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Abstract Wireless sensor networks (WSNs) have

recently received increasing attention in the areas of

defense and civil applications of sensor networks. Auto-

matic WSN fault detection and diagnosis is essential to

assure system’s reliability. Proactive WSNs fault diagnosis

approaches use embedded functions scanning sensor node

periodically for monitoring the health condition of WSNs.

But this approach may speed up the depletion of limited

energy in each sensor node. Thus, there is an increasing

interest in using passive diagnosis approach. In this paper,

WSN anomaly detection model based on autoregressive

(AR) model and Kuiper test-based passive diagnosis is

proposed. First, AR model with optimal order is developed

based on the normal working condition of WSNs using

Akaike information criterion. The AR model then acts as a

filter to process the future incoming signal from different

unknown conditions. A health indicator based on Kuiper

test, which is used to test the similarity between the

training error of normal condition and residual of test

conditions, is derived for indicating the health conditions of

WSN. In this study, synthetic WSNs data under different

cases/conditions were generated and used for validating the

approach. Experimental results show that the proposed

approach could differentiate WSNs normal conditions from

faulty conditions. At last, the overall results presented in

this paper demonstrate that our approach is effective for

performing WSNs anomalies detection.

Keywords Anomaly detection � Autoregressive model �
Kuiper test � Wireless sensor network

1 Introduction

Recently, wireless sensor networks (WSNs) have emerged as

an important technology for different research areas [1, 2].

There is also an increasing deployment of WSNs to provide a

rich and multi-dimensional view on different environments

ranging from military, scientific, and commercial applica-

tions [1]. A WSN typically consists of a large number of

small size, inexpensive, and low-power sensor nodes work-

ing together to monitoring and measuring the environment

surrounding data. Most often, these sensor nodes are

deployed in a harsh environment, under which sensor nodes

are vulnerable to become physically damaged, environ-

mentally interfered, and power depleted. With a large

amount of data being acquired by each sensor node, the cost

of transmitting collected data to sink node is expensive and

congestion may often happen amid data transfer [3–7]. In a

large-scale WSN, it is always demanding to have cost and

energy effective fault management solution at the same time.

In order to enhance the overall reliability of system with

limited power consumption, the aim of this study is to detect

anomalies and faults during WSN operations. The signal

used for the analysis and detection is based on the operation
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information provided by the Zigbee communication protocol

[8, 9].

There are numerous studies on anomaly detection and

fault diagnosis in industrial electronics [10–16], but these

studies are mostly less focused on WSNs [17]. Due to the

self-organizing and ad-hoc working mechanism of WSNs, it

is often difficult to observe the structures, interactions, and

operations of WSNs from an external monitoring system.

Existing approaches for performing fault diagnosis of WSN

are mostly proactive [10, 11, 18–22], because they can be

embedded in a system to perform faulty sensor nodes

detection and periodically health condition scan. For

example, Luo et al. [23] propose a fault-tolerant detection

scheme to address the problem of measurement error and

sensor fault. In their proposed method, they also employ a

technique of optimizing the neighborhood size aimed at

relieving the problem of limited-energy in each sensor node.

A cross-validation-based technique is proposed to detect

sensor faults on-line [24]. Zhao et al. [25] propose a residual

energy scan (eScan) technology that can provide an over-

view of the energy resource distribution for WSNs health

conditions monitoring. A more recent technique, called

Sympathy, enables WSNs to collect system metrics corre-

sponding to the information of connectivity and data flow for

detecting and analyzing sensor nodes failures [26]. Despite

exhibiting effective performance on monitoring sensors

conditions, these proactive approaches often lead to an

undesirable effect of speeding up the energy depletion,

which subsequently results in reducing the lifespan of the

whole WSNs.

