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Abstract The cooperative frequency reuse among base

stations (BSs) can improve the system spectral efficiency

by reducing the intercell interference through channel

assignment and precoding. This paper presents a game-

theoretic study of channel assignment for realizing network

multiple-input multiple-output (MIMO) operation under

time-varying wireless channel. We propose a new joint

precoding scheme that carries enhanced interference miti-

gation and capacity improvement abilities for network

MIMO systems. We formulate the channel assignment

problem from a game-theoretic perspective with BSs as the

players, and show that our game is an exact potential game

given the proposed utility function. A distributed, sto-

chastic learning-based algorithm is proposed where each

BS progressively moves toward the Nash equilibrium (NE)

strategy based on its own action-reward history only. The

convergence properties of the proposed learning algorithm

toward an NE point are theoretically and numerically

verified for different network topologies. The proposed

learning algorithm also demonstrates an improved capacity

and fairness performance as compared to other schemes

through extensive link-level simulations.

Keywords Network MIMO � Channel selection �
Potential games � Stochastic learning

1 Introduction

Universal frequency reuse is a key technique to improve

the throughput of broadband wireless networks. However,

frequency reuse among neighboring cells inevitably results

in intercell interference (ICI) and degrades the achievable

throughput performance. To overcome this problem, ICI

management techniques such as ICI coordination and base-

station cooperation have been proposed [1, 2]. Base-station

cooperation, also known as network multiple-input multi-

ple-output (MIMO), is a multi-antenna signal processing

technique that enables several nearby BSs to jointly serve

multiple mobile stations (MSs). The implementation of

network MIMO may require a partial or full sharing of

channel state information (CSI) and data among the BSs.

Much of the research on network MIMO and multicell

cooperation has focused on signal processing techniques in

an orthogonal frequency-division multiple access (OF-

DMA) system. The channel assignment for each MS is

generally assumed to be determined or treated separately

from the network MIMO mechanism. Efficient channel

allocation (particularly in a distributed manner) for net-

work MIMO in a multi-antenna multicell environment has

not been extensively studied. The aim of this work is
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therefore to study the distributed channel allocation prob-

lem in network MIMO systems.

The main contributions of this paper are as follows:

• We propose a new joint processing scheme with

practical consideration of CSI acquisition where an

MS is jointly served by a set of selected BSs. The

capacity advantages of the proposed scheme over

conventional precoding methods are numerically

demonstrated.

• We formulate the channel assignment problem using a

game-theoretic approach, and show the existence

of Nash equilibrium (NE). Moreover, our proposed

utility function induces self-enforcing coordination

among players where each player (i.e., the BS) chooses

its strategy (i.e., perform channel assignment)

independently.

• We develop a stochastic learning (SL)-based algorithm

for game-theoretic channel assignment where the

players update their strategies simultaneously in each

play based on the action-reward history. The conver-

gence behaviors toward NE point are theoretically

proven and numerically verified for different network

topologies.

The rest of the paper is organized as follows. In Sect. 2, we

review related works on precoding in multicell multi-

antenna networks as well as those on distributed resource

allocation. In Sect. 3, the system model and the proposed

joint processing are described. The game-theoretic formu-

lation of the channel allocation problem is presented in

Sect. 4 and the SL-based solutions are presented in Sect. 5.

Numerical results are provided in Sect. 6. Conclusion is

given in Sect. 7.

2 Related works

In network MIMO, the implementation may vary depend-

ing on the degree of CSI and data sharing availability. In

the static clustering scheme [3], a fixed set of nearby BSs

cooperate in jointly serving the users where precoding

techniques for single-cell multiuser MIMO systems (e.g.,

block-diagonalization (BD) [4]) are applied to mitigate the

multiuser interference. One disadvantage of static cluster-

ing is its requirement of a full sharing of data and CSI

within a cluster, which creates a significant overhead on the

system operation [5]. The overhead will be even greater if

intercluster interference is considered [6].

To reduce the information exchange overhead, partial

cooperation has been proposed to avoid the full sharing of

CSI and/or data. Kaviani et al. [7] proposed a precoding

scheme according to the minimum mean square error

(MMSE) criterion and Kerret and Gesbert [8] developed a

sparse precoding method which determines the most effi-

cient data sharing patterns, both assuming partial data

sharing among the BSs. Distributed MIMO precoding was

introduced by Kerret and Gesbert [9] assuming partial CSI

sharing but full data sharing. Zakhour et al. [10, 11] pro-

posed a distributed precoding scheme by maximizing the

virtual signal-to-interference-and-noise ratio (VSINR) with

local CSI. Bjornson et al. [12] developed a network MIMO

scheme for large cellular networks, where the precoding

vectors are computed in centralized (by a central control-

ler) or fully distributed (by each BS independently) fashion

with partial CSI and data.

The realization of network MIMO in an OFDMA system

involves an important issue: channel allocation. Tradi-

tionally, frequency planning with spatial reuse was con-

sidered [13–15] to mitigate the ICI among adjacent cells.

Dynamic channel allocation schemes were proposed for

cognitive radio networks (CRNs) [16] and network MIMO

[12], which requires the presence of a central station for

coordinating the sequential strategy updates or negotiations

among BSs. The development of self-organized, fully-

distributed resource allocation schemes can be facilitated

by the application of game theory. Self-organized resource

allocation in wireless networks based on reinforcement

learning (RL) has been studied [17–23]. Within the RL

framework, multiagent Q-learning (MAQL) was applied to

CRNs [17] and femtocell networks [18]. MAQL involves

the actions of other agents as the external state and thus

requires the knowledge of all possible actions of all agents.

Also, it suffers from the curse of dimensionality since the

state space grows exponentially as the number of agents

increases, which leads to the decrease in the learning speed

and the increase in memory requirements [24]. The sto-

chastic learning (SL), in contrast, adjusts the mixed strat-

egies according to specific update rules, based on the

action-reward history. SL has been applied to the game-

theoretic study of dynamic spectrum access in CRNs [19,

20] and precoder selection in multiple access channels [21].

The convergence toward pure strategies was shown in [19].

Some update rules have nice convergence properties for

specific games. The logit update rule was applied to traffic

games in [25] and shown to converge toward perturbed NE.

A variation of the procedure in [25] was studied in [26]. In

[20, 21], the convergence toward NE point for the update

rule proposed in [22] was shown. The learning algorithm in

[20, 21] adopts mixed strategy updating rule using nor-

malized reward, and thus requires the knowledge of the

maximum of the reward function. An application of SL on

both strategy and payoff, referred to as the combined fully-

distributed payoff strategy reinforcement learning (CODI-

PAS-RL), was found for MIMO power loading [23].

