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Abstract Due to their constrained nature, wireless sensor

networks (WSNs) are often optimised for a specific

application domain, for example by designing a custom

medium access control protocol. However, when several

WSNs are located in close proximity to one another, the

performance of the individual networks can be negatively

affected as a result of unexpected protocol interactions.

The performance impact of this ‘protocol interference’

depends on the exact set of protocols and (network) ser-

vices used. This paper therefore proposes an optimisation

approach that uses self-learning techniques to automati-

cally learn the optimal combination of services and/or

protocols in each individual network. We introduce tools

capable of discovering this optimal set of services and

protocols for any given set of co-located heterogeneous

sensor networks. These tools eliminate the need for manual

reconfiguration while only requiring minimal a priori

knowledge about the network. A continuous re-evaluation

of the decision process provides resilience to volatile net-

working conditions in case of highly dynamic environ-

ments. The methodology is experimentally evaluated in a

large scale testbed using both single- and multihop sce-

narios, showing a clear decrease in end-to-end delay and an

increase in reliability of almost 25 %.

Keywords Network cooperation � Self-awareness �
Reinforcement learning � Linear approximation � Network

service negotiation � e greedy � Logarithmic state access

distribution

1 Introduction

We are witnessing a continuous increase in the number of

wireless communicating devices surrounding us. For con-

strained wireless sensor networks (WSNs) specifically,

many researchers focus on developing optimal network

solutions for very specific application domains. This is

exemplified by the large number of MAC protocols that

exists for WSNs. However, since WSNs mostly use pro-

prietary or highly customized protocols in unlicensed fre-

quency bands, inter-protocol interference is a typically

occurring problem. The fact that these protocols often

operate under the implicit assumption that they are ‘alone’

in the wireless environment can cause harmful interference

between these protocols [1]. As a result, choosing network

protocols and services that perform excellent in one spe-

cific environment (e.g. TDMA MAC protocols for opti-

mized single-hop networks) can result in degraded

performance in other environments where other sensor

networks are also present. Manual configuration and

selection of the optimal network protocols proves to be

complex and inefficient [2], mainly due to the sheer

amount of devices (time consuming) and inability to take

dynamically changing network environments into account.

Choosing the optimal set of protocols and services is a

multi-objective optimization problem: individual networks

generally have different application level requirements.

To cope with this complexity, intelligent solutions that

allow networks to efficiently reconfigure themselves at run
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time are needed. Such solutions are expected to increase

the network performance and simplify the setup of net-

works for the end users [3]. This paper proposes a coop-

eration paradigm in which co-located networks are

automatically reconfigured at run-time to activate the set of

protocols and services that allow the involved networks to

operate optimally. The proposed solution relies on a rein-

forcement learning algorithm that efficiently combines

multi-objective optimization (MOO) with the reinforce-

ment learning (RL) paradigm. It uses linear fitness

approximations, extensively used for solving MOO prob-

lems, and applies these to the general RL methodology.

The cooperation process is initiated without any a priori

knowledge about the environment.

The main goal of the cooperation process is to verify

if the network services and/or network protocols are

correctly chosen so that they (1) fulfil the requirements

imposed by a higher level application and (2) do not

negatively influence each other. Since individual net-

works may benefit from different types of medium

access control (MAC) protocols (TDMA, CSMA-CA,...),

the approach supports replacing the full MAC layer to

support the respective application requirements. In addi-

tion, different routing protocols or transport layers may

be available in each network and thus also be considered

during the process. Finally, packet sharing (allowing

networks to route packets for each other), aggregation

(combining multiple data-items in a single packet) and

similar network services can be enabled at higher layers

depending on the application requirements. Each of these

services is an additional variable in the proposed multi-

variable optimization problem. The algorithm allows the

optimal operational point (the optimal set of services and

protocols) to be selected, while still being able to adapt

to changes in the network (eg.: altered interference pat-

terns) or altered application requirements. It is of course

possible that the most optimal set of protocols and ser-

vices for cooperation between the networks yields poorer

results than not cooperating at all. The algorithm must

be able to detect this in order to allow cooperation to

only be enabled if it is beneficial for all participating

networks.

The main contributions of this paper include the

following:

1. An overview of optimization and self-learning algo-

rithms for WSNs.

2. Experimental demonstration that the selection of the

optimal network protocols (e.g. MAC protocol)

depends on more than the application requirements

and should also take into account other networks in the

wireless environment.

3. Introduction of a methodology that:

• is capable of solving a multi-objective optimization

problems;

• takes into account heterogeneous requirement from

multiple co-located networks;

• can detect degraded performance due to unpredict-

able interaction between protocols and/or faulty

(e.g. buggy) protocol implementations;

• can adapt the network configuration to take into

account changing network requirements and

dynamic environments.

4. Experimental evaluation and analysis of the obtained

performance gains using a large scale wireless sensor

testbed.

The remaining part of the paper is organized as follows.

Section 2 gives a brief overview of other machine learning

techniques used in the context of sensor networks. A

detailed problem statement is given in Sect. 3. Section 4

introduces the main mathematical concepts of reinforce-

ment learning and the LSPI algorithm. Section 5 explains

how the RL methodology is used as a solution to this

particular problem. A experimental setup, used for vali-

dation and evaluation of the algorithm, is introduced in

Sect. 6. Results and corresponding discussions can be

found in Sect. 7. Future work is described in Sect. 8, while

Sect. 9 concludes the paper.

2 Related work

The first part of this section gives a brief overview of the

optimization techniques being used for multi-objective

optimization (MOO) problems in heterogeneous WSNs.

The second part presents the most relevant work regarding

application of different RL techniques to the most common

sensor network problems such as routing, energy effi-

ciency, medium slot allocation etc.