In order to overcome the disadvantages of proactive

approaches, passive diagnosis techniques that do not incur

additional energy consumption on WSN nodes and extra

traffic loading on the whole network appear to have sig-

nificant advantages. Zaidi et al. [27] introduce a passive

diagnosis scheme based on principal component analysis

(PCA) and Chi square test to detect WSNs anomalies real

time. Liu et al. propose an online passive approach based

on probabilistic inference model to diagnose WSNs from

the data collected at the sink node. Zhao et al. [28] perform

sensor nodes diagnosis via analyzing the output signals of

WSNs by chaos particle swarm optimization (PSO) algo-

rithm and support vector machine (SVM). They show their

proposed approach is able to obtain a relative high detec-

tion accuracy compared to other methods, such as PSO–

SVM and back-propagation neural networks. However,

compared with the studies on the proactive approaches, the

studies on passive diagnosis approaches for WSN are

limited. Recent research findings show approaches based

on non-parametric test and autoregressive (AR) model are

useful in machine health monitoring [29–31]. As AR model

is well known for being able to filter out faulty system

affected signal effectively, and non-parametric test is also

reliable for classifying different operation conditions, we in

this paper propose a passive diagnosis approach based on

non-parametric test and AR model for anomaly detection

of WSNs. Specifically, an AR model with optimal order of

normal data is firstly built. It then acts as a filter to process

the testing data for highlighting the fault-affected signals

for comparative analysis. The difference between training

error of normal condition and residual of test conditions is

compared by using Kuiper test (a non-parametric test) and

the degree of healthiness or faultiness is measured by a

statistical distance. Anomaly detection is conducted by

comparing the statistical distances corresponding to dif-

ferent conditions. Our proposed method will not pose

additional energy loading to each sensor; it will only be

deployed at the sink node which is the central control

center where energy supply is never a concern, Hence,

energy consumption of our approach is not a problem.

The contribution of this paper can be summarized as

follows: A new WSN passive diagnosis approach is intro-

duced. Health indicator based on Kuiper test is proposed to

indicate the health conditions of WSNs. Extensive syn-

thetic WSNs data is used to validate the effectiveness of the

method. Simulation results show health indicator exhibits

better performance compared to standard statistical

parameters. It is also found that Kuiper’s statistic has the

best performance in a way that the separation between

faulty condition and referenced normal condition of WSNs

is clear, which is useful for anomaly detection.

The rest of this paper is organized as follows. In Sect. 2,

Theoretical background of the Kolmogorov–Smirnov (K–S)

test, Kuiper test, and AR model are briefly reviewed.

Numerical simulation of WSN and the proposed approach

for WSN fault diagnosis are introduced in Sect. 3. Diagnosis

of the congestion in WSNs and anomaly detection of fault

nodes in WSNs are reported and discussed in Sects. 4 and 5,

respectively. Finally, the conclusions are drawn in Sect. 6.

2 Theoretical background

This section presents a brief overview of the methods used

in the article: K–S test, Kuiper test, and AR model. AR

model is used to filter out normal signals for highlighting

fault-affected signals. The signals are compared between

using K–S test and Kuiper test for measuring the similari-

ties. The fundamental and detailed information of these

methods are well described in Kay [32] and Press et al. [33].

2.1 Kolmogorov–Smirnov test and Kuiper test

Non-parametric tests: K–S test and Kuiper test, which are

distribution free tests, are statistical methods used for

determining if two given distributions are similar or
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significantly different. With the test results, it is theoreti-

cally possible to compare test states with known healthy

states. As a result, we are able to determine whether or not

they are statistically similar. Note that the application of

non-parametric test for fault diagnosis assumes that the

anomalies, such as failure of nodes and congestion, happen

in WSNs causing a variation in the cumulative distribution

function (CDF) of the data travel time (TT) series.

