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Abstract In this paper, we investigate power allocation

in cognitive sensor networks, where cognitive users (cog-

nitive enabled sensor nodes) opportunistically share the

common spectrum with primary users (licensed devices).

Consider that sensor nodes are self-interested to maximize

their own utilities, we formulate the energy-efficient power

allocation problem as a non-cooperative coupled constraint

game, by taking the interference temperature into account.

An energy efficiency-oriented utility function is defined as

a new metric to evaluate the performance of power allo-

cation. Firstly, we prove that there exist Nash equilibriums

in the proposed game. Then, we prove that the power

allocation game is a super-modular game under some

conditions. Finally, we design centralized and distributed

Game-based Efficiency-oriented Power Allocation algo-

rithms (i.e., centralized GEPA and distributed GEPA) to

obtain the Nash equilibriums. Extensive simulations are

conducted to demonstrate that the proposed power alloca-

tion algorithms can achieve satisfactory performance in

terms of energy efficiency, convergence speed and fairness

in cognitive sensor networks.

Keywords Energy efficiency � Cognitive radio � Game

theory � Super-modular game � Best response approach

1 Introduction

Wireless sensor networks (WSNs) are composed of a large

number of sensor nodes, which are densely deployed in the

monitoring area. WSNs have been widely applied to

environment monitoring, target tracking, health care, and

etc. One of the most important characteristics of WSNs is

that each sensor node carries limited, normally irreplace-

able batteries as power sources. Therefore, energy effi-

ciency emerges as a critical issue in WSNs [2–4].

Most WSNs operate on the available unlicensed spec-

trum, i.e., the 900 MHz band and the 2.4 GHz band, which

has been becoming more and more crowded due to the

rapid development of wireless facilities. Moreover, the

licensed spectrum usage is temporally and geographically

inefficient. Cognitive radios are adaptive radios that are

aware of spectrum environment. They have the capability

of detecting the vacant spectrum, known as spectrum holes

[5].

Sensor nodes equipped with cognitive radio constitute

cognitive sensor networks (CSNs) [6]. Sensor nodes

equipped with cognitive radio can change their transmis-

sion frequency and make use of vacant spectrum in an

opportunistic manner, so as to improve the quality of ser-

vice (QoS) [7].

In the licensed spectrum, the licensed device, which is

called primary user (PU), has the priority to access the

allocated channel. Cognitive users should not cause any

harmful interference to PUs, by either switching to an

available band or limiting its interference with PUs under

an acceptable level [5, 8]. The second category, i.e.,
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limiting cognitive users’ interference within the PUs’ tol-

erable level, is more flexible and leads to more efficient

spectrum utilization, which is also the focus of this paper.

It is noteworthy that the transmission power of each

cognitive user can be translated into the interference noise

to PUs. Interference temperature model is widely used to

evaluate such interference to PUs from cognitive users.

Power allocation or power control has been a fundamental

problem in the research area of CSNs. Especially, it is a

huge challenge to allocate the transmission power of cog-

nitive users, by taking account of both the interference to

PUs and energy efficiency.

Different from previous works in power allocation, we

formulate a non-cooperative coupled constraint game

among cognitive users in terms of energy efficiency. We

assume that each cognitive user behaves in a rational and

selfish manner, i.e., each sensor node only concerns its own

utility rather than that of others. Moreover, it is possible to

design a distributed algorithm at each cognitive user, by

taking advantage of game tools. Especially, the interfer-

ence temperature model introduces a coupled constraint for

the non-cooperative game, and thus brings the complexity

to its solution.

In this paper, we focus on energy efficiency of the power

allocation problem in CSNs and introduce the game-based

efficiency-oriented power allocation algorithms for cogni-

tive users. The main contributions are summarized as

follows:

1. We investigate power allocation among cognitive users

based on the interference temperature model. Such a

problem is formulated as a non-cooperative coupled

constraint game. Moreover, we prove that this game is

a super-modular game, and use the best response

approach to reach the Nash equilibriums.

2. We adopt an energy efficiency-oriented utility function

as a metric to evaluate energy efficiency, which should

be taken into account for CSN system due to the

limited energy capacity.

