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Abstract WirelessHARTTM was released in September

2007 and became IEC standard in April 2010 (IEC 62591).

It is the first open wireless communication standard spe-

cifically designed for real-time process control applica-

tions. It is designed to the same standard as its wired

counterpart for reliability and interoperability. To ensure

the compliance with the HARTTM communication protocol

and the adherence to its strict timing requirements, all

WirelessHART devices must be thoroughly tested and

registered with the HART Communication Foundation

(HCF). In this paper, we present Wi-HTest, the test suite

developed to exercise WirelessHART devices, thus facili-

tating compliance assessment. We discuss the detailed

architecture of Wi-HTest and highlight several critical

features like packet handling with accurate timing control,

fault data injection, and the virtual network approach for

scalable test setup. We also describe a sniffer called Wi-

Analys for capturing WirelessHART packets along with

their timing information and a post process suite for ana-

lyzing the packets. These three tools together provide the

complete compliance verification environment for Wire-

lessHART. Based on the test specification developed by

HCF, we presented several representative test cases for

examining WirelessHART devices’ behaviors in different

layers. These test cases in turn show that Wi-HTest is a

novel and efficient test suite for verifying the compliance

of WirelessHART devices.

Keywords WirelessHART � Compliance test suite � Real-
time wireless mesh networks � Virtual device and virtual

networks

1 Introduction

Wireless technology has been regarded as a paradigm shifter

in the process industry and has received extensive studies

recently [2–11]. Compared to traditional wired process

control systems, their wireless counterparts have obvious

advantages in easier installation, more flexible configuration

and lower maintenance cost. However, different from office

or manufacturing automation applications, industrial control

systems have much stricter timing and reliabilityAn earlier version of this paper appeared in [1].
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requirements, and higher security concerns. To address these

problems, WirelessHART [12] was officially released in

September 2007 as the first open wireless communication

standard specifically designed for real-time process control

applications. WirelessHART is a secure and TDMA-based

wireless mesh networking technology operating in the 2.4

GHz ISM radio band. It is designed with strict timing

requirements and to be highly reliable and interoperable

while being easy to install and operate. WirelessHART was

engineered to strike a careful balance between cost, sim-

plicity, battery-life and guaranteed real-time wireless

communication.

To assure the standard compliance of HART products

(including WirelessHART devices), which is key to ven-

dors’ success in the market and help them avoid expensive

product recalls and technical support costs, since 1995 the

HART Communication Foundation (HCF) [13] has oper-

ated a rigorous quality assurance program and all HART

devices must be thoroughly tested and registered with the

HCF. As part of this program, HCF develops detailed test

specifications and test tools for HART standards. Along

with the release of WirelessHART standard, HCF has

developed Wi-HTest, an extension of the original HTest

tool to support WirelessHART quality assurance especially

focusing on the timing compliance test. HCF has also

developed a specific sniffer called Wi-Analys for real-time

monitoring of the WirelessHART network and a post

process suite for analyzing the packets captured by Wi-

Analys and generating the final compliance report. All

these three tools together provide a complete compliance

verification environment for WirelessHART devices.

As a test suite specifically designed for wireless real-

time communication protocol, Wi-HTest has two inherent

functionalities. First, it is able to construct the test packets

in real-time manner and send them to the DUT (Device

Under Test) through 802.15.4 radio with accurate timing;

second, with the help of Wi-Analys, Wi-HTest can capture

the response packets from the DUT along with its timing

information. These two functionalities enable Wi-HTest to

not only check the correctness of the response data but also

verify its timing information.

Wi-HTest aims at automating the execution of test cases

defined in the WirelessHART test specification. More

specifically, Wi-HTest provides the stimulus (good and

bad) necessary to exercise operations of the DUT. The test

cases for verifying the compliance of WirelessHART

devices can be roughly classified into three different test

scenarios, the device join process, MAC layer data com-

munication and network layer data communication. In the

join process, Wi-HTest coordinates with the DUT through

a sequence of message exchanges and verifies whether the

DUT can join the WirelessHART network successfully. In

the MAC layer communication tests, Wi-HTest transmits

either correct data packets or manipulate the packets by

injecting fault data. By evaluating DUT’s corresponding

response including the precise timing information, the

DUT’s MAC layer compliance can be assessed. Wi-HTest

conducts the network layer communication tests by intro-

ducing the novel concept of virtual network and virtual

devices. It uses one antenna to simulate a multi-node multi-

hop WirelessHART network by adding necessary virtual

devices and configuring the communication schedules

between the DUT and virtual devices or among virtual

devices. This approach forms a virtual network environ-

ment for testing DUT’s network layer compliance, routing

functions in particular. It significantly reduces the number

of physical devices in the testbed and improves the system

scalability. End-to-end communications are executed by

Wi-HTest to evaluate the DUT’s network layer compliance

by comparing its practical behaviors with the standard ones

according to the WirelessHART specification.

In this paper, we present the detailed design of Wi-

HTest and describe the other two important tools: Wi-

Analys and the post process suite. Based on these three

tools, we present several representative test cases to dem-

onstrate the efficiency of our test suite. Our contributions in

this paper are summarized as follows:

• Introduction of WirelessHART test specification and

test script We describe the WirelessHART test spec-

ification, test phases and present the general format of

test scripts.

• Description of the architecture of Wi-HTest We present

the Wi-HTest architecture and highlight the design of

its two key components: Wi-HTest Host and RF

interface. We also share our first-hand experience and

lessons learnt in designing and implementing these key

components and their important software modules.

• Design of the virtual network approach We discuss the

design methodology and implementation details of the

virtual network approach in Wi-HTest to use one

antenna to simulate multiple physical devices in

network layer communication tests.

• Description of Wi-Analys and post process suite We

describe the real-time capturing and analyzing features

in Wi-Analys and the post process suite, and how they

work together with Wi-HTest to provide the compli-

ance verification environment for WirelessHART

devices.

• Demonstration of representative test cases These test

cases demonstrate how Wi-HTest, Wi-Analys and the

post process suite work together to assess the compli-

ance of the DUT in different communication layers.

The remainder of this paper is organized as follows. In

Sect. 2, we introduce the WirelessHART standard and

some existing test suites designed for public wireless
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standards in office and manufacturing automation. Sec-

tion 3 presents the WirelessHART test specification and

the structure of the test script. We describe the detailed

design of Wi-HTest in Sect. 4. Section 5 discusses the

functionalities of Wi-Analys and the post process suite.

