
You can’t get there from here: sensor scheduling with refocusing
delays

Yosef Alayev • Amotz Bar-Noy • Matthew P. Johnson •

Lance Kaplan • Thomas F. La Porta

Published online: 18 December 2014

� Springer Science+Business Media New York 2014

Abstract We study a problem in which a single sensor is

scheduled to observe sites periodically, motivated by

applications in which the goal is to maintain up-to-date

readings for all the observed sites. In the existing literature,

it is typically assumed that the time for a sensor switching

from one site to another is negligible. This may not be the

case in applications such as camera surveillance of a bor-

der, however, in which the camera takes time to pan and tilt

to refocus itself to a new geographical location. We for-

mulate a problem with constraints modeling refocusing

delays. We prove the problem to be NP-hard and then study

a special case in which refocusing is proportional to some

Euclidian metric. We give a lower bound on the optimal

cost for the scheduling problem, and we derive exact

solutions for some special cases of the problem. Finally, we

provide and experimentally evaluate several heuristic

algorithms, some of which are based on the computed

lower bound, for the setting of one sensor and many sites.

Keywords Sensor scheduling � Delay constraints � Sensor

networks � Sensors � Surveillance � Resource allocation �
Algorithms

1 Introduction

Area monitoring is a common application of wireless

sensor networks. In wireless sensor networks employed in

monitoring or surveillance applications, individual sensors

may perform pre-assigned or on-demand tasks. In partic-

ular, sensors such as visual cameras, radars, or passive

infrared cameras may need to observe distinct geographical

locations (or sites). It is usually the case that the number of

tasks (or observations) to perform is larger than the number

of sensors in the network. Hence, sensors’ time must be

shared to observe multiple sites. In addition, some obser-

vations may be more important than others. Thus, a sche-

dule is required in order to specify which sensor observes

what site at each particular time. This paper studies a

problem of scheduling a single sensor to observe n distinct

sites. Our work is motivated by the research of Yavuz and

Jeffcoat [1, 2].

More formally, in the sensor scheduling problem we

have m sensors (cameras, radars, PIRs, etc.) that need to

observe n[m distinct locations. The objective is to

schedule the sensors to observe the most important sites as

frequently as possible, in order to minimize the amount, or
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value, of information we fail obtain when particular sites

are not observed. Applications of this kind of problem are

common. For instance, camera surveillance may be used to

monitor intrusions along a border, in which case there may

be many distinct unprotected places along the border to

observe, to protect against use by intruders. If it is too

costly to dedicate a single camera to each site, then one or

more cameras may be scheduled to alternate between

observation of different locations.

Consider an example in which a sensor is required to

observe sites A, B, and C. The sensor can only focus on

one site at a time, say site A, collecting all the new

potential information from that site. The other two sites B

and C are left unobserved, in which case we must rely on

earlier observations of them. Each time a site goes

unobserved, we lose some new information. As in [1] and

[4], two types of costs can be associated (within a given

timeslot) with this lost information: (1) a fixed cost of not

observing a particular site at a particular time, and (2) a

variable cost that is a linear function of the time gap

since its last visitation. Both costs provide an incentive to

visit the site. The motivation of the second type of cost is

to model the fact that information becomes increasingly

obsolete over time. The goal is to construct a periodic

schedule (i.e. a schedule that repeats itself every T 2 Zþ

timeslots), that minimizes the average cost of lost infor-

mation per timeslot.

The crucial aspect of this paper’s problem formulation is

that sometimes a sensor may not be able to observe two

distinct sites right after each other as it needs time to adjust

and refocus. Prior research has neglected such time delays.

Though time delay to refocus the sensor to a new location

has a considerable impact on a feasible optimal schedule.

Refocusing time delay may preclude many sites from being

scheduled next. Suppose that in the example above it takes

one idle timeslot to refocus the sensor from one site to

another. Say a sensor is observing site A during the last

timeslot. What should a sensor do during the next timeslot?

Observing site B or C is not possible since it takes time for

a sensor to refocus. The sensor may either continue

observing A in the next timeslot or not observe anything in

the next timeslot, in which case it takes one timeslot to

refocus to another site in order to observe it in the second

timeslot after the idle timeslot.

Throughout the rest of the paper we will refer to a sensor

as a camera since camera is a typical sensor used for

observations. Conserving the energy required for move-

ment could be a motivation as well, although we defer

optimizing for energy to future work. The rest of this paper

is organized as follows. Section 2 discusses some related

work. In Sect. 3, we formulate different variants of a single

sensor scheduling problem with delay constraints and

prove some hardness and structural properties. In Sect. 4,

we derive a lower bound on the optimal solution cost for

the sensor scheduling problem. We derive exact solutions

to some special case settings in Sect. 5. Then in Sects. 6

and 7 we propose greedy-based algorithms and evaluate

them on synthetic data. We conclude by discussing future

work in Sect. 8.

2 Related work

A min–max variant of the Single-Sensor Scheduling

Problem (SSSP) is studied by practitioners in [1] and [2]. In

[1], a formulation minimizing the maximum information

loss for any site and in any timeslot is studied; it is NP-

hard, and heuristic algorithms are given. In that formula-

tion, it is assumed that time transition between sites is

negligible. Our relaxation of this assumption is a crucial

aspect of the problem we study in the present paper.

Because of the delays between observations of various site

pairs, only a subset of sites in general are reachable in the

next timeslot at any given time, which separates our

problem from the previously studied Broadcast Disks and

Maintenance problems. Other works on either single sensor

scheduling or multi-sensor scheduling can be found in

[3–6], and [7].

The min–sum sensor scheduling problem that we define

here is a generalization of the Broadcast Disks [8] problem.

In that problem, there is a quadratic cost paid (in total) for

time gaps between receiving pages, and the objective is to

minimize the sum of costs. In our problem, there are

quadratic costs for gaps (between observations of sites) as

well as linear costs for gaps. (Equivalently, during each

timeslot within a site’s gap, there is one penalty linear in

the time since the gap’s last observation, as well as one

penalty that is a simple constant.) The Broadcast Disks

problem does not consider time delay constraints that may

preclude many pages from being scheduled next.