Suppose the CDF of a sample is FN(x) and x1, x2, …, xN

are independent and identically distributed (iid) random

variables, and then the empirical CDF can be defined as

FNðxÞ ¼
number of elements� x

N
ð1Þ

For comparing two different CDFs FN1
ðxÞ and FN2

ðxÞ,
the K–S statistic D quantifies the maximum value of the

absolute difference between them. Thus, the K–S statistic

is defined as follows:

D ¼ max
�1\x\1

FN1
ðxÞ � FN2

ðxÞj j ð2Þ

The mathematical function for variable D to compute

probability is defined as follows:

QKSðkÞ ¼ 2
X1

i¼1

�1ð Þi�1
e�2i2k2

ð3Þ

where k ¼
ffiffiffiffiffi
Ne

p
þ 0:12þ 0:11ffiffiffiffi

Ne

p
� �

D and Ne ¼ N1N2

N1þN2
, where

Ne is the effective number of the data points, and N1 and N2

are the number of data point in the first and second dis-

tribution respectively. QKS(k) is a monotonic function with

limits QKS(0) = 1 and QKS(?) = 0.

The main characteristic of K–S test is that it is invariant

of the scale x. It tends to be more sensitive around the

median value, and less sensitive at the extreme ends of the

distribution. Differentiating small changes is difficult and

remains to be a major challenge [29]. One way to improve

the performance of K–S test on the tails is to replace D by a

so-called stabilized statistic, such as Kuiper’s statistic [33],

which is defined as

V ¼ Dþ þ D�
¼ max
�1\x\1

½FN1
ðxÞ � FN2

ðxÞ� þ max
�1\x\1

½FN2
ðxÞ

� FN1
ðxÞ� ð4Þ

Mathematical function for variable V for computing the

probability is defined as follows:

QKPðkÞ ¼ 2
X1

i¼1

4i2k2 � 1
� �

e�2i2k2

ð5Þ

where k ¼
ffiffiffiffiffi
Ne

p
þ 0:155þ 0:24ffiffiffiffi

Ne

p
� �

V and Ne ¼ N1N2

N1þN2
, where

Ne is the effective number of the data points, and N1 and N2

are the number of data point in the first and second dis-

tribution respectively. QKP(k) is a monotonic function with

limits QKP(0) = 1 and QKP(?) = 0. In this article, K–S

statistic, D, and Kuiper’s statistic, V, have been taken and

compared for decision-making.

2.2 Autoregressive model

AR model specifies the linear relationship between output

variable and its own previous values describing the random

process in nature [30, 31, 34]. The AR model is defined as

below:

x½n� ¼
Xp

i¼1

a½i�x½n� i� þ e½n� ð6Þ

where a[i] is the coefficients of the model, p is the order of

AR model, and e[n] is the white noise with zero mean and

variance r2. In this article, the coefficients of AR model are

estimated by using Levinson–Durbin recursion (LDR)

method because LDR is more efficient than Gaussian

method and its property is favorable for selecting the orders

of AR model [34].

It is critical to select the optimal order of AR model

because spectral peaks will be smoothed if the order is too

small, while statistical instability and spurious spectral

peaks will appear if the model order is too large [32]. Many

existing methods can be used to determine the optimal

order, such as Akaike information criterion (AIC), Bayes-

ian information criterion (BIC), and Hannan–Quinn crite-

rion (HQ). It is worth noting that AIC method can usually

determine an accurate good model order [35]. Thus, the

popular AIC method is used to determine the optimal AR

model order for which AIC attains its minimum value as a

function of, p. The AIC function is defined as follows:

AICðpÞ ¼ N lnðr2Þ þ 2p ð7Þ

where N is the number of samples, r2 and p are the esti-

mated variance of the white noise and the order of the AR

model, respectively. In this paper, normal WSN data is

used to construct the AR model, and AR technique is used

to pre-whiten the TT series data for testing.