Section 6 presents several representative test cases and

discusses the advantages and limitations of the virtual

network approach. Section 7 shares the broad lessons we

learnt from the design and implementation of Wi-HTest.

We conclude the paper in Sect. 8.

2 Background and related work

To help vendors assure product interoperability and shorten

the time to market, many test suites are available in the

market for various wireless standards, such as Blue-

tooth [14], ZigBee [15], and Wi-Fi [16]. In this section, we

first give a brief introduction of the WirelessHART stan-

dard and then discuss several existing test suites for well-

known wireless standards.

2.1 WirelessHART architecture

Traditional wireless standards for office and manufacturing

automation cannot meet the stringent timing and security

requirements of industrial control. WirelessHART standard

is specifically targeted to solve these problems and provide

a complete solution for real-time process control applica-

tions. Figure 1 illustrates the architecture of the HART

protocol according to the OSI 7-layer communication

model. As a part of the HART protocol, the architecture of

WirelessHART protocol is shown on the right side of

Fig. 1. At the very bottom of the protocol, WirelessHART

adopts IEEE 802.15.4-2006 [17] as the physical layer. On

top of that, WirelessHART defines its own time-synchro-

nized data link layer. Some notable features of Wireless-

HART data link layer include strict 10 ms time slot,

network wide time synchronization, channel hopping,

channel blacklisting, and industry-standard AES-128

ciphers and keys. The network layer supports self-orga-

nizing and self-healing mesh networking techniques using

source routing and graph routing. In this way, messages

can be routed around interferences and obstacles, which

greatly improves the network performance in noisy and

harsh environments. WirelessHART also distinguishes

itself from other public standards by maintaining a central

Network Manager. The Network Manager is responsible

for maintaining up-to-date routes and communication

schedules for the network, thus guaranteeing the real-time

network communications.

A typical topology of a WirelessHART mesh network is

presented in Fig. 2. All WirelessHART devices support the

basic mesh node functionalities, including routing capa-

bility. A WirelessHART has the following basic device

types:

• Network Manager is responsible for configuring the

network, scheduling and managing communication

among WirelessHART devices. It is implemented as a

software that resides in the Gateway or the Host.

• Gateway connects Host applications with the field

devices. There is one Gateway per one WirelessHART

network.

• Access Point is attached to the Gateway and provides

redundant paths between the wireless network and the

Gateway.

• Router is deployed in the network to improve network

coverage and connectivity.

Fig. 1 The architecture of

HART communication protocol
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• Field Device is attached to the process plant and

collects data. It could be a sensor or an actuator.

• Handheld is a portable WirelessHART enabled com-

puter used to configure devices, run diagnostics, and

perform calibrations.

• Adapter is a bridge device between the wireless mesh

network and traditional wired HART devices.

2.2 Existing test suites for wireless standards

Although to the best of our knowledge, there is no existing

test suite designed for WirelessHART standard, many

testing and analyzing tools are available for evaluating the

compliance of the DUTs with several existing wireless

standards.

ZigBee aCT [18] is a ZigBee automated compliance

testing solution that executes a sequence of Tx and Rx tests

to characterize a DUT’s compliance and performance in

accordance with the IEEE 802.15.4 standard and generates

detailed test reports. The main advantage of this solution

includes test automation with minimal user input and the

ability to save test results in easy-to-read report formats.

ZigBee aCT performs several compliance tests on any or

all of the 16 frequency channels numbered from 11 to 26.

However, ZigBee aCT only focuses on a DUT’s compli-

ance in the MAC layer and lacks a thorough test of its

network layer behavior. Also, there is no way for the users

to inject any fault data thus it is difficult if not impossible

to test its corresponding behaviors in the presence of ill-

behaved stimuli.

Codenomicon Robustness Tester [19] for Bluetooth is a

black-box testing product with ready-made Bluetooth test

cases. The tests verify how well an implementation can

withstand invalid and malformed traffic, thus resulting in

improved product stability and security. The Codenomicon

tester consists of a set of separate test suites, each of which

tests a particular Bluetooth protocol layer or profile and all

relevant protocols and profiles of Bluetooth are covered.

The tests have been designed in accordance with Bluetooth

Core specification 2.0 where applicable, but implementa-

tions based on any earlier versions of the specification may

still be tested as well.

To ensure industry wide ubiquitous Wi-Fi, the Wi-Fi

Alliance [20] proposes a certification program which

includes a series of standardized interoperability tests. The

Alliance has two approved standard test methodologies for

Wi-Fi Certification: the original Wi-Fi certification meth-

odology designed for PCs and Access Points and the new

Fig. 2 A typical topology of a

WirelessHART mesh network
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Wi-Fi Alliance test engine methodology which is targeted

at application specific devices with embedded Wi-Fi con-

nectivity. Among various test suites developed for Wi-Fi

certification, the AzCert Wi-Fi certification test suite [21]

is a semi-automated solution used by Wi-Fi Alliance

authorized test laboratories. This solution enables users to

reduce the learning curve and ongoing resources required

for certification testing; reduce time spent on executing the

Wi-Fi Alliance test plan; generate customized test stimuli

using the Wi-Fi Traffic Generator (WTG); debug by run-

ning full test or specific test steps, and interpret information

using detailed test results reporting.

3 WirelessHART test specification and test scripts

3.1 Test specification overview

In developing a WirelessHART compatible field device, a

variety of informal ad-hoc testing and formal tests are to be

performed. HCF simplifies this test effort by supplying a

test specification [22] for developers. All tests must be

completed along with the test report prior to product

release and product registration with HCF. The test spec-

ification provides clear test requirements and reduces the

number of test plans that must be developed by the man-

ufacturer. They can be used early in the development effort

to informally verify functionality during implementation

and are a useful part of a regression testing program as the

field device is maintained and enhanced. Further, the test

specification clarifies ambiguities in the protocol and is the

final, definitive authority when interpreting the protocol.

This test specification uses a quasi ‘‘black box’’

approach to confirming compliance with WirelessHART

standard. The complete set of tests consists of the following

five phases and each phase contains multiple test descrip-

tions that are intended for sequential execution.

• Boot-strap tests

• Single correspondent tests

• Multiple correspondent tests

• Multi-channel-selection tests

• Stress tests

The Boot-strap tests try to perform an audit of the com-

mand set implemented in the DUT through either mainte-

nance port or wireless connection. They also set the DUT

in an initialized state and test its join process into a specific

WirelessHART network.