Hybrid CODIPAS-RL was applied to heterogeneous 4G

networks and the convergence of users’ network selection
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was observed [27]. While SL algorithms have shown

promise for wireless applications in the literature, their

applications in distributed resource allocation for mul-

tiantenna multicell networks as well as distributed net-

works of random geometry have not been well studied.

Notations Normal letters represent scalar quantities;

upper-case and lower-case boldface letters denote matrices

and vectors, respectively. ð�ÞT and ð�ÞH stands for the

transpose and the conjugate transpose, respectively. I and 0

represent the identity matrix and zero vector with proper

size, respectively. 11fcondg is the indicator function which

equals one if the condition cond is satisfied, and zero

otherwise.

3 The network MIMO system

3.1 System model

We consider the downlink of an N-cell network MIMO

OFDMA system. Each BS is equipped with Nt antennas

and each MS is equipped with a single antenna. An MS

may be served by multiple BSs and a BS may serve mul-

tiple MSs simultaneously in a network MIMO setting. The

set of BSs is denoted as N . The time domain is divided

into slots and the licensed spectrum is divided into K

available orthogonal subchannels each of the same band-

width. A subchannel may be reused by multiple BSs.

In the network MIMO setting, since BSs and MSs

located distant apart cause negligible interference to each

other, we consider joint transmission only among nearby

BSs to reduce the overhead of data sharing and CSI

exchange on the backhaul. For ease of exposition, we make

the following definitions:

• Each MSi feedbacks the CSI to a set of BSs in its

coordination set, which is defined as

Ci ¼ b 2 N j q2ib � athq
2
ii

� �
ð1Þ

where q2ib is the large-scale channel gain between BSb
and MSi, which can be obtained by averaging over the

estimated channel gain at the receiver, and the thresh-

old 0\ath � 1 is a system design parameter.

• Each MSi receives the data from its service set, which

is defined as

Di ¼ b 2 N j q2ib � bthq
2
ii

� �
ð2Þ

where bth � ath and Di � Ci.
In the network MIMO system, a BSb (b 2 Ci) can mitigate

the interference to the MSs in the coverage area of the

other BSs in Ci through proper precoder designs. An

illustrative example of the network MIMO system with

joint processing is given in Fig. 1.

To reflect a practical wireless network, our system

model incorporates the following considerations:

1. The channel state is time-varying so that the channel

condition may change before the channel selection

process is accomplished. We consider that the coher-

ence bandwidth is greater than the total bandwidth of

subchannels available for selection (i.e., a frequency-

flat fading channel) for notational and modeling

simplicity. Note, however, that the proposed frame-

work is applicable to systems with any coherence

bandwidth or coherence time conditions.

2. The number of cells, N, is unknown.

3. Each BS selects the channel independently and simul-

taneously, in contrast to a coordinated joint decision or

sequential updates.

3.2 Transmitter precoding

In the network MIMO system considered in [11], only data

are shared among the BSs and the precoding vector is

calculated separately at each BS. Here, we propose a joint

Fig. 1 Illustration of distributed channel assignment with joint

precoding in multicell networks. For MS1; C1 ¼ f1; 3g and D1 ¼ f1g,
where BS1 and BS3 both receive CSI feedback from MS1 and perform

interference mitigation but only BS1 serves MS1. For MS2; C2 ¼
f1; 2; 3g and D2 ¼ f2; 3g, where BS2 and BS3 jointly serve MS2
while all three BSs perform interference mitigation. For MS3; C3 ¼
f3g and D3 ¼ f3g, where only BS3 serves MS3
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processing method in which the BSs in the serving set of

each user exchange their knowledge of CSI and determine

the precoding vector jointly. Similar to [11], a power

splitting procedure is considered which allows each BS to

split its transmission power among the MSs that it needs to

serve. Let Pb be the transmission power of BSb on one

subchannel. We adopt a simple equal-power splitting

method so that the power allocated to MSi by BSb is given

by

Pib ¼
Pb

PN
i¼1 11fDi3bg

; 8i s:t:Di 3 b: ð3Þ

Signal transmission in the multicell network MIMO system

is modeled as follows. Let hkib 2 C
Nt�1 represent the

channel from BSb to MSi on subchannel k. The symbol xi

denotes the data intended for MSi, where E½jxij2� ¼ 1 and

E½x�i xj� ¼ 0; 8i 6¼ j. The data symbol xi is precoded by

precoders wib 2 C
Nt�1; 8b 2 Di. Let Dj ¼ jDjj be the car-

dinality of the serving set of MSj. Then, the collective

channel from the BSs in Dj to MSi on subchannel k can be

expressed as

hki;Dj
¼

ffiffiffiffiffiffiffiffi
Pjb1

p
hkib1

� �T

; . . .;
ffiffiffiffiffiffiffiffiffiffi
PjbDj

q
hkibDj

� �T
� �T

ð4Þ

and the collective precoding vector for MSi is

wi ¼ wT
ib1
; . . .;wT

ibDi

h iT
: ð5Þ

Let aiðnÞ be the selected channel for MSi (i.e., the action

taken by BSi) at slot n. For notational brevity, we will

hereafter discard the timing dependence of the action aiðnÞ
in occasions without ambiguity. Also, in consideration of a

frequency-flat fading channel mentioned previously for

notational and modeling simplicity without compromising

the generality of the proposed framework, we will discard

the subchannel index k. The discrete-time baseband signal

received by MSi is given by

yi ¼ hTi;Di
wixi þ

XN

j¼1;j 6¼i

11fai¼ajgh
T
i;Dj

wjxj þ zi ð6Þ

where the first term is the desired signal, the second term

represents the ICI, and zi is additive complex Gaussian

noise with variance r2. Therefore, the signal-to-inter-

ference-and-noise ratio (SINR) at MSi can be formulated as

ci ¼
khTi;Di

wik2
PN

j¼1;j6¼i 11fai¼ajgkhTi;Dj
wjk2 þ r2

: ð7Þ

The achievable capacity for MSi in bits/s/Hz is given by

Ri ¼ log2 1þ ci
C

� �
ð8Þ

where C ¼ lnð5BERÞ=1:5 is a function of the required bit

error rate (BER), often known as the SINR gap [28].

