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Abstract The idea of virtual backbone has emerged to

improve the efficiency of flooding based routing algorithms

for wireless networks. The effectiveness of virtual back-

bone can be improved as its size decreases. The minimum

connected dominating set (CDS) problem was used to

compute minimum size virtual backbone. However, as this

formulation requires the virtual backbone nodes to connect

all other nodes, even the size of minimum virtual backbone

can be large. This observation leads to consider the mini-

mum partial CDS problem, whose goal is to compute a

CDS serving only more than a certain portion of the nodes

in a given network. So far, the performance ratio of the best

approximation algorithm for the problem is OðlnDÞ; where
D is the maximum degree of the input general graph. In this

paper, we first assume the input graph is a growth-bounded

graph and introduce the first constant factor approximation

for the problem. Later, we show that our algorithm is an

approximation for the problem in unit disk graph with a

much smaller performance ratio, which is of practical

interest since unit disk graph is popular to abstract homo-

geneous wireless networks. Finally, we conduct simula-

tions to evaluate the average performance of our algorithm.

Keywords Wireless networks � Virtual backbone � Partial
connected dominating set � Approximation algorithm �
Routing � Energy-efficiency

1 Introduction

Recently, several kinds of self-organizing wireless net-

works such as ad-hoc networks and wireless sensor net-

works have received lots of attentions [1, 2]. One well-

known merit of those networks is that they can be instantly

deployed without any existing infrastructure. Therefore,

the networks can be employed for various applications, for

which traditional wireless network technologies can be

hardly adopted. This kind of wireless networks usually

consist of a number of wireless nodes which use a limited

power supply such as a battery as their primary energy

source. Consequently, energy efficiency is a significant

issue of those wireless networks.

Due to the lack of an efficient supporting infrastructure,

many existing routing protocols in wireless networks have

to exploit a flooding-like strategy to discover a new routing

path or maintaining a routing table. Under the circum-

stance, the battery of each node tends to drain quickly due

to significant wireless signal interference and collision

while perforating the routing-related tasks. This problem is

known as the broadcast storm problem and is a significant

issue of wireless networks [3]. Recently, a decent idea to

address this issue, in which only a small subset of nodes are
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in charge of routing related tasks, has been introduced [4].

In the literature, the subset of nodes used for this purpose is

widely referred as virtual backbone since the subset is

required to form a connected subgraph and any pair of

nodes can communicate with each other through a routing

path which consists of the nodes in the subset (see Fig. 1).

Clearly, this strategy can suppress the overhead caused by

the flooding-based routing algorithms such as managing

routing tables, forwarding messages, etc. This means that

the amount of signal collision and interference in the net-

works can be greatly lowered and the whole networks

become more energy-efficient [5].

It is quite straightforward to understand the efficiency of

a virtual backbone can be enhanced by decreasing its size.

Given the unmeasurable benefits of the virtual backbone,

the problem of generating a smaller size virtual backbone is

a problem of great importance. Formally speaking, given a

graph G ¼ ðV ;EÞ; a subset D of nodes in V is called a

dominating set (DS) if for each node u 2 V ; if either u 2 D

or there exists another node v 2 D such that ðu; vÞ 2 E. The

subset is also called as a CDS if the subgraph of G induced

by D, notated by G[D], is a connected graph. In [6], Guha

and Kuller modeled the problem of computing a minimum

size virtual backbone as the minimum connected domi-

nating set (CDS) problem. Unfortunately, this problem is

NP-hard [7], which means that it is unlikely to find a

polynomial time exact algorithm for the problem unless

P ¼ NP. As a result, a significant amount efforts have been

made to find a polynomial time heuristic algorithm for the

problem with a theoretical worst case performance guar-

antee, which is also known as an approximation algorithm

[8–16].

One significant drawback of using a CDS as a virtual

backbone of a wireless network is that the size of CDS can

be significantly magnified by a few outliers which are far

from the majority of the nodes in the network. In this case,

due to the requirement that a CDS has to connect ‘‘all’’

nodes in the network, even the size of a minimum CDS can

be very huge. Based on this observation, Liu and Liang

[17] introduced the minimum partial connected dominat-

ing set (PCDS) problem, whose goal is to find a minimum

cardinality subset of nodes whose induced graph is still

required to be connected, but it only needs to connect a

certain portion of the nodes in the network (see Fig. 2). It is

easy to understand that the minimum PCDS problem is NP-

hard. Unfortunately, they only introduced a heuristic

algorithm for the problem, which does not have any the-

oretical worst case performance guarantee.