Based on the successful completion of all Boot-Strap

tests, the single correspondent tests focus on a single log-

ical RF channel and the DUT interacts directly with a

Network Manager and Gateway. This series of tests

examine that a wireless field device properly requests

admission to the wireless network; accepts commands that

condition its operation in the wireless network, including

commands with a deferred execution; and operates syn-

chronously with the peer device.

Different from the single correspondent tests, multiple

correspondent tests verify that a wireless device properly

interacts with multiple peers, including inferring informa-

tion about those peers from received messages.

Multi-channel-selection tests extend the multiple corre-

spondent tests by ensuring that a wireless device properly

selects among multiple potential channels on which its

schedule permits operation.

Finally, the stress tests combine all the prior tests into a

single random sequence that serves to examine continuous

device operations in a simulated field environment. The

primary purpose of this phase is to confirm that the device

will reliably interoperate with one another in a real-world

environment.

3.2 WirelessHART test script

According to the WirelessHART test specification, we

have written the test scripts for various test cases in each

test phase. Test scripts are small, narrowly-focused test

applications. They are taken as input to feed in the Wi-

HTest for establishing the test environments, generating

proper test packets and conducting the compliance tests.

Typically a test script includes two parts: The test config-

uration and the test body. The test configuration section

initializes the Network Manager and Gateway, configures

the Wi-Analys and sets up the RF Interface and various test

parameters. Necessary virtual devices and corresponding

communication schedules are also added to support net-

work layer compliance tests. The test body consists of a

sequence of small test steps. Each test step generates or

manipulates a WirelessHART data packet by calling rela-

ted libraries implemented in Wi-HTest. The test body then

waits for the response from the DUT and verifies its

compliance. Readers are referred to the test specification

for concrete examples.

4 Wi-HTest architecture

4.1 Overview

Wi-HTest extends HTest by supporting wireless commands

to test WirelessHART enabled devices. Figure 3 shows the

actual hardware in the Wi-HTest test suite and the system

architecture is depicted in Fig. 4. Wi-HTest consists of two

components: the Wi-HTest Host and a RF Interface. The

Wi-HTest Host is responsible for overall control and exe-

cution of the input test scripts. It first configures the DUT
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with necessary information including the network ID, and

the join key through the FSK modem. After that, according

to the specific requirements of the scripts, the Wi-HTest

Host generates either correct packets or manipulates the

packets by injecting fault data into either the command

payload or the headers of different layers. Wi-HTest Host

then sends these packets to the RF Interface for transmis-

sion through the 802.15.4 radio. The RF Interface is a

compact WirelessHART stack. It is responsible for low-

level, time-critical communications to and from the DUT

using its onboard wireless transceiver. Responses from

DUT are forwarded back to the Wi-HTest Host and are also

captured by Wi-Analys for post processing. Finally, the

post process suite reads in the log recorded by Wi-Analys

(especially the timing information of the response packets)

and generates the corresponding compliance report for the

DUT. The details of the system design of Wi-HTest are

discussed in the following sections.

4.2 Wi-HTest Host architecture

The Wi-HTest Host is implemented on a Linux system

(shown on the left in Fig. 3) and consists of three major

modules: the RF Interface driver, network layer library,

and the Wi-HTest engine. The architecture of the Wi-

HTest Host is depicted in Fig. 5. These modules coordinate

closely to achieve the following functionalities: (1) Read

the test scripts as input and set up corresponding equip-

ments and test environments; (2) According to the

requirements of the test script, generate corresponding

command payload and assemble it with proper network

layer header. If necessary, inject designated errors into the

network packet and further inform the data link layer and

physical layer in which fields and how their headers should

be manipulated. (3) Transmit the control information and

data packets to the MAC layer for transmission and wait

for the response from the DUT. Next we shall describe the

details of each module.

4.2.1 RF interface driver

The driver between the Wi-HTest Host and the RF Inter-

face uses a simple private protocol for communication

through USB. The protocol provides basic framing func-

tions, such as preambles, delimiter, frame control and CRC

error detection.

There are three types of commands carried over the USB

cable: commands from the Host1 to configure the RF

Interface (Type I), commands to relay data packets

between the Wi-HTest Host and the DUT (Type II), and

commands from the RF Interface to the Wi-HTest Host to

update certain data structure in the Host (Type III).

Fig. 3 An overview of Wi-HTest system

FSK Modem HTest Engine Wi-HTest Host

DUT RF Interface
IEEE 802.15.4

Radio

USB Connection

Linux System

Fig. 4 The high level architecture of Wi-HTest

Fig. 5 The architecture of Wi-HTest Host

1 In the following of the paper, we use ‘‘Host’’ and ‘‘Wi-HTest Host’’

interchangeably.
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Type I: Basically, Type I commands are mostly Wire-

lessHART commands and are used to configure the RF

Interface. However, these commands are further extended

to support the virtual device. For example, Command 967

is used by the Host to add a link assignment to the RF

interface and Command 64521 further supports to add any

link among the RF Interface, the virtual devices and the

DUT. We will present the details of the virtual device in

Sect. 4.2.2.

Type II: There is only one Type II command, Command

64513 defined to denote the data request from the network

layer to the data link layer2 or the data indication from the

data link layer to the network layer. The data request

message from the network layer to the data link layer

contains a special header and the network layer payload.

This header includes a bitstring indicating if and which

MAC or physical header field should be manipulated to

transmit false messages. The details of the packet manip-

ulation in Wi-HTest will be discussed in Sect. 4.2.2.

Type III: Currently there is only one Type III command,

command 64518, used by the RF Interface to update its

ASN (Absolute Slot Number) to the Wi-HTest Host. This

provides Wi-HTest Host a rough ASN snippet to fill in the

network layer header. More Type III commands are to be

introduced to provide the data sharing between the Host

and the RF Interface.

4.2.2 The network layer library in Wi-HTest Host

The network layer is constructed as a library along with an

independent receiving thread in Wi-HTest Host. The net-

work layer library provides function calls to construct or

manipulate the data payload and packet header while the

receiving thread handles the response packet back from the

MAC layer or processes received unsolicited messages.

We separate the network layer from the RF interface and

put it on the Wi-HTest Host for three practical reasons.