We denote the precoding vector wi for MSi by

wi ¼ liŵi, where li is an adjustment factor to maintain the

per-BS power constraint and ŵi is the unit-norm vector that

maximizes the modified signal-to-leakage-and-noise ratio

(mSLNR). Different from the SLNR in [29], we consider

the mSLNR to reflect a practical network MIMO operation,

which is defined in terms of the signal power received by

MSi and the available information to BSi about the inter-

ference caused to other MSs (produced by the signals from

Di intended for MSi) plus the noise power. The distinction

on the interference part is made to reflect the fact that not

all CSI can be acquired by the BSs in Di and thus the

interference powers imposed on other users may not be

available. Specifically, in our consideration a BS in Di can

acquire the CSI to MSj (i 6¼ j) only if this BS is also in Cj.
Mathematically, ŵi is given by

ŵi ¼ argmax
kwk¼1

hTi;Di
w

			
			
2

r2 þ
PN

j¼1;j 6¼i 11fai¼ajg
~hTj;Di

w
			

			
2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
mSLNRofMSi

ð9Þ

where

~hj;Di
¼

ffiffiffiffiffiffiffiffi
Pib1

p
�hTjb1 ; . . .;

ffiffiffiffiffiffiffiffiffi
PibDi

q
�hTjbDi

h iT
ð10Þ

with

�hjb ¼
hjb; if b 2 Ci \ Cj;

0; otherwise:

�
ð11Þ

The vector �hjb reflects our mSLNR consideration; that is, it

is equal to the CSI when this information can be collected

(via feedbacks or backhaul communications), and zero

otherwise.

The solution to (9) is given by

ŵi ¼
K	1

i hi;Di

K	1
i hi;Di

		 		 ð12Þ

where Ki ¼ r2Iþ
P

j 6¼i 11fai¼ajg
~hj;Di

~hHj;Di
. We then employ

a heuristic approach similar to [6] to obtain the adjustment

factor li as

li ¼
1

maxfkwib1k; kwib2k; . . .; kwibDi
kg : ð13Þ

Note that the multicell precoding scenario considered in

[10] is a special case of our proposed method. In this local

precoding scheme, each BS’s knowledge of CSI is limited

to the channel between itself and the MSs under its cov-

erage. Each BS’s CSI is obtained through a feedback

mechanism and maintained locally. By setting bth [ 1 in
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our system, the serving set of each MS will consist of its

home BS only and thus the system reduces to local pre-

coding. The performance of local precoding may be limited

since the neighboring BSs of an MS act only as a source of

interference without providing any useful data streams. The

performance comparison of local precoding and joint pro-

cessing is presented in Sect. 6.

4 Channel assignment for network MIMO

In this section, we present the game-theoretic formulation

of the self-organized channel assignment to realize the

network MIMO scheme described in Sect. 3. Our objective

is to devise a distributed channel assignment strategy that

takes into account the effect of ICI. We summarize our

notations related to the game formulation in Table 1.

4.1 Game-theoretic formulation

We model the channel assignment as a noncooperative

game with external state, expressed as a 4-tuple:

G ¼ H;N ; fAigi2N ; fuigi2N
� �

where H is the external state (channel state) space, N ¼
f1; . . .;Ng is the set of players (BSs), Ai ¼ f1; . . .;Kg is

the set of actions (selections of channels) that player i can

take, and ui is the ergodic utility function of player i

defined as the expected reward over the time-varying

channel state, i.e.,

uiðai; a	iÞ,EH riðai; a	i;HÞ½ � ð14Þ

where a	i represents the actions of other players except for i,

and ri : �i2NAi 7!R represents the instantaneous reward

function for player i under a given channel stateH. Note that

(14) does not require any specification of slow/fast fading or

frequency-flat/selective fading conditions of the channel.

Intuitively, the achievable capacity in (8) may be considered

as the reward function. However, we notice that in [19] the

interference terms related to the action of player i are treated

as the cost of player i, and the negation of summed cost is

defined as the reward. The advantage of this reward function

design lies in that, during the learning procedure, in addition

to maximizing its own rate, a player now also tends to min-

imize the interference generated to other players due to its

action. Therefore, implicit coordination can be achieved

even with a noncooperative game formulation. In this paper,

with the joint processing scenario and inspiration by [19], we

propose to design the reward function as

riðai;a	i;HÞ,	
XN

j¼1;j 6¼i

Ij!iþ
XN

j¼ 1;

Dj \Ci 6¼ ;

XN

m¼ 1;

m 6¼ i; j

Ij!m

2

666664

3

777775

ð15Þ

where

Ij!i,11fai¼ajg

~hTi;Dj
wj

			
			
2

~hTj;Dj
wj

			
			
2

ð16Þ

is the interference caused at MSi by the signal intended for

MSj normalized by the received signal power of MSj. The

considered reward function is composed of the I-values

that may vary when player i changes its action. The first

term in (15) accounts for the total interference caused at

MSi as a result of external BSs. In our design, the first term

represents the selfish motivation to minimize the sum of

incoming interference, which aligns closely with the

capacity function (8), i.e., the lower interference leads to

higher capacity. On the other hand, the second term in (15)

is the altruistic part of the reward function, which accounts

for the interference imposed on other MSs by the signal

intended for MSj when Dj \ Ci 6¼ ;. Note that this altruistic
term varies with player i’s action ai, since the precoder

design for a link j such that Dj \ Ci 6¼ ; is changed

whenever a different ai is adopted, as revealed in (9). The

two terms in (15) together characterize the overall effects

of interference due to the action ai. Consequently, maxi-

mizing the reward function will lead to an assignment of

subchannels that causes minimum interference impacts.

4.2 Analysis of Nash equilibrium

We assume that the players (i.e., the BSs) in the proposed

game are selfish and rational. In other words, they will

Table 1 Summary of notations in game-theoretic formulation

Symbol Meaning

H External state (channel state) space

H Random matrix for the channel state

N Set of players

Ai Set of actions of player i

si 2 Ai An element of Ai

aiðnÞ 2 Ai Action (channel assignment) of player i at slot n

a	iðnÞ 2 Ai Actions of players except for i at slot n

Pi :¼ DðAiÞ Set of probability distribution over Ai

piðnÞ 2 Pi Mixed strategy of player i at slot n

riðnÞ 2 R Instantaneous reward of player i at slot n

ûiðnÞ 2 R
jAij Estimated utility vector of player i at slot n

ð�i; giÞ Learning rates of player i

Wireless Netw (2015) 21:1211–1226 1215
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compete to maximize their individual utilities, i.e., maxi-

mizing their own throughput while reducing the interfer-

ence generated to others.

Definition 1 An action profile a� ¼ ða�1; . . .; a�NÞ is a pure
strategy Nash equilibrium (NE) point of the noncoopera-

tive game G if and only if no player can improve its utility

by deviating unilaterally, i.e.,

uiða�i ; a�	iÞ� uiðai; a�	iÞ; 8i 2 N ; 8ai 2 Ai n fa�i g:
ð17Þ

With the reward function defined in (15), we show the

existence of an NE point for the proposed game in the

following proposition.