Ever since the minimum PCDS problem has been

introduced in LCN 2005 [17], an approximation algorithm

for this problem has not been invented for years. In SODA

2014, Khuller et al. [18] has finally introduced the first

approximation algorithm for the problem in general

graphs. In detail, they introduced an approximation algo-

rithm for the minimum PCDS problem whose performance

ratio is OðlnDÞ; more precisely 4 lnDþ 2þ oð1Þ; where D
is the maximum degree of a given general graph.

Inspired by Khuller et al’s work [18], in this paper, we

study the minimum PCDS problem in a subclass of general

graph called growth-bounded graphs (GBG) and a subclass

of GBG, namely unit disk graph (UDG). By relying on the

special properties of each subgraph class, we introduce the

first constant factor approximation algorithm for each of

the subgraph classes. We claim our result is very important

since

1. most wireless network topology can be more accu-

rately abstracted using the subgraphs of our interest

rather than general graphs, and

2. even though Khuller et al.’s algorithm for general

graphs still works for the subgraph classes of our

interest, GBG and UDG, each of our algorithms, which

is specifically designed for GBG and UDG, respec-

tively, has a constant performance ratio, which is

independent from D or another other variables relying

on the input of a problem instance.

The rest of this paper is organized as follows. Section 2

discuss some related works. Section 3 introduces important

notations, definitions, and preliminaries. Our main results

Fig. 1 In this figure, the set of black nodes can serve as the virtual

backbone of the whole network to route messages

Fig. 2 a by ignoring a few nodes (e.g. v1; . . .; v7), the size of the CDS
(the set of black nodes) is significantly reduced (compared to b). Note
that a wireless network may have a number of sub network area with

such a shape, the benefit of partial connected dominating set can

potentially scale up as the size of the network grows
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which include our algorithm for the minimum PCDS

problem and its approximation ratio analysis given GBG

and given UDG are in Sect. 4. The simulation results and

corresponding analysis are in Sect. 5. Finally, we conclude

this paper in Sect. 6.

2 Related work

Recently, the concept of virtual backbone was emerged as a

promising tool to deal with the broadcasting storm problem

in wireless networks. The most of the efforts related this

topic have been dedicated to design an approximation

algorithm to produce a CDS with smaller cardinality under

various circumstances [8–16, 19–22, 24–30].

In [6], Guha and Khuller proposed a ðlnDþ 3Þ-ap-
proximation algorithm and Ruan et al. [11] introduced a

ðlnDþ 2Þ-approximation algorithm for the minimum CDS

problem in general graphs, where D is the maximum node

degree of an input graph. In [10], the authors introduced the

first polynomial-time constant-factor approximation algo-

rithm for the minimum CDS problem in UDG. In this

work, a CDS of a given graph is computed throughout the

following two phases, which becomes a very popular

approach. In the first phase, a subset of nodes are selected

to form a DS of a given graph. Then, in the following

phase, some additional connecting nodes are merged to the

DS nodes so that the union of them can form a CDS. Given

a graph, an independent set (IS) is a subset of nodes in the

graph such that no two nodes in the subset is adjacent in the

graph. An IS is called an maximal IS (MIS) if no node u in

the graph which is not in the IS can be merged with the IS

to form a larger IS. Clearly, an MIS is also a DS of a graph

since once an MIS I is computed, all nodes in a connected

graph G is either in I or adjacent to a node in I, otherwise

we can add such a node to I and make the I to be a new

larger MIS, which is against the definition of MIS. Since

computing a minimum DS is NP-hard, a simple coloring

algorithm to compute an MIS becomes a popular heuristic

algorithm to find a suboptimal DS. In [10], the authors has

proved that an MIS computed by such a coloring strategy is

an approximation of computing a minimum DS with per-

formance ratio of 4. This bound has been improved for

many times and currently is smaller than 3.5 [15, 16].