An equivalent problem of Broadcast Disks is the prob-

lem of scheduling for Teletext systems [9, 10]. The single-

sensor (SSSP) special case of the sensor scheduling prob-

lem that we focus on in this paper, in which there is only

one sensor scheduled to observe n sites, generalizes the

Teletext problem, in the same two ways as above, viz., by

adding fixed costs and delay constraints. In [10], Ammar

and Wong show that there always exist optimal Teletext

schedule solutions that are periodic; in [9], they show how

to construct broadcast cycles. They also derive a square

root rule according to which an item i’s broadcasting fre-

quency is proportional to the square root of i’s request

probability, which in our case corresponds roughly to

normalized variable costs.
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Also closely related is the Machine Maintenance prob-

lem [11]. In that problem, which is another generalization

of Broadcast Disks, a (linear) operating cost is charged

based on the time elapsed since the last service, while a

constant maintenance cost is charged for each timeslot t

when the machine is serviced. Note that the maintenance

cost is charged in exactly the complement of the timeslots

when our fixed cost is, whereas the operating cost corre-

sponds to our variable cost. (There are no switching delays

in the Maintenance problem.) Bar-Noy et al. [11] prove

that the maintenance scheduling problem is NP-hard and

provide approximation algorithms. Note that hardness for

the single-sensor version of our problem does not imme-

diately follow from this result. We give an unrelated

hardness proof in the paper.

More broadly, various other scheduling problems

involve the notion of travel delays between sites. In hard

disk scheduling [12], e.g., the Shortest Seek Time First

algorithm chooses the request closest to the current head

position, in order to minimizes latency. In the k-server

problem [13], k servers will service client requests, as they

appear online, within a metric space. The goal is to mini-

mize the total distance moved by the servers servicing

requests. In the related offline Watchman problem [14],

one server must choose a short route between a set of

locations to guard, avoiding obstacles in the region. The

SSSP differs from these problems, however, in that the

switching delays are hard constraints rather than soft. That

is, these delays rule out certain sequences of site obser-

vations as infeasible. We seek low-cost periodic schedules

observing these restrictions.

Another related work [15] studies a problem where a

single camera is required to observe multiple people. It

does so by dividing the camera’s time in order to view

everyone. In their work an additional tracking camera with

a fixed wide field of view is employed to detect, track, and

classify moving targets. The information of the targets is

then provided to the active camera that can pan, tilt, and

zoom to collect high resolution video. The scheduling

problem consists of deciding which person the active

camera will focus its sensing resources on until the next

state update. The arrival times of people entering the scene

is not known in advance making it an online scheduling

problem.

The work in [16] is an extension of [15] to multiple

active cameras scheduling. This work studies a system of

multiple pan-tilt-zoom (PTZ) cameras, assisted by a fixed

wide-angle camera, to collect high resolution video of the

(many) moving targets. The system first assigns a subset of

the requests or targets to each camera. The cameras then

select the parameter settings that best satisfy the assigned

competing requests to provide high resolution views of the

moving objects. The main difference in our paper is that

the targets are not moving objects but stationary geo-

graphical locations with associated costs due to lost

information. Other works on controlling PTZ cameras to

optimize coverage can be found in [17, 18], and [19]. For a

survey on modeling coverage in camera networks refer to

[20].

3 Model

In the SSSP, we have one sensor that observes a collection

of n sites at discrete time intervals. In each timeslot, the

sensor can choose (at most) one site to observe. The

problem is to find a periodic schedule (with some period

T), minimizing total costs, as described below. Initially we

will assume that the time for switching from one site to

another is negligible. Later we will incorporate this delay

into the model.

3.1 Preliminaries

Our model uses the following notation:

• ai—fixed penalty for not observing site i

• bi;t—variable penalty for not observing site i at time t

• yi;t—time of last observing site i before time moment t,

set to t iff the sensor is observing site i at time slot t,

and otherwise equals yi;t�1

• gi;t ¼ ðt � yi;t)—the time length (or gap) since last

observation of site i, prior to time t

Let xi;t be a decision variable taking value 1 if the ith site is

observed at time t (1� t� T), and 0 otherwise. The penalty

for not observing a site i at time t is expressed as follows:

aið1� xi;tÞ þ bi;tðt � yi;tÞ

A variant of the sensor scheduling problem was formulated

for one-sensor case in [1] and [2]. In their formulation, the

objective was to minimize the maximum cost

aið1� xi;tÞ þ bi;tðt � yi;tÞ, among all sites i and times t, for

a schedule defined over period T . The factor ðt � yi;tÞ is the

gap gi;t, the length of time since the last observation of site

i. Following the Broadcast Disks and Maintenance prob-

lems, however, we optimize for the average (or equiva-

lently, the total) penalty per slot, over all sites i and times t.

The parameter bi;t could be tuned based on the needs of the

application, e.g. increased during rush hours or decreased

otherwise if the activity level of site i at time t diminishes.

For the bulk of the paper, however, we will assume for

simplicity that bi;t as a time-invariant parameter bi.

Thus, our problem is specified by the integer program

formulation given in Table 1.
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The first constraint prevents multiple sites from being

observed at the same time. The second and third constraints

of the formulation above ensure that yi;t takes on value t if

an observation of site i occurs at time t, and otherwise

equals yi;t�1. The fourth and fifth constraints dictate that all

sites are treated as having been observed at time 0. In some

of our experiments, we relax these constraints and allow

xi;0 and yi;0 to be specified in the input, which allows us to

code for certain sites having initially already been unob-

served for some larger number of timeslots.

The sixth constraint restrict the xi;t variables to 0 or 1

values. We do not restrict the values of the yi;t variables,

allowing them to take on negative values when the yi;0
values are specified as described above. The yi;t will,

however, always take on integer values due to the second

and third constraints, and so a constraint of the form yi;t 2
Z is superfluous. The seventh constrain is a delay constraint

which is explained in the next subsection.

3.2 Delay constraints

Let D be an n� n matrix with entries di;j corresponding to

transition times (in units of timeslots) between sites j and i.

(di;j ¼ 0 indicates that the sensor can observe site i after

observing site j, without requiring any idle slots.) We can

then formulate the constraint as:

di;jxi;t�ðt � yj;t�1 � 1Þ ð8Þ

Recall that ðt � 1Þ � yj;t�1 is the value of gap gi;t�1, which

is the length of time since the last observation of site j prior

to time t � 1. The right hand side is nonnegative since the

gap cannot be negative. If i is not scheduled at time t, then

the constraint is satisfied trivially because the LHS is 0; if it

is, then the LHS is the transition time from the previously

scheduled site j to the current site i. Note that for the

previously scheduled j, the RHS is smaller than for the j

that was not scheduled previously. Consider the following

example, in which we have sites A, B, C, and D, and

transition matrix D as shown in Table 2.

Assume the schedule up to now has been ABC A. Now

we need to make a decision for the next timeslot, t ¼ 5.

Note that the previously scheduled site j at time t � 1 is A,

and that gj;t�1 ¼ ðt � 1Þ � yj;t�1 ¼ 4� yA;4 ¼ 0. For any

other j the gap will be even greater, and so therefore will

the right hand side. Thus the RHS of the constraint Eq. 8 is

0. This means that on the LHS we must have 0 to satisfy

the constraint. Hence, only those sites in row A with 0

entries can be considered (i.e., A and B) for timeslot t ¼ 5.