2.1 MOO tools used in heterogeneous WSNs

MOO solutions are typically used to quickly converge to an

optimal operating point of a problem in a stable environ-

ment with multiple input parameters. Several MOO tech-

niques have been used previously to optimize WSNs.

The authors of [4] propose two evolutionary algorithms

(EAs): NSGA-II (Non-dominated Sorting Genetic Algo-

rithm II) [5] and SPEA-II (Strength Pareto Evolutionary

Algorithm II) [6] as tools for solving an NP-hard problem

of a heterogeneous WSN deployment, while maximizing

its reliability and minimizing packet delay.

Another example is a simultaneous optimisation of the

high network lifetime and coverage objectives, tackled in

[7]. As opposed to previous methods that tried combining
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the two objectives into a single objective or constraining

one while optimising the other, the newly proposed

approach employs a recently developed MO evolutionary

algorithm based on decomposition—MOEA/D [8] as a

feasible solution.

In [9], a multi-objective hybrid optimization algorithm

is combined with a local on line algorithm (LoA), to solve

the Dynamic Coverage and Connectivity problem in

WSNs, subjected to node failures. The proposed approach

is compared with an Integer Linear Programming (ILP)-

based approach and similar mono-objective approaches,

regard coverage, network lifetime. Results show that the

presented hybrid approach can improve the performance of

the WSN, with a considerably shorter computational time

than ILP.

ILP was also used in the service-wise network optimi-

zation problem, published in [3]. The authors used a

solution based on a the linear programming methodology

in combination with the IBM CPLEX ILPSolver [10] to

determine the optimal operational point. In order to pro-

duce useful results however, it relies on the expected per-

formance gains for reconfiguration, which is rather difficult

to obtain.

Since many of these solutions require stable a priori

information, they are mainly useful for well controlled and

non-volatile environments, which is quite the opposite of

the type of environment for which our algorithm has been

developed.

2.2 RL in WSNs

Reinforcement learning predicts future behavior based on

information from the past. As such, Reinforcement

Learning is well suited for dynamic environments that

show limited change over time.

LSPI (Least Squares Policy Iteration), as a form of

reinforcement learning, has previously been used to opti-

mise network layers above the physical layer. Routing and

link scheduling problems have been tackled in [11] and

[12].

An autonomic reconfiguration scheme that enables

intelligent services to meet QoS requirements is presented

in [13]. The authors apply, the Q learning technique [14] is

to the route request/route reply mechanism of the AODV

routing protocol [15] in order to influence the failure or the

success of the process and thereby decreasing the protocol

overhead and increasing the protocols’ efficiency.

In [16] a number of approximate policy iteration issues,

related to our research such as convergence and rate of

convergence of approximate policy evaluation methods,

exploration issues, constrained and enhanced policy itera-

tion are discussed. The main focus is on the above men-

tioned LSTD and its scaled variant algorithm.

Research published in [17] tests and proves the con-

vergence of a model free, approximate policy iteration

method that uses linear approximation of the action-value

function, using on-line SARSA updating rules. The update

rule is how the algorithm uses experience to change its

estimate of the optimal value function. SARSA updating is

exclusively used in on-policy algorithms, where the suc-

cessor’s Q value, used to update the current one, is chosen

based on the current policy and not in a greedy fashion, as

with Q-learning.

Our algorithm uses mechanisms similar to the ones

discussed above, but applies these to a new problem

domain. As a result, while searching for the optimal set of

services and protocols, we expect our methodology to

provide a precious insight into dependencies between

various network protocols and services. This will be ben-

eficial for future research, as well as for the rest of the

research community.

3 Use case

In this paper we consider a scenario in which two WSNs

are deployed in the same wireless environment. Both use

the well known but resource constrained Tmote Sky sensor

nodes [18]. One network runs an intrusion detection

application, while devices belonging to the other network

collect temperature measurements.

3.1 Properties of the security network

The following requirements are set up for the security

network:

• LONG NETWORK LIFETIME

• LOW END-TO-END DELAY

• HIGH RELIABILITY

Having a long network lifetime is a common requirement

to avoid frequent replacement of the batteries in energy

constrained WSNs. The requirements for a low delay and

high reliability are motivated by the fact that intrusion

events should be reported fast and reliable.

The security network can choose between three different

MAC protocols—Time Division Multiple Access (TDMA)

[19], Low Power Listening (LPL) protocol [20] and Carrier

Sense Medium Control with Collision Avoidance (CSMA/

CA) [21]. In addition, two higher layer network services,

AGGREGATION and PACKET SHARING, are available.

The first service, aggregation [22], is capable of combining

multiple data packets in a single packet to reduce the

packet overhead. When the PACKET SHARING service is

enabled, packets from other networks can be routed over

the network. Prior to cooperation, each network selects a
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preferred MAC protocol based on its application require-

ments. The influence of a higher layer network service,

AGGREGATION and PACKET SHARING, is taken into

consideration once the cooperation is initiated. Within the

scope of this work we require the PACKET SHARING

service to be enabled either in both networks simulta-

neously or not at all. The reason for doing so is that

enabling this service in one network only is expected to

mainly provide performance benefits for the other network

(shorter routing paths) while having an (energy wise)

impact on the network itself. As a result, requiring a net-

work to enable PACKET SHARING is only ‘fair’ if it is

done in both networks at the same time.

3.2 Properties of the temperature monitoring network

The following requirements are set up for the temperature

monitoring network:

• LONG NETWORK LIFETIME

• LOW DELAY

Since the monitoring network is not used for critical ser-

vices, the high reliability requirement is omitted in favor of

obtaining a high network lifetime. The set of available

services, MAC protocols and a higher level services,

completely matches the case of the security network—

TDMA, CSMA-CA and LPL, accompanied with

AGGREGATION and PACKET SHARING.

