and ultimate service goal.

Then the system designer can select the best-fit QoE

requirement. We summarize the above categorizes, corre-

sponding complexity, and related works in Table 3.

In the following sections, we will discuss how to opti-

mize the selected QoE requirement in different scenario to

meet the service goals.

3 Quality of experience model and wireless video
streaming

As the traffic volume of video over wireless networks

grows, it is becoming increasingly challenging to offer

wireless videos with excellent quality of experience (QoE).

In recent years, many studies have been focused on ana-

lyzing the influencing factors on perceptual quality of

videos, development and the application of QoE models to

optimize video streaming over wireless networks. Based on

the influential factors, we have classified them into seven

categories and we will discuss them in each subsection.

3.1 Video bit rate as quality metric

As mentioned in the previous section, a video encoded at

higher bit rate normally can provide a better visual quality;

though the relationship between the bit rate and the per-

ceived video quality is a content-dependent non-linear

function. To design a multi-user video streaming service,

using bit rate as a quality measurement often can simplify

the system design. Several frameworks have been proposed

to optimize the bit rate allocation and bit rate switching.

One approach based on in-network resource manage-

ment framework, AVIS, is to control the frequency bit rate

switching per user via scheduling [7]. AVIS is designed to

achieve fairness, stability, and efficiency for multiple

DASH (Dynamic Adaptive Streaming over HTTP) video

transports over the same base station. It consists of three

main components: resource isolation, an allocator, and an

enforcer. Resource isolation separates the resource man-

agement of adaptive video flows from regular video flows

and other data flows. It provides operators with flexibility

in resource allocation and management for different kinds

of traffic flows, whereas an allocator and enforcer will

optimally allocate and schedule bit rates to different

adaptive video flows to ensure fairness, stability and high

utilization. AVIS deploys utility optimization for resource

allocation and enables a balance of optimal bit rate for

individual users and average bit rate switches between

different users. Therefore, fair resource allocation and good
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QoE are obtained at the same time. This is applicable for

the transportation of large volumes of adaptive videos over

4G (LTE or i) cellular networks.

Yet in [9], the storage aspect of DASH videos is con-

sidered and a QoE-driven cache management is presented. A

logarithmic QoE model is built upon experiments relating to

the content cache management for HTTP ABR streaming is

formulated into a convex optimization (i.e., snapshot prob-

lem). Then the Lagrange multiplier method is applied to

solve the optimization problem and obtain numerical solu-

tions for the set of playback rates for an individual piece of

content cached in the stream engine. Furthermore, three

alternative search algorithms (i.e., exhaustive search,

Dichotomous-based search, and variable step-size search)

can be used to find the optimal number of cached files.

As we can see, using bit rate can simplify the system

optimization objective and facilitate the entire end-to-end

system resource allocations. On the other hand, this highly

simplified QoE metrics often do not address the network

influencing factors and the consequent playback issues.

3.2 Playback smoothness as quality metric

The video start-up time often affects the viewers’ willing-

ness to continue to watch the video. If the waiting time to get

the video playback to start takes too long, the viewers will

give up on the viewing. Playback jitters is also an annoying

problem for the video streaming. The frequent video pause-

and-go often brings unacceptable viewing experience and

often makes the viewers to give up the viewing. Therefore,

maintaining playback smoothness is also an important

quality metric to keep viewers engaged. Packet delay and

packet loss in wireless networks might cause a playback

jitter and the inherited decoding dependency (e.g., I/P/B

frame, decoding order and display order) in the compressed

video stream will make the problem even worse. Placing a

buffer with an intelligent controller to avoid buffer starva-

tion or overflow can alleviate this problem.

A cross-layer optimization algorithm to improve video

quality and video capacity is proposed in [28–30]. The basic

idea is to integrate packet loss visibility models, unequal

error protection, and playback buffer regulation. Packet loss

visibility modeling is performed at the application layer and

estimates the loss of visibility of each video layer in scalable

video coding (SVC)-coded videos. Unequal error protection

to each video layer is performed at the physical layer to

maximize perceptual video quality under packet loss and

achieve a better use of link capacity using a joint source-link

adaptation. Playback buffer regulation reduces playback

buffer starvation and prevents its impacts on video quality

such as frame freezes and re-buffering.

A multi-link rate adaptation algorithm for video

streaming over multiple wireless access networks, such as

WiFi and 3G, is proposed in [11]. The rate adaptation

algorithm is implemented in a DASH system in which

multiple copies of pre-compressed video with different

resolutions and qualities are stored in segments. It requests

an appropriate, quality version of video segments based on

the current buffer length and available bandwidth. The

Markov Decision Process (MDP) was adopted to describe

the available bandwidths of different links. In order to

optimize the rate adaptation algorithm, a reward function is

designed to consider the QoE requirements for video traf-

fic, such as the interruption rate, average playback quality,

playback smoothness, and wireless service cost. There are

also other studies about rate adaptation. Taking into con-

sideration the starvation probability of playout buffer,

continuous playback time, and mean video quality, a

scheme [31] adopted an analytical approach to predict the

impacts of bit-rate switching on QoE under channel and

buffer variations. A scheduling framework to improve

fairness, stability, and efficiency of bit-rate switching is

proposed in [7]. Both simulations are in a LTE system and

prototype implementation in a WiMAX system which

demonstrates its effectiveness.