First, compared with the MAC layer, most of the opera-

tions on network layer are not time critical. Given the

limited memory and MCU resources, and stringent timing

requirements on the RF Interface, putting the network layer

on the Wi-HTest Host can save more resources for

implementing Wi-HTest-specific modules on the RF

Interface; second, with the network layer on the Wi-HTest

Host, it is more direct and convenient for the test scripts to

inject fault data into the WirelessHART command payload,

the network layer header, and even the MAC layer header.

Otherwise, the test script has to convey these control

information to the RF through various interface messages;

At last, putting the network layer on the Host provides us

the possibility and flexibility to simulate virtual devices

and form a virtual network for multiple correspondent tests.

The network layer library provides plenty of useful

function calls for supporting various network operations.

For example, based on given parameters, a set of functions

are used to construct network header while another func-

tion set is for parsing existing network layer packets. The

library also contains functions for network layer initiali-

zation and configuration, building interface messages,

enciphering, deciphering and authenticating network layer

packets, and maintaining various communication tables in

the network layer.

In each test case, when a transmit command is read in

from the test script, the test engine in Wi-HTest Host for-

mats either correct or manipulated network layer packets by

calling related functions from the network layer library and

forwards them to the RF driver for transmission; the inde-

pendent receiving thread continuously monitors the

incoming queue and handles different types of packets by

calling corresponding callback functions in the incoming

message processor. If the message is a response that the test

engine is waiting for, it is stored in a shared buffer and the

test engine is woken up for processing. For other cases, the

message will be either discarded or be used to update rel-

evant data structures. An example of such messages is the

neighbor health report which is generated periodically by

each device to update its status to its neighbors.

Packet Manipulation: To provide the tester complete

control over the transmitted packet, a critical feature pro-

vided by the network layer library is the bitwise packet

manipulation. It allows the testers to change any field of the

network packets including the header and the command

payload. Furthermore, the interface between the network

layer and the RF Interface (Command 64513 in Sect. 4.2.1)

enables us to specify which fields of the MAC layer and

physical layer header will be manipulated using a bitstring

and corresponding data fields. The first bit in the bitstring

indicates if it is MAC (0) or physical layer (1) manipula-

tion. For MAC layer the subsequent bits are the first byte,

address specifier, sequence number, network ID, destina-

tion address, source address, PDU specifier, MIC, message

length and applying superframe routing. For physical layer

the subsequent bits are transmission offset and fixed

timeslot. Bit value of 0 means no manipulation while 1

means manipulated value should be used. The manipula-

tion functions in the network layer library and the interface

between the Wi-HTest Host and the RF Board provide the

testers complete control over the packets (including the

request, response and acknowledgement messages), and

help them design arbitrary test cases for WirelessHART

compliance evaluation.

Virtual Network: The traditional way to set up a testbed

for network layer tests is to deploy exactly the same

2 In the following of the paper, we use ‘‘data link layer’’ and ‘‘MAC

layer’’ interchangeably.
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number of physical devices as needed in the experiment,

and to configure each device according to the experiment

configuration. This approach introduces the following dif-

ficulties for a wireless mesh testbed:

• Since the nodes communicate through wireless, we

have to make sure that the nodes in the testbed are

communicating among themselves correctly and

reliably.

• The testbed can contain hundreds of nodes and it would

be difficult just to set it up before putting the DUT in.

• It is a challenge to tell a physical node to misbehave in

a controlled manner to simulate the interference.

• The approach does not scale. For different test cases,

the physical devices have to be configured and

organized differently. It will be costly to maintain

different testbeds during different stages of a mesh

network development or deployment.

Different from the conventional approach, in Wi-HTest, to

support multiple correspondent tests which focus on eval-

uating DUT’s network layer operations, we introduce two

important concepts: virtual device and virtual network. Our

goal is to achieve scalability by reducing the number of

physical devices in the testbed as much as possible, and

this is achieved by using the same antenna for multiple

purposes. As WirelessHART is a TDMA-based protocol

and provides network-wide time synchronization, each

packet transmission or reception is conducted in a dedi-

cated timeslot with a fixed time offset. We take advantage

of this accurate timing information in our virtual network

approach: whenever a physical device tries to communicate

with the DUT on channel c at timeslot t, we choose the

antenna that represents the same channel and perform the

same communication at timeslot t. In this way, a set of

virtual devices can replace the physical devices and form a

virtual network for the DUT by carefully configuring their

routing information and communication schedules. This

makes the DUT believe that it is operating in a real

WirelessHART network with multiple devices and then

various network layer tests can be performed on the device.

Following the design of Wi-HTest, the virtual device

also splits its network and MAC layer, and installs them on

the Wi-HTest Host and the RF Interface respectively.

Although physically all virtual devices’ network layers

reside on the same Wi-HTest Host, the Network Manager

will allocate an independent session and corresponding

table structures for each virtual device. Similar to the

communication between the Gateway and the DUT, with

the help of the network layer library, the tester will have

complete control over the network layer communication

between the Gateway and the virtual device. The tester can

manipulate every field of the network header and payload

to fulfil various testing purposes.

The MAC layer design of the virtual device is relatively

more complex. To support virtual devices, the Network

Manager will first configure the RF Interface through Type

I command. It will allocate necessary superframes and

links to satisfy the communication requirements. The

configuration varies according to different test scenarios. In

the multiple correspondent test phase, each test case has a

pre-determined communication sequence among the

Gateway, multiple virtual devices and the DUT. If the

MAC communication is between the Gateway and the

virtual device or between two virtual devices, the tester

will first generate the packet with correct source and des-

tination addresses in the MAC header. This packet will be

transmitted on a dedicated link configured by the Network

Manager and selected by the link scheduler. To completely

conform to the WirelessHART standard, a self-ACK will

be constructed or manipulated immediately in this case.

The self-ACK will be transmitted on the same link with

precise timing. On the other hand, if the communication is

from Gateway/virtual device to the DUT, the testing

packets will be generated in the normal way and the RF

Interface will wait for the DUT’s response. Once the

response is back, it will be forwarded to the Wi-HTest Host

for further processing.