3. We design centralized and distributed Game-based

Energy-efficient Power Allocation (GEPA) algorithms

to derive the Nash equilibriums. Especially, the

distributed GEPA-combines the Lagrangian multiplier,

gradient projection and the best response algorithm to

tackle the non-cooper-ative coupled constraint game.

Extensive simulations have been conducted to evaluate

the proposed algorithm in terms of energy efficiency,

convergence speed and fairness.

The rest of this paper is organized as follows. Section 2

discusses the related works. In Sect. 3, we present the

system model and formulate the problem as a non-coop-

erative couple-constraint game. Then we proceed in Sect. 4

to introduce the centralized GEPA. We firstly demonstrate

the existence of Nash equilibrium, then prove that the game

is a super-modular game under some certain conditions,

and finally design the algorithm to achieve Nash equilib-

rium based on best response approach. A distributed GEPA

is presented in Sect. 5. We give the numerical results in

Sect. 6, and draw a conclusion in Sect. 7.

2 Related work

Power allocation in cognitive radio network has long been

recognized as a difficult and significant problem [9–11].

Most of the efforts have been devoted to providing solu-

tions to power control in cognitive radio networks, among

which one significant branch focuses on the optimization of

QoS. For example, in [12], the authors propose a joint

algorithm for sensing adaptation and opportunistic resource

allocation, which aims to minimize the cost of sensing and

transmission while guaranteeing the QoS constraint. In

[13], a robust distributed power allocation algorithm is

proposed to maximize the social utility of secondary users

with consideration of interference uncertainties. In [14],

resource allocation in OFDM-based cognitive radio net-

works is studied under a number of practical limitations. In

[15], power allocation schemes are investigated while

taking the spectrum sensing error into account.

Moreover, game theory has been widely used to analyze

the competitive interaction of the power allocation problem

in CSNs [16, 17]. For example, in [18], the authors study

spectrum access for cognitive users under the interference

temperature constraint. In [19], the authors introduce a

potential game approach by approximating a non-cooper-

ative game to a ‘‘close’’ potential game.

Most of the previous works on the power control game

in CSNs pay lots of attention to QoS rather than energy

efficiency. However, energy issue is vital for CSNs and has

attracted more focus in recent works. The authors in [20]

define a different objective function taking energy effi-

ciency into account in a multi-channel environment.

However, they assume that each user can access the mul-

tiple channel simultaneously, which is not suitable for

CSNs since currently one sensor node is only equipped

with one transceiver. In [21], energy-efficient power allo-

cation for OFDM-based cognitive radio networks is solved

by convex optimization in a centralized way, which is not

suitable for CRNs due to the large information exchange

overhead. In [22], the authors study the energy efficiency

aspect of spectrum sharing and power allocation in heter-

ogeneous cognitive radio networks with femtocells, which

is different from the scenario in this paper.

Some studies focus on energy-efficient power allocation

in wireless communication with game theory, e.g., relay-

assisted interference wireless networks in [23], code-
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division multiple access (CDMA) networks in [24], mul-

ticarrier CDMA systems in [25, 26]. Furthermore, energy

efficiency is also considered in MIMO cognitive radio

system in [27, 28]. A game theoretical energy efficient

power control for CSN is different with the previous work,

since the interference constraints should be taken into

account. Also, MIMO cognitive radio is not widely adopted

in CSN.

3 System model and problem formulation

3.1 Preliminaries of game theory

Compared with centralized protocols and algorithms, dis-

tributed ones, with less information exchange, computa-

tional complexity and energy consumption, are more

suitable for WSNs. It is sensible to make the assumption

that sensor nodes behave in a selfish and rational manner.

Game theory is a study of selfish and rational players,

which is a formal model of an interactive decision-making

situation.

A non-cooperative game G ¼ fN ;S;Ug consists of the

following three components [29, 30]:

1. Player set N ¼ f1; . . .; i; . . .; ng: where i is the iden-

tification of a sensor node and n is the number of

players in the game.

2. Strategy space S: Each player i in a game selects a

strategy si from its strategy set Si. S ¼ �n
i Si represents

the strategy space of the game. It is noteworthy that the

strategy space of the game is a Cartesian product of the

strategy space of each cognitive user. Usually let s ¼
ðsi; s�iÞ denote the strategy vector, where si is the

player i’s strategy, and s�i is the strategies of all other

players.