Another approach, called iProxy, is leverage in network

caching to lower buffering and start up delay as well as

increase bit rates. It also optimizes bit rate switching [8].

iProxy is a mobile video-centric proxy cache that offers

better hit rates and streaming quality as compared to state-

Table 3 Summary of the QoE catogory and related works

Category Complexity in wireless network Complexity in video coding Related works

Bit rate Low Very low [7, 9]

Playback smoothness Medium Very low [8, 11–14, 28, 31–

34, 36–40]

Classical objective quality metric Very low Low [4, 15–21, 41, 117]

Subjective quality metric Very low Medium [26–33]

Subjective quality metric for scalable video coding Medium Medium [43–50]

Subjective QoE metric in lossy environment High High [22, 42, 59–73]

Video quality metric for advanced video coding High High [74–87]
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of-the-art schemes. It caches video information, rather than

video data, and collapses multiple related cache entries into

a single one, and thus it improves hit rates while lowering

storage costs. Moreover, a dynamic linear rate adaptation

scheme ensures high stream quality in face of channel

diversity and device heterogeneity. When combined,

iProxy yields better bit rates, lower buffering and start up

delays. It also optimizes bit rate switching.

A study [12] investigated the impact of buffering

interruption on video quality under different network

conditions (e.g., low, medium and high bandwidth) and

video sources (low and high quality). In particular, users’

acceptability with respect to initial loading time,and num-

ber of rebufferings and buffering time during video play-

back is measured, from objective and subjective tests.

Their studies have shown that initial loading time of a

video stream is less crucial than smoothness of the video

playback. It is generally acceptable for a waiting time (sum

of initial load time and rebuffering time) of less than 20 s,

but intolerable for a waiting time of more than 60 s. Some

mathematical models for studying the trade-off between

probability of interruption in media playback, and the ini-

tial waiting time before starting the playback are con-

structed in [32]. They concluded that: (1) when arrival rates

are slightly larger than the play rate, the minimum initial

buffering for a certain level of interruption probability

remains bounded as the file size grows, and (2) when

arrival rates and play rate match, the minimum initial

buffer size scales as the square root of the file size. An

evaluation study on HTTP adaptive streaming (HAS)

conducted over 3GPP LTE networks is presented in [33].

They defined a set of 3GPP QoE metrics, including HTTP

request/response transactions, representation switch events,

average throughput, initial playout delay, buffer level, and

playlist. A study of rebuffing distribution across users with

fixed rate and adaptive streaming was performed. Their

research demonstrates that DASH can achieve high video

quality with minimal occurrences of rebuffering events,

and deliver enhanced QoE to a larger number of LTE cli-

ents. A study of QoE for streaming video over LTE net-

works was conducted in [34]. They defined rebuffering

outage capacity to quantify the video service capacity, and

proposed QoE-aware adaptive streaming at the radio access

network level, which could significantly optimize video

capacity.

An improved QoE through application-level scheduling

in mobile content distribution network (CDN) was pro-

posed in [13, 35]. The scheduling algorithm leverages the

information from the locally available transport and

application layer, such as TCP session statistics and content

encoding rates, and the information from the mobile

infrastructure components, such as congestion levels or

subscriber information, to provide a fair distribution of

bandwidth among mobile users. QoE is assessed by the

frequency of buffer starvation experienced by each user. In

[14], a multilink-based scheduling algorithm to avoid

deadline misses is proposed. It divides each video into

independent segments. The size of segments varies

according to the throughput of available network interfaces

(e.g., LAN interface, WLAN interface, 3G interface). Each

segment is then transmitted over different networks.

Experimental studies with on-demand streaming and live

streaming with and without buffering in a controlled net-

work environment and with real world wireless links have

shown that the approach efficiently aggregates all available

bandwidth, avoids deadline miss and interruption in play-

back, even when buffer size is limited.

Some other work has been done on the development of

QoE evaluation methodologies and performance metrics so

as to assist QoE-aware network adaptation and service

provisioning. A QoE model that considers the duration of

playback interruption and video resolution was built in

[36]. A QoE-aware resource management adapts video

quality according to user’s demand and network resource

conditions. An Android-based video server and a video

client is designed and implemented for streaming YouTube

videos. Different user profiles and resource profiles are

tested out. The results show that the QoE-aware resource

management can increase QoE satisfaction by 40 percent

more than traditional non-QoE service models. In [37], a

unicast/multicast system model for multilayer video

transportation over wireless networks was developed. In

this model, dynamic time slot allocation, transmission rate

adaptation, and adaptive pre-drop queue management are

integrated for adaptive transmission of different video

layers. Delay-bound violation probability is used as the

QoE measure.

Lewcio et al. [38] designed and employed a codec

changeover in a voice-over-IP system to eliminate session

interruption and reduce changeover-related artifacts.

Compared to no adaptation, bitrate switching and network

handover techniques, the proposed codec changeover

scheme produces the best video quality gain in case of

packet losses.

A study of managing playout stalls for transmitting

multiple video streams from a base station to mobile clients

was conducted in [39]. A fast playout lead-aware greedy

algorithm is designed for multiplexing videos. The idea is

to maximize the minimum ‘playout lead’ across all videos.

The playout lead of a video is the additional duration of

time that the video can be played out using only data

currently in the client’s buffer. Experiments have been

performed under different video traces, different pedestrian

and vehicular mobility. The results show that the lead-

aware greedy algorithm provides a fair distribution of stalls

among mobile clients and similar or lower average number
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of stalls per client than equal split, and weighted split

algorithms.

A reinforcement learning-based HAS client for the

delivery of video over mobile networks was designed in

[40]. A Q-Learning algorithm is adopted. Two states,

available bandwidth and current client buffer filling level are

consisted, three QoE factors, average segment quality level,

switching behavior of quality levels and video freezes, are

used to model environment states and reward functions to

help client to select a quality level for the subsequent video

segment. Simulation results show that it outperforms by up

to 13 % traditional deterministic HAS client.