Now, suppose we leave t ¼ 5 idle. This would give us

schedule ABC Ah (where h indicates no site observed),

with our next scheduling decision for timeslot t ¼ 6. Note

that the (unique) minimum gj;t�1 ¼ ðt � 1Þ � yj;t�1 is

5� yA;5 ¼ 1. Therefore the RHS is 1. The LHS should

have a site scheduled at timeslot t ¼ 6 that is reachable in

time at most 1 (i.e., A, B, or C). Similarly, if we leave

timeslot t ¼ 6 idle with the current schedule so far as

ABC Ahh, then for t ¼ 7 the (unique) minimum gj;t�1 is

due to A and is equal to 2. Hence, at timeslot t ¼ 7 we can

schedule any site reachable from A within 2 timeslots (i.e.,

A, B, C, or D).

In most of this paper we restrict our attention to a special

case in which the entries di;j are 0 or 1, meaning the sites

are reachable within at most one idle slot. The constraint

can now be formulated as:

di;jxi;t� 1� xj;t�1

If, however, we let the di;j be the time delay parameters

themselves (rather than units of timeslots) associated with

the refocusing of the sensor from site j to site i, set

D ¼ maxi;j di;j, and furthermore let s be the time limit

during which the sensor should finish its refocus. Then we

can reformulate the constraint to incorporate the pan and

tilt delay as: di;jxi;t� sþ ð1� xj;t�1ÞD. Both constraints are

equivalent: one expresses the delay in terms of number of

slots, and the other expresses it in terms of time.

Table 1 IP formulation for SSSP

min
1
T

Pn

i¼1

PT

t¼1

aið1� xi;tÞ þ biðt � yi;tÞ

s.t. Pn

i¼1

xi;t � 1
8t2f1;...;Tg (1)

0� yi;t � yi;t�1� t � xi;t 8i2f1;...;ng (2)

8t2f1;...;Tg
txi;t � yi;t � t 8i2f1;...;ng (3)

8t2f1;...;Tg
xi;0 ¼ 1 8i2f1;...;ng (4)

yi;0 ¼ 0 8i2f1;...;ng (5)

xi;t 2 f0; 1g 8i2f1;...;ng (6)

8t2f1;...;Tg
di;jxi;t � sþ ð1� xj;t�1ÞD 8i2f1;...;ng (7)

8j2f1;...;ng
8t2f1;...;Tg

Table 2 Transition matrix D A B C D

A 0 0 1 2

B 0 0 0 1

C 1 0 0 0

D 2 1 0 0
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3.3 Hardness and periodicity

We prove hardness by means of a Cook reduction from the

classical Maximum Independent Set (MIS) problem, which

is NP-hard [21].

Theorem 1 Solving SSSP optimally is NP-hard.

Proof Given an instance G ¼ ðV ;EÞ of MIS, we create a

family of SSSP instances, indexed by value T ranging from

1 to n ¼ jVj, as follows. For each node vi 2 V , we intro-

duce a site i, with constant cost ai ¼ 0 and linear cost

bi ¼ 1. For each edge ðvi; vjÞ 2 E, we set the delay between

nodes i and j to be infinity (or some sufficiently large

constant); for each edge not present, we set the corre-

sponding delay to zero. Assume we have solved all n SSSP

instances optimally.

We distinguish between three possible situations that a

given site may be in, within a particular problem solution:

it may be observed zero times, one time, or multiple times.

The difference in cost between zero observations and one

observation is much greater than the difference between

one observation and multiple observations: zero observa-

tions will incur a cost quadratic in both T and the number

of times the schedule cycles; one observation will incur a

cost at most quadratic in T and linear in the number of

cycles. The bulk of the solution cost will depend on the

number of sites not observed at all.

We note that for any value T over the specified range,

there will exist a feasible solution visiting a site in every

timeslot: assuming the delay between a site and itself is

zero, a schedule observing the same site in every timeslot

will always be feasible. By the argument above, however,

sites will only be observed multiple times when it is

impossible to add some other zero-visited site to the

schedule. For a sufficiently small value of T , therefore, we

will obtain a schedule in which all sites observed are

observed only once. It is clear from the construction that

the sites observed in the SSSP optimal solution of the

instance with the largest such value T will form a

maximum independent set in the underlying graph. h

We also note that we can restrict our attention to peri-

odic schedules in the following sense, assuming that delay

constraints are symmetric, i.e., the delay for moving from

site i to j is the same as for moving from j to i.

Theorem 2 Every SSSP problem instance with symmetric

delay constraints admits an optimal solution that is

periodic.

Proof (sketch) As with the case of the Maintenance

Problem [11], a proof can be given by adapting the argu-

ment of Anily et al. [22]. The proof begins by bounding

from above the distance between two consecutive

observations of any given site in an optimal solution;

indeed, if there is a longer interval between the two

observations, then the schedule could be improved by

inserting a third, intervening observation of the site. Since

there are then only a finite number of possible states, any

schedule can be transformed into a periodic schedule at

least as good. h

4 Lower bound

In this section we derive a lower bound on the optimal

solution cost for the single sensor scheduling problem.

Assume that the schedule is perfectly periodic, that is, each

site i is visited periodically with a fixed period si. (We will

show later that this assumption is justified.) We ignore for

now the transition delay matrix D whose entries di;j dictate

schedulability of the sites, given the previously scheduled

site. As in [11], we give a nonlinear relaxation to the

sensors scheduling problem. Since the introduction of

delay constraints only increases the optimal solution cost,

the lower bound still holds (albeit less tightly) when delays

are present.

Proposition 1 Suppose the site i is scheduled at timeslot t

and is not scheduled in timeslots t þ 1; . . .; t þ x� 1. Then

the total variable cost incurred by scheduling site i for the x

timeslots t; . . .; t þ x� 1 is given by ðbi=2Þðx� 1Þx.

Proof Site i incurs a variable cost of bi � j in timeslots

t þ j, for j ¼ 0; . . .; x� 1, so the total variable cost incurred

by site i in timeslots t; . . .; t þ x� 1 is given by:

Xx�1

j¼0

bi � j ¼
bi

2
ðx� 1ÞðxÞ

h

Proposition 2 Suppose the site i is scheduled in timeslot t

and is not scheduled in timeslots t þ 1; . . .; t þ x� 1. Then

the total fixed cost incurred by scheduling site i for the x

timeslots t; . . .; t þ x� 1 is given by ðx� 1Þai.