3.3 The cooperation process

The process of cooperation starts by exchanging the rel-

evant information between the different networks: avail-

able services and predefined user requirements. A

dedicated reasoning engine, connected to a sink of one of

the two networks, collects all data and iteratively applies

multiple service combinations to the networks to deter-

mine the most optimal configuration. Once discovered,

the most optimal configuration is applied and maintained

in both networks. It should be noted that network

requirements may change over time. Changes in the net-

work topology or available resources (battery power)

might require a re-evaluation of the previously obtained

results. Adding a significant number of nodes to a net-

work may, for example, degrade the performance of the

MAC protocol to a point that it is better to switch to a

different MAC protocol entirely. The reasoning engine

must be able to notice such changes in a reasonable time

span and reconfigure the networks accordingly. A well

know and widely used SOFT MAX [23] state exploration

methodology is used to balance between these two con-

fronting objectives.

4 Reinforcement learning

Reinforcement learning [24] is a formal mathematical

framework in which an agent manipulates its environment

through a series of actions, and in response to each action,

receives a reward value. Reinforcement learning (RL)

emphasises the individual learning through interactions

with his environment, as opposed to classical machine

learning approaches that privilege learning from a knowl-

edgeable teacher, or on reasoning from a complete model

of the environment [25]. The learner is not told which

action to take. Instead, it must find which actions yield a

better reward after trying them. The most distinguishing

features of reinforcement learning are trial-and-error search

and delayed reward.

4.1 RL mathematical fundamentals

RL models a problem as a Markov Decision Process

(MDP). Relaying on it, the agent can perceive a set S ¼
ðs1; s2; . . .; SnÞ of distinct states and has a set A ¼
a1; a2; . . .; an of actions it can perform at each state. The

agent senses the current state St, chooses a current action at

and performs it. The environment responds by returning a

reward rt ¼ rðSt; atÞ and by producing the successor state

s0 ¼ PðS; aÞ. Functions r and Pðs; aÞ are not necessarily

known to the agent.

A numerical value, Qðs; aÞ, is assigned to every state/

action pair ðs; aÞ, describing the payoff of a given action.

The general outlook of the Q function is known as the

Bellman equation:

Qðs; aÞ ¼ rðs; aÞ þ c
X

s0
Pðs0js; aÞmaxQðs0; a0Þ ð1Þ

where rðs; aÞ represents the immediate reward for execut-

ing action a at state s, while the other argument represents

the maximum expected future reward. Factor c is known as

the discount factor and its purpose is to make sure that a

reward given for the same state/action pair is decreasing

over time.

The goal of RL is to learn an optimal behavioural policy

function, pðs; aÞ, which specifies the probability of select-

ing action a in a state s, for all states and actions. An

optimal policy is one that maximises the expected total

return. In ‘‘one-step’’ decision tasks, the return is simply

the immediate reward signal. In more complex tasks, the

return is defined as the sum of individual reward signals

obtained over the course of behaviour.

4.2 Least squares policy iteration—LSPI

LSPI was first introduced by M.G.Lagoudakis and R.Parr

[26] as a reinforcement learning solution that efficiently

934 Wireless Netw (2015) 21:931–948

123



copes with large state spaces. LSPI is a model-free, off-

policy method which efficiently uses ‘‘sample experi-

ences’’, collected from the environment in any manner. The

basic idea is reflected through an approximation of a Q

function with a linear combination of basis functions and

their respective weights:

Qðs; a; wÞ ¼
X

k

/jðs; aÞxj ð2Þ

Basis functions represent the relevant problem features

(e.g. network’s duty cycle, link quality, residual energy of

nodes etc). Generally, their number is much smaller than

the number of state/action pairs, k\\jSjjAj. The ultimate

outcome of the algorithm, for the given decision making

policy, is the set of weights: W ¼ ðx1;x2; . . .;xkÞ.
The mathematical background of the LSPI algorithm,

along with a couple of simple application use cases

(bicycle ride, inverted pendulum), can be found in [27]. Its

application to a multi-objective optimization problem in

heterogeneous wireless networks is given in [28].

5 Framework construction

This section explains how the aforementioned RL algo-

rithm can be used as a solution to the problem presented in

Sect. 3. As discussed in 4.1, reinforcement learning trans-

forms a given problem into a Markov decision process.

Constructing the framework therefore starts with defining

the main properties of the underlying MDP.

5.1 States

Let Si and Mi be the number of services and MAC proto-

cols available for network i. Since each service can either

be active or inactive and every service combination can be

used with every available MAC protocol, there are a total

of Mi2
Si possible configurations for each network i.

Assume for instance that there are two cooperating net-

works, each providing a set of two network services

(Network 1—serviceA, serviceB; Network 2—serviceC,

serviceD). In that case there are 42 ¼ 16 different service

combinations {A}, {B}, {C}, ..., {ABCD}, where each

combination represents a single set of activated network

services. It should be noted that the different networks are

not required to use the same MAC protocol. As further

discussed in in Sect. 6, Virtual Gateways [29] are used to

enable communication between networks using different

MAC protocols. This allows each network to choose its

MAC protocol independently from the MAC protocols

used by the other participating networks. The total number

of states to consider can therefore be defined as follows:

Nstates ¼
Y

i2networks

Mi2
Si ð3Þ

Within the scope of this work we assume that each network

has already determined the two most optimal MAC pro-

tocols to use prior to engaging in cooperation. This can, for

instance, be achieved by applying the methodology pre-

sented in this paper to the single network case. Moreover,

as discussed in Sect. 3, there are two services that can be

enabled in each network: Aggregation and Packet sharing.

This yields a total of 64 separate states. The Packet Sharing

service can only be activated in both networks at the same

time, which ultimately reduces the number of states down

to 32.