In [9], Cheng et al. showed that there exists a full

polynomial-time approximation scheme, i.e. for any e;
there exist a polynomial-time ð1þ eÞ-approximation algo-

rithm. Several distributed algorithms are also proposed,

such as in [12, 31]. Thai et al. [21] studied the minimum

CDS problem in disk graph, and proposed a constant factor

approximation algorithm. Li et al. [20] studied the mini-

mum power strongly connected dominating set (SCDS)

problem in directed graph, and the authors gave an Oðln nÞ-

approximation algorithm, where n is the number of the

nodes in the graph. The main idea of their algorithm is

selecting a random root node and building a broadcast tree

of an input graph first, and getting another broadcast tree

by reversing the edges later. Then, the union of the two

broadcast trees is a SCDS of the graph. The weighted

dominating set (or connected dominating set) problem has

been studied, either. In [8], Guha and Khuller gave an

ð1:35þ eÞ ln n-approximation algorithm in node-weighted

graphs by exploiting existing minimum node-weight Stei-

ner tree algorithms, where n is the number of the nodes in

an input graph. In addition to those mentioned so far, many

efforts are made to study the minimum CDS problem under

various consideration such as routing cost [23, 24, 26–28],

3-dimensional topology [25], fault-tolerance [30], etc.

The concept of PCDS is originally introduced by Lie

and Liang [17] many years ago, but its first approximation

algorithm in general graph is introduced very recently by

Khuller et al. [18], and its performance ratio is OðlnDÞ.
This paper aims to study the problem in two subclass of

general graphs, namely GBG and UDG, and introduce a

constant factor approximation algorithm for the problem in

each subgraph class. Our research is motivated by the fact

that after Guha and Khuller introduced a OðlnDÞ-approx-
imation algorithm for the minimum CDS problem in gen-

eral graph, Wan et al. has introduce the first constant factor

approximation algorithm for the problem in UDG [10],

which is later used as a seed result for a number of papers

to design an efficient algorithm for computing virtual

backbone in homogenous wireless networks.

3 Notations, problem definition, and preliminaries

In this paper, G ¼ ðV ;EÞ ¼ ðVðGÞ;EðGÞÞ is an abstraction

of a wireless network. Depending on the context, G can be

either GBG (see Definition 3) which is a subclass of gen-

eral graph, or UDG (see Definition 4). For any pair of

nodes u, v, Euc (u, v) is the Euclidean distance between

them. For any node subset V 0 � V ;G½V 0� means a subgraph

of G induced by V 0. Similarly, for any edge subset E0 �
E;G½E0� will imply a subgraph of G induced by E0. Also,
denote by

CrðvÞ ¼ fu 2 V j hopdistðu; vÞ� rg:

Now, we introduce some important definitions.

Definition 1 (Independent set (IS)) Given G ¼ ðV ;EÞ;
a subset I � V is an independent set of G if for each pair

u; v 2 I; ðu; vÞ 62 E.

Definition 2 (Maximal IS (MIS)) An independent set I

is referred as a maximal independent set if for any vertex

v 2 VnI; I [ fvg is not an independent set.
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Let S � V . Then we denote by I(S) a maximum inde-

pendent set of the induced graph G[S].

Definition 3 (Growth-bounded graph (GBG)) For any

given function f : Nþ ! R;wecall a graphG ¼ ðV ;EÞ is f ð�Þ
GBG, if it satisfies that for any vertex v 2 G;jIðCrðvÞÞj
� f ðrÞ; 8r 2 Nþ holds, where the definition ofCrðvÞ and Ið�Þ
are shownabove.Particularly, the graph is called a polynomial

GBG, when the function f ð�Þ is a polynomial.

Definition 4 (Unit disk graph (UDG)) A graph G ¼
ðV;EÞ is a unit disk graph if it can be embedded in the

Euclidean plane such that for each pair of nodes u; v 2 V;

there exits an edge between them, i.e. ðu; vÞ 2 E; if any

only if Eucðu; vÞ� 1.

AUDG[32] is also aGBG,which follows from the fact that

a disk with radius r contains at most ð2r þ 1Þ2 independent
nodes. Actually, let I be an independent set contained in a disk

with radius r þ 1=2. We draw a disk with radius 1/2 centered

at each node v 2 I; then all small disks are pairwise disjoint

and contained in the larger disk with radius r þ 1=2. Thus the

maximum number of independent nodes is at most

pðr þ 1=2Þ2

pð1=2Þ2
¼ ð2r þ 1Þ2:

Definition 5 (Dominating set (DS)) Given G ¼ ðV ;EÞ;
a subset D � V is a dominating set of G if for each u 2 V

either u 2 D or there exists another node v 2 D such that

ðu; vÞ 2 E.