3. Utility set U ¼ fu1; . . .; ui; . . .; ung. Note that player i’s
utility is determined by strategy vector s. Each player

wants to select the appropriate strategy, according to

all other players’ strategies, to maximize its own

utility.

Nash equilibrium is such a static stable strategy vector that

no player has any incentive to unilaterally change its

strategy from Nash equilibrium. Moreover, Nash equilib-

rium is the most important concept of the equilibrium

condition in game theory.

Definition 1 An strategy vector s� ¼ ðs�i ; s��iÞ is called

Nash equilibrium if and only if

uiðs�Þ� uiðsi; s��iÞ 8i 2 N ; 8si 2 Si ð1Þ

Definition 2 If the strategy space is over R, super-mod-

ular game restricts the utility function such that

o2uiðsÞ
osiosj

� 0 8i 2 N ; 8j 6¼ i 2 N ð2Þ

We can use best response approach to achieve pure Nash

equilibrium under some certain conditions (maximal-value

condition or minimum-value condition) in super-modular

ga-me analysis [29].

3.2 System model

Consider a CSN with multiple cognitive users sharing the

same licensed spectrum with a unique PU. The CSN is

deployed for a long period environment monitoring. Each

cognitive user is equipped with a transmitter and a dedi-

cated receiver. The cognitive user (also known as the

secondary user) set N ¼ f1; 2; . . .; ng allocates the trans-

mission power p ¼ ðp1; p2; . . .; pnÞ. Let pi denote the allo-

cated transmission power of user i. Since sensor nodes are

densely deployed in the geographic area, the number of

cognitive users is much greater than that of PUs.

The obtained data rate of a cognitive user is directly

determined by its receiver’s Signal to Interference plus

Noise Ratio (SINR). Note that other cognitive users’

transmission power will be translated into the interference

noise. The SINR of user i, denoted by Si, is given by

Si ¼
hii � piP

j 6¼i;j2N hij � pj þ I
ð3Þ

where hij is the link gain between user j’s transmitter and

user i’s receiver, which is assumed to be fixed, and a2c ¼
Ie þ Ip in which Ie is the environmental noise and Ip is the

interference noise from PU to cognitive users. Let ri denote

the obtained data rate of user i, which depends on the

power allocation vector p ¼ ðp1; p2; . . .; pnÞ, i.e.,

ri ¼ B logð1þ SiÞ ð4Þ

where B is wireless spectrum bandwidth. We assume that

the cognitive user i’s available transmission power pi
ranges from pmin to pmax, i.e.,

0� pmin � pi � pmax ð5Þ

Since PU has the priority to access the licensed spectrum,

we should protect PU from the interference of cognitive

users’ transmission. A number of interference models have

been proposed to measure the interference, among which

the interference temperature model is the most widely used

to analyze the spectrum sharing problem. The interference

temperature limit represents the maximal amount of the

tolerable interference for the specific licensed spectrum in a

given geographic area [18]. Let M denote the interference
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temperature limit, which is described as the threshold of

the total received power at the PU’s receiver, i.e.,
X

i2N
hi0 � pi �M ð6Þ

where hi0 is the link gain between the cognitive user i’s

transmitter and the PU’s receiver, and is assumed to be

fixed.

3.3 Energy efficiency metric

In the previous works on CSNs power allocation, the

cognitive users who share the licensed spectrum with

licensed users want to achieve high QoS. The high QoS is

referred to as a high level of performance or achieved

service quality, e.g., high obtained data rate, low latency or

low bit error probability.

When determining the transmission power of cognitive

users, we should consider that the power allocation

achieves high energy efficiency. Some research works use

a specific class of games with the cost structure to balance

between transmission rate and energy consumption. We

need a more exact and clear definition of energy efficiency.

Specifically, we want to maximize the obtained data rate

per power unit. Note that we also incorporate the sensing

and computational energy consumption into the energy

consumption model. In such a case, each cognitive user

faces the power allocation problem as follows,

max
pi

B logð1þ SiÞ
pi þ a

s:t:
X

i2N
hi0 � pi �M

ð7Þ

where a means power that is required not only by the

transmitter electronic circuitry to operate the device, but

also by sensing and computation [28].