The playback smoothness QoE metric can reflect more

end-user experience owing to the network issues. The

playback smoothness problem can be tackled by intro-

ducing buffering, which can be solved by many existing

rich networking knowledge and techniques. It is also

manageable to achieve the goals in network level, such as

fairness and efficiency. On the other hand, the playback

smoothness QoE metrics only considers the playback

issues from the network influencing factors. They do not

address the video content complexity/diversity and do not

capture the true perceived video quality.

3.3 Classical objective quality metric

As mentioned in previous sections, the relationship

between the bit rate and the video quality is a content-

dependent non-linear function. To model this non-linear

function, one could deploy the common conventional

objective quality metric, such as Peak-to-Signal–Noise

Ratio (PSNR), Structural Similarity Metric (SSIM), and

Video Quality Metric (VQM), to optimize video streaming.

These classical objective metrics are measured between the

original uncompressed video and the reconstructed video

from the compressed bit stream. It is also feasible to

introduce the channel distortion into the objective metrics

when we consider the end-to-end video transmission.

In particular, PSNR is defined as follows.

PSNR ¼ 20 log10
MAXf
ffiffiffiffiffiffiffiffiffiffi

MSE
p
� �

where MAXf is the maximum possible pixel value of an

image, and MSE is the Mean Squared Error. Given a

noise-free m 9 n monochrome image I and its noisy

approximation K, MSE is calculated using the following

equation:

MSE ¼ 1

mn

X

m�1

s¼0

X

n�1

t¼0

I s; tð Þ � K s; tð Þð Þ2

The SSIM index is a method for measuring the similarity

between two images. An initial uncompressed or

distortion-free image is used as reference in the measure-

ment. SSIM considers image degradation as perceived

change in structural information. Structural information is

the idea that the pixels have strong inter-dependencies

especially when they are spatially close. These dependen-

cies carry important information about the structure of the

objects in the visual scene. The SSIM is measured on the

block base between a pair of image and the measurement in

each block can be done as follows:

SSIM i; kð Þ ¼ 2lilk þ c1ð Þ 2rik þ c2ð Þ
l2i þ l2k þ c1
� �

r2i þ r2k þ c2
� �

where li is the average value in the block of the original

image, lk is the average value in the block of the distorted

image, r2i is the variance in the block of the original image,

r2k is the variance in the block of the distorted image, and

rik is the covariance in the block between the original

image and the distorted image, PSNR and MSE are com-

putationally simple, but do not take into account the

viewing conditions and the characteristics of human visual

perception [41].

The VQM can be used to measure the perceived video

quality for various video applications, including direct

broadcast satellites (DBS), standard definition television

(SDTV), high definition television (HDTV), video tele-

conferencing (VTC), and wireless or IP-based video

streaming systems. It reflects the main impairments

including blurring, block distortion, jerky/unnatural

motion, noise in luminance and chrominance channels, and

error blocks (e.g., transmission errors). A weighted linear

combination of all the impairments metrics is used to

calculating the VQM rating [41].

An approach to integrate QoE into Media Independent

Handover (called QoEHand) in converged heterogeneous

wireless networks was proposed in [15]. The QoEHand

consists of three components: video estimator, mapping

and adaptation. With the cooperation of these three com-

ponents, it maximizes human experience of video quality

and meets the QoE needs of the current applications subject

to available resources in IEEE 802.11e/IEEE 802.16 ser-

vice classes, so that QoE based on SSIM and VQM is

largely improved compared to the original Media Inde-

pendent Handover. In [42], the authors presented a multi-

cast service to improve QoE of video transport over IEEE

802.11 WLAN, where a structured set of collision pre-

vention, feedback and rate adaptation control mechanisms

are adopted. QoE is also evaluated by VQM, as in [15].

There are other works that focus on SSIM as a QoE

measure. For example, the effect of different network

parameters, such as random packet loss, burst packet loss,

uniform jitter, and Gaussian jitter on QoE of Skype based

on SSIM was investigated in [16]. An interference shaping
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scheme in order to reduce QoE variability was proposed in

[17]. The main goal is decreasing the peak power of

interference bursting transmitters so as to lower packet loss

rate and throughput variation. In their work, QoE is

assessed by a modified multi-scale structural similarity (H-

MS-SSIM) index.

A system that combines rate adaption of source and

channel coding, CDMA code allocation and power control

to improve the QoE of real-time MPEG-4 Fine Granularity

Scalability (FGS) video transportation over downlink

multicode CDMA networks was developed in [18]. All of

these components when coordinated with each other, take

into account video quality requirements, code constraints,

and power constraints, and achieve an optimal QoE in

terms of MSE and PSNR under a resource-limited network.

There are also other works on improving classical QoE in

terms of PSNR. For instance, in [19], the authors studied

the effects of varying channel conditions and resource

constraints in WiMAX on users’ QoE, including the

reserved rate of a video stream at a base station, modula-

tion and coding scheme, distance between base station and

mobile station, and tolerable end-to-end delay. PSNR is

used as a measure of QoE. Several optimization algorithms

to improve fairness and efficiency of video over OFDM

(multiuser orthogonal frequency division multiplex) net-

works were developed in [20]. Video quality improvement

is measured using both PSNR and MSE. Tue authors in

[21] pointed out that user-perceived quality of service

(QoS) for video delivery over LTE cellular networks had

not been well studied. They designed a new OFDMA

(orthogonal frequency-division multiple access) scheduling

algorithm to address this issue. The algorithm uses

weighted round-robin-based radio resource allocation to

achieve high system throughput, and a cross-layer opti-

mized system that dynamically adjusts modulation and

coding scheme and codec parameters so as to maximize

user-perceived video quality, also in terms of PSNR.

