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Abstract Anomaly detection is an important challenge in

wireless sensor networks (WSNs) for fault diagnosis and

intrusion detection applications. Sensor nodes are usually

designed to be small and inexpensive, so they have limited

capabilities, such as limited computational power, memory

and energy. This paper presents novel light-weight dis-

tributed anomaly detection and a foresight response strat-

egy based on support vector data description (SVDD) for

wireless sensor network. SVDD could sometimes generate

such a loose decision boundary, when some noisy samples

(outliers) exist in the training set. In addition, it requires the

solution of a computationally intensive quadratic pro-

gramming approach which is not applicable in WSNs.

Hence, we modified the standard version of SVDD, and

proposed the Linear Programming-based Fuzzy-Constraint

SVDD (LP-FCSVDD) method to detect the outliers with

more accuracy in acceptable time. Then we present a

foresight response strategy to resist the intentional, unin-

tentional and false anomalies. The overall experiments

show prominence of our proposed method to achieve high

detection accuracies on a variety of real and synthetic

wireless sensor network datasets.

Keywords Anomaly detection � Foresight response �
Intrusion detection � Wireless sensor network � Fuzzy
constraint support vector data description � Linear
programming

1 Introduction

A wireless sensor network (WSN) is made up of a mass of

distributed autonomous sensors, which monitor the envi-

ronmental conditions, such as temperature, sound, vibra-

tion, pressure, motion and pollutants [1]. WSNs have been

applied to many different domains, such as environmental

monitoring, hospital-tracking systems, military applica-

tions, traffic control, intelligent buildings (or bridges) and

other commercial applications. The characteristics of

WSNs inevitably cause a sensor node be extremely

restricted by resources, including energy, memory, com-

puting, bandwidth, and transmission range. Also due to the

nature of the sensor networks, they are vulnerable to

security threats, both external and internal [1–3]. Most of

the security techniques devised for traditional wired net-

works are not directly applicable to a WSN environment

[4]. Hence, security in WSNs is a very big challenge

especially in critical environments.

In a security system, intrusion prevention presents the

first line of defense to reduce possible intrusions but it

cannot eliminate them. On the other hand, intrusion

detection and response system can be used as a second line

of defense to detect any suspicious behavior in network

traffic [4]. Intrusion detection is defined as the process of

monitoring the events occurring in a computer system or
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network, and analyzing them for any sign of possible

incidents; which are violations (or imminent threats of

violation) of computer policies, acceptable use policies, or

standard practices [5]. Despite the fact that intrusion

detection systems are well-implemented technologies in

wired networks, there are still many open areas in intrusion

detection of WSNs [6]. There are two general approaches

to intrusion detection: misuse intrusion detection (MID)

and anomaly intrusion detection (AID) [7–9]. Anomaly

detection is best suited to WSN because its methodology is

flexible and resource-friendly in general [1]. Anomaly

detection is defined as the process of comparing definitions

of normal activity against observed events in order to

identify significant deviations. Anomaly may be caused by

not only security threats, but also faulty sensor nodes in the

network, or unusual phenomena in the monitoring zone

[10].

Several approaches have been proposed for anomaly

detection in wired/wireless networks, but they cannot be

applied to WSN, as they are too computationally complex

to be executed in sensor nodes. Anomaly detection tech-

niques could be categorized as [1]: rule based methods,

statistical techniques, machine learning and data mining

approaches. Among them, machine learning and data

mining schemes are characterized by effective detection of

anomalies [11–13]. Classification methods are important

systematic approaches in the data mining and machine

learning community. They learn a classification model

using a set of data instances (training) and classify a new

incoming instance into one of the learned (normal/outlier)

class (testing) [14].

The one-class classifier is a kind of classification

approach that learns the boundary around the normal

instances and declares any new instance falling outside this

boundary as an outlier. In this kind of classification, we

assume one class of data as the target class, and the

remaining data is then classified as outliers. One-class

classification is particularly significant in applications

where only a single class of data-objects is applicable and

easy to obtain. Objects from the other classes might be too

difficult or expensive to be made available. Accordingly,

we would only describe the target class to separate it from

the outlier class. However, it is not appropriate to directly

apply these kinds of anomaly detection methods which are

usually used for wired networks into sensor networks,

because of unique properties of sensor networks [15].

The SVDD is a kind of one-class classification approach

based on support vector machine [16]. It tries to construct a

boundary around the target data by enclosing the target

data within a minimum hyper-sphere. Inspired by the

support vector machines (SVMs), the SVDD decision-

boundary is described by a few target objects, known as

support vectors (SVs). A more flexible boundary can be

obtained with the introduction of kernel functions, by

which data is mapped into a high-dimensional feature-

space. The most commonly used kernel function is

Gaussian kernel [17]. The SVDD method has two major

disadvantages: (1) it could sometimes generate loose

decision boundaries when some noisy samples (outliers)

exist in the training set, and (2) it requires the solution of a

computationally-intensive quadratic programming

approach, which is not applicable in WSNs.

In this paper, our goal is to propose a light-weight data

mining approach for anomaly detection in WSNs and

present a foresight response strategy to resist any kind of

anomaly. The main contributions of this paper are as

follows:

• We introduce a new one-class classification approach

for anomaly detection in WSNs based on support vector

data description (SVDD).