Figure 1 depicts the energy efficiency of the cognitive

user over the transmission power level under different a. It
can be found that with the increase of a, energy efficiency

drops straightly under the same transmission power.

Meanwhile, the optimal transmission power which reaches

the maximal energy efficiency becomes larger.

4 Energy-efficient power allocation game

A basic modeling assumption in our work is that each

cognitive user behaves rationally in a self-interested man-

ner. Each user wants to maximize its utility function under

the interference temperature constraint. Let G ¼ fN ;S;Ug
denote the energy-efficient power allocation game. Cog-

nitive users are the players in the game. Cognitive user i’s

available transmission power pi is the strategy set of player

i. The cartesian product of individual strategy sets of n

players is the joint strategy space of this game. Each player

receives the payoff uiðpÞ which is defined as follows,

uiðpi; p�iÞ ¼
B logð1þ SiÞ

pi þ a
ð8Þ

As some previous work, we assume that the channel gain

information is a prior knowledge for each cognitive user

[18].

4.1 Existence and uniqueness of Nash equilibrium

A game can be shown to have a pure Nash equilibrium if

the following conditions are satisfied [29]:

1. The player set is finite.

2. The strategy sets are closed, bounded, and convex.

3. The utility functions are continuous and quasi-concave

in the strategy space.

Theorem 1 There exist Nash equilibriums in the energy-

efficient power allocation game G.

We show in Appendices that the above three conditions

are satisfied. Thus, we can obtain the conclusion that there

exist Nash equilibriums in the energy-efficient power

allocation game G.
For the uniqueness of Nash equilibrium, it has been

demonstrated in [24].

4.2 Super-modular game

Consider our utility function and derive its differential

function,
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o2ui

opiopj
¼BlogðeÞ �hiihij

ðpiþaÞ
P

j2N hijpjþ I
� �2

2

6
4

þ hijhiipi

ðpiþaÞ2
P

j2N hijpjþ I
� � P

j6¼i2N hijpjþ I
� �

3

5 ð9Þ

Note that if the following condition is satisfied, the equa-

tion (2) can be satisfied. Thus, we can draw a conclusion

that this energy-efficient power allocation game is a super-

modular game.

a� Sipi; 8i 2 N ð10Þ

As we all know, compared to the transmission power

consumption, the sensing and computational power con-

sumption is quite limited and small-scale. For most sensor

nodes, SINR is large enough to satisfy the above condition.

For successful transmission, SINR at the receiver side

should be large enough to guarantee that [25]. That is to

say, a lower bound should be given for transmission power

of each cognitive user. Meanwhile, we assume even at the

lower bound point, the condition (10) is satisfied.

Thus it is reasonable tomake an assumption that this energy-

efficient power allocation game is a super-modular game.

4.3 Centralized game-based energy-efficient power

allocation algorithm

Without the coupled constraint, the Nash equilibrium can be

directly obtained through the best response approach [31,

32]. In other word, tackling the coupled constraint enhances

the complexity of the problem, which should be combined

with the best response approach to fully solve the problem.

Two algorithms are proposed to tackle the coupled con-

straint, and the first one, i.e., the centralized GEPA complies

the interference constraint from the perspective of system.

It is noteworthy that the goal is to maximize the energy

efficiency of each user, and guarantee that the interference

temperature to PUdoes not exceed the threshold.To tackle the

coupled constraint, we punish cognitive users in terms of

reduced utility to each user when the threshold value gets

exceeded. If the interference temperature exceeds the

threshold, we get

m ¼
P

i2N hi0p
�
i

M
[ 1 ð11Þ

where p�i denotes user i’s optimal transmission power through

the best response approach. Multiplying the transmission

power of each user by 1
m
, we get the new transmission power of

each user finally.We summarize the approach asAlgorithm1.

It is noteworthy that the operating point is the best

choice for each user in that condition. That is to say, we

can obtain the Nash equilibrium finally.

Theorem 2 The final result of the centralized GEPA is a

Nash equilibrium for the cognitive users.