Figure 6 illustrates a typical example of the communi-

cation among the Gateway, the DUT and two virtual

devices (VD1 and VD2). The Gateway initializes an end-

to-end communication to VD2 by constructing the network

packet using the following source routing sequence:

Gateway ! VD1 ! DUT ! VD2. The test script first

generates and transmits the MAC packet from the Gateway

to VD1, the corresponding self-ACK will be automatically

generated by the RF board. The test script will then go on

constructing a normal MAC packet from VD1 to DUT with

the same network payload. Under the fixed routing infor-

mation, the DUT is expected to acknowledge this trans-

mission in the same time slot and relay the network

payload to VD2. After receiving the packet from the DUT,

VD2 will forward it to the Wi-HTest Host and finish the

compliance report. All these packets will be captured by

Wi-Analys with their accurate timing information. In this

way, a virtual WirelessHART mesh network is simulated.

4.2.3 Wi-HTest test engine

The heart of the Wi-HTest Host is a test engine, whose

architecture is shown in Fig. 7. The test engine is a C??

program executed in the CINT [23] environment. CINT is a

C/C?? interpreter aimed at processing C/C?? scripts with

reduced compile and link cycle. An important component of

the test engine is the application layer library. Working

together with the Network Manager and the network layer

library, this library provides a bunch of supporting functions
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through the user interface to help testers generate various

test scripts. These scripts implement the specific require-

ments of the test case by calling corresponding functions in

the library. This working mechanism results in our rapid

development of various test cases.

The main functionality of the test engine is to read in the

test scripts and generate corresponding wireless commands

for the DUT. It then passes the commands through the

network layer, assembles it with required header, and sends

it to the RF Interface. The test engine then waits for the

response from the DUT, puts it in the receiving buffer and

verifies its correctness. On the other hand, the test engine

will maintain timers for various timeout defined in the test

script. If a timeout is triggered while no expected response

is received from the DUT, the test engine will report cor-

responding error messages.

4.3 RF interface design

For the Wi-HTest Host to be able to talk to the DUT fol-

lowing the WirelessHART protocol, we connect the RF

Interface through a USB cable to the Host. The RF Inter-

face works as an Access Point between the Wi-HTest Host

and the DUT. Figure 8 illustrates the overall architecture of

the RF Interface, which consists of two important modules

to connect to the Host: Host communication driver and a

command processor.

4.3.1 Hardware platform

We implement the RF Interface on the EVBJM128 [24]

toolkit from Freescale. This toolkit has the following fea-

tures and is powerful enough to meet the stringent timing

requirements defined in the WirelessHART specification.
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Fig. 6 An example of source

routing among Gateway, two
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Fig. 7 The architecture of the Wi-HTest test engine Fig. 8 The architecture of the RF Interface in Wi-HTest
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• Up to 50.33 MHz ColdFire [25] V1 core.

• Up to 128 KB of flash memory and up to 16K RAM

with security circuit.

• Supports four low-power modes.

• On-board logic analyzer and virtual serial port.

• USB device mode and host mode support with Mini-

AB USB connector.

• 8 user LEDs and 5 push buttons.

4.3.2 Real-time embedded compact stack

The data link layer and physical layer on the RF Interface

are collectively called the Compact Stack as the network

layer is separated and put on the Wi-HTest Host. The

compact stack is fully compliant with the WirelessHART

specification, which means it must meet the stringent

timing requirements defined in the specification. To

address this strict time synchronization issue, as we dis-

cussed in [3], we proposed several solutions.

First of all, enciphering a frame and deciphering its

acknowledgement (using AES-128 [26]) can take the stack

out of synchronization. In order to speed up the encipher-

ing/deciphering process, we take a streaming strategy. For

example, if it is in a receiving slot, the stack starts to

decipher the incoming frame when the first 16 bytes are

received. In this way, the calculation intensive security

checking can always be finished in time. Secondly, the

interrupt handler is kept as simple as possible. Only those

time critical jobs are put in the handler. Non-time-critical

jobs are deferred and would be processed at appropriate

time. Thirdly, we give the MAC layer the highest sched-

uling priority. Every time there is a frame to be processed,

the MAC layer can preempt all the other tasks and get the

MCU. There could be several jobs awaiting at any time in

the MAC layer. We further prioritize these jobs to keep the

stack in synchronization. For instance, transmitting a frame

has priority over accepting a frame from the command

processor.

For the limit of space, interested readers are referred

to [3] for the details of the stack implementation.

4.3.3 The command processor

As the RF interface is basically a wireless Access Point for

the Wi-HTest Host, all test commands are transmitted via it

and all test responses are captured by the RF Interface. All

commands and responses are handled in the command

processor, and there can be four types of messages carried

on the USB cable:

• Board configuration commands: These commands are

issued by the Host to configure the RF Interface.

• Test commands: These commands are issued by the

Host to be transmitted by the RF Interface to the DUT.

• Test responses: They are responses from the DUT to

the Host.

• Board updates: They are updates from the RF Interface

to the Host.

We use the simple communication protocol defined in

Sect. 4.2.1 to differentiate the messages and provide error

detection and retries. During initialization, the RF Interface

waits for configuration commands from the Host. After it is

set up properly, the RF Interface can accept test commands

and receive responses from the DUT. If the commands are

test commands, it encapsulates the command in a Wire-

lessHART MAC frame and passes it to the data link layer,

which would transmit the packet over the air to the DUT.

In the other direction, every time the RF interface receives

a response from the DUT (through the PHY and MAC

layers), the RF Interface sends the response through the

USB connection to the Wi-HTest Host.

5 Wi-Analys and post process suite

Wi-HTest is a critical component in the compliance veri-

fication for WirelessHART enabled devices, however it is

not the only tool. Wi-HTest communicates with the DUT

as if the DUT lives in a WirelessHART network. Wi-HTest

itself could not collect all compliance information about

the device. For example, Wi-HTest could verify the cor-

rectness of the device on the network, transportation, and

application layers. But it could not tell if the device uses

the correct message retry algorithm and whether the strict

timing requirements defined in WirelessHART standard are

met. A DUT conforms to the standard only if all its wire-

less transmissions over the air conform to the standard. For

this reason, another two compliance verification compo-

nents are also essential. They are the Wi-Analys and a post

processing suite. Wi-HTest is the instigator that generates

all the communication traffic in real-time. The HART Wi-

Analys compliance verification receiver, Wi-Analys for

short, captures and logs all the wireless traffic. The logs are

post-processed by the post process suite to check if all the

messages conform to the standard. The benefit of the log

files is two folded. They serve as the raw data for ultimate

compliance check; they also serve as the defense evidence

when Wi-HTest is blamed for DUT’s failure to pass the

test.