Definition 6 (Connected DS (CDS)) A dominating set

D, whose induced graph G[D] is connected, is called as a

connected dominating set.

Now, we provide the formal definition of the partial

connected dominating set. Suppose for any v 2 G and r 2
Nþ;CrðvÞ is the vertex set in which the distance between

vertices and v are no more than r.

Definition 7 (Partial connected dominating set

(PCDS)) Given G ¼ ðV;EÞ and a positive integer n0; where
n0 2 fn0 2 Nþ

�
�n0 � jVðGÞjg; a subset C � V is a partial

connected dominating set, or in short PCDSðG; n0Þ if

1. G[C] is connected, and

2. The number of vertices dominated by C (includes C

itself) is at least n0.

Definition 8 (Minimum PCDS problem) Given G; n0;
the minimum PCDS problem is to find a PCDS ðG; n0Þ with
minimum cardinality.

Definition 9 (Quota Steiner tree) Given a graph G with

weights on both vertices and edges and an integer n0; a
quota Steiner tree is a tree T in G such that

X

v2VðTÞ
wðvÞ� n0:

Definition 10 (Minimum quota Steiner tree problem)

Given a graph G with weights on both vertices and edges

and an integer n0; the minimum quota Steiner tree problem

is to find a quota Steiner tree of G such that
X

e2EðTÞ
wðeÞ

becomes minimum.

Johnson et al. [33] studied the QST problem and

showed that an a-approximation algorithm for the k-MST

problem (that is, given an edge weighted graph, find a

minimum cost tree with at most k vertices) can be adapted

to obtain an a-approximation algorithm for the quota

Steiner tree problem. Using this result along with the

2-approximation for k-MST by Garg [34], gives us the

following theorem.

Theorem 1 [33, 34] There exists a 2-approximation

algorithm for the minimum quota Steiner tree problem.

During the rest of this paper, a quota Steiner tree for an

input pair hG; n0i will be denoted by QSTðG; n0Þ.

4 Main results

In this section, we propose a polynomial time algorithm for

the minimum PCDS problem, namely the partial connected

dominating set algorithm (PCDSA). Then, we prove the

proposed algorithm has a constant factor given the input

graph is GBG. Finally, we improve the constant approxi-

mation factor based on the assumption that the input graph

is a UDG.

4.1 General idea

There are many literatures which show a ‘‘partial’’ problem

is much more difficult than its ‘‘complete’’ version. For

example, it is well known that the minimum spanning tree

(MST) problem can be solved efficiently by some greedy

approach such as Kruskal’s algorithm. However, its one

‘‘partial version’’, the k-MST problem, is NP-hard and a

2-approximation algorithm is known [35]. We found that

this is true to the case of the PCDS problem. There are

various approximation algorithms available for the mini-

mum CDS problem in the past decades, whereas the first

approximation algorithm for the PCDS problem managed

to appear very recently [18].

Now we give some general idea about PCDSA. Basi-

cally, PCDSA follows from the ideas from [18]. First we

556 Wireless Netw (2016) 22:553–562
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construct a maximal independent set (which is also a

dominating set) D ¼ fv1; v2; . . .; vkg by using, say, the

greedy approach (note that unlike in Khuller et al. [18],

greedy approach is not essential here; instead, we can use

any existing method such as coloring strategy for MIS).

During this process, each vertex vi 2 D newly covers wi

number of uncovered vertices in G (i.e., the contribution of

vi is wi in the covering process, and clearly
Pk

i¼1 wi ¼ jV j).
Next, applying the quota Steiner tree algorithm with vertex

weight wi (the weight of the nodes not in D are set to zero)

and edge weight one gives the approximated solution PD.

Note that by setting the vertex weight in this way, we are

guaranteed to find a CDS D0 ¼ VðTÞ (T is the resulting

QST) which dominates a required n0 number of nodes in G;

while by setting the edge weight to one, we actually try to

minimize jD0j ¼ jEðTÞj þ 1.