Proposition 1 The proposed channel selection game G is

an exact potential game (EPG) with at least one pure

strategy NE point.

Proof For a channel assignment profile ðai; a	iÞ, consider
the following function U : �i2NAi 7!R for the game G:

Uðai; a	iÞ ¼ EH 	
XN

j¼1

XN

m¼1;m6¼j

Ij!m

" #

: ð18Þ

Observing that player i’s change does not affect the pre-

coder of MSj if Dj \ Ci ¼ ;, we define

r	iða	i;HÞ,	
XN

j ¼ 1;

Dj \ Ci ¼ ;

XN

m ¼ 1;

m 6¼ i; j

Ij!m:
ð19Þ

Considering a unilateral strategy for player i that changes

its action unilaterally from ai to �ai, we have

uið�ai; a	iÞ 	 uiðai; a	iÞ
¼ EH½rið�ai; a	i;HÞ� 	 EH½riðai; a	i; HÞ�
¼ EH½rið�ai; a	i;HÞ þ r	iða	i; HÞ�
	 EH½riðai; a	i;HÞ þ r	iða	i; HÞ�

¼ Uð�ai; a	iÞ 	 Uðai; a	iÞ:

ð20Þ

From (20) and by the definition of an EPG [30], G is an

EPG with U as its potential function and the existence of a

pure strategy NE point is guaranteed. h

One important property of a potential game is that the

interests of players align to a global objective: maximiza-

tion of the potential function. For example, with (18), the

players in G actually minimize the total cost in the system.

This property suggests the possibility of distributed learn-

ing toward the equilibrium. Note that a mixed strategy NE,

which is the type of equilibrium the learning algorithm

computes, always exists for a noncooperative finite game.

Furthermore, the convergence toward a pure strategy NE is

observed through numerical simulations, as to be presented

in Sect. 6.

We can easily extend the proposed channel assignment

game into a mixed strategy form as in [22]. Let piðnÞ ¼
½pi;1ðnÞ; . . .; pi;KðnÞ�T; 8i 2 N be the channel assignment

probability vector for player i, where pi;siðnÞ is the proba-

bility that player i selects strategy si 2 Ai at slot n. Then,

the mixed extension of utility function is defined on

�i2NPi, where Pi is the set of probability distribution over

the action space of player i. Let PðnÞ ¼ p1ðnÞ; . . .; pNðnÞ½ �
be the mixed strategy profile of G, we denote the mixed

extension of utility by wiðPÞ, i.e.,

wiðPÞ ¼
X

a1;...;aN

uiða1; . . .; aNÞ
YN

j¼1

pj;aj : ð21Þ

Let P	i be the mixed strategy of players except for player i,

we have the definition of NE in mixed strategy as follows.

Definition 2 A strategy profile P� is a mixed-strategy

Nash equilibrium (NE) point of the noncooperative game G
if and only if

wiðp�i ;P�
	iÞ�wiðpi;P�

	iÞ; 8i 2 N ; 8pi 2 Pi n fp�i g:
ð22Þ

Later in Sect. 5, a mechanism is studied to reach a Nash

equilibrium of the game.

4.3 Acquisition of the interference information

It is practically difficult to obtain the exact value of the

reward function in (15) for each player, as the calculation

of (15) relies on complete knowledge of CSI while the CSI

feedback is limited to only BSs in the coordination set. In

consideration of CSI availability and the geographic rela-

tionship of two MSs, it is useful to consider the following

approximation for practical implementation:

Ij!i 
 0; 8j 2 N s:t:Dj \ Ci ¼ ;: ð23Þ

Note that Dj \ Ci ¼ ; largely indicates that MSi and MSj
are geographically farther apart. Then, by combining the

two terms in (15), the instantaneous reward function in (15)

can be approximated by1

ri 
 	
XN

j¼1;Dj\Ci 6¼;
Ioutj ð24Þ

where

1 Note that with the approximated utility function the existence of a

pure strategy NE is no longer guaranteed theoretically. However, as

will be shown in Sect. 6, convergence to NE is observed numerically.
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Ioutj ¼
XN

m¼1;m 6¼j

Ij!m: ð25Þ

The expression in (25) defines the (normalized) outward

interference of player j. In other words, the reward function

of player i takes into account the players whose coordi-

nation set overlaps with the service set of player i. A two-

step protocol can therefore be established:

1. Each player j calculates its own Ioutj based on the CSI

feedback, and

2. Each player exchanges the information with other

players.

5 Stochastic learning-based channel assignment

algorithm

There has been much interest in designing learning

algorithms toward NE in noncooperative games. How-

ever, the external state (CSI) is unknown and the action

is selected by each player simultaneously and indepen-

dently in each play. Therefore, previous algorithms

requiring complete information and implicit ordering of

acting players (e.g., those based on better response

dynamics [30] and fictitious play [31]) may not be

feasible in our self-organized multicell resource alloca-

tion problem. In this section, we develop a distributed

SL-based algorithm where the BSs move toward the

equilibrium strategy profile based on their individual

action-reward history. Our algorithm adopts a two-time-

scale stochastic approximation [32] with the utility

update step based on [33] and the action selection

scheme based on [34]. For further discussions of the

SL-based algorithm related to this work, the reader is

referred to [26, 35–37], as well as [38] for a compre-

hensive literature review.

5.1 Algorithm description

The proposed SL-based channel assignment algorithm is

described in Algorithm 1. In each play, the channel is

selected based on the probability distribution over the set of

channels. At the completion of each play, a player obtains

the instantaneous reward and updates the estimated utility

vector ûiðnÞ as well as the channel assignment probability

vector piðnþ 1Þ for the next play, according to the update

rules specified in (26). A straightforward interpretation of

the rules is that the utility estimation serves as a rein-

forcement signal so that higher utility (lower cost) leads to

higher probability in the next play. Notably, the proposed

learning algorithm is distributed: the channel assignment is

done by each player based on the individual action-reward

experience, instead of a joint decision. Moreover, although

the SL-based algorithm proposed in [22] also converges to

NE points for potential games, its probability update rule

requires the normalization of the instant reward such that

its value will lie in ½0; 1�. This requirement of normaliza-

tion makes the algorithm inapplicable when the extreme

values of reward functions are unavailable. This restriction

however does not apply to the proposed algorithm due to a

different probability update rule.