Proof Site i incurs a fixed cost of ai in timeslots t þ j, for

j ¼ 1; . . .; x� 1, and 0 cost in timeslot t, so the total fixed

cost incurred by site i in timeslots t; . . .; t þ x� 1 is:

0þ
Xx�1

j¼1

ai ¼ ðx� 1ÞðaiÞ

h

The next proposition shows that the lower bound sche-

dule is indeed a perfectly periodic schedule.

Proposition 3 Lower bound schedule is perfectly

periodic.
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Proof Given is a schedule with time horizon T . Suppose

site i is scheduled at time t and not scheduled at times

t þ 1; . . .; t þ x� 1, then again is scheduled at time t þ x,

and not scheduled at times t þ xþ 1; . . .; t þ xþ y� 1. In

other words, the schedule consists of site i, followed by a

skip of x� 1, followed by site i, followed by a skip of

y� 1, so that there are two periods: x and y. We will show

that on the time horizon T , either x ¼ y or a better schedule

exist where the period z ¼ xþy
2

. If x ¼ y, then the costs of

the first x slots and of the second y slots are the same, and

thus is perfectly periodic, so assume otherwise. That is,

when x 6¼ y, we have x2 þ y2 � 2xy ¼ ðx� yÞðx� yÞ[ 0.

Multiplying both sides by b and grouping terms, we get

ð2bx2 � bx2Þ þ ð2by2 � by2Þ þ ð2bx� 2bxÞ
þ ð2by� 2byÞ � 2bxy[ 0

Dividing both sides by 4ðxþ yÞ yields

bx2 � bxþ by2 � by

2ðxþ yÞ � bx

4
� by

4
þ b

2
[ 0

Rearranging the terms, we get

bðx2 � xþ y2 � yÞ
2ðxþ yÞ [

bxþ by

4
� b

2

Similarly,

b
xðx�1Þ

2
þ yðy�1Þ

2

� �

xþ y
[

bxþ by

4
� b

2

The LHS is the cost associated with b for non-regular

schedule. The RHS is the cost associated with b for a

regular schedule with z ¼ ðxþyÞ
2

. The costs associated with a

for both schedules on the time horizon T are the same.

Thus the regular schedule indeed has lower cost, which

completes the proof. h

Now consider the following nonlinear program with

variables s1; . . .; sn.

min :
Pn

i¼1

biðsi � 1Þ
2

þ
Xn

i¼1

ðai �
ai

si
Þ

s:t: :
Pn

i¼1

1

si
� 1

si� 1 8 i

ð9Þ

Note that the average cost of the schedule as time goes to

infinity is equivalent to average cost over the period, and

thus the total cost over the period
biðsi�1Þsi

2
þ aiðsi � 1Þ is

being divided by the period si. In the nonlinear program we

schedule each site in fixed periods such that the average

cost per slot is minimized. This is a relaxation because

these periods may not be integers. Furthermore, even if we

round these periods to integers, the schedule may not be

achievable simultaneously for all the sites, since more the

one site will need to be scheduled in same timeslot for

some timeslots. Since the ai terms in the second summation

are constants, we can change the objective function to:

min :
Pn

i¼1

biðsi � 1Þ
2

�
Xn

i¼1

ai

si

s:t: :
Pn

i¼1

1

si
� 1

si� 1 8 i

ð10Þ

The objective function is concave with convex constraints.

We can use Lagrangian relaxation to solve for optimal

s1; . . .; sn.

Theorem 3 An optimal solution to the nonlinear relax-

ation is given by si ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðk��aiÞ

bi

q
, where k�[ maxiðaiÞ and

k�[ biþ2ai
2
ð1� i� nÞ.

Proof We obtain the following nonlinear program by

applying Lagrangian relaxation to Eq. 10.

min :
Xn

i¼1

biðsi�1Þ
2

�
Xn

i¼1

ai

si

�k
�

1�
Xn

i¼1

1

si

�
�
Xn

i¼1

liðsi�1Þ

ð11Þ

For any fixed k� 0 and li� 0 for 1� i� n, the optimal

value of the Lagrangian relaxation 11 is a lower bound on

the optimal value of the nonlinear program 10, and the

optimal solution of relaxation 11 is given by

si ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2ðk�aiÞ
bi�2li

q
ð1� i� nÞ, provided that bi � 2li [ 0 (by

taking partial derivatives of the Lagrangian with respect to

si).
In order to find global minima, we need to satisfy

Karush–Kuhn–Tucker conditions. The constraints could

either be loose or tight. If the constraints are tight then the

corresponding Lagrange multipliers will be positive,

whereas if the constraints are loose then the corresponding

Lagrange multipliers will be 0. None of the constraints of

si� 1 ð1� i� nÞ can be tight, since if at least one si ¼ 1

then the constraint of
Pn

i¼1
1
si
� 1 will only be satisfied

when all the other sj ¼ 1 ðj 6¼ iÞ. Thus, all the constraints

si� 1 ð1� i� nÞ are loose (i.e., si [ 1 ð1� i� nÞ) and,

hence, all li ¼ 0 ð1� i� nÞ. On the other hand the

constraint
Pn

i¼1
1
si
� 1 is tight, and hence k[ 0. Let k�

be the value of k. In fact, since li ¼ 0, in order for si ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2ðk�aiÞ
bi�2li

q
ð1� i� nÞ to have a real solution, k� must be at

least maxi faig. In addition, in order to satisfy the loose

constraints of s[ 1 we need

ffiffiffiffiffiffiffiffiffiffiffiffi
2ðk�aiÞ

bi

q
[ 1, which is

equivalent to k�[ biþ2ai
2
ð1� i� nÞ. h
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In order to find such k� we can solve an equation
Pn

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffi
bi

2ðk�aiÞ

q
¼ 1. This equation can be solved using

some variation of Newton’s method. Let qi ¼ 1
si
. Observe

that if we let all ai be the same and equal to say a, then

k� ¼
Pn

i¼1

ffiffiffi
bi
pð Þ2þ2a

2
. Furthermore, qi ¼ 1

si
¼

ffiffiffi
bi
p

Pn

i¼1

ffiffiffi
bi
p . We

see that in the optimal solution with all ai equal, qi
qj
¼

ffiffiffi
bi
p
ffiffiffi
bj
p ,

as expected.

5 Special cases

In general, the problem is NP-hard, so the best we can hope

for is approximation algorithms. The problem can be

solved optimally, though, for some special cases. The case

of one sensor and one site is trivial since the optimal

schedule is to observe the site perpetually, in which case

there is trivially zero information loss. However, the case

of a sensor scheduled to observe two distinct sites is

interesting. Should the sensor switch between the site

observations or not? If the sensor is required to switch

between the site observations, then in what pattern must it

do so in order to minimize the cost?