5.1 Wi-Analys

Wi-Analys is designed to capture all 802.15.4 packets in

the 2.4 GHz frequency range but focuses on those from
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WirelessHART devices. The receiver has the capability of

capturing data on 16 WirelessHART channels simulta-

neously and at a speed of up to 1,000 messages per second.

As shown in Fig. 9, Wi-Analys consists of a radio receiver

box at the center front and a software suite running on a

workstation. The receiver box is connected to the work-

station via the USB cable. The software suite logs all

captured WirelessHART messages on all channels. Wi-

Analys also displays captured messages in an organized

manner, either online or redisplaying a captured log file.

The messages are interpreted and the fields in the mes-

sages, from physical layer fields all the way up to the

application layer fields, could be displayed in columns.

Further, intelligence is built-in to decipher the messages so

that enciphered fields could be shown in plain text. Fig-

ure 10 demonstrates a screen capture of Wi-Analys dis-

play. The figure shows a partial segment of the DUT

joining the network. As displayed in the left side of the

figure, Wi-Analys has a built-in filter so that the user can

narrow down the message list by specifying the parsing

conditions on each field. Wi-Analys is a standalone product

from HCF. It could be used as a real-time WirelessHART

network monitoring tool.

5.2 Post process suite

The post process suite judges the successfulness of the

compliance test. For each test case, a post process program

reads the log file and analyzes it. Depending on the purpose

of each test case, it will check the sequence of the messages

the DUT transmitted, the transmission time points, the

relationship of the messages, the content of the messages,

etc. If all satisfy the standard, the test case is passed.

Otherwise the place where the standard is violated will be

reported.

Wi-HTest, Wi-Analys and the post process suite con-

stitute the complete compliance verification environment.

In this environment, a device typically goes through the

following steps to be certified by HCF. A complete test is

composed of a set of test cases. Wi-HTest runs each test

case with Wi-Analys capturing the messages through the

whole test period. While Wi-HTest could declare if the

device passes certain test cases, a post process program per

case will analyze the corresponding log file to check if the

device has strictly followed the standard during the test,

especially satisfied the stringent timing requirements.

6 Wi-HTest test cases

The WirelessHART compliance test is divided into many

isolated test cases. They test the compliance of each pro-

tocol layer, from the physical layer up to the application

layer. Wi-HTest runs each test case and generates the

compliance report with the help from Wi-Analys and the

post process suite. In this section, we present several rep-

resentative test cases for demonstration.

6.1 Device join test case

In this section we present an application layer test case

example, i.e., device join test. Among many functions of a

WirelessHART network, device join is one of the most

critical and difficult processes. Any DUT must first join the

network before other tests could be performed on it. We

will first describe the join process in the WirelessHART

network and then demonstrate the complete test sequence

in this test. The DUT’s responses to each specific test step

are captured by Wi-Analys and kept in the log. We will

study the log carefully and focus on verifying the timing

compliance of the response packet, the successful syn-

chronization between the Wi-HTest and the DUT and the

correct usage of various security keys during the device

join process.

An overview of the join sequence of a WirelessHART

device is shown in Fig. 11. Wi-HTest plays the role of the

Gateway and has partial functionalities of the Network

Manager. The RF Interface works as the Access Point

between the Gateway and the WirelessHART network. The

general progression that must be followed for the joining

device to become operational includes 6 steps:

• The device is configured with the network id and join

key through a maintenance tool.

• The device listens for the network traffic to synchronize

to the network clock and identify potential parents.Fig. 9 Wi-Analys for capturing WirelessHART traffic
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Fig. 10 A segment of message sequence in the device join test case captured by Wi-Analys

Maintenance Tool Joining Device Wi-HTest

Listen Mode
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Initiate Join

ACK-Initiate Join

Write Net ID

ACK-Net ID

Write Join Key

ACK-Join Key

Join Request

Authenticate Join Key

Allocate Session Key

Write Key

ACK-Write Key

Write frame, links

ACK-Write frames, links

Neighbor Report

ACK-Neigbhor Report

Monitor Join
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Fig. 11 The join sequence in

WirelessHART standard
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• The device then presents its credentials (including the

device’s identity and join key) to the Network Manager

to demonstrate that the device is trustworthy.

• Once the Network Manager has scrutinized the device’s

credentials and deems the device trustworthy, it

provides the first session key and network key to the

device. The device is then in the quarantined state.

• The Network Manager then proceeds to integrate the

device into the network by provisioning the device with

normal superframes and links.

• Once the quarantined device obtains a session with the

Gateway it becomes operational. It then begins acquir-

ing the bandwidth and communication resources

required to publish process data and events as dictated

by its configuration.

Figure 10 demonstrates the message segment of a DUT

joining the network. To make the figure more compact, we

removed most of the advertisement messages from the Wi-

Analys log. After reading in the test script for device join

test, Wi-HTest first configures the RF Interface by writing

superframes and corresponding links using command 965.

After receiving the configuration information, the RF

Interface starts to broadcast advertisements periodically

twice per second. On the DUT side, upon powered up, it

keeps listening for WirelessHART advertisement mes-

sages, one channel at a time. It keeps the information in the

advisement messages from any device it could hear from.

Once the DUT has heard from Wi-HTest and decides to

join, it sends out the join request message, which is shown

as message number 732 in Fig. 10. The join request con-

tains the device information that is enciphered with the join

key. In Fig. 10, Wi-Analys deciphers the message and

displays the device information in the network payload

column. Wi-HTest uses the join key for decryption and

verifies the correctness of the join request. It then sends out

the join reply to the DUT, the message number 751. The

join reply includes network information such as the net-

work key, the assigned two-byte nickname and the session

key. From then on, the Wi-HTest and the DUT will use the

session key for network layer encryption instead of the join

key. They will also use the network key for MAC layer

enciphering. After successfully processing the join reply,

the DUT sends back a confirmation message, number 754.

Notice here in packet 754, we have the observation that the

DUT is already using the assigned nickname while not the

8-byte long address for communication and the network

layer payload can be deciphered successfully using the

specific session key. Wi-HTest then sends out more

information including the superframes and links to con-

figure the DUT in message number 855, which is then

confirmed by the DUT with message number 877. From

this point on the DUT has joined the network and could

communicate normally with Wi-HTest. This is a standard

device join process.