The key point why PCDSA is a constant approximation

lies in the fact that above D is an independent set. If we

restrict D to the 2-hop neighborhood of an optimal solution

OPT of PCDS to obtain a D0, then D0 can dominate the

required n0 number of nodes, and jD0j can be upper

bounded by a constant factor, f(2), of jOPT j, for any GBG

G. Next by adding a few additional nodes (the number of

which can be upper bounded by a constant factor of

jOPT j), we can modify D0 into a connected CDS D00 which
also dominates n0 number of nodes. Let T 00 be a spanning

tree of G½D00�, then T 00 is a feasible solution to QST prob-

lem. By comparing T 00 with the optimal solution OPT� of

QST problem, we get jEðOPT�Þj � jEðT 00Þj ¼ jD00j 	 1

since OPT� is optimal. On the other hand, the QST gives a

feasible solution PD of PCDS, which can be upper boun-

ded by 2jEðOPT�Þj þ 1, by using the fact QST is a 2-

approximation. Finally, combing the above together gives

that jPDj is upper bounded by a constant factor of jOPT j,
which shows that PCDSA is a constant approximation

algorithm.

Algorithm 1 PCDSA (G = (V,E), n′)

1: Set D ← ∅, and Q ← ∅.
2: Set G′ = (V ′ ← V,E′ ← E,wN ← 0, wE ← 1), where wN

and wE are the node and edge functions.
3: while V �= D

⋃
Q do

4: Find a node v ∈ V \ (Q
⋃

D) such that |Nv(G)
⋂
(V \

(D
⋃

Q))| is maximum, whereNv(G) is the subset of nodes
in G neighboring to v.

5: Set D ← D
⋃{v} and Q ← Q

⋃{Nv(G)}.
6: Set wN (v) ← wN (v) + |Nv(G)

⋂
(V \ (D

⋃
Q))|.

7: end while
8: Apply an existing 2-approximation algorithm ([34,35])

for the quota Steiner tree problem over a problem in-
stance 〈G,n′〉 and obtain an output quota Steiner tree
QST (G′, n′).

9: Output PCDS (G,n′), which is the set of the non-leaf
nodes in QST (G′, n′).

4.2 Algorithm description

Algorithm 1 is the brief description of the proposed algo-

rithm for the minimum PCDS problem. This algorithm

largely consists of two phases: the first phase (Lines 1–7) is

mainly about the greedy algorithm to compute a DS of

G. The second phase (Line 8) is to find the connector nodes

so that the DS nodes in the first phase can be connected in a

way that the resulting output satisfies the constraints.

In detail, Line 1 prepares two empty sets D and Q, where

D will be used to record the dominating nodes and Q will be

used to record the dominated nodes. Therefore, they have to

be initially empty. Line 2 is to initialize the input graph G0

for the quato Steiner tree problem. Initially, the weight of

each node is set to 0 and the weight of each edge is set to 1.

Lines 3–7 are describing a round-based greedy strategy to

compute a DS of the input graphG, and at the same timeG0 is
modified. Specifically, in Line 4, the algorithm finds a node v

which is not in Q
S
D such that v has the most number of

neighbors (say contribution) in VnðQ
S
DÞ. In Line 5, v is

added to the DS, D, and its neighbors, which are not in

ðQ
S
DÞ, are added to Q. At last, in Line 6, the weight of v in

G0 is set to the contribution of v in this greedy process.

After a DS D is computed, in Line 8, D is used along

with n0, as an input pair of an existing 2-approximation

algorithm for the quota Steiner tree problem. Then, at the

end, we obtain a spanning tree QST ðG0; n0Þ. Finally, the
algorithm outputs the non-leaf nodes of QST ðG0; n0Þ as the
result of the whole algorithm in Line 9.

4.3 Theoretical analysis

First, we prove the proposed algorithm is correct and its

running time is polynomial.

Theorem 2 The output of Algorithm 1 is correct, i.e. it is

a PCDSðG; n0Þ of the minimum PCDS problem instance

hG; n0i.