Let us first consider a case where variable costs are zero.

Proposition 4 Suppose we have two sites S1 and S2 with

refocus delays d1;2 and d2;1, no variable costs (i.e.

b1 ¼ b2 ¼ 0), and fixed costs a1 and a2, with, say, a1� a2.

Then an optimal schedule is to perpetually observe site S1.

Proof Observing site S1 in a timeslot will incur cost a2

per slot. Observing site S2 in a timeslot will incur cost a1

per slot. Not observing anything in a timeslot will incur

cost of a1 þ a2 per slot. Since a2� a1�ða1 þ a2Þ, the

minimum cost is obtained by observing S1 in every time-

slot. h

The result is easily extendable to a case with n sites and

no variable costs, in which case the optimal schedule is still

to observe a site with the biggest fixed cost.

Let us now consider a case where variable costs are not

zero.

Proposition 5 Suppose we have two sites S1 and S2 with

refocus delays d1;2 and d2;1, variable costs b1 6¼ 0 and

b2 6¼ 0, respectively, and fixed costs a1 and a2 respectively.

Then an optimal schedule is of the form:

ððS1ÞxðhÞd2;1ðS2ÞyðhÞd1;2Þ�

That is to say that the schedule is periodic with period

xþ d2;1 þ yþ d1;2, where x and y are positive integers. The

schedule observes site S1 for x timeslots, followed by d2;1

idle timeslots, followed by observation of site S2 for y

timeslots, followed by d1;2 idle timeslots.

Proof Assume to contrary that the schedule is to only

observe one site, say S1. Then the cost of not observing S2

grows quadratically while the size of schedule grows lin-

early. So the cost associated with not observing S2 is

quadratic function divided by linear function. Thus, as

schedule size goes to infinity the schedule cost per slot goes

to infinity. Therefore, S2 must be observed at some point.

Similarly, if we only observe S2 and not S1, the schedule

cost per slot goes to infinity as well. Therefore, S1 must be

observed at some point as well. The only way to observe

both site is to switch between them which require idle slots.

Therefore, the schedule is of the form as described above,

that is, observe S1 for some x timeslots where x is a positive

integer. Then the sensor transitions to site S2, which

requires d2;1 idle timeslots in the schedule. Then the sensor

observes site S2 for some y timeslots and transitions back to

S1, which requires another d1;2 idle timeslots in the sche-

dule. h

The values of x and y depend on parameters a1, a2, b1,

b2, d1;2, and d2;1. In order to choose optimal values of x and

y, we set up a multivariate function Cðx; yÞ to minimize,

which depends on x and y and treats the rest of the

parameters as constants. Let D ¼ d1;2 þ d2;1. Solve the

following minimization problem to find x and y.

min Cðx; yÞ ¼ a1 � ðDþ yÞ þ a2 � ðDþ xÞ
Dþ xþ y

þ

þ
b1

2
� ððDþ yþ 1Þ � ðDþ yÞÞ þ b2

2
� ððDþ xþ 1Þ � ðDþ xÞÞ

Dþ xþ y
s:t: x 2 Zþ; y 2 Zþ

ð12Þ

Example

Problem: Given are two sites S1, S2 with the following

costs: a1 ¼ 8, a2 ¼ 2, b1 ¼ 1, b2 ¼ 2. Let di;j ¼ dj;i ¼ 2, so

that transitioning between the sites takes two idle timeslots.

Find x and y that minimizes the cost Cðx; yÞ.
Solution: We need to minimize the following function.

Cðx; yÞ ¼ 8ð4þyÞþ2ð4þxÞ
4þxþy þ ð1=2Þð5þyÞð4þyÞþð5þxÞð4þxÞÞ

4þxþy . (See

Fig. 1.) This can be done using a tool Mathematica (i.e.

c ¼ Cðx; yÞ;
Find Minimum½fc; x� 1 && y� 1g; fx; yg�). The criti-

cal point is at xc ¼ 2:16435 and yc ¼ 2:8287 with
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Cðx; yÞ ¼ 15:3287. Since x and y must be integers we test

four possible cases: (x ¼ xcb c or x ¼ xcd e and (y ¼
ycb corðy ¼ ycd e). The solution is x ¼ 2 and y ¼ 3 with

Cðx; yÞ ¼ 15:3333. Therefore, the schedule is

ðS1S1hhS2S2S2hhÞ�.

6 Algorithms

One heuristic approach is to relax the IP formulation, given

in Table 1, to obtain an LP-relaxation that could be effi-

ciently solved, and then ‘‘round’’ the LP (fractional) solu-

tion to obtain a near-optimal solution. Unfortunately,

solution to this LP-relaxation gives very loose bound. In

fact, for increasing number of sites, the LP-relaxation

optimizes the yi;t such that ðt � yi;tÞ for all i and t is 0 and

the solver distributes fractional non-zero values among the

xi;t such that the
Pn

i¼1 xi;t� 1. Fortunately, we have derived

a tight lower bound in Sect. 4. We have implemented

several greedy heuristics utilizing the solution of the LB

given in Theorem 3.

The first greedy heuristic is called Greedy One-Step (see

Algorithm 1). This heuristic tries to pick the next best site

to visit based on the previously visited sites, as follows. It

calculates a normalized frequency array q that dictates how

often the sites must be scheduled based on ai and bi, where

q½i� ¼
ffiffiffiffiffiffiffiffi
aiþbi
p

Pn

i¼1

ffiffiffiffiffiffiffiffi
aiþbi
p . The idea behind this choice of q½i� is due

to the square-root rule, according to which if all ai are the

same then the q½i� should be proportional to
ffiffiffiffi
bi
p

. However,

if ai are arbitrary, then it seems natural to try to incorporate

the cost as the sum of a and b under the radical. Of course

we can modify Algorithm 1 to calculate the frequency

array by using si’s that are derived from the optimal

solution of the nonlinear program 10 and let the q½i� ¼ 1
si
. In

fact, doing so may give better performance.