• We modify the standard version of SVDD, and propose

a Linear Programming based Fuzzy-Constraint SVDD

(LP-FCSVDD) method which is a linear optimization

problem and can be solved by using the linear

programming methods.

• By defining the fuzzy constraints, the LP-FCSVDD

method can identify outliers in the training set and also

tolerate the sensor failure.

• We present a foresight response strategy to resist the

intentional, unintentional and false anomalies in WSNs.

The rest of the paper is organized as follows. In the next

section, we summarize related work in this field. The

proposed anomaly detection and foresight response strat-

egy are explained in Sect. 3. Simulation results and per-

formance evaluation of our approach are reported in

Sect. 4. Finally, conclusions are given in Sect. 5.

2 Related work

In this section, we review related work using similar

methods in the field of anomaly intrusion detection in

wireless networks. In general, the anomaly detection

techniques can be divided into four categories: rule based

methods, statistical techniques, machine learning and data

mining approaches.

In rule-based anomaly detection, the detector uses pre-

defined rules to classify traffic as normal or anomalies.

Silva et al. [18] have proposed a flexible rule-based

detection scheme, in which a wide range of rules are

available for a variety of application scenarios. Their

approach is able to against attacks including message

delay, repetition, wormhole, data alteration, jamming,

message negligence, black-hole and selective forwarding.

Another rule-based detection scheme is developed by
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Ioannis et al. [19] that concerned with the packet dropping

rate. They used a cooperative decision making approach to

detect black-hole and selective forwarding attacks, requir-

ing only small amounts of communication and computa-

tional resources. Karapistoli et al. [20] proposed a rule-

based detection engine that accurately analyzes data

packets to detect signs of sensor network anomalies. Their

presented algorithm, named ADLU, has dedicated proce-

dures for secure cluster formation, periodic re-clustering,

and efficient cluster member monitoring. Since a lot of

rules are available, the rule-based anomaly detection

schemes are effective against many security issues if

appropriate rules are running. But, without a security

expert to suggest the appropriate use of rules, these

schemes can be inefficient.

In statistical techniques used for anomaly detection in

WSNs, the underlying assumption is that the density dis-

tribution of the data points being analyzed for anomalies is

known a priori (e.g., a Gaussian distribution). The param-

eters of the distribution are first estimated, and then

anomalies are flagged as those data points with low like-

lihood given that distribution [10]. Palpanas et al. [21] have

proposed a statistical technique for distributed deviation

detection in the environment of sensor networks. They tried

to find those values that deviate significantly from the norm

to identify faulty sensors, and to filter spurious reports from

different sensors. Ngai et al. [22] have presented a multi-

variate statistical technique based on a Chi square test to

detect sinkhole attacks in a wireless sensor network. Their

algorithm consists of two steps. At first, it locates a list of

suspected nodes by checking data consistency, and then

identifies the intruder in the list through analyzing the

network flow information. The nodes affected by the

intrusion are detected by testing for anomalies in the data

received at the base station using the proposed test statistic.

Depending on the packet arrival process, another anomaly

detection scheme is proposed by Onat and Miri [23]. In

their approach the standard deviation of packet arrival

intervals during a specified time period is trained as the

normal profile for identifying anomaly. Each sensor node

maintains the normal traffic profile on its one-hop neighbor

nodes. Li et al. [24] proposed a statistical distribution-

based scheme for intrusion detection in wireless sensor

networks. They first partitioned the sensor nodes in a net-

work into a number of groups such that the nodes in a

group are physically close to each other and sense the

similar observation. And then they adopted the Mahalan-

obis distance measurement and the OGK estimators in the

intrusion detection algorithm to take into account the inter-

attribute dependencies of multidimensional observed val-

ues and ensure a high breakdown with some missing data at

a lower computational cost. The statistical techniques are

just suitable when the underlying type of distribution of the

data is well known [10].

Recently there has been much interest in applying

machine learning and data mining approaches for anomaly

detection problem in WSN [25–34]. Wang et al. [34]

proposed a multi-agents-based detection scheme, by

combination of self-organizing map (SOM) neural net-

work algorithm and K-means clustering algorithm. Four

kinds of agents including sentry, analysis, response, and

management are attached to each node over the network.

Each node executes different operations of detection due

to its role. In this scheme, the cluster headers are

responsible for monitoring all common member nodes in

the cluster, while the common member nodes are

responsible for monitoring the cluster headers. Ahmadi

and Abadi [33] have presented a PCA-based centralized

approach, called PCACID, for anomaly detection in

WSNs. They partition a WSN into groups of sensor nodes.

In each group, some nodes are selected as monitor nodes.

In PCACID, every monitor node independently establishes

a profile of its own normal network traffic using PCA and

uses it to detect anomalous network traffic. Rajasegarar

et al. [35] proposed a distributed, non-parametric anomaly

detection algorithm that identifies anomalous measure-

ments at nodes based on the data clustering. They use a

hyper-spherical clustering algorithm and k-nearest neigh-

bor scheme to collaboratively detect anomalies in wireless

sensor network data. In another paper, Rajasegarar et al.