Figure 10 does show that the DUT constructs the join

request and various response messages with correct com-

mand payloads and uses proper keys for network layer and

MAC layer encryption and decryption. However, this is not

sufficient to assert that the DUT has completely passed the

device join compliance test. To claim that the DUT is fully

compliant to the WirelessHART standard, the timing

between the data request message and the corresponding

ACK must be carefully measured. As we have shown

in [3], Fig. 12 depicts the specific timing requirement

inside a WirelessHART time slot (10 ms) and a receiver

must acknowledge a packet within TsTxAckDelay time

units after the end of the current message. This duration

could vary within �100 ls as is defined by the data link

layer specification. By carefully evaluating the timestamps

of the data request message and its corresponding ACK

captured and recorded by Wi-Analys, we can see that their

timing do not deviate more than 100 ls. This thus finally

certificates the complete compliance of the DUT with the

WirelessHART standard.

6.2 Superframe management test case

After the DUT joins the WirelessHART network success-

fully, various single and multiple correspondent tests can

be conducted on the DUT to thoroughly test its compliance

to the WirelessHART standard. In this subsection, we will

present the superframe management test which is a single

correspondent test on MAC layer.

The superframe management test tries all ways to

exercise the DUT’s operations on superframe. It injects

various possible errors into the command payload and

evaluates the DUT’s corresponding responses. The super-

frame management test consists of six separate test

sequences as follows.

• Increase the number of superframes on DUT until its

superframe table is full. After that, add one more

superframe.

• Delete one superframe from the DUT and modify an

existing one by providing invalid number of slots.

• Modify that superframe again with valid number of

slots.

• Add a new superframe with an invalid mode.

• Delete two superframes from the DUT and then add

another two, one with an ASN in the future and one

with an ASN in the past.

• Delete all existing superframes on the DUT.

Figure 13 demonstrates a partial message segment of the

superframe management test. In Fig. 13, the Gateway tries
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to add a new superframe to the DUT using command 965

in message number 41149. According to the command

payload, the ID of this superframe is 04. It has 1,000 slots

(0x03E8) and is set active (0x01). The DUT confirms the

success of this operation in message number 41152. It sets

the command response code as 0 and returns the number of

available slots in the superframe table which is 2. The test

continues to add more superframes to DUT in message

number 41186 and 41232. The return message number

41235 from the DUT shows that there is no more available

TsCCAOffset
TsCCA

TsRxTx
TsRxOffset

TsError

TsMaxPacket
TsRxAckDelay

TsAckWait

TsRxOffset TsRxOffset TsTxAckDelay TsAck

Fig. 12 The slot timing in

WirelessHART standard

Fig. 13 A segment of the message sequence in the superframe management test case
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slots for new superframe. The message number 41275

attempts to add one more superframe (ID = 07) and the

DUT reports error status in message 41282 with response

code 0x41 which means the superframe table in the DUT is

full. After this test sequence, the test then deletes the su-

perframe 06 in message number 41322 using command 966

and the DUT responses to it in message 41324 by showing

that there is one slot available in the superframe table. In

message number 41367, the test further tries to modify the

existing superframe 04 by using invalid number of slots

(0x00) and the DUT reports error status in message 41370

by presenting error code 0x43. In message number 41429,

the test tries to modify the number of slots on superframe

02 from 1,000 (0xE8) to 1 and the DUT confirms it by

sending message number 41434 back including the updated

information of superframe 02.

By injecting all possible configuration errors into the

superframe table on the DUT, the superframe management

test conducts thorough exercises on the DUT’s superframe

operations. The DUT passes this test only when all its

responses match the requirements of the WirelessHART

standard.

6.3 Graph routing and source routing test case

This subsection describes the network routing test which

focuses on verifying the DUT’s network layer behaviors.

There are two types of routing approaches adopted in

WirelessHART standard: graph routing and source routing.

WirelessHART supports graph routing for robustness. A

graph is directional with only one sink node which is the

destination of any message. In graph routing, a message is

forwarded by the intermediate nodes to the next neighbor

on the graph. Each node is pre-configured with a set of

forwarding neighbors of a graph so that it can make the

routing decision locally. The data source simply associates

a graph with the message and sends it out. In this test case

the DUT (0x0004) is configured with two graph neighbors,

VD1 (0x0005) and VD2 (0x0006), to send message to the

Network Manager (0xF980) and the Gateway (0xF981)

through the Access Point (0x0001). The device addresses

used in this and following test cases in Sects. 6.4 and 6.5

are the same.

In source routing the routing path is defined in the net-

work header of the message. A routing device simply

forwards the message to the next device in the path.

Figure 14 shows the data request messages from the

Network Manager and the Gateway to the DUT, and the

corresponding response messages from the DUT.

• Packet 690 to 695 The Network Manager sends

Command 64512 to the DUT with source routing,

whose list is AP, VD1, and DUT. The message is sent

from the AP to the VD1 within the virtual network

Fig. 14 A segment of message

sequence in the network routing

test case
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(Packet 690). The VD1 then forwards it to the DUT

(Packet 697).

• Packet 697 to 703 The DUT sends Command 64512

response back to the Network Manager using graph

0x01C1. The DUT selects the neighbor VD2 (Packet

697), who then forwards the message to the AP (Packet

702).

• Packet 708 to 720 The Gateway sends Command 0 to

the DUT using graph 0x01B1. The AP selects the

neighbor VD2 (Packet 708), who then forwards to the

DUT (Packet 719).

• Packet 721 to 726 The DUT sends Command 0

response back to the Gateway using graph 0x01A1.

The DUT selects the neighbor VD1 (Packet 721), who

then forwards to the AP (Packet 725). Note this time

the DUT selects a different neighbor from the previous

response to Command 64512.

6.4 Burst data test case

The main function of a sensor in a process plant is to

periodically publish process value to the Host. In this test

case the DUT is preconfigured to publish Command 48

every 8 s. After the session and links with the Gateway is

configured, the DUT sends Command 799 to the Network

Manager asking for the bandwidth to publish (Packet 895

in Fig. 15, forwarded in Packet 906). Since the Network

Manager has already configured it, it simply replies with

the route information in Packet 912 which is forwarded in

Packet 917.

The DUT then sends out the first burst data in Packet

945, forwarded in Packet 949. About 8 s later (refer to the

second column Elapsed Time in Fig. 15) the next burst data

is sent out in Packet 971, forwarded in Packet 974. This

periodic data publishing will continue until the Gateway

explicitly stops it by sending corresponding commands to

the DUT.