Proof Obviously, the graph induced by the output of the

algorithm is connected because it is the set of non-leaf nodes in

an output of quota Steiner tree algorithm. Considering the way

we construct the weighted graph G from it without weight,

obviously, VðQSTðG; n0ÞÞ can dominate at least n0 vertices
since for any vertex the increased contribution for dominating

will never less than its weight. Therefore, the output of the

algorithm is a connected vertex set of the graph G which

dominating at least n0 vertices. As a result, this theorem is true.

Theorem 3 The running time of Algorithm 1 is

polynomial.

Proof Algorithm 1 mainly consists of two stages. The

first stage is using greedy strategy to compute a maximal

independent set; clearly this can be done in polynomial
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time. The second stage is applying 2-approximation algo-

rithm in [33, 34] for quota Steiner tree, which can also be

done in polynomial time. Therfore, Algorithm 1 is a

polynomial time algorithm.

Next, we prove the algorithm is a constant factor approx-

imation algorithm for the minimum PCDS problem in GBGs.

Theorem 4 Given any connected f ð�Þ GBG G and a

positive integer n0 � jVðGÞj, one always obtain a solution

for PCDSðG; n0Þ with constant performance ratio via

Algorithm 1.

Proof According to Theorem 1, we have
�
�
�
�
�

X

e2EðQSTðG;n0ÞÞ
wðeÞ

�
�
�
�
�
� 2

�
�
�
�
�

X

e2EðOPT�Þ
wðeÞ

�
�
�
�
�
;

where wð�Þ denotes the weight of the edge, and OPT�

denotes the optimal tree for the quota Steiner Tree prob-

lem. Notice that all the edges in graph G have weight 1,

therefore,

jEðQSTðG; n0ÞÞj � 2jEðOPT�Þj:

Furthermore, we have

jPDj ¼jVðQSTðG; n0ÞÞj
¼jEðQSTðG; n0ÞÞj þ 1� 2jEðOPT�Þj þ 1;

where PD is the output of Algorithm 1.

Denote the optimal solution for PCDSðG; n0Þ by OPT,

and its i-neighborhood by

OPTi ¼ NiðOPTÞnOPTi	1; i ¼ 1; 2; . . .;

where OPT0 ¼ OPT.

Let D0 ¼ D \ ðOPT [ OPT1 [ OPT2Þ, where D is vertex

set introduced in both Algorithm 1. We claim that D0 can
dominate all the vertices in OPT [ OPT1. In fact, D is a

dominating set itself and all the vertices in OPT [ OPT1

cannot be dominated by the vertices outside. Therefore, the

number of vertices dominated by D0 must not be less than

jOPT [ OPT1j, which is exactly the number of vertices

dominated by the optimal solution OPT. In other words, D0

is a feasible partial dominating set but not connected (it is

an independent set).

On the other hand,

jD0j ¼ jD \ ðOPT [ OPT1[OPT2Þj

¼
�
�
�
�
�
D \

[

v2OPT
C2ðvÞ

�
�
�
�
�

¼
�
�
�
�
�

[

v2OPT

�

D \ C2ðvÞ
�
�
�
�
�
�

�
X

v2OPT
jD \ C2ðvÞj;

since OPT [ OPT1 [ OPT2 and
S

v2OPT C2ðvÞ represent 2-
neighborhood of OPT and the union of 2-neighborhood of

all the vertices in OPT respectively. In addition,
X

v2OPT
jD \ C2ðvÞj �

X

v2OPT
jIðC2ðvÞÞj

�
X

v2OPT
f ð2Þ ¼ f ð2ÞjOPTj

holds for a f ð�Þ GBG G, since D is an independent set.

To make set D0 connected, we need only to add a few

vertices to D0. One possible way is combining the set with

all vertices in OPT, and adding at most a vertex in OPT1 to

connect the vertex in D0 \ OPT2. Denote the connected

vertex set obtained by above method by D00, then we have

jD00j � jOPTj þ 2jD0j:

Let T 00 be a spanning tree of the induce graph G½D00�. We

claim that T 00 is a feasible solution for QSTðG; n0Þ problem,

since T 00 is a tree and its subset D0 has already satisfied the

constraint. Thus,

jEðT 00Þj � jEðOPT�Þj:

Furthermore,

jD00j ¼ jVðT 00Þj ¼ jEðT 00Þj þ 1� jEðOPT�Þj þ 1:

It follows from above equations that

jPDj � 2jEðOPT�Þj þ 1

� 2jD00j 	 1

� 2ðjOPTj þ 2jD0jÞ 	 1

¼ 2jOPTj þ 4jD0j 	 1

� 2jOPTj þ 4
X

v2OPT
jD \ C2ðvÞj 	 1

� 2jOPTj þ 4fð2ÞjOPTj 	 1

¼ð4f ð2Þ þ 2ÞjOPTj 	 1;

which shows Algorithm 1 is a ð4f ð2Þ þ 2Þ-approximation

algorithm for a polynomial GBG. This completes the proof.