[36, 37] proposed a distributed anomaly detection

approach based on a one-class SVM, for wireless sensor

networks. They have formulated a centered hyper-ellip-

soidal SVM (CESVM) scheme to achieve high detection

accuracy. The CESVM has limited scope for distributed

implementation in sensor networks. Also they have pro-

posed a quarter-sphere SVM (QSSVM), as a special case

of the CESVM to perform distributed anomaly detection.

In general, machine learning and data mining schemes can

provide high detection accuracy through the other

approaches. However, the high computational complexity

and the lack of applying a proper response strategy to

resist any kind of anomaly, are the main shortcomings of

the mentioned methods.

Therefore, in this paper, we propose a light-weight data

mining approach for anomaly detection in WSNs. For this

purpose, we modify the SVDD method, as a well-known

one-class classification approach, to increase its accuracy

and reduce its computational complexity. After detecting

the anomalies, the next goal is to eliminate the effects of

anomalies as much as possible in order to increasing the

lifetime of WSNs. So, we present a foresight response
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strategy to resist the intentional, unintentional and false

anomalies in WSNs.

3 Proposed methods

The support vector data description was presented by Tax

and Duin [16, 38] and again in Tax and Duin [39] with

extensions and a more thorough treatment. The SVDD is a

one-class classification method that estimates the distribu-

tional support of a dataset. A flexible closed boundary

function is used to separate trustworthy data on the inside

from outliers on the outside. The basic idea of SVDD is to

find a minimum hyper-sphere containing all the objective

samples and none of the nonobjective samples. However,

one of the major disadvantages of the SVDD method is that

it cannot tolerate the outliers existed in the training set. For

example, Fig. 1 shows a synthetic dataset with two noisy

samples. Even with proper parameters, the SVDD cannot

relinquish the outliers and they destroy the actual boundary

of target object. In the following section, we propose a

modified version of the SVDD to identify outliers in the

training set.

3.1 Fuzzy constraint SVDD (FCSVDD)

The basic idea of FCSVDD is to find a minimum hyper-

sphere with fuzzy constrains. The hyper-sphere is specified

by its center a and its radius R. The data description is

achieved by minimizing the error function:

F R; að Þ ¼ R2; ð1Þ

s:t: xi � ak k2 .R2; 8i: ð2Þ

The symbol . means that we like to permit some vio-

lations in the satisfaction of the constraints. In order to the

flexibility of the FCSVDD method, the distance of each

training sample xi to the center of the sphere should not be

strictly smaller than R2. However, large distances should be

penalized. Therefore, after introducing slack variables

ni � 0 the minimization problem becomes:

F R; að Þ ¼ R2 þ C
X

i

ni; ð3Þ

s:t: xi � ak k2 .R2 þ ni; 8i: ð4Þ

The parameter C gives the tradeoff between the volume

of the description and the errors. Note that the slack vari-

ables and C cannot tolerate noisy samples. They are tuned

by system without any information about importance of

samples. Therefore, we need a data description method

which considers this aspect.

We can easily show that each fuzzy inequality can

transform to a non-fuzzy inequality. According to Fig. 2, if

A is fuzzy less than B then:

A.B ) A�Bþ d 1� að Þ: ð5Þ

Now we transform the fuzzy constraints in Eq. (4) to a

non-fuzzy inequality.

xi � a2
�� ��.R2 þ ni; 8i: ð6Þ

xi � a2
�� ��� R2 þ ni

� �
þ di 1� að Þ; 8i: ð7Þ

We have two new concepts in Eq. (7). They are user

defined parameters which indicate the importance of sam-

ples. The weight of each sample is defined by di and the

uncertainty of this weight is shown by a. The value of di
can be defined by user or some automatic methods (such as

inverse of distance of each sample to the center of training

set). So we have the following error function:

F R; að Þ ¼ R2 þ C
X

i

ni; ð8Þ

s:t: xi�ak k2 �ðR2 þ niÞ þ di 1� að Þ; 8i: ð9Þ

In order to solve this problem the constraints should be

incorporated into the error function by introducing

Lagrange multipliers and constructing the Lagrangian

function.

Fig. 1 SVDD boundary for a synthetic dataset with two outliers in

the training set

α
1  

A=B B+d
A

Fig. 2 Presentation of a fuzzy inequality (A[B)
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L R; a; ai; ci; nið Þ ¼ R2 þ C
X

i

ni

�
X

i

ki R2 þ ni
� �

þ di 1� að Þ
�

� xik k2�2a:xi þ ak k2
� �o

�
X

i

cini;

ð10Þ

with the Lagrange multipliers ki � 0 and ci � 0. Setting

partial derivatives to 0 gives these constraints:

oL

oR
¼ 0 :

X

i

ki ¼ 1; ð11Þ

oL

oa
¼ 0 : a ¼

P
i kixiP
i ki

¼
X

i

kixi; ð12Þ

oL

oni
¼ 0 : C� ki � ci ¼ 0: ð13Þ

From the above equations and the fact that the Lagrange

multipliers are not all negative, when we add the condition

0\ki\C; Lagrange multipliers ci, can be safely removed.