Algorithm 1 Greedy One-Step Algorithm.
for each site Si ∈ S do

w[i] ← 0, r[i] ← 0
q[i] ←

√
ai+bi

n
i=1

√
ai+bi

(or q[i] ← 1
τi

where τi is a solution to
equation (10) of the lower bound)

end for
for t = 1 to T do

for each site Si ∈ S do
r[i] ← (1 + w[i])q[i]

end for
choose a site m maximizing r[m] and di, j [m][ j] ≤ τ , where j is
the previously scheduled site
schedule Sm
for each site Si ∈ S do

w[i] ← w[i] + 1
end for
w[m] ← 0
t ← t + 1

end for

Algorithm 2 Greedy Two-Steps Lookahead Algorithm.
for each site Si ∈ S do

w[i] ← 0, r[i] ← 0
q[i] ←

√
ai+bi

n
i=1

√
ai+bi

(or q[i] ← 1
τi

where τi is a solution to
equation (10) of the lower bound.

end for
for t = 1 to T do

for each site Si ∈ S do
r[i] ← (1 + w[i])q[i]

end for
choose a site m maximizing r[m] and di, j [m][ j] ≤ τ , where j is
the previously scheduled site
w2 ← w

for each site Si ∈ S do
w2[i] ← w2[i] + 1

end for
consider scheduling Sm
w2[m] ← 0
for each site Si ∈ S do

r[i] ← (1 + w2[i])q[i]
end for
choose a site k maximizing r[k] and di, j [k][m] ≤ τ , where m is
the previously considered scheduled site
for each site Si ∈ S do

r[i] ← (2 + w[i])q[i]
end for
let r[ ] ← maxi {r[i]}
for each site Si ∈ S do

w[i] ← w[i] + 1
end for
if r[ ] ≥ r[m] + r[k] then

schedule blank
else

schedule m
w[m] ← 0;

end if
t ← t + 1

end for
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Fig. 1 Schedule cost plot: two sites
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Notation 1 In the following algorithms, let S ¼
fS1; S2; . . .; Sng be the set of all sites, D be the angle matrix

with entries di;j, s be the limit angle that a camera can

sweep within 1 time slot, q½�� be the frequency array of

schedulability, w½�� be the gap array, and r½��be the

potential cost array.

The algorithm then proceeds as follows: at each step

we keep track of the gap w½i�, which is the number of

slots since the last appearance of the site i in the schedule.

We schedule the site i which can be transitioned from

previously scheduled site within one timeslot dictated by

transition matrix D and that has the highest potential cost

r½i�, which is calculated as r½i� ¼ ð1þ w½i�Þq½i�. We

modified the algorithm to use q½i� ¼ 1
si
, where si are

derived from the solution to the lower bound given in

Theorem 3.

The problem with the Greedy One-Step Algorithm is

that if two important sites, say A and D, are far away from

each other separated by unimportant sites, say B and C,

then in order to transition from A to D, the sensor needs to

visit B in the next slot then C in the second slot and only

then D in the third slot. It may however be more optimal

not to schedule anything during the next slot and visit D

right away during the second slot since in our formulation

the sensor can use the entire idle slot just to do the tran-

sition to any other site. We have implemented a greedy

solution that does lookahead: Greedy Two-Steps Look-

ahead. The algorithm allows for idle slots. In essence it

tries to consider the next two best sites (one after another)

and compare it with scheduling an idle slot with the next

best site. It schedules an idle or non-idle slot next

depending on whichever gave better performance. The

algorithm considers sites as follows. Let w2  w. For the

next slot consider scheduling the site m that can be

scheduled from the previously scheduled site (note: we

assume that in timeslot 0 all the sites have been visited and

hence scheduled) within one timeslot, dictated by transi-

tion matrix D and that has the highest potential cost r½m�,
which is calculated as r½m� ¼ ð1þ w2½m�Þq½m�. For each i,

increment w2½i� by one and set w2½m� ¼ 0. Next consider

scheduling the site k that can be scheduled from the pre-

viously scheduled site m within one timeslot dictated by

transition matrix D and that has the highest potential cost

r½k�, which is calculated as r½k� ¼ ð1þ w2½k�Þq½k�. Com-

pare it with the potential cost if there is an empty slot

followed by scheduling any site ‘. In other words, pick the

largest r½‘� ¼ ð2þ w½‘�Þ � q½‘�. Compare r½‘� with

r½m� þ r½k�, and pick the largest residual cost. If the largest

is r½‘�, schedule an empty slot and increment all w½i�;
otherwise, schedule site m and increment all w½i�, for

i 2 f1; . . .; ng � fmg, and make w½m� ¼ 0.

Algorithm 3 Greedy (ai + bi (gi,t ))-based Algorithm.
let t be the subscript of the site scheduled at time for 1 ≤ ≤ k
assume we have scheduled sites D = St (1), ..., St (k)
among immediately schedulable sites, schedule a site i maximizing
ai + bi (gi,t )

Algorithm 4 Greedy Chained-IPs: IP(L,T).
for s = 1 to T do

run ([xs ], [ys ]) ← I P(s, L , [xs−1], [ys−1])
update column s of [xi,s ] matrix with array [xs ] values, where
[xs ] is derived from IP solution
update column s of [yi,s ] matrix with array [ys ] values, where
[ys ] is derived from IP solution
s ← s + 1

end for
Output [xi,t ] matrix as a solution.

Algorithm 5 Greedy (ai + bi(gi,t ))-based Look-back Algo-
rithm.

let t be the subscript of the site scheduled at time for 1 ≤ ≤ k
assume we have scheduled sites V = St (1), ..., St (k)
next to schedule: site St (k+1). Select it as follows:
let wi be associated gaps at time k
pick the next site to schedule with biggest (1+wi )(2+wi )

2 bi+(1+wi )ai
that can be transitioned from site St (k).

Other greedy algorithms do not calculate frequency

array but use ai and bi costs directly. Algorithm 3 schedules

sites as follows. At each step it greedily picks a site with

maximum ai þ biðgi;tÞ. In other words, assume we already

have a schedule up to time k which has a cost of

C ¼ 1
k

Pn
i¼1

Pk
t¼1 aið1� xi;tÞ þ bi;tðt � yi;tÞ. Pick the next

site i with maximum C þ ðai þ biðgi;tÞÞ that can be tran-

sitioned from the previously scheduled site.

Another algorithm we implemented repeatedly solves

IPs to construct a solution (see Algorithm 4).

Notation 2 In the following algorithm 4 , let

• T be the schedule period,

• L be the number of slots to look ahead,

• ½xi;t� be an n� T matrix with 0=1 entries indicating

which site is scheduled at time t (each column t has

exactly one 1 entry),

• ½yi;t� be an n� T matrix that tells last appearances of

all sites i at time t,

• s be a starting timeslot to run the IP,

• ½xp� be a 0=1 array of scheduled sites at time t ¼ p

produced by IP,

• ½yp� be an array of the times of last observing sites at

time t ¼ p produced by IP,
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• ½x0�  f0; . . .; 0g (initial values for t ¼ 0), ½y0�  
f0; . . .; 0g (initial values for t ¼ 0), and

• IPðs; L; ½xp�; ½yp�Þ be an IP that starts at timeslot s and

period L with some initial values of ½xp� and ½yp�.