5.2 Actions

The underlying MDP allows a decision maker to switch

between any two states, meaning that Nstates actions are

available at each state. Taking an action can produce two

distinguishable outcomes:

• The engine stays in the current state

• The engine switches to another state

Preserving a current state (taking an action that will keep

the engine in the same state in two consecutive episodes) is

what the algorithm aims for: discover the optimal state and

force an action that will keep it in that particular state from

the moment onwards. However, due to the nature of the

state exploring mechanism, this can also happen if the

selected state is not the most optimal one. This will be

discussed further in the following sections:

One important property of the designed MDP is that

state transition probability Pðs0js; aÞ ¼ 1. In other words,

taking an action at a certain state always leads to one and

only one other state.

5.3 Basis functions

Basis functions are indicators of the network performance,

regarding given goals. Each network requirement (HIGH

RELIABILITY, HIGH NETWORK LIFETIME, LOW

DELAY etc.) can be described with one or several basis

functions (relevant features). To prevent redundancy, basis

functions should be designed to be independent of one

another. In combination with the respective weights, they

are crucial in the process of calculating the state/action Q

values. Generally, the number of basis functions is much

smaller than the number of state/action values, k\\jSjjAj.
In our use case we rely on a single basis function per

network requirement:

• HIGH RELIABILITY—average packet loss (/1)

• LONG NETWORK LIFETIME—duty cycle (/2)
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• LOW END-TO-END DELAY—average hop count

(/3)

Information about the average packet loss is obtained by

comparing the number of packets generated in each net-

work to the total number packets received for each network

at the sink node. Hop count and duty cycle information is

piggy-backed to every data packet and used at the sink to

calculate the average value for each network.

Based on the above requirements, the Q function can be

calculated as follows:

Qðs; aÞ ¼ /1x1 þ /2x2 þ /3x3 ð4Þ

5.4 Rewards

A straightforward way of defining the reward function is

the relation between the predefined (required) and the

measured network performance. In this multi-objective

framework, the total reward is calculated as a combination

of individual rewards, given for each network requirement

(LONG NETWORK LIFETIME, LOW END-TO-END

DELAY, HIGH RELIABILITY etc.)

It is useful to enforce an upper limit to the contributions

of each network metric. Otherwise, a service combination

that significantly ‘overshoots’ one requirement can receive

a higher reward than the ones performing somewhat worse,

but equally accomplishing all the given requirements. The

rewarding function is designed to prevent such behaviour:

Ri ¼ 1� e
�3

/i
/goal ð5Þ

The function increases slowly once the requirements are

met (see Fig. 1). If the requirements do not describe an

upper performance limit, rewards can be unlimited.

5.5 Collecting environmental information

Section 4.2 introduced the idea using information samples,

D ¼ ðsdi
; adi

; s0di
; rdi
ji ¼ 1; 2; . . .; LÞ, in order to ultimately

form the approximated version of matrices A and b, crucial

in decision policy evaluation. There is a general rule:

EðÂÞ ¼ L

jSjjAjAEðb̂Þ ¼ L

jSjjAj b ð6Þ

which describes consistency between the approximated and

real values of matrices A and b, depending on the number

of collected samples. The precision of the algorithm

increases with the growing number of samples.

By relying on the ‘‘memoryless’’ property of the

designed MDP, our algorithm is capable of collecting the

information regarding every state/action pair from the

problem space in Nstates exploration episodes. The ‘‘me-

moryless’’ property is satisfied by the fact that the perfor-

mance of the network in any given state only depends on

the service combination related to that particular state. If,

for example, the network is in state Sx during a specific

episode, the values of the relevant basis functions

/1;/2; . . .;/k, (used for calculating the reward) collected

at the end of that episode, depend solely on the specific

service combination related to state Sx and not on the

previous state or the action taken to get to state Sx. This

means that transitions ðsi ! Sxji ¼ 0; 1; 2; . . .; nÞ, cause by

actions a0; a1; . . .; an, all result in the same values of the

relevant basis functions /1;/1; . . .;/k. Consequently Nstates

separate Q values, Qðs0; axÞ;Qðs1; axÞ; . . .;Qðsn; axÞ, can be

updated after a single episode. (Where ax denominates the

actions that leads the system from whatever state into state

sx).

Relying on this property, the algorithm is divided into

two phases:

• Exploration phase—a constrained random walk is used

to collect all the samples in as many as Nstates episodes.

‘‘Constrained’’ means that a decision maker is not

allowed to take actions that were previously taken and

investigated. Matrices A and b are populated and the

initial set of weight factors W ¼ ðx1;x1; ; . . .;xkÞ is

calculated. In combination with the respective basis

functions, this set of weights is used to calculate the

initial Q values for every state/action pair.

• Exploitation phase—this phase relies on the adopted

SOFTMAX state exploring technique. It utilises the

initial Q values and tries to enforce the optimal service

Fig. 1 Rewards are calculated using the relative difference between

the basis function values collected at the end of an episode and the

desired values. The function also sets up a horizontal asymptote to an

associated reward, thus making sure the reward increases slowly once

the requirements are met
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combination (the optimal state) as much as possible,

while investigating the sub-optimal states in order to

detect possible performance changes.

Information collected during the exploitation phase is used

to update an already existing sample set. The new set of

weights is calculated after each episode and the corre-

sponding Q values are updated.

5.6 Required changes for other use cases

Building up a framework is typically use case specific.

States, actions and rewards are differently interpreted

depending on the scenario. However, the structure of the

underlying MDP and the mathematical apparatus that

governs it remain the same. Within our problem scope,

LSPI’s usage can be expanded to additional fields of

research.

We provide two examples:

• A straightforward modification is to apply the same

concepts to a use case in which the operator has control

over the settings of a single network protocol. In this

use case, the number of states and actions would

directly depend on the number of configurable proper-

ties of the protocol and the rewards would be calculated

depending on the relevant performance metrics for the

given protocol.