So the problem can be transformed into maximizing the

following function L with respect to the Lagrange multi-

pliers ki :

max
X

i

ki xi � xið Þ �
X

i;j

kikj xi � xj
� �

�
X

i

kidi 1� að Þ;

ð14Þ
s:t: 0\ki\C: ð15Þ

Similar to the SVDD method, for more flexible bound-

aries, inner products of samples xi � xj
� �

can be replaced by

a kernel function K xi � xj
� �

, where K xi � xj
� �

satisfies

Mercer’s theorem [40]. This implicitly, maps samples into

a nonlinear space to obtain a more tight and nonlinear

boundary. In this context, the FCSVDD problem can be

expressed as:

max
X

i

kiK xi � xið Þ �
X

i;j

kikjK xi � xj
� �

�
X

i

kidi 1� að Þ; ð16Þ

s:t 0\ki\C: ð17Þ

Note that fromEq. (12), the center of the sphere is a linear

combination of the training samples. Only those training

samples xi which satisfy Eq. (7) by equality are needed to

generate the description since their coefficients are not zero.

Therefore these samples are called Support Vectors. The

radius can be computed using any of the support vectors:

R2 ¼ xk � xkð Þ � 2
X

i

ki xi � xkð Þ þ
X

i;j

kikj xi � xj
� �

� dk 1� að Þ: ð18Þ

To judge whether a test sample xz is in the target class or

not, its distance to the center of sphere is computed and

compared with R, if satisfies Eq. (9), it will be accepted,

and otherwise, rejected.

xz � a2
�� �� ¼ xz � xzð Þ � 2

X

i

ki xz � xið Þ

�
X

i;j

kikj xi � xj
� �

�R2 þ dz 1� að Þ: ð19Þ

Several kernel functions have been proposed for the sup-

port vector classifiers. Not all kernel functions are equally

useful for the FCSVDD. It has been demonstrated that using

the Gaussian kernel results in tighter description. The results

of FCSVDD for different value of a are shown in Fig. 3. We

assume that the weights of outlier samples are half of the other

samples. Ifa = 1 or all of the samples have the sameweights,

the results of FCSVDD is the same as SVDD method.

3.2 Linear Programming based FCSVDD (LP-

FCSVDD)

Here we address the computational challenge of FCSVDD

for using in WSN. FCSVDD requires the solution of a

computationally intensive quadratic programming

approach which is not applicable in WSN. We solved this

problem by formulating a centered hyper-spherical scheme,

which enables us to use a linear programming approach.

Consider the following minimization problem:

F R; að Þ ¼ R2 þ C
X

i

ni; ð20Þ

s:t: xik k2 .R2 þ ni; 8i:
ni � 0; 8i:

ð21Þ

As mentioned above, we can transform the fuzzy con-

straints in Eq. (21) to a non-fuzzy inequality. Hence the

minimization problem becomes:

F R; að Þ ¼ R2 þ C
X

i

ni; ð22Þ

s:t: xik k2 � R2 þ ni
� �

þ di 1� að Þ; 8i:
ni � 0; 8i:

ð23Þ
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The constraints can be incorporated into the error

function by introducing Lagrange multipliers and con-

structing the Lagrangian.

L R; ki; ci; nið Þ ¼ R2 þ C
X

i

ni

�
X

i

ki R2 þ ni
� �

þ di 1� að Þ � x2i
�� ��� �

�
X

i

cini;

ð24Þ

With the Lagrange multipliers ki � 0 and ci � 0. Setting

partial derivatives to 0 gives these constraints:

oL

oR
¼ 0 :

X

i

ki ¼ 1; ð25Þ

oL

oni
¼ 0 : C� ki � ci ¼ 0: ð26Þ

Therefore, the problem can be transformed into maximiz-

ing the following programming problem:

max
X

i

ki xi � xið Þ �
X

i

kidi 1� að Þ; ð27Þ

s:t
X

i

ki ¼ 1;

0\ki\C:

ð28Þ

Using the kernel trick, the inner product can be replaced by

a kernel function K xi � xið Þ, and the following optimization

problem is obtained:

max
X

i

kiK xi � xið Þ �
X

i

kidi 1� að Þ ð29Þ

s:t:
X

i

ki ¼ 1;

0\ki\C:

ð30Þ

This dual problem is a linear optimization problem, so

the ki can be obtained using widely available linear opti-

mization techniques. Compared to the SVDD and

FCSVDD formulations, which require solving a quadratic

optimization problem, this formulation with linear opti-

mization is advantageous in terms of its computations.