Now, we assume the input graph is a UDG and improve

the performance ratio of Algorithm 1. As a direct conse-

quence of Theorem 4, we have

Theorem 5 Suppose G is a UDG. Then Algorithm 1 is a

102-approximation for the minimum PCDS problem.

Proof According to the above Theorem 4, for any f(r)

polynomial GBG, we have 4f ð2Þ þ 2-approximation for

the minimum PCDS problem. In addition, we know that for

any vertex u of UDG G, the cardinality of maximum

independent set of C2ðuÞ is at most f ð2Þ ¼ ð2
 2þ 1Þ2.
So, we have at most 25 independent nodes in a disk with

radius 2. Hence, Algorithm 1 is a 102-approximation for

the minimum PCDS problem.
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One way to improve the approximation ratio in Theorem 5

is to find a better way to compute f(2), i.e., the number of

independent nodes in a disk with radius 2. The problem is

closely related to circles packing in circle. It is easy to

show that there are 19 independent nodes in a disk with

radius 2, see Fig. 3. According to a conjecture [35] of

circle packing, the maximum number of independent nodes

in a disk with radius 2 is exactly 19. So, if the conjecture is

true, we have a 78-approximation for the minimum PCDS

problem in UDG.

Next, we will give a better analysis of the performance

ratio of Algorithm 1 by employing a closely relationship

between the cardinality of an independent set and that of an

optimal solution of a connected dominating set. From the

proof of Theorem 4, we know that the performance ratio of

our algorithm is mainly dependent on the estimated num-

bers of dominating subset D \ ðOPT [ OPT1 [ OPT2Þ.
Since the subset D \ ðOPT [ OPT1 [ OPT2Þ is also an

independent subset, we will focus on the estimation of how

many independent nodes can be contained in a 2-hop

neighborhood area of the optimal solution OPT. We have

the following lemma.

Lemma 1 jD\ðOPT [OPT1[OPT2Þj�6:25jOPTjþ19.

Proof We prove the lemma by an area argument (see also

[36]). First, for each node in v 2 OPT, draw a disk with

radius 2.5 centered at v. Denote by the union of these disks

by R. Then for each node u in an independent set, draw a

disk with radius 1/2 centered at u. Clearly, all the small

disks are pairwise disjoint and contained in R. So an upper

bound for the number of independent nodes is given by the

ratio of the area of R and the area of a small disk. Next, we

give an estimation of the area of R. A key observation is

that two neighboring disks with radius 2.5 have a large

overlap; see Fig. 4.

Let us compute the dashed area (see Fig. 4). Note the

centers of two larger disks associated with vertices vl; vi 2

OPT have distance at most 1. Assume \avlvi ¼ h
2
and

\avlb ¼ h. Then, we know that cos h ¼ 	 23
25

(since

avl ¼ R ¼ 2:5; vlvi ¼ r ¼ 1). Thus, it is easy to know that

the area of the dashed region is at most

pR2 	 hR2

2

� �

	 hR2

2
	 4 � 1

2
� R cos

h
2
� R sin

h
2

� �

¼ ðp	 hþ sin hÞR2:

That is,

 

p	 arccos

 

	 23

25

!

þ sin arccos

 

	 23

25

!!