• A similar modification can be applied when a single

network is under full control of the operator, but

uncontrollable outside influences are present. A ser-

vice-wise optimization of a single network can then be

performed by again selecting the optimal set of services

and protocols, this time by taking into account only the

performance of the single network. Consequently, the

number of state/action pairs would depend on the number

of configurable services, plus the number of variable

settings for each service. Rewards would be calculated in

accordance to a network’s application level objectives.

6 Experimental setup

In this section the experimental setup used to evaluate the

reinforcement learning algorithm is discussed. Figure 2

shows the different nodes which are deployed in the

‘security’ and the ‘temperature monitoring’ network. All

sensor nodes in both networks periodically generate data

packets which are subsequently forwarded over multiple

hops to the nearest available sink. In addition to the ‘reg-

ular’ measurements collected by the nodes (temperature,

movement detection, ...) these packets also contain duty-

cycle and hop-count statistics. The discovery nodes in the

networks also periodically broadcast ‘discovery messages’

to allow cooperation between different networks to be

initiated. These ‘discovery messages’ contain, among oth-

ers, the available services and the requirements of the

network. The sink node of the network regularly broadcast

Wired backend

S

S
D

D

Security

S Sink node

D Discovery node

Regular node

Network
controller

Temperature 
monitoring

Fig. 2 The network architecture used during the experimental tests. Two networks are co-located, a security network and a temperature

monitoring network
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‘sink announcement’ messages that are used by the other

nodes to discover the route to the nearest (available) sink.

The sink node is connected to the ‘network controller’

over a serial line. The network manager processes the

packets received from the sink to calculate network sta-

tistics. Once two networks have decided to cooperate, a

connection between the network controllers is created over

a wired back-end to allow ‘foreign’ data packets to be

forwarded to the correct network manager and to allow

statistics to be exchanged. The ‘RL engine’ runs on one of

the network manager nodes and calculates the configura-

tions of the networks based on the gathered performance

statistics and the services and requirements announced in

the ‘discovery messages’. Once a new configuration has

been calculated, the network manager running the RL

engine sends the configuration to the attached sink node

which subsequently distributes the new configuration in the

local network. Upon reception of a new configuration, the

discovery of the local network forwards the configuration

to the discovery node of the ‘foreign’ network which

subsequently distributes the configuration in its own net-

work. Afterwards, an activation message is distributed in

the same manner to both networks to instruct the nodes to

apply the new configuration.

The sensor node software was developed for the T-mote

SKY [18] platform using the IDRA framework [30] and the

MultiMAC [29] network stack. The MultiMAC network

stack is a replacement network stack for TinyOS 2.1.0 that

allows multiple MAC protocols to be used simultaneously

on a single node. This allows normal sensor nodes to be

configured as so-called ‘Virtual Gateways’ which enable

communication between nodes using different MAC pro-

tocols. Since the requirements of the ‘security’ and ‘tem-

perature monitoring’ network may cause these networks to

use different MAC protocols, the presence of Virtual

Gateway nodes is essential to allow for cooperation

between these networks. The IDRA-framework allows for

the easy development of sensor network applications and

protocols and was therefore used on top of the MultiMAC

network stack to develop the applications and reconfigu-

ration mechanisms needed for our tests.

All tests were performed on the w-iLab.t [31] wireless

testbed, which contains several Tmote Sky sensor nodes

deployed in an office building. The deployment used is

shown on Fig. 3.

It should be noted that the performance of the networks

depends on which and how many sensor nodes are used as

Virtual Gateways. Determining the ideal location of these

Virtual gateway nodes however is out of the scope of this

work and as a result a ‘fixed’ set of gateway nodes was

used for each configuration.

7 Results and discussions

The performance of the reasoning engine and the cooper-

ation methodology is tested using two scenarios: a single-

hop scenario (whereby nodes use full transmit power) and a

multihop scenario (obtained by reducing the transmit

power). Results are further divided into two subsections:

• Results regarding the exploration phase of the

algorithm

• Results regarding the exploitation phase of the

algorithm

7.1 Single-hop networks scenario

When using full transmit power, the nodes in both networks

can reach their sinks in one hop. Due to optimization in the

used RPL-based routing protocol, packets are sometimes

routed using an intermediate node to avoid unreliable links.

To obtain baseline performance indicators, the performance

of the individual networks was first evaluated without

cooperation under the following conditions.

• ‘‘Stand alone’’ case. The performance is measured for

each network individually, without the other network

Fig. 3 The node deployment used for the real-life testing setup. We

use 26 nodes deployed on a single floor of the office building in which

the testbed is deployed. These nodes are separated into two networks

of 13 nodes each so each network covers the entire floor. The sink

nodes are placed at opposite ends of the building and 6 fixed nodes are

used as virtual gateways
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active. As a result there is no interference between the

two networks.

• ‘‘Interfered’’ or ‘‘conflicted’’ case. Networks are co-

located but ignore each other entirely, resulting in

negative protocol interactions.

Figure 4 shows the average duty cycle and reliability

measured in both networks for both the ‘‘Stand alone’’ and

‘‘Interfered’’ case. Results are classified depending on the

MAC protocol used during the tests.

A clear performance deterioration for both networks

caused by interference, can be observed. The duty cycle

increases by at most 20 % while the reliability decreases by

up to 18 %. Only the average number of hops (1.12 for the

temperature network and 1.45 for the security network)

remains unchanged. Applying the proposed cooperation

methodology is expected to shift performances back

towards the results obtained during the ‘‘stand alone’’ case.

7.1.1 Discussion on the exploration phase of the algorithm

Both exploration and exploitation phases are performed

using 5 min long episodes. Each node generates a packet

once every ten seconds, resulting in six packets per minute.

Information regarding the average packet loss, duty cycle

Fig. 4 Network performance of

the a Security network and

b temperature monitoring

network, in terms of a duty

cycle and reliability metrics,

in situations with and without

influences of co-located devices.