Fig. 3 FCSVDD boundaries for a synthetic dataset with two outliers

in the training set. The effect of outlier samples will be eliminated by

decreasing the uncertainty value (a). If a = 1 the results of FCSVDD

is the same as SVDD. a a = 1, b a = 0.9, c a = 0.7, d a = 0.5,

e a = 0.3, f a = 0.1
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Further, in Eq. (29) the solution is affected only by the

norms of the non-linear mapping of data vectors using the

kernel K xi � xið Þ. This creates a problem for the application

of this approach with distance-based kernels such as the

RBF kernel, as the norms of the kernels are now equal for

all data vectors [36, 41]. In order to solve this problem, the

centered image vectors can be computed by:

~U xið Þ ¼ U xið Þ � 1

n

Xn

i¼1

UðxiÞ ð31Þ

In other words, the mapped vectors are subtracted from

the mean in the feature space. The dot product ~K ¼
~U xið Þ � ~U xið Þ

� �
of the centered image vectors can be

obtained in terms of kernel K ¼ U xið Þ � U xið Þð Þ as follows:
~K ¼ K � 1nK � K1n þ 1nK1n; ð32Þ

where 1n is an n� n matrix with all values equal to 1=n.
~K is called the centered kernel matrix [40]. Once the

image vectors are centered, the norms of the kernels are

no longer equal. Hence the dual problem might be solved

now. Figure 4 shows the decision boundary which is

generated by LP-FCSVDD method around the target

class with cross markers. The LP-FCSVDD method can

produce a very tight description for the target class

similar to a quadratic one-class classifier. Moreover, it

can detect the outliers and eliminate them from the target

class boundaries.

3.3 Distributed anomaly detection and foresight

response strategy in WSN

In this section, the LP-FCSVDD method is applied to resist

anomalies in WSN. The sensor nodes can be organized as a

flat network or a clustered network. In the flat architecture,

all sensor nodes transmit their own data and relay data for

other nodes to the sink. In the clustered architecture,

adjacent nodes are organized as a cluster; a head is elected

for each cluster. Sensor nodes that belong to the same

cluster can only send or relay data to their cluster head. The

cluster head then relays the data to the sink via a long-haul

communication link [42].

Here we want to find local and global anomalies in the

data measurements collected by each node in the network.

Local anomalies are anomalous measurements in a sensor

node’s own (local) data measurements, where only the

measurements at the same node are used as a basis for

comparison. However, we are also interested in cases

where the majority of measurements at a sensor node are

anomalous in comparison to other nodes in the network.

These global anomalies are anomalous measurements in

the union of the measurements collected from multiple

sensor nodes in the network. Local anomalies can be

detected by considering local measurements of a sensor

node without incurring any energy intensive communi-

cation overhead in the network. However, detecting glo-

bal anomalies requires all the measurements from

multiple nodes to be considered. Centralized schemes

perform this by communicating all the sensor measure-

ments to a central node to detect global anomalies.

However, communicating all the measurements in the

network is an energy-intensive operation, which affects

the lifetime of the network. Hence, we require energy

efficient distributed approaches to detect these anomalies

in sensor networks. This motivates us to propose a dis-

tributed anomaly detection approach using LP-FCSVDD

that can efficiently and effectively detect anomalies (local

and global) in data measurements collected by sensor

nodes in wireless sensor networks [37].

After detecting anomalies, a proper response strategy

should be trigger to resist the anomaly effects. Here, we

introduce a foresight response model for intentional,

unintentional and false anomalies (see Fig. 5). If the

anomaly is caused by a faulty sensor, we can estimate the

Fig. 4 LP-FCSVDD in

comparison with the standard

SVDD. a SVDD could

sometimes generate such a loose

decision boundary, when some

noisy samples exist in the

training set. b The LP-FCSVDD

method detects the outliers exist

in the training set and generates

much better decision boundaries
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sensor error to eliminate the negative impact in global

radius computation. But when the error is intentional,

ignoring the compromised sensor outcomes is the best

solution for response. Also, when the detection process

leads to false anomalies, we should improve the detection

parameters and use the sensor outcomes. Hence, selecting

the proper response in each situation minimizes the cost of

response in future.

First, we consider a clustered based wireless sensor

network, deployed to monitor an area of interest. In the

distributed anomaly detection process, each sensor ðSjÞ
runs the LP-FCSVDD method on its own data to find the

local radius (R
ðtÞ
j ) as a decision boundary in time-window

(t). The cluster head ðS0Þ collects these obtained local

radii from all sensors in the cluster and computes the

mean of them as the global radius (Rg
(t)). The cluster

head sends the global radius to each sensor node in its

cluster except the compromised nodes. After detecting

the anomalies, we should trigger the foresight response

strategy to mitigate the intentional, unintentional and

false anomalies. For this purpose, we compute a trust

value between 0 (untrusted) and 1 (fully trusted) for each

sensor node.

According to the given trust value, we should apply one

of the following response strategies:

• The sensor’s trust value is very low (its value is close to

zero): we should ignore the sensor outcomes.

• The sensor’s trust value is very high (its value is close

to one): we should improve the detection parameters

and use the sensor outcomes.

• The sensor’s trust value is medium (its value is around

0.5): we should estimate the sensor error to eliminate

the negative impact in global radius computation.

Algorithm 1 presents the distributed anomaly detection

and foresight response strategy using LP-FCSVDD to

resist the local and global anomalies in a clustered based

WSN. We use a similar method for a wireless sensor

network with flat topology. Each sensor runs the LP-

FCSVDD method on its own data to find the local radius

and broadcast it to its neighbors. When a sensor receives

the all of the neighbor’s radii, computes the global radius,

the trust value of its neighbors and its own trust value.