The algorithm chains IPs as follows. It finds an optimal

solution with a period L for timeslots 1 to L. It selects the

first scheduled site, updates the xi;1 and yi;1 values, and

advances a window by 1. It runs IP again to find an

optimal solution with a period L for timeslots 2 to Lþ 1

using the updated xi;1 and yi;1 values, updates xi;2 and yi;2
values, and advances a window by 1 again. It continues

doing this until it gets values for all xi;t and yi;t for

1� t� T . This fully specifies the schedule. The number

of IP programs that we run is T , each time advancing a

window by one and recording the best first site that the IP

on L timeslots picks. This algorithm can be thought of as

the cost-based L-Steps Lookahead greedy algorithm.

Algorithm 3 is a special case of algorithm 4 where L ¼ 1,

L is a lookahead parameter and T is a period of the

schedule parameter.

Another cost-based greedy algorithm is the

ðai þ biðgi;tÞÞ-based Look-back (see Algorithm 5). Just as

in Algorithm 3, it does not need to calculate frequencies.

A drawback for Greedy ðai þ biðgi;tÞÞ-based algorithm is

that it assumes that previously scheduled sites are

scheduled optimally and just selects the best next site

based on the ai and bi costs. The ðai þ biðgi;tÞÞ-based

Look-back algorithm does not make this assumption. At

each step it greedily picks a site with maximum residual

cost without assuming that the previously scheduled sites

were optimal. It uses gap information gi;t (which in our

greedy solution we refer to by wi with no reference to t

since the schedule is built incrementally) to select the best

site. In other words, assume we already have a schedule

up to time k. At time k þ 1, the algorithm picks a site

maximizing ðwi þ 1Þai þ ð1þ 2þ � � � þ wi þ ðwi þ 1ÞÞbi,
where wi is a gap of site i at time k. Note that the fixed

cost for a site of a schedule grows linearly, and variable

cost for a site of a schedule grows quadratically with

respect to the gap.

7 Testbed architecture

Our experimental evaluation concerns the following

application. A border, which may be a straight line or a

curve, has n unprotected sites that need to be monitored.

These n potential sites are distributed uniformly at random.

A single sensor is positioned, hidden in front of the border,

that is responsible in monitoring intrusions from these

unprotected sites. We implemented the algorithms above to

schedule a single sensor to visit n sites periodically while

minimizing the potential loss of limited observations. The

refocus delay time is proportional to the angle that the

sensor needs to sweep to switch from one site to the next.

7.1 Various experiments

We conducted various experiments where a single sensor is

scheduled to observe four sites A;B;C;D, spaced equally

apart, on a border located at distance 10 from the sensor (see

Fig. 2; Tables 3, 4 for an illustration of this configuration, the

respective costs, and the resulting angles between cameras and

sites, respectively). Our assumption is that a camera can visit

the site and be able to sweep 45	 within one time slot. If the

next site is within more than 45	 from the currently visiting

site, then the camera cannot observe those two sites in

immediate succession. In this example, the only adjacent sites

can be reached and observed in the next timeslot.

We solved the IP using CPLEX to find optimal sched-

ules for several different scenarios for the costs of the four

site A

site B

site C

site D

border

cam
era

Fig. 2 Experiment 1 setup

Table 3 Seven cost scenarios

for four sites
Site i Cost

Exper. 1: Exper. 2: Exper. 3: Exper. 4: Exper. 5: Exper. 6: Exper. 7:

ai bi ai bi ai bi ai bi ai bi ai bi ai bi

A 1 1 16 1 1 16 4 4 4 4 16 16 16 16

B 4 4 9 4 4 9 16 16 9 9 1 1 4 4

C 9 9 4 9 9 4 9 9 16 16 4 4 1 1

D 16 16 1 16 16 1 1 1 1 1 9 9 9 9
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sites (see Table 3), to investigate what patterns might

emerge. In all seven experiments we have selected costs to

be perfect squares for simplicity, due to the square-root law

[9], which states that in an optimal schedule (absent delay

constraints and with ai ¼ aj ¼ 0), the ratio of visit fre-

quencies should be proportional to the square-root of this

ratio. For example, if bi ¼ 4 and bj ¼ 16, then site j will be

visited twice as often as site i, since
ffiffiffiffi
16
p
ffiffi
4
p ¼ 2.

First we describe the nature of these cost value settings,

as shown in Table 3. In experiment 1, fixed costs ai and

variable costs bi increase for each additional site. In

experiment 2, variable costs bi increase for each additional

site, but fixed costs decrease. Note, however, that the costs

associated with bi grow quadratically with the gap size,

whereas the costs associated with the ai grow linearly with

the gap size. Experiment 3 reverses this, with variable costs

bi decreasing and fixed costs increasing. This setting is

identical to the one in experiment 2 with the sites are

renamed. In experiments 4 and 5, sites B and C have

greater values for both costs, and are in the middle, sur-

rounded by sites A and D. In experiments 6 and 7, the high-

cost sites A and D are on the outside, surrounding sites B

and C.

We solved the IP to obtain an optimal schedule (for

period T ¼ 21) for each of these cost settings. These

optimal periodic schedules are shown in Fig. 3. We also

ran the heuristic algorithms above on these problem

instances and compared the resulting schedule costs with

the optimal costs from the IP, as well as a lower bound on

the optimal cost. (see Table 5. The cost of the solution to

the lower bound is obtained by solving Eq. (10).

Next we conducted an experiment to compare the

schedule costs of the different algorithms on randomly

generated problem instances, where the fixed (i.e. ai) and

variable (i.e. bi) costs are both chosen uniformly at random

from the real interval ½0; 10�. The number of sites n is

1 3 5 7 9 11 13 15 17 19 21
A
B
C
D

S
ite

(1) Experiment 1

1 3 5 7 9 11 13 15 17 19 21
A
B
C
D

S
ite

(3) Experiment 3

1 3 5 7 9 11 13 15 17 19 21
A
B
C
D

(4) Experiment 4

S
ite

1 3 5 7 9 11 13 15 17 19 21
A
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(5) Experiment 5

1 3 5 7 9 11 13 15 17 19 21
A
B
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(6) Experiment 6
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A
B
C
D

Timeslot

S
ite

(7) Experiment 7

1 3 5 7 9 11 13 15 16
A
B
C
D

Timeslot

S
ite

(8) Cyclic (T=16) schedule (expr. 7)