Tests are performed using

different MAC protocols

Fig. 5 Graphical illustration of

the results, obtained during an

exploration phase. Service

combinations are evaluated

using basis functions and

rewards explained in Sect. 5
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and number of hops is retrieved during each episode. The

performance of the different states is calculated according

to Sect. 5 and shown in Fig. 5 and Table 1.

The best performing service set is the one that enables

the AGGREGATION in both networks, in conjunction

with the TDMA and LPL MAC protocols in the tempera-

ture monitoring and security network, respectively. While

the choice of MAC protocols was expected, due to the

network lifetime requirement, the influence of other net-

work services was more difficult to predict. This is true for

both the single-hop and the multi-hop use cases. The

obtained results illustrate the following:

• Although TDMA MAC protocol is the optimal MAC

protocol in the ‘‘stand alone’’ case, this is no longer true

when a second co-located network, also using the

TDMA protocol, is present. In that case, the optimal

performance is achieved by enabling TDMA in the

temperature monitoring network and the LPL MAC

protocol in the security network.

• In general, AGGREGATION and PACKET SHARING

services, do not significantly impact the overall network

performance in a single-hop network scenario. This is

understandable, since the great majority of the nodes are

one hop away from the sink, therefore neither AGGRE-

GATION nor PACKET SHARING is frequently used.

• The obtained reliability for the optimal set is around

99 %, compared to 93 % recorded before the cooper-

ation was activated.

Table 1 Tabular presentation of the exploration phase results

State (dec) State (bin) PS Aggr2 Aggr1 MAC2 MAC1 Q value Duty cycle2 Duty

cycle2

Hops2 Hops1 Reliability

(%)

0 00000 – – – TDMA CSMA_CA 1.311 0.58 1 1.22 1.45 92

1 00001 – – – TDMA LPL 1.376 0.56 0.77 1.2 1.45 99

2 00010 – – – LPL CSMA_CA 1.087 0.90 0.99 1.2 1.54 87

3 00011 – – – LPL LPL 1.182 0.72 0.92 1.2 1.45 92.3

4 00100 – – AGGR TDMA CSMA_CA 1.276 0.62 1 1.2 1.45 98

5 00101 – – AGGR TDMA LPL 1.387 0.54 0.86 1.2 1.45 93

6 00110 – – AGGR LPL CSMA_CA 1.127 0.86 1 1.2 1.45 89

7 00111 – – AGGR LPL LPL 1.133 0.87 0.88 1.2 1.45 96

8 01000 – AGGR – TDMA CSMA_CA 1.237 0.62 1 1.22 1.45 95

9 01001 – AGGR – TDMA LPL 1.374 0.56 0.77 1.2 1.45 90

10 01010 – AGGR – LPL CSMA_CA 1.079 0.91 1 1.2 1.45 91

11 01011 – AGGR – LPL LPL 1.154 0.86 86 1.2 1.45 97

12 01100 – AGGR AGGR TDMA CSMA_CA 1.273 0.62 1 1.2 1.45 92

13 01101 – AGGR AGGR TDMA LPL 1.39 0.54 0.73 1.2 1.45 97

14 01110 – AGGR AGGR LPL CSMA_CA 1.102 0.86 1 1.2 1.45 89

15 01111 – AGGR AGGR LPL LPL 1.176 0.84 0.80 1.2 1.45 96

16 10000 PS – – TDMA CSMA_CA 1.28 0.62 1 1.1 1.45 92

17 10001 PS – – TDMA LPL 1.385 0.57 0.72 1.22 1.45 99.1

18 10010 PS – – LPL CSMA_CA 1.11 0.88 0.99 1.1 1.45 86

19 10011 PS – – LPL LPL 1.25 0.84 0.85 1.1 1.1 98

20 10100 PS – AGGR TDMA CSMA_CA 1.28 0.65 1 1.1 1.45 94

21 10101 PS – AGGR TDMA LPL 1.314 0.61 0.81 1.2 1.45 93

22 10110 PS – AGGR LPL CSMA_CA 1.189 0.78 1 1.1 1.45 92

23 10111 PS – AGGR LPL LPL 1.204 0.94 0.89 1.1 1.09 96

24 11000 PS AGGR – TDMA CSMA_CA 1.286 0.65 1 1.1 1.45 97

25 11001 PS AGGR – TDMA LPL 1.304 0.62 0.91 1.2 1.45 99

26 11010 PS AGGR – LPL CSMA_CA 1.092 0.95 0.99 1.1 1.45 93

27 11011 PS AGGR – LPL LPL 1.198 0.93 84 1.1 1.1 95

28 11100 PS AGGR AGGR TDMA CSMA_CA 1.28 0.65 0.99 1.1 1.45 94.7

29 11101 PS AGGR AGGR TDMA LPL 1.354 0.57 0.88 1.2 1.45 97

30 11110 PS AGGR AGGR LPL CSMA_CA 1.105 0.90 1 1.1 1.54 92

31 11111 PS AGGR AGGR LPL LPL 1.158 0.86 0.94 1.1 1.1 100
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• The duty cycle of the security network, when using the

optimal service combination, decreased for 12.5 % (80

down to 70 %, while using LPL MAC protocol). The

duty cycle of the temperature monitoring network

increases from 48 %, as noted prior to negotiation up to

54 % ( 12 %), while using TDMA. This results in a

fairer distribution of the network lifetime. In addition,

the same configuration results in a 6 % (from 93 to

99 %) higher reliability for both networks.

Figure 6 illustrates the performance improvement when

applying our cooperation methodology. Even for single-

hop networks, taking into account the presence of co-

located networks has a significant impact on the perfor-

mance. Trying to predict which combination of settings and

protocols will perform best can be difficult at best, espe-

cially when trade-offs have to be made between multiple

performance criteria. Our methodology is capable of

objectively making this trade-off even in complex

situations.