Proof Note that the optimal transmission power of each

user through the best response approach satisfies the fol-

lowing condition,

B log eð Þ

hii p�i það Þ
Iþ
P

j2N hijp
�
j

� ln 1þ hiip
�
i

Iþ
P

j 6¼i2N hijp
�
j

� �

p�i þ að Þ2
¼ 0

ð12Þ

When the threshold value is violated, the transmission

power of each user is reduced by multiplying 1
m
. Observe

the following function with m,

f ðmÞ ¼ B log eð Þ

hii
p�
i
m
þa

� �

Iþ
P

j2N hij
p�
j
m

� ln 1þ hii
p�
i
m

Iþ
P

j6¼i2N hij
p�
j
m

 !

p�
i

m
þ a

� �2

ð13Þ

where m is a positive constant. For ease of presentation, we

set k ¼ 1
m
and do not consider

B logðeÞ
p�
i
það Þ2 in Eq. (13). We have

gðkÞ ¼ hii kp�i það Þ
Iþ
P

j2N hijkp
�
j

� ln 1þ hiikp
�
i

Iþ
P

j 6¼i2N hijkp
�
j

� �

, and get

gð1Þ ¼ hii p�i það Þ
Iþ
P

j2N hijp
�
j

� ln 1þ hiip
�
i

Iþ
P

j 6¼ij2N hijp
�
j

� �

, which corre-

sponds to equation (27), i.e., the equilibrium condition.

Moreover this function decreases with k. So the Eq. (13) is

positive, and the utility function of user i increases with pi

within the interval ½0; p
�
i

m
�. The transmission power allocated

now is the best choice for each user and the Nash equi-

librium is derived. h
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One coordinator or a control node is needed to implement

the three steps. After receiving the information of all cog-

nitive users, the control node computesm defined in Eq. (11),

and broadcast the information to all cognitive users. Then the

cognitive users update the transmission power accordingly.

5 Game with coupled constraint

In this section, the former problem (7) is considered as a

coupled constraint game. Dual decomposition is utilized to

decouple the coupled constraint. Finally, a decoupled

game-based energy efficiency-oriented power allocation

algorithm, i.e., distributed GEPA is proposed. It is noticed

that the distributed GEPA complies the interference con-

straint from the perspective of individual.

5.1 Dual decomposition

Note the interference temperature limit is a coupled con-

straint, which makes it difficult to design a distributed

algorithm for cognitive users. To decouple the constraint,

(6) is taken into the objective function by Lagrangian

multiplier ki,

Liðpi; kiÞ ¼ uiðpi; p�iÞ þ ki M �
X

j2N
hj0pj

0

@

1

A ð15Þ

Note that the interference temperature limit (6) is the same

for each cognitive user, i.e., ki ¼ kj; 8i 6¼ j. Thus we only

need a unique Lagrangian multiplier k to relax the coupled

constraint (6).

The Lagrangian dual function is the maximum value of

(15) over the transmission power pi,

DiðkÞ ¼ sup
pi2S

Liðpi; kÞ ð16Þ

Notice that the Lagrangian dual function can be expressed

as follows,

DiðkÞ ¼ fiðkÞ þ kM ð17Þ

where

fiðkÞ ¼ max
pi2S

uiðpi; p�iÞ � k
X

j2N
hj0pj

2

4

3

5 ð18Þ

denotes the Lagrangian to be maximized. The dual problem

is

min
k� 0

DiðkÞ ð19Þ

Through the dual decomposition approach, the formal

coupled constraint game is now decoupled. According to

duality theory, there exists a dual optimal Lagrangian

multiplier k� such that piðk�Þ will be globally optimal [33].

Given an arbitrary Lagrangian multiplier k, the cognitive

user will converge to Nash equilibrium with the previous

algorithm. However, it may be suboptimal, but not globally

optimal. In such a sense, the Lagrangian multiplier k� can

be regarded as a coordination signal with aligns local

optimality of Eq. (18) with global optimality of Eq. (7).

Notice that the second partial differential function of the

utility function keeps unchanged after the decoupling

approach. Thus the decoupled game is still a super-modular

game, which can be solved by the best response approach.