3.4 Subjective quality mapped from classical

objective metric

Although the objective quality metrics provide a closer

approximation of the video quality evaluation compared to

the bit rate itself, owing to the highly complex human

visual system, the actual perceived video quality is still not

well captured using those classical models. Mean Option

Score (MOS) is a statistical way to measure the perceived

video quality from a group of subjects in testing.

Researchers have dedicated a great amount of effort to

study the correlation between the MOS and the video

coding parameters. Note that conducting the subjective

testing is very expensive and time consuming; more

importantly, it is not practical for massive encoding and

online broadcasting applications. In the video streaming

application, it is desired to have a simple method, such as

creating a mapping function between the MOS and the

easy-to-calculated objective quality metric, to optimize the

system performance.

Zhou et al. [43] presented a general media distortion

model taking into account not only traditional QoS metrics

(i.e., data loss and delay), but also resource availability.

Leveraging this model, a utility-based rate allocation

scheme (UBRA) was developed for multimedia over a

heterogeneous wireless network. Simulation experiments

were carried out to validate the proposed model and

demonstrate the effectiveness of UBRA. Experiment

results show UBRA outperforms drop-tail and AIMD

schemes in terms of MOS and PSNR measures.

An instantaneous video quality assessment (IVQA)

metric based on video content, such as scene complexity

and motion level, was proposed in [44]. The performance

evaluation of IVQA is compared to ten existing objective

metrics (i.e., PSNR, MSE, SSIM, MSSIM, VSNR, VIF,

VIFP, UQI, IFC and MOVIE) and a subjective metrics

(MLDS). The running time of IVQA is much stable, which

makes this new video quality evaluation model useful for

light weight devices such as video camera and mobile

devices.

Currently, different metrics are applied in cross-layer

approaches to improve QoE [45–49]. A work in [45] was

proposed to aim to maximize the utility function at the

application layer. The utility function describes the relation

between the data transmission rate and perceived video

quality in terms of MOS. They proposed an uplink physical

resources distribution scheme, which can assure maximum

video quality in general and assure better performance for

popular videos. In [46], a framework was also proposed to

adopt the utility function in order to achieve optimal QoE

for all video users under given network conditions.

Objective VQM was used for estimating perceptual video

quality and mapped to MOS, which is then applied into

their SVC mobile video stream adaption at different layers,

from link layer to network layer. The approach effectively

manages video delivery in both core network and wireless

access network. The same authors further improved QoE of

SVC mobile video delivery by introducing a priority

marking scheme [47]. It mapped SVC layers to different

priorities based on data rate and the quality contribution of

a particular layer. Rate adaption follows the priorities

during the network congestion. In [48], the authors used

MOS to represent user satisfaction. MOS score is mapped

linearly to video distortion, which is affected by packet

loss. They build a distortion model that accurately captures

the exact effect of a network packet loss on QoE with a

Group of Picture (GOP)-level granularity. Based on this

model, an optimal bandwidth allocation minimizes video
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distortion under a resource constrained network. In [49], a

solution to address the quality controls over multi-access

and multi-operator systems, such as IEEE 802.11 and IEEE

802.16, was proposed. It implemented QoE estimation,

QoE mapping and QoE adaption in handover periods over

multiple layers, including application, session, and network

layers. Experimental results on MOS, Structural similarity

metric (SSIM), and video quality metric (VQM) show the

proposed approach achieves better video quality.

An enhanced adaptive streaming technique for video

streaming over LTE networks was designed in [50]. The

adaption is based on subjective quality measures and

objective estimation. Capacity analysis using client feed-

back is also integrated into the adaption. Both video

characteristics and device information are considered. The

proposed technique can support users with better video

quality in PSNR (by more than 50–60 %), and reduce the

95-th percentile value of rebuffering percent (by about 4 %

with twice as much as load).

3.5 Subjective QoE metric using scalable video

coding

Besides exploring the mapping between the subjective

metric and the objective metric, what one can do is to

directly explore the video content characteristics and con-

struct the subjective metric from those measurements. In the

wireless video streaming applications, the system designers

can optimize the subjective metric subject to the current

channel conditions by dynamically changing the video

encoding parameters. The common video encoding param-

eters are the quantization parameter (QP), the encoding

frame rate (frames per second), and the spatial resolution.

Encoding a video sequence encoded at higher QP will result

in lower bit rate but poor quality owing to the bigger

quantization step size. Adjusting the frame rate to a lower

value can also reduce the required bit rate as few frames per

second are transmitted. Reducing the resolution of a video

can also reduce the bit rate as it encodes less number of

pixels, though it will cause blurring at the end user side after

deploying upsampling to scale back the resolution. Scalable

video coding (SVC) can encode one video sequence into one

base layer and several enhancement layers. The base layer

bit stream is encoded at a low bit rate to accommodate all

worst channel conditions. Once there is additional band-

width available, the encoder side can transmit additional

enhancement layer(s) to provide higher PSNR, higher frame

rate, and/or higher spatial resolution.

How to quantify the QoE as a function of those

parameters in the scalable video coding system is an

important issue since it directly affects how system

resources can be used efficiently. There have been several

QoE models [51] developed to facilitate the video

streaming service with the assumption that the underlying

networks provide almost error free transmission condition.

In general, video QoE for SVC codec over error free

channel metric consists of three major components: the

quality metric from SNR scalability, QCR, the quality

metric from temporal scalability, QCT , and the spatial

resolution scalability QCS. QCR is often a function of PSNR

or any content dependent features, such as MPEG-4 edge

histogram. QCT is often a function of adopted frame rate

and maximal frame rate; and can include other scene

dependent parameters, such as MPEG-4 motion activity.