7.1.2 Discussion on the exploitation phase of the algorithm

This section evaluates how efficient our methodology

copes with networks changes. The efficiency of the

exploitation phase is evaluated based on two criteria:

• The algorithm’s ability to enforce the optimal service

set.

• The algorithms ability to readjust its decisions when

drastic performance changes occur.

Figure 7 illustrates the algorithm’s behaviour with the

temperature s factor set to two distinguish intervals. As

expected, for the higher values of the temperature factor,

SOFTMAX acts in a uniform way, treating all decisions as

equiprobable. Because of this, the reasoning engine often

chooses decisions that result in a transfer to sub-optimal

states. Lower values of the s factor clearly results in

enforcement of the highest regarded service combinations,

keeping the relevant networking parameters (duty cycle,

reliability ...) on a highest level and stable.

The algorithm’s ability to adapt to sudden changes is

tested by suddenly increasing the duty cycle of the TDMA

protocol in the temperature monitoring network. This

change is considered drastic, since the corresponding value

never surpassed 60 % during the experiments. Figure 8

shows the obtained results.

When s\1, the reasoning engine manages to maintain

the optimal service set for more than 95 % of time. For the

same values of s, it takes approximately 16 exploitation

episodes to completely re-adjust its decision making policy

and start enforcing a newly determined highest performing

service set. Results are significantly worse, in both cate-

gories, when s is set to values higher than 2. As such, we

recommend to use low values for s as long as the current

set of services fulfils the application requirements, but to

increase this value whenever the application requirements

are no longer met.

7.2 Multihop network scenario

To create a multihop network, the nodes’ transmission

power was reduced, resulting in a change of the average

number of hops to around 1.45 in the temperature moni-

toring network and 2.1 in the security network. As with the

previous tests, the duration of the learning episodes was set

to 5 min and the packet generation rate was set to 6 packets

per minute. Figure 9 shows the values recorded for the

networks’ duty cycle and reliability while these networks

cause interference to one another.

7.2.1 Discussion on the exploration phase of the algorithm

Figure 10 illustrates the outcome of the algorithm’s

exploration phase. Numerical values of all the relevant

network metrics, over the entire exploration phase, are

given on Table 2.

Fig. 6 Comparison of the network performances before and after the cooperation is applied
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In the case of multihop networks, the exploration phase

revealed the following:

• PACKET SHARING has a more significant influence

on the overall network performance than in the single-

hop network scenario. This is clearly visible on Fig. 10,

for the service combinations marked from 16 to 31.

This behaviour is expected in a multihop network

scenario, since the PACKET SHARING service allows

the path to the sink to be considerable shortened. (see

Table 2)

• Enabling the PACKET SHARING in combination with

the LPL-MAC protocol, results in a significant decrease

of the end-to-end delay. This is clear when the

performance for service combinations 19, 23 and 27

are regarded. In network setups where a long network

lifetime is not a priority, these states would have a

higher priority.

• Having an additional performance factor—PACKET

SHARING, results in a more obvious difference

between the highest regarded service combinations

(compare graphs 5 and 10). Similar outcome can be

expected after adding additional basis functions

Figure 11 shows the performance improvement of

using our cooperation methodology in a multihop net-

work. Except for a slight increase of the duty cycle in

both networks, a drastic improvement is recorded for the

other relevant metrics compared to results obtained prior

Fig. 7 Behaviour of the algorithm, in terms of the networks’ duty cycles, during the exploitation phase for: a s\1 and b s[ 2
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to cooperation. The average number of hops is reduced in

both networks (20 % in the security network, 5 % in the

temperature monitoring network), which should result in a

lower end-to-end delay. The reduced hop count also

increased the reliability of the security network by almost

25 %. It should be noted that the duty cycle of the net-

work depends on the specific set of virtual gateway nodes

used. The duty cycle of the networks may therefore be

further reduced by using an appropriate gateway selection

mechanism. This is however out of the scope of this

work.

7.2.2 Discussion on the exploitation phase of the algorithm

The capabilities of the algorithm to react to network changes

was evaluated, similar to Sect. 7.1.2. Similar conclusion can

be made and as such these results are omitted.

8 Future work

Future work will mainly focus on finding ways to improve

the algorithm’s efficiency during both phases.

Fig. 8 Illustration of the

algorithm’s ability to: a retain

the optimal service

combination, in terms of the

percentage of time the network

was optimally configured and b
adjust to a network conditions

change, in terms of number of

episodes needed to fully reshape

the decision making policy.

Arrows show a tendency with

which statistics are changed

when (a) s decreases below 1 or

(b) s increases above 2

Fig. 9 Values for the

performance metrics: duty cycle

and reliability, for a security

network and b temperature

monitoring network, tested

while using different MAC

protocols
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Fig. 10 Outcome of the

algorithm’s exploration phase

Table 2 Average duty cycles, number of hops and reliability for both networks, recorded during the exploration phase

State (dec) State (bin) PS Aggr2 Aggr1 MAC2 MAC1 Q value Duty cycle2 Duty cycle1 Hops2 Hops1 Reliability