6.5 Network maintenance test case

WirelessHART defines many ways to keep the mesh net-

work healthy. For example, the device periodically sends

health reports to the Network Manager; it also reports to

the Network Manager if a neighbor is no longer

communicating.

In this test case we shut down the VD1 after the DUT

has begun publishing data. Figure 16 shows that the DUT

reported Command 788 (Path Down Alarm of the VD1) to

the Network Manager (Packet 5070 forwarded in Packet

5077). Note that before the report the DUT sends message

to the VD1 twice in packets 5062 and 5069, neither of them

is acknowledged.

Figure 16 also shows the reporting of Command 780

(Report Neighbor Health List) from the DUT in Packet

5057. It is interesting to see that the VD2 forwarded it

(Packet 5066) after it has received a burst data from the

DUT (Packet 5063).

Fig. 15 A segment of message sequence in the burst data test case

Fig. 16 A segment of message sequence in the network maintenance

test
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Figure 17 shows what happens after Command 788 is

received. The Network Manager sends a message to the

DUT (Packet 5080 forwarded in Packet 5083). The mes-

sage contains: deleting the graph edge to the VD1 (Com-

mand 970), removing two links to the VD1 (Command

968), and adding two extra links to the VD2 (Command

967). The DUT responses it in Packet 5086 to notify the

Network Manager that it is reconfigured successfully.

6.6 Discussion on the virtual network approach

The advantage of the virtual network approach we intro-

duced in Wi-HTest is that it provides a way to scale up the

testbed setup and also offers very flexible functionality. In

the test cases demonstrated in previous sections, the DUT

cannot distinguish the difference between the test case

from when it interacts with a real WirelessHART mesh

network of multiple physical nodes. With our approach, we

can develop a comprehensive ZigBee testbed with the same

amount of hardware as current Wi-HTest.

The next release for Wi-HTest will support 2 RF boards

with one Host. Although there is only one DUT, for some

tests, two antennae are needed. For example, in test case

‘‘TML401 Prioritization multiple simultaneous links’’, the

DUT will be configured with two transmission links at the

same timeslot. Wi-HTest needs to listen on two different

physical channels on that timeslot to find out if the DUT

has selected the correct link for transmission. The syn-

chronization of these RF boards adds complexity to Wi-

HTest. We have devoted quite a bit of time just to get it

right on the RF board. This vindicates in some sense our

strategy to reduce the number of antennae in our approach.

While as many network nodes as possible can in prin-

ciple be simulated, physically the number of radios

required is no more than the maximum physical channels

used by the mesh simultaneously at any given time. The

testbed based on our approach is versatile in that any kind

of tests can be conducted with the same hardware but

different test scripts. Our hybrid approach of using radios

to simulate environment interferences makes mesh network

development and deployment not only more realistic but

also more manageable. However, we should point out that

we do not claim that our approach will work universally

well for all application domains. In particular, the follow-

ing limitations are challenges to extending our approach to

other domains.

• Location awareness. If message delay is used to locate

network nodes, our approach is limited as we cannot

fake different locations of the virtual devices. The

limited simulation we can achieve is by changing the

transmission powers to simulate different virtual device

locations or mobile devices. However, for low power,

low data rate, and small area mesh networks, using

message delay for location awareness may be too hard

to achieve.

• Physical channels. Although one radio for one physical

channel is reasonably sufficient for the process control

domain, we cannot realistically simulate a real world

environment in which multiple transmissions happen

on one channel. However, it is probably uncommon for

the same physical channel to be used for different

communications in a small-area wireless mesh network

as is the case for industrial process automation, for

which the distances between any two nodes controlling

the same devices are relatively small.

• Total timing fidelity. Although it may be doable, it will

be difficult to reproduce the complete message

sequence in real time for a real mesh network.

7 Lessons learnt

In this section, we share some useful lessons we learnt

during our design and development of Wi-HTest. We

believe that these experience would be valuable for those

who are interested in the inside of Wi-HTest or those who

are going to design and implement similar compliance

testing suites for other wireless standards.

Fig. 17 A segment of message sequence in the network

reconfiguration
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• An important step in the design phase is to estimate the

hardware resources needed for specific development

purpose. For example, the memory size and the MCU

speed. Based on these resource requirements, the most

proper hardware platform available should be selected.

During our development, we had to switch from QE128

toolkit to JM128 board for larger memory size thus

suffered incremental development and unexpected

delay.

• Software architecture should be designed as flexible as

possible. This makes the new features of the software

be plugged in easily and seamlessly. In our initial

design, Wi-HTest is a sequential processing and only

supports single correspondent tests. To further support

network and application layer tests, we had to revise the

architecture of Wi-HTest to support virtual device/

network and multiple DUTs. This revision introduced

extra delay to our development.

• Timing is the most fundamental and critical part in Wi-

HTest. All the communications in every layer are based

on the accurate timing information. We spent a huge

amount of time on achieving the accurate timing in the

10 ms timeslot defined in the WirelessHART standards

and the network-wide synchronization.

• For successful development, especially of the commer-

cial products in embedded systems, codes with built-in

debugging functions are necessary. Without the sup-

porting debug functions, we have to play with the low-

level codes every time and the memory usage in the

system is difficult to be traced. This could make the

debugging process inefficient and time-consuming.

8 Conclusion

This paper presents the architecture of the Wi-HTest test

suite, a critical part of the compliance verification tool for

real-time WirelessHART network. We also describe Wi-

Analys and the post process suite for capturing, analyzing

the response from the DUT and finally generating the

compliance test report. We describe the WirelessHART

test specification and the structure of the test scripts. Sev-

eral representative test cases on different communication

layers are demonstrated to show that Wi-HTest, together

with Wi-Analys and the post test suite provides an efficient

test automation suite for WirelessHART compliance test.

The compliance verification deals with both functional

correctness as well as timing correctness. A critical mea-

surement is that the MAC layer acknowledgement for a

data request spanning a complex chain of events must not

exceed a 10 ms time slot. This has been incorporated into

our test environment to guarantee the real-time communi-

cation of the WirelessHART network. We also describe the

virtual network approach that is applied in Wi-HTest to

achieve scalable testbed setup especially for testing net-

work layer behaviors, and discuss its advantages and

limitations.
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