5.2 Two-level iteration

According to [33], the dual problem (19) can be efficiently

solved by using a gradient projection method in an iterative

manner. The Lagrangian multiplier is adjusted as follows,

kmþ1 ¼ km � e
oDiðkmÞ
okm

� �þ
ð20Þ

where e[ 0 is the step size, ½z�þ ¼ maxfz; 0g, and m

denotes the iteration number. Notice that piðkÞ denotes the
unique maximizer in Eq. (18), and thus the Lagrangian

multiplier adjustment can be expressed as follows,

kmþ1 ¼ km � e M �
X

j2N
hj0pj

0

@

1

A

2

4

3

5

þ

ð21Þ

It is noteworthy that
oDiðkmÞ
okm ¼ M �

P
j2N hj0pj; 8i 2 N .

Thus, kmþ1 is equivalent for all cognitive users even they

have different Di. In another word, k corresponds to the

constraint, i.e., Eq. (6), which is a constraint for all cog-

nitive users. Thus, k should be equal to all cognitive users.

Remark 1 If the interference temperature
P

j2N hj0pj is

larger than the threshold M, the Lagrangian multiplier k
will increase (see Eq. (21)). This results in each cognitive

user reducing its transmission power pi (see Eq. (18)). In

such a way the interference temperature will gradually

decrease to the threshold.

Combined with the best response approach, a two-level

iteration algorithm is proposed to solve the decoupled

game. As shown in Algorithm 2, Lagrangian multiplier is

adjusted in the upper-level iteration, meanwhile the trans-

mission power of each cognitive user is adjusted in the

lower-level iteration. Finally, the cognitive users’ trans-

mission power will converge to the Nash equilibrium.

Moreover, we show in Appendices that the Lagrangian

multipliers will converge in the distributed GEPA, i.e.,

Algorithm 2.
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5.3 Discussion on proposed algorithms

Algorithm 1 is different from Algorithm 2 since it is not a

fully distributed algorithm. For implementing Algorithm 1,

a central controller is needed to calculate the interference

temperature and send the control message.

The interference temperature limit defined in (6) influ-

ences the performances in such a way: larger constraint

will result in better performance, i.e., higher energy effi-

ciency and higher data rate, and vice versa. The reason can

be explained as that larger interference temperature means

larger available set for each cognitive user.

Moreover, the influence of a on energy efficiency has

been presented as Fig. 1. With the increasing of a, the final
transmission power of each cognitive will increase. Thus

the data rate will increase. However, the energy efficiency

will decrease.

6 Numerical results

In this section, we conduct several simulations to evaluate

the game-based approach. We compare our results with

that of [18], where the game-based QoS-oriented power

allocation algorithm (GQPA) is proposed. The bandwidth

of the shared licensed spectrum is 10 MHz with Gaussian

noise 1. The cross-gain coefficients hij and the self-gain

coefficient hii are randomly selected from intervals [0.05,

0.15] and [0.8, 1.2], respectively. The cross-gains from

cognitive user to PU are randomly selected from interval

[0.3, 0.6]. Note that available transmission power of each

cognitive user is ½pmin; pmax�. The lower bound pmin is set at

the value of 0.1, the upper bound pmax is set at the value of

5. Cognitive users are chosen in a random order to update

their transmission power.

6.1 Without exceeding interference temperature limit

Figure 2 compares the initial transmission power level with

the final transmission power level for both GQPA and

GEPA. It depicts that the final transmission power of

GEPA is much smaller than that of GQPA.

Figure 3 compares cognitive users’ data rate under two

algorithms. Some users obtain higher data rate under

GEPA than that under GQPA. However, its transmission

power under GEPA is lower that that under GQPA. The

simulation shows that GEPA is effective in enhancing the

energy efficiency.

Figure 4 compares cognitive users’ initial utility and

final utility under two algorithms. It shows that through

GEPA approach, the utility of each cognitive user increa-

ses, and GEPA has a better performance in terms of energy

efficiency than GQPA.

6.2 With exceeding interference temperature limit

The previous simulation results correspond to the situation

where the interference of cognitive users to PU is under the

threshold. Figure 5 shows the results in the case that the

initial interference of cognitive users exceeds the threshold.