Note that the complexity of the proposed SL-based

channel assignment algorithm is dominated by the com-

putation of the precoding vector to find the reward function

(Step 3 of Algorithm 1) for a number of iterations before

convergence (Step 4 of Algorithm 1). The expected con-

vergence time is roughly proportional to the initial value of

the potential function and inversely proportional to the

learning rates [39]. The convergence time also depends on

other factors such as the number of players, since the

Lyapunov function (i.e., the negative potential function) of

the potential game is the sum of normalized interference

over all players.
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5.2 Convergence properties of the proposed algorithm

Convergence toward NE points is an important feature of

the proposed learning algorithm. Similar to the discussions

in [22] and [20], here we theoretically demonstrate the

convergence properties of the proposed SL-based algo-

rithm. First, by using the ordinary differential equation

(ODE) approximation we characterize the long-term

behavior of the sequence fPðnÞg. Second, we establish a

sufficient condition for the arrival at NE points for the

proposed learning algorithm and prove that the game G
satisfies this condition.

Proposition 2 With sufficiently small �i and gi, the

piecewise linearly interpolated process of the sequence

pi;siðnÞ is bounded with high probability within arbitrarily

small vicinity of the flow induced by the following

ODE:

dpi;siðtÞ
dt

¼ pi;siðtÞ wiðesi ;P	iÞ 	 wiðPÞ½ � ð27Þ

where esi is a unit probability vector (of appropriate

dimension) with the si-th component being unity and all

others zero. The initial condition is given by Pð0Þ ¼ P0,

where P0 is the initial channel assignment probability

matrix.

Proof See [40], Sect. 4.3]. h

Note that the ODE in (27) is the replicator equation [38]

in which the probability of taking one strategy grows if this

strategy’s current estimated utility is larger than the aver-

age utility over all strategies and declines otherwise.

Compared to the best response dynamics [30] where a

player changes its strategy in the next iteration to the best

action according to other players’ action, with the repli-

cator dynamics, a player selects an action according to a

probability distribution over the action set, and adjusts the

weighting for each possible action in each iteration based

on the estimated utility.

Proposition 3 The replicator dynamics have the follow-

ing properties: [38]

1. All Nash equilibria are stationary points;

2. All (Lyapunov) stable stationary points are Nash

equilibria. More generally, any stationary point that

is the limit of a path that originates in the interior is a

Nash equilibrium.

Proposition 3 is an instance of the Folk theorems in

evolutionary game theory [38], and these properties follow

directly from the replicator equation in (27). For an intui-

tive explanation, observe that wiðesi ;P	iÞ is the expected

reward function of player i if it employs pure strategy si
while other player j; 8j 2 N ; j 6¼ i employs a mixed strat-

egy pj. From the definition of Nash equilibrium, the

condition

wiðes�i ;P
�
	iÞ ¼ wiðP�Þ; 8i 2 N ; si 2 Aiwithp

�
i;si

[ 0

ð28Þ

must hold for an NE strategy profile P�. Therefore any

Nash equilibrium must lead the right-hand side of (27) to

zero, and thus constitutes a stationary point of (27). It is

worth noting that, for a mixed-strategy NE, all survived

pure strategies (i.e. si with pi;si [ 0) of player i perform

equally well when other players follow the mixed strategy

P�
	i.

Proposition 2 investigates the convergence behavior of

the discrete-time learning algorithm toward the trajectory

of the replicator dynamics (27), and Proposition 3 states the

relation between the stationary point of the trajectory and

NE. Next, we study the sufficient condition for the con-

vergence of the learning algorithm toward NE in the fol-

lowing two propositions.

Proposition 4 Suppose that there exists a bounded dif-

ferentiable function W : RjAj ! R such that

Wðesi ;P	iÞ ¼
oWðPÞ
opi;si

; 8i ð29Þ

is positively correlated with wiðesi ;P	iÞ in the sense that

wðesi ;P	iÞ 	 wðes0
i
;P	iÞ[ 0 if and only if

Wðesi ;P	iÞ 	Wðes0
i
;P	iÞ[ 0. Then, the SL-based algo-

rithm converges weakly to an NE point of a noncooperative

game.

Proof See the Appendix. h

Proposition 4 establishes a sufficient condition that

guarantees the convergence toward NE. In what follows,

we prove that the proposed channel assignment game G
satisfies this condition and hence it converges weakly to an

NE point by using the SL-based channel assignment

algorithm.

Proposition 5 When applied to EPGs, the proposed SL-

based channel assignment algorithm converges weakly to

an NE point.

Proof For EPGs, let WðPÞ be the mixed extension of the

potential function,

WðPÞ ¼
X

a1;...;aN

Uða1; . . .; aNÞ
YN

j¼1

pj;aj : ð30Þ

From (20), we have
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Wðes0
i
;P	iÞ 	Wðesi ;P	iÞ ¼ wiðes0i ;P	iÞ 	 wiðesi ;P	iÞ;

8i 2 N ; si; s
0
i 2 Ai; ð31Þ

which satisfies the condition in Proposition 4 and com-

pletes the proof. h

Remarks

1. The weak convergence in Proposition 4 is in the sense

of convergence in law (i.e., convergence in distribu-

tion) [41, p. 329].

2. Since the ordinal potential game (OPG) [30] satisfies

the condition in Proposition 4, the proposed learning

procedure can be applied to problems formulated as

OPG, not just EPG.

3. Propositions 4 and 5 coupled with the Folk theorem for

multi-population games [38] guarantee convergence

toward a pure-strategy NE.

4. The learning rates (step sizes) ð�i; giÞ play an important

role in the convergence behavior of the SL-based

learning algorithm. In particular, smaller step sizes

lead to a slower convergence. The choice of learning

rates poses a trade-off between accuracy and speed,

and may be determined by training in practice.

5. While the stochastic learning process with decreasing

step sizes will converge with probability one, a

constant step size is useful and often preferable in

engineering applications to achieve faster convergence

[42]. The stochastic approximation with constant step

size does not guarantee that the linearly interpolated

process is an asymptotic pseudo-trajectory , a notion

introduced by Benaı̈m and Hirsch [43] for analyzing

the long term behavior of stochastic approximation

processes with decreasing step size, of the flow

induced by the ODE (27). However, the considered

stochastic learning algorithm with a small constant

step size still admits weak convergence in the sense

that with probability close to 1, as the step size

approaches zero, the linearly interpolated process of

the update rule for the channel selection probability

will track the trajectories of the ODE (i.e., the

replicator dynamics equation) with an error bounded

above by some arbitrarily small fixed positive real

value. More details can be found in [22, Remark 3.1]

[44, Theorem 2.3] [45].