QCS is a function of adopted image dimension and maximal

image resolution; and can also include content dependent

parameters.

The final model can be constructed by two forms:

additive form [52–54] or multiplicative form [55–57]. The

generic additive form can be expressed as

QC ¼ aþ QCR þ QCT þ QCS

and the generic multiplicative form can be expressed as

QC ¼ aþ QCRQCT QCS

An example of using multiplicative form based on quan-

tization step size, q, and frame rate, f, for SVC is developed

in [55]. Let qmin be the minimal quantization step size and

fmax be the maximal frame rate. Then, the maximal required

bit rate and corresponding video quality measured in terms

of MOS for one given video sequence using qmin and fmax

can be expressed as Rmax = R(qmin, fmax) and Qmax =

Q(qmin, fmax), respectively. By given the encoding param-

eter (q, f), the required bit rate and video quality can be

modeled as a function as

R q; fð Þ ¼ Rmax

q

qmin

� ��a
f

fmax

� �b

;

Q q; fð Þ ¼ Qmax

e
�c

q
qmin

e�c

 !

1� e�d
f

fmax

1� e�d

 !

;

where Rmax, Qmax, a, b, c, and d are content dependent and

often obtained from MOS-(q, f) curve fitting from massive

subjective testing, which is time consuming and expensive.

We can reduce the parameter, Qmax, by taking the nor-

malized QoE model, ~Q q; fð Þ ¼ Q q; fð Þ=Qmax; since we

only care about the relative quality degradation. However,

we still have other 5 parameters to estimate. To make

solving parameters more practical, it is desired to have a

mapping function, M(), which converts the features

extracted from the video sequence to those model param-

eters. The features can be residual signal, such as frame

difference, displace frame difference, or motion fields

related information, such as motion vector magnitude,
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motion direction activity, or other measurements [56].

Therefore, the rate and QoE model can be constructed by

calculating the video features.

Having the rate and QoE model, we could formulate the

video streaming application as an optimization problem to

optimize the QoE metric subject to the bit rate constraint.

In the multi-user video streaming scenario, the search

space for each (q, f) to obtain the optimal solution grows

exponentially. It is desired to simplify the search space to

make solution tractable. Based on above rate and QoE

model, in [58], a function mapping rate to QoE model is

derived as:

~Q Rð Þ ¼ e�a R
Rmax
ð Þ�bþa

The authors show that parameters a and b are not sensitive

to content and can take values from massive regression

results. Thus, only Rmax is the only content dependent

parameter. Note that by given a targeted bit rate, there will

be several possible combinations of (q, f) satisfying the rate

constraint, R. An algorithm to construct the optimal map-

ping table between bit rate and (q, f) index is proposed in

[58]. In other words, by given a bit rate R, we can deter-

mine video quality ~Q Rð Þ and which enhancement layers to

include. The multi-stream video streaming from a central

server scenario can be easily formulated as an optimization

problem to maximize the quality subject to overall bit rate

constraint.

3.6 Adaptive streaming with subjective QoE metric

in lossy environment

In most video streaming scenario, especially wireless

environment, some video packets will be lost or delayed

during the transmission stage owing to the unreliable

channels. The video quality suffered from packet loss or

delay will degrade the end users’ viewing experience.

Since the video bitstream has high decoding dependency,

any bit error will cause the following bits decoded incor-

rectly and propagate the error to the rest of streams until an

independent decoding unit is met. The end users will

observe a lot of undesired artifacts which do not come from

compression. Packet delay will cause the frame decoding

behind the targeted timeline and cause playback jitter for

real-time streaming application. End users will also feel

uncomfortable for this kind of uneven playback speed. It is

important to develop QoE models to capture both channel

condition and video characteristics for video streaming

application through lossy channels.

The authors in [59] evaluate several popular VQA

models, including as PSNR, SSIM and its variants, VQM,

for video streaming over wireless channel with different

error patterns and bit error rate. The study shows that there

is a need to develop better VQA model to describe the

wireless video streaming QoE metric to match human

perception, especially for high performance with low

computation complexity.

In general, video QoE over lossy channel metric consists

of two major components: the quality metric from video

compression parameter as QC and the quality metric from

transmission module parameter is QT . QC is often a func-

tion of bit rate, frame rate, average motion vector values,

quantization parameter. QT is often a function of bit rate,

frame rate, packet loss rate, density of burst error and burst

error duration.

The final model can be constructed in two forms:

additive form [60–63] or multiplicative form [64–72. The

generic additive form can be expressed as

Q ¼ aþ QC þ QT

and the generic multiplicative form can be expressed as

Q ¼ aþ QCQT

There are some constants used in the QoE model and need

to be estimated from massive subjective testing.

An example using the multiplicative QoE model for

video streaming is discussed in [70, 71]. The basic idea is

to represent the model by addressing the contribution from

the application layer parameter and the physical layer

parameter separately. The video compression related

parameters can be the frame rate (FR) and sender bit rate

(SBR). The transmission system related can be packet error

rate (PER) or other more specific metric in different

wireless network. An example used in [70] is shown as

follows:

Q ¼ a1 þ a2FR þ a3ln SBRð Þ
1þ a4PER þ a5 PERð Þ2

Parameter a1 to a5 are obtained from curve fitting.

Depending on the selected parameter set, the QoE model

can be customized for each scenario. To simplify the

parameter estimation procedure, a classification based on

temporal and spatial features to categorize the video con-

tent was conducted. Each category has its own pre-defined

parameter. Thus, whenever we need to obtain the QoE

model for a new video sequence, we will first extract the

features and categorize it. Then, we apply the parameters

from the matched category to derive the QoE model.