�
 

5

2

!2

�ðp	 0:87pþ 0:12pÞ �
 

5

2

!2

:

In order to estimate the area of R. Let OPT ¼
fv1; v2; . . .; vsg. Since OPT is connected, we can construct a

spanning tree T on the nodes in OPT, which is rooted, say

at v1. Let us examine the area of R by iteratively adding

disks with radius 2.5 to existing disks one by one, starting

from the disks associated with v1. Note when adding a new

disk with radius 2.5, the area increases by at most

ðp	 0:87pþ 0:12pÞ � 5

2

� �2

:

Thus, the total area of R is at most

p
5

2

� �2

þðp	 0:87pþ 0:12pÞ � 5

2

� �2

ðjOPTj 	 1Þ:

Thus, the number of independent nodes in R is at most

p 5
2

� �2þðp	 0:87pþ 0:12pÞ � 5
2

� �2ðjOPTj 	 1Þ
p 1

2

� �2

� 6:25ðjOPTj 	 1Þ þ 25

� 6:25jOPTj þ 19:

Fig. 3 There are 19 independent vertices in disk with radius 2

Fig. 4 Two disks associated with two adjacent nodes in OPT have a

large overlap
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The proof is complete.

As a consequences of Lemma 1 and Theorem 4, we

have the following theorem.

Theorem 6 Suppose G is a UDG. Then Algorithm 1 is a

27-approximation for the minimum PCDS problem

asymptotically.

Proof According to the proof of Theorem 4 and

Lemma 1, we have

jPDj � 2jD00j 	 1

� 2ðjOPTj þ 2jD0jÞ
� 2jOPTj þ 4ð6:25jOPTj þ 19Þ
� 27jOPTj þ 76:

5 Simulation result and analysis

In this section, we conduct simulations to observe the

averaged behaviors of the proposed algorithm against

parameter changes and analyze the result. Each result is an

averaged result of 100 trials. In each trial, under the same

parameter setting, we generate a random connected unit ball

graph (a GBG). In detail, we first deploy a number of n

nodes in 3-dimensional Euclidean space, and check if its

induced unit ball graph is connected. Otherwise, we discard

it and generate a new one to make sure of its connectivity.

Once a connected graph G is obtained, we apply our algo-

rithm over the minimum partial connected dominating set

problem instance hG; n0i for a given n0 and obtain the output.
Figure 5 shows the result of our simulations. Figure 5(a)

and (b) show the average performance of the proposed

algorithm while n is increasing and n0 is decreasing. We set

the required dominating ratio, which is

ðn0=nÞ 
 100%;

from 100 to 70 %, which means that n0 is decreasing pro-

portionally. As we can see from the figures, the size of the

(ordinary) connected dominating set (with dominating ratio

to be 100 %) is much greater than its partial connected

dominating set counterpart. That is, even with the domi-

nating ratio of 90 %, we can reduce the size of the con-

nected dominating set significantly. This decreasing trend

is not so obvious when the dominating ratio is reduced

form 90 to 70 %. This implies that our proposed partial

connected dominating set algorithm is effectively reducing

the size of the dominating set. Our result also shows that

the effective of the algorithm on the size of the output

partial connected dominating set is related to n0.

6 Concluding remarks and future work

Over years, the minimum connected dominating set problem

and its variations have attracted lots of attentions. Since the

problem is NP-hard, many efforts are made to introduce

approximation algorithms for them, for many of which,

either a constant factor approximation algorithm or a poly-

nomial time approximation scheme (PTAS) is discovered. In

this paper, we have investigated a general case of the clas-

sical minimum connected dominating set problem called the

minimum partial connected dominating set problem, which

is originally introduced by Liu and Liang [17] in 2005. This

new problem is known to be very challenge. Recently, the

first approximation algorithm for this problem in general

graph has been introduced by Khuller et al. [18] at SODA

2014. Given the significance of the connected dominating

set in the quality virtual backbone construction in wireless

networks, it is important to consider the problem in more

specific graphs which are used to abstract wireless networks.

Motivated by this observation, we propose a new polyno-

mial time algorithm for the minimum partial connected

dominating set problem, and prove the algorithm has a

constant factor approximation ratio in GBG and in UDG.

Most importantly, compared to the performance ratio of the

algorithm proposed by Khuller et al., which is OðlnDÞ, we
prove the performance ratio of our algorithm is 27

(asymptotically), in UDG. As our future work, we plan to

investigate the PTAS of this problem.

(a)
  

(b)
  

Fig. 5 Average performance of Algorithm 1. a Performance of

Algorithm 1 while the size of input graph n is growing. b Performance

of Algorithm 1 while the dominating ratio, ðn0=nÞ 
 100%, is

decreasing
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