1 3 5 7 9 11 13 15 17 19 21
A
B
C
D

S
ite

(2) Experiment 2Fig. 3 IP solutions for the 7

experiments

Table 5 Comparison of IP and Greedy schedule costs per slot

IP One-Step

qi¼
ffiffiffiffiffiffiffiffi
aiþbi
p

Pn

i¼1

ffiffiffiffiffiffiffiffi
aiþbi
p

One-Step

qi ¼ 1
si

Two-Steps

Lookahead

ai þ biðgi;tÞ-based ai þ biðgi;tÞ-based

Look-back

IP(10, 21) LB

Exper. 1 61.05 74.57 67.52 67.57 66.57 62.95 64.81 54.85

Exper. 2 68.05 78.29 76.24 72.43 81.52 78.29 69.71 59.88

Exper. 4 53.09 55.67 55.67 55.67 58.29 54.67 54.86 54.85

Exper. 5 57.62 59.14 58.76 58.76 66.57 58.57 60.86 54.85

Exper. 6 77.43 93.95 98.71 80.48 168.00 108.19 78.81 54.85

Exper. 7 75.67 90.38 92.71 84.81 140.19 103.95 78.95 54.85

Table 4 Angles between sites Angle A B C D

A 0	 30	 60	 90	

B 30	 0	 30	 60	

C 60	 30	 0	 30	

D 90	 60	 30	 0	
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ranges from 4 to 8, placed linearly along a border. As in the

previous seven experiments, the adjacent sites can be

transitioned between instantly, and non-adjacent sites can

be transitioned between in one idle slot. For each such n,

we average the results of 100 trials (see Fig. 4).

We find that IP(L; T) performs quite well in all the

experiments, even for small L. Of course, L should depend

on the number of sites to be scheduled. For the lookahead

parameter L ¼ 10 the algorithm runs quite fast for any

value of T . To investigate the influence of the value L ,we

conducted experiments varying L with IP(L; T) solved for a

fixed T ¼ 21 (see Fig. 5). Using what we found to be the

best two values for L, we conducted another set of exper-

iments on IP(L; T) where L is fixed and the period T is

varied (see Fig. 6).
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7.2 Insights from simulation

The schedules produced by IP for the seven experiments

with sites A, B, C, D positioned along the border are

depicted in Fig. 3. Recall that in experiment 1 [see Fig.

3(1)], the fixed and variable costs both increase for each

site. Absent delay constraints, this would dictate that D be

visited the most often, C the second most, and so on. Since

site D is on the edge, instantaneously reachable from only

C, D is actually visited less often than C is. The refocus

delays, together with site positions, play important roles in

determining the character of the optimal schedule. (Site A

was not scheduled at all, though it would be for sufficiently

large period T .)

Recall that in experiments 2 and 3 [see Fig. 3(2–3)],

fixed cost grows as variable cost shrinks. What we find is

that site A’s high fixed cost results in it now being visited

(with period still T ¼ 21). Site C remains the most popular,

however, due to its central position.

Recall that in experiments 4 and 5, the high-cost

sites are in the middle, surrounded by the low-cost sites

[see Fig. 3(4), (5)]. In both experiments, site A has the

same fixed and variable costs, but because A’s neighbor

B is the highest cost site in experiment 4, it is sched-

uled twice as often in that experiment as it is in

experiment 5, in which B is only the second highest

cost site. When fixed and variable costs are held fixed,

relative positions of sites play a crucial role in deter-

mining the schedule.

Finally, recall that in experiments 6 and 7, the high-cost

sites are on the outside, surrounding the low-cost sites [see

Fig. 3(6), (7)]. Now there is more incentive to schedule

outside sites, but the problem is that the camera cannot

switch instantaneously between these two important sites.
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Thus we find the optimal schedules using idle slots for

refocusing.

It is interesting to note that in all 7 experiments the

schedules appear to be cyclic. In fact, when we decrease

the time horizon in experiment 7–16, we again obtain a

periodic schedule [see Fig. 3(8)].

From these seven experiments we observe that due to

refocus parameter the frequency of a scheduled site in the

optimal schedule does not only depend on the fixed and

variable costs of a site, but on its relative position to other

important sites in the region. In addition, it is sometimes

optimal to have idle slots during which no site is scheduled

but the entire time is taken by the sensor to move or refocus.

We also present results for the algorithms run on ran-

domized problem instances (Fig. 4). The period in these

experiments is arbitrarily chosen to be T ¼ 200. We find

that Greedy Two-Steps Lookahead outperforms Greedy

One-Step for frequency-based algorithms, and the cost-

based Look-back Greedy outperforms the simple cost-

based Greedy. IP(10, 200), significantly outperforms the

others, and comes close to the IP optimal cost. We con-

ducted an experiment where we run algorithms without

delay constraints and observed that the costs of optimal

schedules can come arbitrarily close to the cost of the lower

bound schedule.

Since IP(10,21) comes close to the IP optimal solution,

what about IP(L,21) with smaller values of L? Next we

performed versions of the seven 4-site experiments with

different L (see Fig. 5, in which the IP optimal, which does

not depend on a lookahead parameter, is plotted for com-

parison). What we find is that the curves given by IP(L; T)

fluctuate. A common pattern is that as L increases, the

IP(L; T) curve zigzags up and down. In Fig. 5(e, f) we see

that the bigger the lookahead parameter L, the closer the

IP(L; T) curve gets to the IP curve, but again with a fluc-

tuating pattern that appears periodic.

We examine two particular lookahead values in our last

set of experiments (see Fig. 6). Here we plot IP(4, T) and

IP(10, T), varying time horizon T . Even though for T ¼ 21,

the IP(4, T) curve is closer to the IP curve (as seen in Fig.

6a, b, d), it jumps up for larger values of T . We also find

that the curve for IP(10, T) is smoother than IP(4, T)’s in

all settings, and lower for most of them. Even for those

cases, the cost is nearly the same. We conclude that for

longer time horizons, a larger lookahead value gives better

results, as expected, and smoother behavior.

8 Conclusion and future work

In this paper we have studied a scheduling problem of a

single sensor observing n sites. We considered the time of

refocus delay and its impact on scheduling. Our work poses

interesting new problems. Since refocusing sensors from

site to site may involve physically rotating or moving

sensors, refocusing may consume a considerable amount of

energy. Energy conservation may be of the essence.

Scheduling sensors optimally to observe sites while at the

same time conserving energy is an interesting open prob-

lem which we leave for our future work.

The single sensor scheduling problem can also be

extended to a multiple-sensors setting. In the multiple

sensor scheduling we want to schedule multiple sensors

observing much bigger quantity of sites. One approach here

would be to efficiently partition a set of sites into subsets

and then assign each sensor its own subset. Another

approach would be to have sensors cooperate by scheduling

all m sensors to observe n sites. We defer such problems to

future work.
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