For the lossless transmission scenario, if the content

provider would like to provide a constant QoE video

streaming, the sender bit rate can be derived as a function

of a required quality level and frame rate [70]. For lossy

transmission scenario, the optimal QoE can be adjusted to

choose the application parameters according to the channel

feedback. In [71], the parameter decision process is done

by adopting the fuzzy logic algorithm for video over
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UMTS networks. In [42], the authors further apply above

QoE model to the cognitive radio networks to allocate

network resource by addressing the physical layer param-

eter as the dropping probability. Similar multiplicative

QoE models for Skype video calls consider sender bit rate,

frame rate in application layer and packet loss rate, prop-

agation delay and available network bandwidth in physical

layer is also derived in [72].

The QoE model can further model the decoder buffer

status to reflect the playback jitter. The authors in [73]

propose to the following model with addition buffer status

metric QB:

Q ¼ aþ QCQT þ QT þ QB

In [22], the authors study more complex factors affecting

video perceptual quality when a video bit stream is trans-

mitted in the lossy channel, including the length of loss-

affected segment (i.e., the error propagation duration after

a loss), loss severity (measured by the error in recovering

the loss-affected frames), loss location, the number of

packet los, and loss patterns (spread vs. clustered). They

found that the joint effect of loss severity, error length and

loss number can be captured well by the sum of PSNR

drops in all loss-affected frames with some non-linear

clipping, where the PSNR drop of a frame is the difference

between the PSNR of the encoded frame and that of the

reconstructed frame. They also observed that the impact of

the loss location can be characterized by a forgiveness

factor that decays exponentially with the distance of the

last erroneous frame to the end of the clip. Finally the loss

pattern effect was captured by a function of the inter-dis-

tances between losses, the loss span and the loss number.

Based on these findings, they proposed an objective metric

for the quality degradation due to packet losses that con-

siders all these factors.

3.7 QoE for advanced video coding

In the past few years, we have witnessed another big rev-

olution of new video viewing experience which is dra-

matically different from current two-dimensional one. The

three dimension (3D) video has extended the horizontal to

let the end users enjoy the additional depth information as

in the real world. We also expect the new viewing expe-

rience will advance from current standard dynamic rage

video (SDR) with Rec. 709 to high dynamic range video

(HDR) to wider color gamut (WCG).

Unlike 2D video which handles a sequence of 2D ima-

ges along the time domain, 3D video extends to one more

dimension to present two views of images, which are

captured from two slightly different angles, and are wat-

ched by human’s two eyes from stereoscopic display.

Besides the color and texture information, the perceived

depth and visual comfort are also important factors

affecting the stereoscopic viewing experience. Therefore,

assessing the quality of QoE measurement for 3D video is

complex and non-intuitive. Deploying 3D video streaming

has more challenges than the conventional 2D video. From

the source coding’s point of view, the 3D video codec

explores the inter-view and synthesis prediction to reduce

the required bit rate. In other words, 3D video bitstream has

more decoding dependency. From channel’s perspective,

transmitting 3D bitstream still needs larger bandwidth

compared to traditional 2D video. More specific and

advanced error protection methods to protect bitstream and

more efficient approaches to utilize network resources are

needed to meet QoE requirements.

Two-view stereo video coding is considered the simplest

3D video coding method that each view is encoded inde-

pendently. This approach can deploy the 3D stream over

networks to end users quickly without changing entire

video streaming infrastructure. The drawback is the need of

double required bandwidth in the network to accommodate

left view and right view bitstreams. Asymmetric stereo

video coding is proposed to alleviate the bit rate con-

sumption. The asymmetric stereo video coding adopts

different coding parameters in each view, such as different

spatial resolution, different temporal frame rate, and dif-

ferent signal-to-noise (SNR) [74–78]. The spatial asym-

metry in stereo coding [75, 76] is based on the binocular

suppression theory that a good quality stream for one view

with a smaller spatial resolution in another view (which

requires less bit rate) can provide equivalent QoE com-

pared to same resolution. Temporal asymmetry [78] is to

provide an unequal frame rate for both views: one view has

a normal frame rate and the other view has lower frame

rate. The subjective testing shows temporal asymmetry is

effective for slow motion video sequences. SNR asym-

metry is the easiest method to deploy since no extra spatial

upsampling or temporal frame rate conversion is needed in

the decoder side. Study in [74] shows that a threshold exists

to reduce the required SNR in the non-dominant eye to

achieve same QoE with same level of QoE in symmetric

coding.

Multi-view video provides a new visual experience that

the end users can watch a scene from different viewpoints

in order to achieve more interactive experience. To achieve

this goal, the bitstreams should contain sufficient views to

the end users and end users will extract the needed stereo

pair from the combo bitstreams for watching. H.264 mul-

tiple view coding (MVC) [79] extends two-view stereo

coding into a more generic scheme to support multiple

views. For the MVC streaming application, one important

issue is how to allocate bits to each view so the end users

can have the best viewing experience. One could set up the

objective to minimize the overall distortion summed up
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over all possible views [80] or to minimize the maximal

distortion in each individual view.

Although MVC can provide around 20 % bit rate saving

compared to individual view coding, there is a great desire

to further reduce the bit rate especially when the required

number of views grow. Multi-view video plus depth

(MVD) codec is one of the solutions to achieve this goal.

The basic principle of MVD is to transmit few views with

color/texture along with depth information in the bitstream.