The final results of GEPA can be guaranteed to be Nash

equilibrium, which are different from that of GQPA. In

GQPA, some cognitive users transmit at a certain high

power, which is not their best choice for maximizing utility

and will result in more noise to other cognitive users.

Fig. 2 Initial power and final power under GEPA and GQPA
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Hence both it’s energy efficiency-oriented utility and oth-

ers’ utilities will be degraded in GQPA.

6.3 Decoupled approach to coupled constraint game

To evaluate the performance of Algorithm 2, we imple-

ment another group of simulations. Figure 6 depicts the

convergence of the Lagrangian multiplier, which is updated

in the upper level of the Algorithm 2. Figure 7 depicts the

convergence of the allocated power of each cognitive user.

The observations are obtained as follows:

1. Both the Lagrangian multiplier and the allocated

power of each cognitive user converge in a few step,

which means the algorithm achieves a good perfor-

mance of convergence speed.

2. The Lagrangian multiplier is not equal to 0, which

means that the interference temperature introduced by

cognitive users is equal to the threshold.

3. Each cognitive user finally achieves the Nash equilib-

rium while satisfying the interference temperature

limit.

6.4 Performance evaluation of proposed algorithms

Now we concern about the convergence process of cog-

nitive users. One of the cognitive users is chosen and the

transmission power is set at the different level as the initial

condition. After running best response algorithm, the

transmission power converges to the same fixed value

finally. Figure 8 depicts the convergence process of one

user from different initial conditions.

Cognitive users’ utilities are corresponding to the

obtained data rate per power unit. Here we define the system

utility as the average value of cognitive users’ utilities. A

higher system utility means more efficient power usage in

the whole CSN.
P

i2N
B logð1þSiÞ

piþa

n
ð23Þ

Besides, consider that the equal distribution of energy

resources is also extremely vital for CSNs. A low fairness

will result in the situation that some cognitive users will

run out of energy and meanwhile other users still have a

high energy capacity. In addition, the fairness index can be

expressed as [34],

f ðp1; p2; . . .; pnÞ ¼
P

i2N pi
� 	2

n
P

i2N p2i
ð24Þ

Fig. 3 Data rate under GEPA and GQPA

Fig. 4 Final utility under GEPA and GQPA

Fig. 5 Final utility under GQPA, centralized GEPA and distributed

GEPA
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The results of the proposed GEPA solutions are compared

with those of GQPA solutions. It replies that GEPA

achieves better performance in terms of energy efficiency

and fairness than GQPA. Figure 9 compares the system

utility under two power allocation solutions. It replies that

as the user number increases, the system utility of GEPA

decreases dramatically, but that of GQPA nearly keeps

stable. Interference to cognitive users increases due to the

increasing number of users, so each user has an incentive to

allocate more power to achieve the most efficient operation

point and then the system utility drops dramatically.

Moreover, GEPA solutions achieve a higher system utility

than GQPA solutions. In addition, it also clarified that even

in the case that the threshold is exceeded, GEPA is effec-

tive to tackle the coupled constraint and performs better

than GQPA.
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We have implemented 100 Monte Carlo trails to

compare the fairness index under two algorithms.

Figure 10 compares the performance of these two algo-

rithms on the fairness index. From the picture, it is clear

that with the increase of the user number, the fairness

index of GEPA is higher and more stable than that of

GQPA.

7 Conclusion

In this paper, we investigate power allocation in CSNs to

achieve high energy efficiency. Different from the exist-

ing power control schemes, we take priority of energy

efficiency to prolong the network lifetime, and propose a

game-based energy efficiency-oriented power allocation

(GEPA) algorithm. We have proven the existence of

Nash equilibriums. With the best response approach, we

can identify the unique Nash equilibrium. Moreover,

GEPA makes the fair transmission power allocation

available. Simulation results show that GEPA achieves

better network performance than GQPA in terms of

energy efficiency and fairness index. As part of future

work, we will investigate the design of more practical

distributed protocols where cognitive users choose their

power according to the knowledge of only incomplete

and partial network state including PUs’ interference.

Moreover, a more comprehensive comparison with other

latest power allocation algorithms will be considered in

the future work.