The neighbors which have very low trust value are tagged

as compromised nodes and ignored in global radius

computation. Also, we can compute the weight of each

sensor according to its own trust value. Then each sensor

runs the LP-FCSVDD method again with the new sam-

ples weight. Algorithm 2 presents the distributed anomaly

detection and foresight response strategy using LP-

FCSVDD to resist the local and global anomalies in a flat

WSN. Figure 6 shows the process of scheme according to

the mentioned algorithms for distributed anomaly detec-

tion and foresight response strategy in a clustered and flat

WSN.

Future

Anomaly is detected 
on a specific sensor

Intentional Anomaly

Unintentional 
Anomaly

False Anomaly

Present

Ignore the sensor outcomes

Fig. 5 The possible future and

foresight response strategy,

when an anomaly is detected
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3.4 Complexity analysis

This section analyzes the complexity of the proposed

anomaly detection and response strategy. Suppose that s is

the number of sensor nodes in the network, n is the number

of data vectors at a sensor node, and p is the number of

dimensions in a data vector. The LP-FCSVDD method

involves the computation of a kernel matrix K with a

computational complexity of Oðn2Þ and solving a linear

optimization problem. Several approaches have been pro-

posed for the linear programming in the literature.

Khachiyan [43] was the first to show that the linear pro-

gramming problem could be solved in time polynomial in

the length of the binary encoding of the input. Karmarkar’s

original method requires a total complexity of Oðn4LÞ
arithmetic operations where n is the number of variables

and L is the length of the input data. Subsequent results

have reduced this to a total complexity of Oðn3LÞ [44]. On
the other hand, it is demonstrated that the linear pro-

gramming problem with d variables and m constraints can

be solved in OðmÞ time when d is fixed [45]. According to

Eq. (21), in our proposed linear programing model the
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number of constraints ðmÞ is equal to the number of data

vectors at a sensor node ðnÞ, so the total computational

complexity of LP-FCSVDD is O nð Þ þ Oðn2Þ.
In the proposed distributed scheme, each sensor node

runs LP-FCSVDD on its own data with time complexity

O nð Þ þ Oðn2Þ and the memory complexity of OðnpÞ. Fur-
thermore, in the foresight response strategy, the trust value

of each sensor is computed by time complexity OðnÞ and
the memory complexity of OðnÞ. So the total time com-

plexity of proposed approach is 2O nð Þ þ Oðn2Þ and the

total memory complexity is O npð Þ þ OðnÞ. It also requires

communication of the radius information and the sensor

weights with a communication complexity of O 1ð Þ. In the

centralized approach, each sensor node sends its local data

into the central node (i.e., base station). So, the commu-

nication of the whole set of data measurements to a central

node with a communication complexity of O npð Þ per link
leads to a total complexity of OðsnpÞ. The central node

runs LP-FCSVDD on the collected data with a maximum

computational complexity of Oðs2n2Þ, and also the trust

value of each sensor is computed by time complexity

OðsnÞ. The memory complexity at the central node is

O snpð Þ þ OðsnÞ, which includes the memory complexity

required to keep data vectors and the trust value of sensors.

(a)

(b)

Fig. 6 Distributed anomaly detection and response process using LP-FCSVDD method in a clustered WSN b flat WSN
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In Table 1 the complexity of proposed anomaly detection

and foresight response strategy is summarized in both

centralized and distributed schemes.

4 Experiments

In this section, we want to evaluate the performance of our

proposed methods by applying them to real and synthetic

datasets. The synthetic dataset is similar to that used by

Rajasegarar et al. [37]. It has two features, each generated

from a normal distribution with mean 1 and standard

deviation 3. Noise samples are generated by uniformly

distributed data around the normal samples. The synthetic

dataset consists of 15 sensor nodes and comprises 1,575

data vectors of two features, including 75 outliers.

In the first experiment, we apply the proposed methods

to the synthetic dataset. Figure 7 shows the area under the

ROC curve (AUC) for LP-FCSVDD and FCSVDD, which

have linear and quadratic complexities respectively. Here,

we use the RBF kernel with different value for the r
parameter in the range 2-10–240, in exponential intervals.

This experiment shows that the proposed linear method has

the same performance, compared to the quadratic one.

In the second experiment, we applied SVDD and LP-

FCSVDD methods for the synthetic dataset in centralized

scheme. The false positive rate (FPR) is then computed as

the percentage ratio between the false positives and the

actual normal measurements. Also, the true positive rate

(TPR) is computed as the percentage ratio between the true

positives and the actual anomalous measurements. Table 2

and Fig. 8 show the obtained results for SVDD and LP-

FCSVDD methods in the synthetic dataset. In this experi-

ment, we get the AUC value of 0.9964 and 0.9742 for LP-

FCSVDD and SVDD methods respectively.

Now,we evaluate the proposedmethodswith two realWSN

datasets namely the IBRL and GDI datasets. The IBRL dataset

contains information about data collected from 54 sensors

deployed in the IntelBerkeleyResearchLab, betweenFebruary

28th and April 5th, 2004. Mica2Dot sensors with weather-

boards collected time-stamped topology information, along

with humidity, temperature, light andvoltage values once every

31 s. The data was collected using the TinyDB in-network

query processing system, built on the TinyOS platform [46].