0 00000 – – – TDMA CSMA_CA 1.119 0.6 1 1.55 2 88

1 00001 – – – TDMA LPL 1.168 0.61 0.78 1.45 2.1 87

2 00010 – – – LPL CSMA_CA 0.888 0.93 1 1.33 2 63.5

3 00011 – – – LPL LPL 1.023 0.89 0.89 1.33 1.9 91.2 %

4 00100 – – AGGR TDMA CSMA_CA 1.065 0.68 1 1.55 2 90.4

5 00101 – – AGGR TDMA LPL 1.203 0.54 0.79 1.54 1.9 87.5 %

6 00110 – – AGGR LPL CSMA_CA 0.965 0.85 1 1.44 2 84

7 00111 – – AGGR LPL LPL 1.029 0.87 0,81 1.44 1.9 94

8 01000 – AGGR – TDMA CSMA_CA 1.107 0.61 1 1.625 2 96.6

9 01001 – AGGR – TDMA LPL 1.090 0.62 0.85 1.55 2 70.6

10 01010 – AGGR – LPL CSMA_CA 0.858 0.86 1 1.44 2 55 %

11 01011 – AGGR – LPL LPL 0.972 0.89 0.9 1.44 2 90.08

12 01100 – AGGR AGGR TDMA CSMA_CA 1.115 0.65 0.9 1.44 2 91.34

13 01101 – AGGR AGGR TDMA LPL 1.212 0.57 0.84 1.44 2 91.8

14 01110 – AGGR AGGR LPL CSMA_CA 0.939 0.90 0.99 1.44 2 83

15 01111 – AGGR AGGR LPL LPL 1.024 0.89 0.87 1.44 1.9 99

16 10000 PS – – TDMA CSMA_CA 1.131 0.69 1 1.44 1.8 99

17 10001 PS – – TDMA LPL 1.323 0.58 0.67 1.33 1.7 100

18 10010 PS – – LPL CSMA_CA 0.995 0.85 1 1.22 2.3 91.8

19 10011 PS – – LPL LPL 1.158 0.90 0.83 1.33 1.3 100

20 10100 PS – AGGR TDMA CSMA_CA 1.163 0.70 0.99 1.33 1.7 99

21 10101 PS – AGGR TDMA LPL 1.362 0.52 0.72 1.375 1.7 99

22 10110 PS – AGGR LPL CSMA_CA 1.018 0.90 1 1.33 1.9 99

23 10111 PS – AGGR LPL LPL 1.166 0.91 0.87 1.33 1.2 100

24 11000 PS AGGR – TDMA CSMA_CA 1.202 0.67 1 1.33 1.7 100

25 11001 PS AGGR – TDMA LPL 1.328 0.55 0.75 1.375 1.7 99

26 11010 PS AGGR – LPL CSMA_CA 1.010 0.91 1 1.33 1.9 100

27 11011 PS AGGR – LPL LPL 1.184 0.89 0.82 1.33 1.2 100

28 11100 PS AGGR AGGR TDMA CSMA_CA 1.204 0.67 0.99 1.33 1.7 99

29 11101 PS AGGR AGGR TDMA LPL 1.288 0.57 0.81 1.43 1.8 100

30 11110 PS AGGR AGGR LPL CSMA_CA 1.050 0.93 1 1.33 1.7 100

31 11111 PS AGGR AGGR LPL LPL 1.277 0.82 0.74 1.22 1.2 100

944 Wireless Netw (2015) 21:931–948

123



Searching through a problem space can be faster with a

help of prediction techniques. This would enable a rea-

soning engine to predict the performance of several service

combinations without actually investigating them. In the

use case presented in this paper for example, this would

allow the reasoning engine to discard states that involve a

combination of LPL and CSMA MAC protocols, after

observing just a couple of them. This would reduce the

number of learning episodes to almost 1/4 of the entire

space.

Similar techniques can be included in the SOFTMAX

approach. Once a network disturbance is detected, the

engine should be able to detect the cause and at least try to

approximate its influence on other service combinations,

without actually investigating them. The reasoning engine

should, for instance, be able to detect drastic changes in the

duty cycle for the TDMA MAC protocol, approximate the

effect of this change on the reward for other configurations

using the TDMA protocol and adjust the decision making

policy accordingly.

Research will also expand into other directions such as

automatically optimizing the performance of a single net-

work based on a set of configurable parameters. Similar

applications can be found in the literature. Our future work

will therefore serve as an extension to ongoing research,

which is expected to yield some new ways of application.

9 Conclusions

Due to the increasing number of network protocols and

services for WSNs, developers have to make an optimal

selection in terms of preferred configuration of the net-

work. However, as this paper has shown, choosing the

optimal set of protocols and services is not straightforward.

Our research proposes a service-wise protocol optimisation

technique for multi-objective, co-located and complex

heterogeneous networks. Network services, provided by

each sub-net, are used as arguments in the cooperation

process. Results show that our reasoning engine is capable

of discovering service combinations that improve overall

performance for all the networks participating in the

cooperation. Diverging high-level objectives and network

capabilities are taken into account during the process. The

efficiency of the algorithm is shown in both single-hop and

multihop network scenarios. The results are encouraging,

especially for a multihop network scenario. Our algorithm

was able to discover a service configuration that improved

an overall reliability up to 25 %, by accepting a small

increase in both networks duty cycles.

To cope with dynamic environments, a heterogeneous

network requires continuous monitoring. Our reasoning

engine utilises the SOFTMAX algorithm in order to notice

performance fluctuations and adapt to it. During the

Fig. 11 Comparison of the matching network parameters in a multihop network use cases, before and after the cooperation is applied
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exploitation phase of the optimisation process, our imple-

mentation balances between maintaining the optimal service

set and probing sub-optimal states in order to notice possible

performance changes. Newly gathered information is used to

update decision making rules. In the case of a network dis-

turbance, the algorithm does not require a re-initiation. With

the proper choice of a single SOFTMAX argument, (tem-

perature factor—s), the algorithm will efficiently reshape a

decision making policy. By manipulating the same argu-

ment, the algorithm’s ability to maintain an optimal service

set can be increased to an arbitrarily high level.

The authors strongly believe that the problem of inter-

fering, co-located networks will only increase. As such,

innovative cross-layer and cross-network solutions that

take these interactions into account will be of a great

importance to a successful development of efficient, next-

generation networks in heterogeneous environments.
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