6 Numerical results and discussions

In this section, our theoretical developments are numeri-

cally verified in hexagonal cellular networks as well as

distributed networks of random geometry. Universal fre-

quency reuse is adopted in our link-level simulations. The

simulation setup follows the 3GPP model [46] and is

summarized in Table 2.

6.1 Convergence behaviors of the proposed learning

algorithm

We plot the evolution of the channel assignment proba-

bility (i.e., the mixed strategies) of the proposed stochastic

learning algorithm for four arbitrarily selected players in

Fig. 2. It is observed that, with equal initial probabilities,

the channel assignment probabilities converge to a pure

strategy in around 200–300 iterations. For other players in

the game which are not shown, a similar convergence

result is also observed. Note that the learning stage is

generally a minor and manageable overhead inherent to

any learning-based algorithm, as the time required for

convergence is typically a small fraction of the total

operation time.

Figure 3 shows the evolution of the estimated cost

vector (i.e., 	ûi) of two selected players. As can be seen,

the BSs tend to select the channel with lower estimated cost

(solid lines). Figures 2 and 3 demonstrate that, with high

probability, mutually interfering cells can coordinate their

transmissions on different channels even without

negotiations.

Table 2 The simulation setup

Cellular parameters

Number of cells, N 19 (wrap-around)

Cell radius, RBS 500 m

Min. MS to home BS distance 0:7RBS

Number of Tx antennas, Nt 2

OFDMA parameters

FFT size 128

Carrier frequency 2 GHz

Subcarrier spacing 15 kHz

Number of subchannels 6

Number of subcarriers per subch. 12

Subch. for network MIMO mode Subch. 1 & 2 (K ¼ 2)

Channel model parameters

PathLoss (dB) 34:5þ 35 log10 d (d in m)

Shadowing SD 8 dB

Speed of MSs 3 km/h

Fast fading Ray-based model (Sect. 5 of [46])

Power control parameters

Trans. power 46 dBm

Thermal noise power 	174 dBm/Hz

Other parameters

Thresholds for coordination ath ¼ 0:1, bth ¼ 0:3 (default)

Learning rates �i ¼ gi ¼ 0:1;8i 2 N

Wireless Netw (2015) 21:1211–1226 1219

123



We verify the (mean-field) NE property by testing the

deviation of the channel assignment of each of the 19

players. The results shown in Fig. 4 are time-averaged

values starting from the slot where the pure strategy can be

identified until the end of simulation. It is shown in Fig. 4a

that for all players a unilateral deviation produces higher

(time-averaged) cost; in other words, the learning algo-

rithm converges to an NE point. This suggests that with the

approximated instantaneous reward function in (24) con-

vergence to NE is observed numerically. In addition, we

test the change of (time-averaged) capacities under uni-

lateral deviation. As can be seen from Fig. 4b, for most

MSs a deviation from the NE strategy reduces their own

capacity, which is calculated using (8) and time-averaged.

Finally, as depicted in Fig. 4c, there is no significant

change on the average capacity when only one player

unilaterally deviates from the NE strategy.

6.2 Capacity performance for different channel

assignment strategies

Here, we compare the capacity performance of the pro-

posed channel assignment strategy with two other methods,

namely, the random allocation and centralized selection,

which are described as follows:

• In the random allocation scheme, each BS randomly

selects a channel for its MS in each frame. No learning

algorithm is implemented.

• In the centralized selection scheme, it is assumed that

there exists a centralized controller which knows all

system information including the channel gains, the

channel availability statistics, and the number of BSs.

The channel assignment profile is determined by

minimizing the total number of mutually interfering

links, i.e.,

aexh = argmin
a∈A

N

i=1

N

j∈Ci , j i
1l{ai=a j }. ð32Þ

Figure 5 compares the cumulative distribution function

(CDF) of the average cell capacity in each time slot for

different channel assignment strategies. As can be seen, the
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proposed learning algorithm significantly outperforms the

random selection approach and performs close to the cen-

tralized selection approach. This demonstrates the pro-

posed learning algorithm’s ability to allocate mutually

interfered players on different channels in its convergence

toward the NE point.

6.3 Capacity performance and fairness for different

precoding schemes

As mentioned in Sect. 3.2, local precoding is a special case

of joint processing. Here, we investigate the impact of

different precoding schemes on the performance of the

proposed learning algorithm. The average per-MS capaci-

ties for different combinations of channel assignment and

precoding schemes are summarized in Table 3. For the

proposed learning algorithm, it is shown that joint pro-

cessing yields 10–30 % improvement over local precoding

across different channel assignment strategies. The results

also suggest that a lower threshold bth will lead to a higher

average cell capacity, since when joint processing is

adopted nearby cells serve the MS instead of simply mit-

igating its interference. Besides, we observe an increased

capacity gap between the random selection and the cen-

tralized selection when joint processing is applied. This is

because in joint processing a neighboring BS becomes a

serving BS, and when adjacent cells are using the same

subchannel the signal for another MS becomes a strong

interference source.

In addition to the average per-MS capacity, the fairness

among players is examined. Fairness of resource allocation

is usually measured by the Jain’s fairness index (JFI) [47]

which is defined as

J ¼
PN

i¼1
�Ri

� 
2

N
PN

i¼1
�R2
i

ð33Þ

where �Ri is the time-averaged capacity of player i over the

whole simulation. The value of JFI falls in ½1=N; 1�, and a

higher JFI value represents better fairness. The JFI of the

three channel assignment strategies are summarized in

Table 4. As can be seen, the random selection scheme, due

to its fully randomized nature, achieves the best fairness in

terms of the time-averaged cell capacity while the other

two channel assignment strategies are also reasonably fair.

6.4 Performance results for distributed networks

with random geometry

The proposed learning algorithm can be implemented in

any network with universal frequency reuse. Here, we

consider the scenario where the transmission links are

randomly placed, which reflects the typical network

topology of distributed networks (e.g., cognitive radio and

femtocell networks). We generate a topology of 10 links,

with the transmitters randomly distributed inside a 1 km by

1 km square area and each receiver located at a distance of

120–150 m away from its transmitter. The transmission

power is set to P0 ¼ 23 dBm, with pathloss and shadowing

given by the line-of-sight (LOS) urban-micro model [46].

Other simulation parameters follow those in Table 2. A

snapshot of the network topology is shown in Fig. 6. Only

local precoding is considered in this scenario, since joint

processing requires backhaul communications among

transmitters, making its implementation difficult in dis-

tributed networks.

The evolution of the mixed strategies is depicted in Fig. 7.

The convergence toward the pure strategy is clearly observed.