3 Numerical simulation of WSN and proposed

diagnosis approach

3.1 Numerical simulation of WSN

Zigbee-based WSN is used to verify the proposed approach

in this article [8, 9]. The topology is randomly generated by

adjacency matrix with transmission cost ranging from 1 to

200 to include both dense and less dense clusters. It is

drawn by Graphiz as shown in Fig. 1. A network size of

100-node is considered a practical selection for most

WSNs applications. There is always one sink node/central
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control in the network. It operates with unlimited power

supply and the ID is denoted as 0 (blue hexagon). The other

sensor node IDs are labeled from 1 to 100, which are

displayed by green circles [36].

Data are randomly picked up, packed and transmitted

from the source nodes to the sink node by their own

shortest routes defined by AODV routing. The successful

transmitted packets with AODV routing protocol always

use the shortest path for transmission. Hence TT will be

varied when anomalies occur. This optimizes the sensi-

tivity and performance of our proposed algorithm. Two

parameters in a WSN model, which are traffic conditions

and the number of faulty nodes, are controlled to simulate

different network conditions. The other parameters include

127 bytes packet size, 8 kb buffer size, 3 counts of

backoffs, 2 counts of retransmission and the maximum

communication range are fixed for evaluating the perfor-

mance of the proposed method. When a sensor or multiple

sensors fail, the data linkage that involves the faulty node

will be broken. The nodes using the broken linkage have to

find another route. The newly determined route will still be

the shortest available route, but will be longer than the

original route because of the faulty nodes. As a result, a

longer TT is recorded. In this paper, the different condi-

tions of WSNs including normal condition (no failure),

1-node faulty condition, 2-node faulty condition, 3-node

faulty condition, 4-node faulty condition, and 5-node faulty

condition are thoroughly examined. As sensors with higher

data rate may be used in WSNs such as accelerometers, 3

different traffic conditions: namely ideal case (no

Fig. 1 100-Node WSN topology
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congestion), light congestion, and heavy congestion are

considered in the simulations in order to provide TT data

for a more comprehensive assessment. The data are col-

lected randomly under different traffic conditions to sim-

ulate congestions in the network. Different traffic

conditions cause packet loss in data transmission to the

sink. There are 1–5 % packet loss in light congestion case

and 50–60 % packet loss in heavy congestion case.

In this study, TT is defined as the time required for the

data packet transmitted from source nodes to the sink node.

Extensive simulations were conducted to generate the TT

data for analysis. In normal conditions, over 100 k data

were generated. The data are used for training and refer-

encing in AR model and non-parametric testing. In each

faulty condition, ten groups of data were simulated; each

group has over 2 k of data. These data are used to assess

the performance of the proposed WSN diagnosis method.

3.2 Kuiper test and autoregressive model-based WSN

diagnosis approach

Recent research findings show approaches based on non-

parametric test and AR model are useful techniques for

performing machine health monitoring [29–31, 34, 37]. For

example, Kay and Mohanty show that K–S test can deliver

reliable results for diagnosing bearing faults through

vibration signals [29]. AR model, together with K–S test,

has also been proved to be able to perform bearing fault

diagnosis and gear performance prognosis [30, 31].

Healthy state 
data: x[n]

Test condition 
data: y[n] 

AR modeling with 
optimal order p by AIC

AR filtering

Residual of test 
product data

Non-parametric tests:
• K-S test
• Kuiper test

Training error of 
healthy product data

Statistic distance

Modeling

Pre-whitening

Performance 
assessment

Wireless sensor networks

Fig. 2 Framework for WSN performance assessment

1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

Sample no.

K
-S

 st
at

is
tic

Ideal case
Light congestion case
Heavy congestion case

Fig. 3 K–S statistic of different cases
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Fig. 5 Comparison between K–S statistic and Kuiper’s statistic

corresponding to different cases
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Both bearing and gear are rotary machines, and their

characteristics are very different from those of WSNs. In this

paper, we extend the AR modeling and non-parametric test

based framework to WSNs fault analysis. The overall

framework of the proposed methodology is shown in Fig. 2.