For the views not included in the bitstreams, the decoder

will use the depth-image-based-rendering (DIBR) [81, 82]

approach to generate the synthesis views. In the MVD

streaming scenario, the system designer should consider

the QoE for both types of view: the encoded views and the

synthesized views. Note that the QoE of synthesized views

highly depends on the QoE of reconstructed color/texture

and depth information encoded views. In [83–85], QoE of

the synthesized view can be modeled as a function of the

QoE parameters used in the color/texture and depth pic-

tures from both left and right views. Having the QoE model

for the synthesized view, we could formulate the MVD

streaming system as an optimization problem to optimize

the required QoE.

Owing to the unique features of 3D video, we can fur-

ther deploy advanced methods to improve the QoE video

streaming. One of the methods is the multiple description

coding (MDC). MDC is a source compression technique to

represent the video signal into multiple descriptions. Each

description can be decoded independently and provide the

baseline video quality. Whenever the end users receive

more descriptions, the QoE can be improved further. Nat-

urally, 3D video fits into this architecture since left view

and right view can be seen as an independent description.

Several schemes based on MDC to optimize distortion are

proposed in [86, 87].

4 Open research issues

The QoE driven video mobile streaming system consists of

three major components: (1) the video source compression;

(2) the wireless network; and (3) the human visual system

(HVS). The required bandwidth to provide satisfactory

video quality is very high compared to other types of

network traffic. To reduce the amount of video traffic,

highly efficient video compression is needed to remove the

redundancy in the video signal. The redundancy removal

process deployed in the video compression system intro-

duces higher traffic fluctuation and higher decoding

dependency owing to independent and dependent contexts.

Thus, a compressed bit stream complicates the rate allo-

cation for the channel and requires higher error protection

for transmission. As the demand of video streaming

applications over wireless networks grows rapidly, the

required bandwidth to support all of the requested users

quickly approaches/exceeds the network capacity. Intelli-

gent resource allocation and scheduling are required to

fully utilize the network resources and maintain the link

reliability to achieve the service goals. In the entire video

ecosystem, HVS plays the most important role since the

final video bit streams are perceived by human eyes and

recognized by human brains. The quality metric should be

designed to measure how HVS judges the viewing

experience.

From reviewing state-of-the-art network solutions and

video coding techniques for QoE enhancement, we iden-

tified four major challenges for a QoE driven mobile

streaming video. The challenges and their associated

opportunities are summarized in the rest of this section.

4.1 Efficient quality metrics

It is essential to construct efficient quality metrics that truly

reflect the viewing experience and facilitate the system

resources adaptation in both video coding and wireless

network.

HVS is a highly non-linear and high dimension system.

There have been a lot of efforts towards understanding the

video viewing experience in the baseband signal format

before compression, namely, the required color space for

better color representation and codeword allocation,

including bit depth, for dynamic range representation

within a scene. With the introduction of video compres-

sion, there are more factors affecting the final viewing

experience, especially how HVS ranks the artifacts induced

by the lossy compression. The researchers are still endea-

vor to understand how the compression affects the QoE in

more details. The task becomes much more difficult when

the video signal is impaired during the lossy transmission

over wireless networks, since the dimension of this prob-

lem expands exponentially to include both source and

channel side. The random nature of the wireless networks

and the corresponding error propagation exhibited in the

video decoding process makes the construction of QoE

even more difficult.

As we have seen in Sect. 3, when the existing QoE

models approximate the perceived video quality better, the

required computation load becomes more expensive. And

many models need offline training with iterative encoding/

decoding and evaluation, which makes the system not

practical for real-time streaming. In addition to the com-

putation complexity, when a QoE model gets complex in

the video source coding side, the existing QoE model starts

to lack the ability to consider the highly dynamic network

conditions, thus the ability to adjust network resources and

parameters becomes weaker. In general, a desired QoE
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model should have low computation complexity, be scal-

able for large-scale system, and provide clear tuning points

on how to adjust the parameters in the video coding sys-

tems and the wireless networks resources.

4.2 Streaming system optimization

Often a new streaming system is proposed to offer either a

new type of streaming service or improving certain quality

metrics [29, 30, 35, 88–93]. Streaming system researchers

and developers shall consider all seven categories of QoE

metrics (defined in Sect. 2.3) and determine the target QoE

before designing the system. However, this is a challenging

task since there may be conflicts posted by QoE metrics.

For example, improving PSNR may lead to higher bitrate.

Therefore, the best choice of the target QoE deserves

attention and requires careful engineering to achieve the

optimal viewing experience.

More specifically, a QoE model may consist of multiple

parameters contributing to the final quality measurement.

Note that those QoE parameters may not be straightforward

and mapped to parameters used in the streaming system.

To facilitate the performance tuning in the system design, it

is important to find the mapping between these parameters

in QoE model and the corresponding parameters in the

streaming system. To optimize the QoE perceived by each

end user, the QoE-driven video streaming system should

determine how to adjust the parameters in both video

coding system and mobile networks. Some parameters can

be adaptive in real time; some can only be done in a longer

period; and some can be only adjusted for each connection

section. How to dynamically adjust parameters in different

time scale to achieve desired QoE is a big challenge. Since

the network resources are limited and are shared by mul-

tiple users, a more design challenge is to equip an efficient

and fair resource management system to provide satisfac-

tory QoE to each user.

4.3 QoE in error-prone channel

Compared to wired networks, wireless networks constitute

many error-prone channels. In the past decades, there have

been several techniques developed to address the unique

characteristics of video over error prone channel. For

example, the unequal error protection scheme (either via

Automatic Repeat-reQuest (ARQ) or Forward Error Cod-

ing (FEC)) is deployed to protect more important syntaxes

of video components with stronger protection to achieve a

statistical gain.