In addition, a comparison of different players shows that the

convergence behavior is highly related to the interference

condition of individual links. For relatively isolated players

(e.g., link 9), it takes longer time to converge. In contrast, for

players in crowed regions (e.g., links 2, 5, and 6), the con-

vergence is generally faster but with large variation. This can

be explained through the proposed reward function. Observe

that in the definition in (15), higher interference means higher

cost. Thus, the difference between the cost of choosing

channels is smaller for isolated links than for links in crowded
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Fig. 5 Comparison of the achievable capacity for three channel

assignment strategies when joint processing is adopted

Table 3 Capacity per MS (bps/Hz) for different combinations of

channel assignment and precoding schemes

Precoding Learning Random Centralized

Local precoding 1.6476 1.5246 1.7006

Joint processing, bth ¼ 0:5 1.8406 1.6924 1.8993

Joint processing, bth ¼ 0:3 2.1052 1.8835 2.1811
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region. The multiplicative-weights update rule makes a larger

probability adjustment in each step in the latter case, resulting

in a faster convergence.

Figure 8 shows the convergence behavior of the channel

selection by stochastic learning with decreasing learning

rates (step sizes), as opposed to constant learning rates in

the proposed method. The decreasing learning rates are set

to

giðnÞ ¼ �iðnÞ ¼
100

nþ 999
; n� 1 ð34Þ

which start from 0:1 as in the case of constant learning

rates. All other parameter settings follow those in Fig. 7.

We can see from Figs. 7 and 8 that both learning proce-

dures converge to the same NE point, although the algo-

rithm with decreasing learning rates takes longer to

converge.

The performance of the proposed learning algorithm is

shown in Fig. 9. Figure 9a compares different channel

assignment strategies and shows that the learning algorithm

outperforms the random selection. Specifically, for highly

interfered users, the proposed algorithm significantly

improves the capacity compared to random selection.

Comparing centralized selection with the proposed algo-

rithm, we observe their mixed performance across links

with a comparable average capacity. Note that the pro-

posed learning algorithm finds an NE which coincides with

a local maximum of the potential function (i.e., a local

minimum of the sum interference), and the centralized

selection scheme finds the minimum of the sum number of

interfering links. The two objectives are different but

aligned with each other, resulting in the comparable per-

formance as numerically demonstrated in Fig. 9a.2 The test

of deviation from the NE property is conducted and the NE

property is again verified in Fig. 9b. The increase of cost

due to unilateral deviation from NE is significant for highly

interfered (crowded) players and slight for isolated players.

These observations show that the proposed learning algo-

rithm is effective in networks with random geometry for all

kinds of interference conditions.

7 Conclusion

We have studied the problem of distributed channel

assignment in multicell network MIMO systems with time-

varying channel and unknown number of BSs through a

game-theoretic approach. We have proposed a practical

joint processing scheme where each MS is jointly served

by a set of nearby BSs. We have formulated the channel

assignment problem as a noncooperative game where the

reward function was properly defined so that the BSs

implicitly coordinate their channel assignments. The game

was also shown to be an exact potential game. To achieve

Table 4 JFI (33) for different combinations of channel assignment

and precoding schemes

Precoding Learning Random Centralized

Local precoding 0.8507 0.9034 0.8530

Joint processing, bth ¼ 0:5 0.8847 0.9280 0.8809

Joint processing, bth ¼ 0:3 0.8903 0.9371 0.9034
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Fig. 7 Evolution of the mixed strategies of four selected players

when local precoding is applied to the distributed network

2 Note that Fig. 5 simulates a different topology and shows a slightly

different comparison result. However, both Figs. 5 and 9a demon-

strate the efficacy of the proposed distributed learning method as

compared to a centralized scheme.
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the Nash equilibrium strategy, we have proposed a sto-

chastic learning-based distributed algorithm by which each

cell adjusts its channel assignment strategy simultaneously

in each iteration without the ordering by any coordinator,

according to its action-reward history. The convergence

property of the proposed algorithm in achieving an NE

point was theoretically proven and numerically verified for

different network scenarios. The performance of the pro-

posed algorithm in terms of the achievable capacity and

fairness was also examined.

The proposed learning-based channel assignment

method has been applied to cellular and distributed net-

works with multiple antennas. This work may be extended

by considering networks consisting of base stations with

heterogeneous capabilities in terms of coverage, spectrum,

number of antennas, and so on. When heterogeneous base

stations are involved in a network, new limiting factors

such as different processing capabilities and non-ideal

backhaul connections must be considered in the base sta-

tion cooperation and interactions. While the problem for-

mulation can be more challenging, we believe that the

learning-based methodology for distributed channel

assignment can be applied in these extended scenarios.

Other open challenges include the consideration of mobile

stations with high mobility, the impact of imprecise or

quantized channel feedback, etc.

Proof of proposition 4

The Proposition is proved by investigating the nonde-

creasing and upper-bounded properties of W along the

trajectory of the ODE in (27). First, we rewrite the ODE in

(27) as follows:

dpi;siðtÞ
dt

¼ pi;siðtÞ
X

s0
i
2Ai

pi;s0
i
ðtÞ wiðesi ;P	iÞ 	 wiðes0i ;P	iÞ

h i
:

ð35Þ

Given that Wðesi ;P	iÞ ¼ oWðPÞ=opi;si is positively corre-

lated with wiðesi ;P	iÞ, and let Di;si;s
0
i
¼ wiðesi ;P	iÞ	

wiðes0i ;P	iÞ, Ei;si;s
0
i
¼ Wðesi ;P	iÞ 	Wðes0

i
;P	iÞ, we may

write

Di;si;s
0
i
[ 0 , Ei;si;s

0
i
[ 0: ð36Þ

By applying (35) and (36), the derivation of WðPÞ with

respect to t is given by

dWðPÞ
dt

¼
X

i2N

X

si2Ai

oWðPÞ
opi;si

dpi;si
dt

¼
X

i2N

X

si;s
0
i
2Ai

pi;sipi;s0iWðesi ;P	iÞ � Di;si;s0i

¼ 1

2

X

i2N

X

si; s
0
i 2 Ai

si\s0i

pi;sipi;s0iEi;si;s
0
i
� Di;si;s

0
i

� 0

ð37Þ

where the last inequality holds since given the condition in

(36), Di;si;s
0
i
and Ei;si;s

0
i
always have the same sign.
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when local precoding is applied to the distributed network, with

decreasing learning rates
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Thus, W is nondecreasing along the trajectories of the

ODE, and asymptotically all the trajectories will be in the

set fP 2 P : dWðPÞ
dt ¼ 0g. From (35) and (37), we know

dWðPÞ
dt

¼ 0

) pi;sipi;s0i wiðesi ;P	iÞ 	 wiðes0i ;P	iÞ
h i2

¼ 0; 8i; si; s0i

) dpi;si
dt

¼ 0; 8i; si; s0i
) P� is a stationary point of the ODE ð27Þ:

ð38Þ

According to Proposition 3, when starting from an interior

point of the simplex of the mixed strategy space P, the
trajectory of the ODE in (35) converges to a stable sta-

tionary point, i.e., an NE. Then, by Proposition 2, the lin-

early interpolated process of the strategy update pi;siðnÞ is
bounded within the neighborhood of the trajectory of (35).