The TT of the data acquired by a node and transferred to the

sink node of the WSN is analyzed for indicating the health

condition of WSNs. Since the estimated AR parameter is

inconsistent when too low a model order is selected, while

the variance increases significantly when too high a model

order is used [38], optimal AR model order of the TT process

is selected using the AIC method in normal conditions. For

performance assessment, the AR model with the optimal

order is used as a linear prediction filter to pre-whiten the test

condition data. Since anomalous conditions in WSN, such as

congestion, faulty nodes, will lead their signals to deviate

from the normal ones, the training error and prediction error

are compared by K–S test and Kuiper test to indicate the

different conditions of test data.

4 Diagnosis of the congestion in WSNs

In practical applications, WSNs have different traffic

conditions and traffic patterns. When there are less data, the

packet transmission is not delayed by congestion, which is

called the ideal case in this paper. Transmission congestion
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Fig. 6 Standard statistics of different cases
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Fig. 7 K–S statistic of different faults with reference to normal

condition under ideal case
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condition under ideal case
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Fig. 9 Comparison between K–S statistic and Kuiper’s statistic

corresponding to different conditions under ideal case
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happens when there are large amount of data required to be

transmitted to the sink node at the same time. It is obvious

that traffic congestion will become increasingly worse

when the data rate increases.

Data of normal condition under ideal case are used to

train the AR model. AIC method is used to determine the

optimal order of the AR model. In this study, it is noticed

that using the normal condition data under ideal case, the

AIC function attains its minimum value at an order of 38.

Thus, an AR(38) model is selected, and is used to filter the

testing TT data.

In theory, the testing TT data under different ideal case

should exhibit similar characteristic compared with the

reference data, while sample data corresponding to con-

gestion cases should deviate from the reference data pattern.

Results shown in Figs. 3, 4, and 5 corroborate with the above

statement showing the ideal case has a small K–S statistic

and Kuiper’s statistic, it is also noticed that congestion cases

exhibit a large K–S statistic and Kuiper’s statistic. The

heavier the congestion in the WSN is, the higher the K–S

statistic and Kuiper’s statistic are. Although K–S test and

Kuiper test also exhibit similar characteristics in differen-

tiating the different traffic conditions, Kuiper’s statistic

achieves significantly better performance compared to K–S
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Fig. 10 Standard statistics of different faults under ideal case

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

Sample no.

K
-S

 st
at

is
tic

Normal
1-Fault
2-Fault
3-Fault
4-Fault
5-Fault

Fig. 11 K–S statistic of different faults with reference to normal

condition under light congestion
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Fig. 12 Kuiper’s statistic of different faults with reference to normal

condition under light congestion
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Fig. 13 Comparison between K–S statistic and Kuiper’s statistic

corresponding to different conditions under light congestion
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statistic in a way that bigger deviations are found in different

cases. For example, the mean deviation is 0.1 for Kuiper’s

statistic while it is only 0.04 for K–S statistic between light

and heavy congestion. Standard statistics, such as skewness,

kurtosis, and crest factor, from different traffic conditions

were also studied as shown in Fig. 6. As we can see that

these standard statistics have larger variations and heavy

overlap. They are found to be unreliable for determining

different WSNs traffic conditions. It is also worth noting that

the standard statistics measures are unable to classify the

severity of congestions.

5 Detection of fault sensor node(s) in WSNs

During the operation of WSNs, sensor node(s) may fail.

Ten groups of data corresponding to different conditions,

such as normal (no faulty node), 1-node fault, 2-node fault,

3-node fault, 4-node fault, and 5-node fault, in three dif-

ferent traffic cases were simulated. Normal data in different

traffic cases are used to train the AR model, and detection

of faulty conditions is conducted in individual traffic case.
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Fig. 14 Standard statistics of different faults under light congestion
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Fig. 15 K–S statistic of different faults with reference to normal

condition under heavy congestion

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

Sample no.