The sensors were arranged in the lab, according to the diagram

shown in Fig. 9. We considered a part of this dataset formed

from measurements collected by 5 sensor nodes, namely, the

nodes 1, 2, 3, 33 and 35 which are closed to each other. A 24-h

Table 1 Comparison of various complexities for the distributed and centralized anomaly detection schemes using LP-FCSVDD

Scheme Computational complexity Memory complexity Communication complexity (per link)

Distributed 2O nð Þ þ Oðn2Þ (per each node) O npð Þ þ OðnÞ (per each node) O 1ð Þ
Centralized O snð Þ þ Oðs2n2Þ (at central node) O snpð Þ þ OðsnÞ (at central node) O npð Þ

In this table, s is the number of sensor nodes in the network, n is the number of data vectors at a sensor node, and p is the number of dimensions

in a data vector

Table 2 SVDD and LP-

FCSVDD results for the

synthetic dataset in centeralized

scheme

Scheme Classification

method

Classification

accuracy (CA)

FPR TPR Precision F-measure

Centralized LP-FCSVDD 96.7391 6.5217 100.0000 94.0474 96.8900

SVDD 93.4150 12.8842 99.7143 89.4701 94.0845

Fig. 7 AUC for LP-FCSVDD

and FCSVDD methods in the

synthetic dataset by using the

RBF kernel (r is the kernel

parameter)
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period of data, recorded on March 6, 2004, was used in our

evaluation. The sensor’s data is divided into 41 time-windows

and three attributes are used for each data vector including

humidity, temperature, and light measurements.

The other real dataset that we used was the sensor

measurements gathered from a deployment of wireless

sensors in the Great Duck Island (GDI), Maine, USA [31,

47]. The network monitors the habitat of a sea bird called

the Leach’s Storm Petrel. This is an example of an outdoor

environmental monitoring deployment. Each sensor

recorded temperature, humidity, and barometric pressure at

5-min intervals. Five sensor nodes are selected for the

evaluation, namely nodes 101, 103, 110, 111 and 129 that

are physically close to each other and sense the similar

observation. A 24-h period of data recorded on June 18,

2003, was used in our evaluation. Each data vector has

three features: humidity, temperature and pressure.

We define two scenarios to evaluate the proposed

anomaly detection and foresight response strategies. In the

first scenario, some noisy samples are generated randomly

and added to the normal data in each time-window. Then,

the mentioned anomaly detection approach runs on each

time-window. Tables 3 and 4 present the summary results

Fig. 8 ROC curves for SVDD and LP-FCSVDD methods in the

synthetic dataset in centralized scheme

Fig. 9 The sensors position in

the IBRL dataset

Table 3 SVDD and LP-

FCSVDD results for the sensor

nodes 1, 2, 3, 33 and 35in the

IBRL dataset

Sensor

name

Classification

method

Classification accuracy

(CA)

FPR TPR Precision F-

measure

1 LP-FCSVDD 97.4549 5.0901 100.0000 95.4139 97.5888

SVDD 89.2895 21.4210 100.0000 82.7942 90.4679

2 LP-FCSVDD 95.6301 8.7398 100.0000 92.2970 95.9083

SVDD 99.0854 1.4228 99.5935 98.7617 99.1267

3 LP-FCSVDD 96.3415 7.3171 100.0000 93.5564 96.5755

SVDD 90.8802 17.8155 99.5758 85.2332 91.7332

33 LP-FCSVDD 95.6446 8.7108 100.0000 93.2449 96.2479

SVDD 92.3345 15.1568 99.8258 87.7165 93.1428

35 LP-FCSVDD 96.6624 6.6752 100.0000 94.1174 96.8750

SVDD 97.2401 5.2632 99.7433 95.4011 97.4168

Central LP-FCSVDD 96.2222 7.4761 99.9205 93.2464 96.4137

SVDD 92.9878 3.9502 89.9258 95.8305 92.6388
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of simulation for each sensor node in the IBRL and GDI

datasets respectively. The average of each measure for all

time-windows is displayed in the results. The detailed

results for applying LP-FCSVDD method on sensor node 1

in the IBRL dataset and sensor node 101 in the GDI dataset

is described in Tables 7 and 8 of appendix. Figure 10

shows ROC curves for these experiments in both central-

ized and distributed schemes.

In the second scenario, in addition to injecting some noisy

samples, we suppose that there is a compromised sensor

which generates intentional anomalies. In this situation we

Table 4 SVDD and LP-

FCSVDD results for the sensor

nodes 101, 103, 110, 111 and

129 in the GDI dataset

Sensor

name

Classification

method

Classification

accuracy (CA)