Thus, we complete the proof [22, Theorem 3.3].
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algorithms. Séminaire de Probabilités XXXIII, 1709, 1–68.

44. Beneveniste, A., Metivier, M., & Priouret, P. (1987). Adaptive

algorithms and stochastic approximations. Berlin: Springer.

45. Benaı̈m, M., & Hirsch, M. W. (1999). Stochastic approximation

algorithms with constant step size whose average is cooperative.

The Annals of Applied Probability, 9(1), 216–241.

46. 3GPP. (2011). Spatial channel model for multiple input multiple

output (MIMO) simulations (release 10). 3gpp technical report (tr

25.996) v10.0.0, March 2011.

47. Jain, R., Chiu, D., & Hawe, W. (1984). A quantitative measure of

fairness and discrimination for resource allocation in shared

computer systems. DEC Research Report TR-301.

Li-Chuan Tseng received the

B.S. and the Ph.D. degree from

National Chiao-Tung Univer-

sity, Hsinchu, Taiwan, in 2005

and 2013, respectively, both in

electronics engineering. He

joined MediaTek Inc., Hsinchu,

Taiwan, in 2013. His research

interests include cooperative

commnication systems, game

theoretic resource allocation,

and wirless communication

standardization.

Feng-Tsun Chien received the

B.S. degree from National Tsing

Hua University, Hsinchu, Tai-

wan, in 1995, the M.S. degree

from National Taiwan Univer-

sity, Taipei, Taiwan, in 1997,

and the Ph.D. degree from the

University of Southern Califor-

nia, Los Angeles, CA, USA, in

2004, all in electrical engineer-

ing. He joined the Department

of Electronics Engineering,

National Chiao Tung Univer-

sity, Hsinchu, in July 2005 as an

Assistant Professor. His current

research interests include wireless communications, statistical signal

processing, game theoretic resource allocation, and network infor-

mation theory. He has been serving as a Technical Program Com-

mittee Member in ICC (2009-2015), GLOBECOM (2009-2014),

WCNC (2010-2015), and PIMRC (2011-2014) and is currently the

treasurer of the IEEE Vehicular Technology Society, Taipei Chapter.

Ronald Y. Chang received the

B.S. degree in electrical engi-

neering from National Tsing

Hua University, Hsinchu, Tai-

wan, in 2000, the M.S. degree in

Electronics Engineering from

National Chiao Tung Univer-

sity, Hsinchu, in 2002, and the

Ph.D. degree in Electrical

Engineering from the University

of Southern California, Los

Angeles, CA, USA, in 2008.

From 2002 to 2003, he was

with the Industrial Technology

Research Institute, Hsinchu. In

2008, he was a Research Intern at the Mitsubishi Electric Research

Laboratories, Cambridge, MA, USA. In 2009, he worked on NASA

Small Business Innovation Research projects. Since 2010, he has been

with the Research Center for Information Technology Innovation,

Academia Sinica, Taipei, Taiwan, where he is currently an Assistant

Research Fellow. His research interests include wireless communi-

cations and networking. He was an Exemplary Reviewer for the IEEE

Communications Letters in 2012, and a recipient of the Best Paper

Award from the IEEE Wireless Communications and Networking

Conference 2012. He has contributed to various conferences as a

Technical Program Committee Member, including the IEEE Inter-

national Conference on Communications 2012, 2013, and 2015.

Wireless Netw (2015) 21:1211–1226 1225

123

http://arxiv.org/abs/1303.2270


Wei-Ho Chung received the

B.Sc. and M.Sc. degrees in

Electrical Engineering from the

National Taiwan University,

Taipei, Taiwan, in 2000 and

2002, respectively, and the

Ph.D. degree in Electrical

Engineering from the University

of California, Los Angeles, in

2009. From 2002 to 2005, he

was a system engineer at

ChungHwa Telecommunica-

tions Company, where he

worked on data networks. In

2008, he worked on CDMA

systems at Qualcomm, Inc., San Diego, CA. His research interests

include communications, signal processing, and networks. Dr. Chung

received the Taiwan Merit Scholarship from 2005 to 2009 and the

Best Paper Award in IEEE WCNC 2012, and has published over 40

journal articles and over 50 conference papers. Since January 2010,

Dr. Chung has been an assistant research fellow, and promoted to the

rank of associate research fellow in January 2014 in Academia Sinica.

He leads the Wireless Communications Lab in the Research Center

for Information Technology Innovation, Academia Sinica, Taiwan.

ChingYao Huang received the

B.S. degree in physics from

National Taiwan University,

Taipei, Taiwan, in 1987 and the

Master and Ph.D. degrees in

Electrical and Computer Engi-

neering from New Jersey Insti-

tute of Technology (NJIT),

Newark, and Rutgers Univer-

sity, the State University of New

Jersey, New Brunswick, in 1991

and 1996, respectively. He

joined AT&T, Whippany, NJ,

and then Lucent Technologies

in 1996 as a Member of Tech-

nical Staff. In 2001 and 2002, he was an Adjunct Professor with

Rutgers University and NJIT. In 2002, he joined the Department of

Electronics Engineering, National Chiao Tung University, HsinChu,

Taiwan, where he is currently an Associate Professor and the Director

of the Technology Licensing Office and Incubation Center. He has

served as Editor for the ACM Wireless Networks and Recent Patents

on Electrical Engineering. He has published more than 60 technical

memorandums, journal papers, and conference proceeding papers. He

is the holder of 16 patents. His research interests include wireless

medium access controls for cellular, wireless body area networks, and

wireless machine-to-machine communications. Dr. Huang was the

Technical Chair for the International Symposium of Medical Infor-

mation and Communication Technology in 2010. He was the recipient

of the Bell Labs Team Award from Lucent Technologies in 2003, the

Best Paper Award from the IEEE Vehicular Technology Conference

in Fall 2004, and the Outstanding Achievement Award from National

Chiao Tung University during 2007-2011.

Abdelwaheb Marzouki received
the Ph.D. degree in signal pro-

cessing from the Université des
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