K
ui

pe
r's

 st
at

is
tic Normal

1-Fault
2-Fault
3-Fault
4-Fault
5-Fault

Fig. 16 Kuiper’s statistic of different faults with reference to normal

condition under heavy congestion
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5.1 Ideal case

AR(38) model is used for filtering the test sample data in

ideal case. K–S test and Kuiper test are used to compare

the similarity between the prediction error and the training

error of the AR model. Results are shown in Figs. 7 and

8. As we can see K–S statistics that correspond to dif-

ferent conditions overlap heavily and there is also a large

variation of K–S statistic under the same number of

failure sensor node. Kuiper’s statistic shows similar

results with K–S statistic; nevertheless, it can separate the

normal condition from the faulty conditions clearly.

Although an increasing trend in mean statistic is observed

in Fig. 9, both K–S statistic and Kuiper’s statistic fail to

differentiate the faulty conditions. Figure 10 shows the

standard statistics, such as skewness, kurtosis, and crest

factor, from different faulty conditions under ideal case.

None of these measures can identify the different condi-

tions reliably. They also fail to classify the normal con-

dition from the faulty conditions.

5.2 Light congestion case

Data of normal condition under light congestion are used to

train the AR model. The optimal order of the AR model is

24. Thus, an AR(24) model is then used for filtering the test

sample data under light congestion. K–S test and Kuiper

test are then used to compare the similarity between pre-

diction error and the reference.

Results are shown in Figs. 11, 12, and 13. Similar

symptoms with the ideal case are found: large variation in

statistic exists, and the statistic fails to differentiate faulty

conditions. Kuiper’s statistic shows better performance

over K–S statistic because a larger and clearer deviation

between normal condition and faulty conditions can be

found. Figure 14 shows the standard statistics of different

faulty conditions under the light congestion case. The

results indicate none of these measures can identify the

different conditions reliably. They also fail to classify the

normal condition from the faulty conditions.

5.3 Heavy congestion case

Normal condition data under the case of heavy congestion

case are used to train AR model. The optimal order of the

model is 28, and AR(28) model is then used for filtering the

test sample data. K–S test and Kuiper test are used to compare

the similarity between prediction error and the reference.

Results are shown in Figs. 15, 16, 17 and 18. Similar

results under the ideal case and the light congestion case are

observed: large variation in statistics exists, and statistics fail

to differentiate the faulty conditions. Kuiper’s statistic shows

better performance compared to K–S statistic. The statistic

indicates a much bigger and clearer deviation between nor-

mal condition and faulty conditions.

6 Conclusion

As WSNs usually involve a large number of sensors

working under a harsh environment, automatic detection

and diagnosis of faulty nodes is critical for maintaining a

stable WSN operation. This paper demonstrates that sensor

nodes fault detection can be effectively performed by using

Kuiper test together with AR model. Our study shows

prediction error of an AR model can serve as a reliable

measure indicating the abnormal conditions of WSNs. The

statistics of K–S test and Kuiper test have also been thor-

oughly studied in this paper and our analysis show that

both of these statistics can indicate the health conditions of

WSNs. Comparing the performance of these two statistics

in detail, Kuiper’s statistic clearly exhibits better perfor-

mance over the K–S statistic in the sense that Kuiper’s

statistic provides clear difference and separation between

faulty conditions and normal conditions. Compared with

other widely used statistical parameters, such as skewness,

kurtosis, and crest factor, our results indicate that the

standard statistical parameters fall short in classifying

traffic congestions, and faulty node(s) in WSNs. Results

obtained in this study show that the proposed approach is
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Fig. 18 Standard statistics of different faults under heavy congestion
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capable of detecting the abnormal conditions such as the

degree of traffic congestion, and the failure sensor nodes. It

is important to note that the proposed approach does not

consume additional energy which is essential for main-

taining a robust and reliable WSNs operation. However,

the proposed method is still unable to determine the

number of faulty nodes. Future work will thus involve

developing a probabilistic or statistical model in estimating

the number of faulty sensor nodes.
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