FPR TPR Precision F-measure

101 LP-FCSVDD 97.1922 5.6156 100.0000 95.0508 97.3703

SVDD 71.2586 57.4828 100.0000 65.6230 78.5932

103 LP-FCSVDD 87.2235 21.9959 96.4429 83.7272 89.1236

SVDD 81.0273 23.5843 85.6388 85.9068 82.4660

110 LP-FCSVDD 94.4632 11.0737 100.0000 91.5238 95.2182

SVDD 91.4610 17.0780 100.0000 89.2719 93.4176

111 LP-FCSVDD 96.4344 7.1312 100.0000 94.4251 96.8755

SVDD 91.9620 16.0759 100.0000 90.2838 93.9771

129 LP-FCSVDD 98.7140 2.5720 100.0000 97.6080 98.7607

SVDD 68.0666 63.8667 100.0000 63.1568 76.7375

Central LP-FCSVDD 93.3824 3.8235 90.5882 96.0691 93.0828

SVDD 85.0980 26.1765 96.3725 79.3609 86.7500

Fig. 10 ROC curves for SVDD and LP-FCSVDD methods a in the

IBRL dataset b in the GDI dataset

Table 5 LP-FCSVDD results with/without applying the foresight response strategy in the IBRL dataset. Suppose that node 1 is a compromised

sensor and generates intentional anomalies

Scheme Classification method Classification

accuracy (CA)

FPR TPR Precision F-measure

Distributed With foresight response 96.2066 7.5868 100.0000 93.7977 96.6185

Without foresight response 90.0000 20.0000 100.0000 90.0000 93.3333

Centralized With foresight response 91.9255 10.8696 94.0217 92.5763 93.0134

Without foresight response 31.6848 9.2391 11.9928 79.9208 20.7454

Fig. 11 ROC curves for LP-FCSVDD with/without applying the

foresight response strategy in the IBRL dataset. Suppose that node 1

is a compromised sensor and generates intentional anomalies
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should ignore the compromised sensor outcomes because it

has negative impact in global radius computation. Suppose

that node 1 is a compromised sensor and generates inten-

tional anomalies in the IBRL dataset. Without applying the

foresight response strategy, the accuracy of detection is

severely decreased over the time. Table 5 and Fig. 11 show

the LP-FCSVDD results with/without response strategy for

the centralized and distributed schemes in the IBRL dataset.

Similar resultswere obtained by repeating the experiment for

the GDI dataset (see Table 6, Fig. 12).

The proposed anomaly detection and foresight response

strategy has the following advantages: (1) it can detect the

anomalies with high accuracy in polynomial time, (2) it can

be used in a distributed scheme with minimal communi-

cation overhead, and (3) it can offer a proper response

strategy to eliminate the effect of intentional anomalies.

Accordingly, we can apply the LP-FCSVDD as a robust

distributed anomaly detection method in WSNs which

resist the intentional, unintentional and false anomalies.

5 Conclusion

In this paper, we have presented a new approach to address

the problem of anomaly detection and response strategy in

wireless sensor networks. The proposed approach is based

on support vector data description (SVDD) as a popular

one-class classifier. The SVDD method has two major

disadvantages: (1) It could sometimes generate such a

loose decision boundary when some noisy samples (outli-

ers) exist in the training-set, and (2) It requires the solution

of a computationally intensive quadratic programming

approach, which is not applicable in WSN. We present the

FCSVDD method to solve the first problem. The basic idea

of FCSVDD method is to find a minimum hyper-sphere

around the target class by using the fuzzy constrains.

Unfortunately, the FCSVDD method requires a quadratic

programming approach to find the decision boundaries. We

solved this problem by formulating a centered hyper-

spherical scheme, which enables us to use a linear pro-

gramming approach and proposed the Linear-Programming

based Fuzzy-Constraint SVDD (LP-FCSVDD) method.

The using of fuzzy constraints leads to additional abilities

that can be used in the response process to tolerate the

sensor failure. Accordingly, we present a foresight

response strategy to mitigate the intentional, unintentional

and false anomalies. In order to evaluate our proposed

approach, we use a synthetic dataset and two real WSN

datasets namely the IBRL and GDI. The results show the

prominence of the LP-FCSVDD method to detect local and

global anomalies in WSNs.

Appendix

See Tables 7 and 8.

Table 6 LP-FCSVDD results with/without applying the foresight response strategy in the GDI dataset. Suppose that node 101 is a compromised

sensor and generates intentional anomalies

Scheme Classification method Classification

accuracy (CA)

FPR TPR Precision F-measure

Distributed With foresight response 93.8216 10.1058 97.7489 91.9499 94.3946

Without foresight response 87.6406 13.7063 88.9874 88.3351 87.9154

Centralized With foresight response 93.4580 8.7948 95.1961 93.5617 94.2305

Without foresight response 72.5490 11.5686 56.6667 83.0740 67.2078

Fig. 12 ROC curves for LP-FCSVDD with/without applying the

foresight response strategy in the GDI dataset. Suppose that node 101

is a compromised sensor and generates intentional anomalies

Table 7 LP-FCSVDD results for sensor node 1 in the IBRL dataset

in each time window

Time

window

Classification

accuracy (CA)

FPR TPR Precision F-measure

1 95.6522 8.6957 100 92 95.8333

2 100 0 100 100 100

3 97.8261 4.3478 100 95.8333 97.8723

4 100 0 100 100 100

5 100 0 100 100 100

6 97.8261 4.3478 100 95.8333 97.8723

7 93.4783 13.0435 100 88.4615 93.8776

8 95.6522 8.6957 100 92 95.8333

9 95.6522 8.6957 100 92 95.8333
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