Appendices

Existence of Nash equilibriums

Proof There are n cognitive users involved in the energy-

efficient power allocation game. Obviously, the first con-

dition is satisfied. Note that the available transmission

power of each user ranges from pmin to pmax, which means

that the strategy set of each cognitive user is an interval.

Intervals and cartesian products of intervals are closed,

bounded and convex. Therefore the second condition is

satisfied.

As long as the third condition is satisfied, we can get the

result that there exist Nash equilibriums. Now we analyze

properties of the continuous utility function,

uiðpi; p�iÞ ¼
B logð1þ SiÞ

pi þ a
ð25Þ

Then we get the differential function of the utility function,

ouiðpÞ
opi

¼ B logðeÞ

hiiðpiþaÞ
Iþ
P

j2N hijpj
� ln 1þ hiipi

Iþ
P

j 6¼i2N hijpj

� �

ðpi þ aÞ2

ð26Þ

It is obvious that uð0; p�iÞ ¼ 0,
ouiðpÞ
opi







pi¼0

[ 0, and there

exists only one constant pc such that
ouiðpÞ
opi







pi¼pc

¼ 0. The

utility function increases with pi within the interval

½pmin; pc� and decreases within the interval ½pc; pmax�.

Definition 3 A function f : S ! R defined on a convex

subset S to a real vector space is quasi-concave if for

8x; y 2 S, 8k 2 ½0; 1�,
f ðkxþ ð1� kÞyÞ� minðf ðxÞ; f ðyÞÞ ð27Þ

Given a random interval ½a; b� 2 ½pmin; pmax�, if a� pc,

then the utility function is decreases within the interval

½a; b�, and uðb; p�iÞ ¼ minðuða; p�iÞ; uðb; p�iÞÞ, so it is

obvious that kaþ ð1� kÞb� b, and then

uiðkaþ ð1� kÞb; p�iÞ� uiðb; p�iÞ. Similarly, if b� pc,

then the utility function is still quasi-concave due to the

same reason. Otherwise, min uiðpi; p�iÞ ¼ uiða; p�iÞ or

min uiðpi; p�iÞ ¼ uiðb; p�iÞ over the internal ½a; b�. We get

the result that the utility function is a quasi-concave

function over the available set ½pmin; pmax�.
From the above, we conclude that the player set is finite,

the strategy sets are closed, bounded, and convex, and the

utility functions are continuous and quasi-concave in the

strategy space. This completes the proof of Theorem 1,

such that there exist Nash equilibriums in the energy-effi-

cient power allocation game G.h

Convergence of lagrangian multiplier

Proof According to Eq. (25), we can obtain the differ-

ential function,

o2ui

opi2
¼ B logðeÞ �A2ðpi þ aÞ2

ðpi þ aÞ3ð1þ ApiÞ2

"

�2
A

ðpiþaÞ
ð1þApiÞ � lnð1þ ApiÞ

ðpi þ aÞ3

# ð28Þ

in which A ¼ hii
Iþ
P

j6¼i;j2N hijpj
and A can be regarded as a

constant since the transmission power of other cognitive

users keeps unchanged. Notice the first part is always

negative, i.e.,
�A2ðpiþaÞ2

ðpiþaÞ3ð1þApiÞ2
\0. According to the analysis

in Appendices, the second part satisfies
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�2
A

ðpiþaÞ
ð1þApiÞ � lnð1þ ApiÞ

ðpi þ aÞ3

\0; pi\pc

¼ 0; pi ¼ pc

[ 0; pi [ pc

8
><

>:
ð29Þ

There exists one point pt make o2ui
opi2

jpi¼pt
¼ 0. Moreover,

pt [ pc.

Within the interval ½0; pc�, the utility function is

increasing and concave. Since the relationship between

the Lagrangian multiplier k and the transmission power pi
is linear and the utility function is strictly concave, there

exists a sufficiently small step size e that guarantee pi and k
to converge to the optimal solution [35].

Within the interval ½pc; pt�, the utility function is

decreasing and concave. Within the interval ½pt;1�, the
utility function is deceasing and convex. With the similar

reason, both the transmission power pi and k will converge

to the optimal solution. h
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