Unequal error protection (UEP) is a special form of

forward error correction (FEC). It protects more important

data with stronger forward error correction code. The use

of UEP in protecting data transmission over noisy channel

was initially proposed in [94]. The applications of UEP in

video streaming exploit either the coding technique or the

importance of video packets.

Coding Techniques: In general, any coding technique

that generates code at an arbitrary code rate can be used to

provide unequal protection. Common coding techniques

for UEP include rate-compatible convolutional codes

(RCPC) [95], low-density parity-check (LDPC) codes [96],

growth codes [97], expanding window fountain codes

(EWFC) [97], and Raptor codes [98]. While most of the

existing proposals are applications of UEP in the applica-

tion layer, the UEP protection scheme can also be incor-

porated in the physical or transport layer at the bit level

[99]. The performance of different coding techniques have

been analyzed and presented in [100].

Importance of video packets: A video encoder encodes a

video sequence into a series of video packets for trans-

mission. UEP provides different levels of protections to

video packets according to a specific importance measure.

A basic importance measure of a video packet is the

position of the packet in the layer dependency structure,

i.e., a reference picture is more important than a dependent

picture [101]. Data partitioning posed by video encoders

(e.g., separation of header data, intra-picture predicted

macroblocks), and inter-picture predicted macroblocks)

may be used as an importance measure [102, 103]. The

bitrate of the encoded video frames or slices can also be

used as an importance measure [97, 98, 101]. For example,

the larger video frame contains more information and is

considered more important. Other importance measures

have been explored are playback deadlines of slices [104],

the length of the dependency chain among frames during

encoding [105], and motion energy (defined as macroblock

size times the motion vector size) [106].

In general, existing approaches explore the possibility of

error concealment by exploring the high redundancy in the

spatial and temporal domain are proposed. If the mobile

video streaming system is equipped with those mecha-

nisms, the QoE model can be refined to address those error

resilience and error concealment tools. Consequently, the

corresponding streaming strategy can be also refined to

meet the QoE model.

4.4 QoE model for advanced video systems

Advanced video systems have become very hot topics in

recent years. Many of them have and will come to the

market very soon. However, their QoE models are not well

defined and the corresponding QoE driven solutions remain

future research work.

• 3D video system is one of the advanced video systems

[107, 108]. The newly introduced depth information
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expands the dimension of QoE model. In addition,

different stereoscope capture system, display system

(such as parallax barrier and lenticular display), com-

pression presentation formats (such as multi-view

system and multi-view plus depth system), have

different unique QoE issues to tackle..

• Screen content coding [109] is the new coding tool

defined in H.265/HEVC. It is commonly used in the

screen sharing applications, such as remote team

collaboration environment. A new QoE model is

needed to define how the end users perceive the visual

quality.

• Ultra High definition TV (UHDTV) [110] brings the

much bigger viewing areas (4 times larger than the

conventional HDTV) and wider color space (2 times of

color in Rec. 2020 than conventional Rec. 709) [111].

A QoE model to measure and quantify the viewing

experience/impact under different spatial resolution

(especially higher spatial resolution) and different

colorimetry (especially the much wider color gamut)

is needed (e.g., DE 2000 [112]).

• High frame rate video: the current video frame rate

(24–30 fps) often introduces flicker and motion blur,

especially for high motion scenes, such as sport

broadcasting and action movies. The motion blur can

be alleviated by introducing the high frame rate video

system [113]. It is worthy to notice higher frame rate

needs higher bandwidth and higher system operating

frequency. An effective QoE model to capture the

viewing experience benefited from high frame rate

service is important as well.

• High dynamic range video (HDR) [114] brings another

brand new viewing experience by moving the display

referred video presentation to scene referred video

presentation. In the HDR ecosystem, the dynamic range

of the video signal is significantly expanded to range

almost near the nature scenes (thousands of nits, or cd/

m2). The viewing experience is dramatically different

from the standard dynamic range (SDR) system, which

only provides hundreds of nits. Specific HDR video

codecs and HDR image processing pipeline are

currently under development to handle the HDR video

by inventing new coding/processing tools to address the

unique issues in HDR content. For example, instead of

existing BT. 1886 signal, a new signal format, namely,

perceptual quantizer [115], is introduced to encode the

HDR baseband signal for better higher dynamic range

signal handling. New types of coding/processing arti-

fact through the streaming service are expected. It is

important to develop a new QoE model (such as HDR-

VDP [116]) to address this new viewing experience and

thus provides a good guideline when and how to

provide HDR streaming service.

5 Conclusions

In this paper, we categorize the QoE driven mobile video

streaming into several different types according to the

computation complexity and fidelity to the final perceived

video quality. We also discuss different system designs that

optimize different QoE metrics. We observe that there is a

trade-off between the accuracy of QoE metrics and system

resources utilization. A QoE model which requires less

computation complexity often indicates lower accuracy of

true perceptual quality, but leads to easier system design to

support a large scale of video streaming services. The

simpler QoE model facilitates the wireless network

resources utilization in a more efficient way. A complex

QoE model can approximate the true perceptual video

quality better, but the required computation power and

process to obtain QoE value couldn’t scale a video

streaming system large enough. The complex QoE model

facilitates the parameters adaptation in the video source

coding part.

We also discussed the challenges and opportunities for

the QoE driven mobile video streaming. The research trend

is to continue to improve the QoE accuracy while lowering

the computation complexity of calculating the QoE, and

design a system to optimize the defined QoE metric. The

ultimate goal is to have a QoE driven video streaming

system which can fully utilize the network and vide coding

resources efficiently and provide the best visual quality.

We also briefly review the state-of-the-art video system

and the potential to set up the QoE driven streaming

system.
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