
Sleeping mobile AP: a novel energy efficient Wifi tethering scheme

Kyoung-Hak Jung • Jae-Pil Jeong • Young-Joo Suh

Published online: 15 October 2014

� Springer Science+Business Media New York 2014

Abstract Wifi tethering enables Wifi-only devices to

access the Internet by sharing the WWAN (e.g., 3G and

LTE) connection of a smartphone where there is no avail-

able Wifi access point. However, the current tethering

schemes have a limitation as they consume a significant

portion of the battery power for providing Wifi clients with

the Internet connection. In this paper, we propose a new

tethering scheme that reduces the energy consumption of a

mobile AP (MAP) without substantial throughput and delay

degradation. To improve energy efficiency, the proposed

scheme adaptively adjusts the sleep and wake-up periods

based on the bandwidth asymmetric feature of the MAP.

Further, it provides a longer idle time enough to put the

clients into a sleep mode by combining idle periods between

subsequent packets, and conserves their energy as well. Our

evaluation based on the prototype implementation on

commercial smartphones shows that the proposed scheme

reduces the energy consumption of the MAP and the client

smartphones by up to 56.0 and 8.3 %, respectively.

Keywords Energy conservation � PSM � Wifi tethering �
Mobile AP � Smartphones

1 Introduction

Wifi tethering is a feature that shares the Internet connec-

tion of a smartphone with other devices in the neighbor-

hood through Wifi. Due to the dramatic increase in mobile

devices, this function is recently highly desired to enable

Wifi-only devices such as laptops and tablets to access the

Internet even though there is no Wifi access point,1 and

thus it is widely supported on most of recent smartphones

such as iPhone 4, 4S and 5 (iOS 4.2.5 or later) [4], Win-

dows Phone 7 and 8 [5], and most Android phones [6].

However, existing Wifi tethering schemes rapidly

shorten the battery lifetime of a smartphone due to the

following reason. When acting as a mobile AP (MAP), the

smartphone’s Wifi interface always stays in a high power

state even when there is no traffic at all. In an effort to save

power, Windows Phone simply disables the Wifi tethering

function when no traffic activity is observed for several

minutes. However, it has a drawback that a user has to go

back to the smartphone and re-enable the tethering function

automatically disabled whenever the user wants to use the

tethering again, and therefore the user may undergo

inconvenience. DozyAP [7] addresses this problem, and

introduces a simple protocol that puts the Wifi interface

into a sleep state only for a certain period when there is no

traffic for a time longer than a pre-defined threshold (e.g.,

150 ms). However, it still has two limitations. First, the

Wifi interface has to remain awake during all idle intervals

less than the threshold, leading to waste of energy. Espe-

cially, this energy waste could be significant because a

MAP’s higher speed Wifi link is bottlenecked by its rela-

tively lower speed cellular link (e.g., 150 vs. 14.4 Mbps,

where 802.11n (one Wifi antenna) and 3G HSDPA,

respectively).2 Second, although the Wifi link is highly

underutilized due to the bottleneck problem, client’s Wifi

interface hardly goes into a sleep state since it cannot sleep

K.-H. Jung (&) � J.-P. Jeong � Y.-J. Suh

Pohang, Korea

e-mail: yeopki81@postech.ac.kr

1 According to a market research [1], 90 % of customers actually

prefer Wifi-only devices over the 3G/LTE versions although the

coverage of cellular and Wifi networks is 99 versus 49 %, respec-

tively, in the US [2, 3].
2 The available bandwidth of cellular links could be different

depending on network service providers and locations.

123

Wireless Netw (2015) 21:963–980

DOI 10.1007/s11276-014-0798-7

in the middle of inter-packet arrivals. As a result, it

unnecessarily wastes energy.

This paper proposes a new tethering solution called

sleeping mobile AP (SMAP) that saves substantial energy

of a MAP by putting its Wifi interface into a sleep state

when the Wifi link is underutilized. Two important con-

siderations should be addressed in designing a tethering

scheme. The first one is that the scheme should not

degrade throughput and delay performance substantially.

In SMAP, packets arrived when the Wifi network is

almost idle are basically buffered in a MAP and then

delivered to a client later as a burst, enabling the MAP

and the client to exploit idle periods for sleep. To mini-

mize the negative impact caused by the delayed trans-

mission, SMAP adaptively determines the wake-up and

sleep durations based on the network activity and the

clients’ power-save mode (PSM) parameters. The second

consideration is that a tethering scheme should not sleep

without clients’ agreement that they will not send any

uplink traffic while the MAP sleeps. To avoid possible

packet losses, SMAP needs to be implemented in the

MAP and the clients, but it requires no major modifica-

tion of the client by using a loadable module to make it

easily deployable.

The rest of this paper is organized as follows. In Sect. 2,

we provide findings on existing Wifi tethering schemes and

motivate the problem. Section 3 describes the proposed

SMAP for saving power followed by the packet delay

analysis in Sect. 4. In Sect. 5, we present our experimental

environments and evaluation results. Section 6 provides an

overview of existing power save mechanisms. Finally, we

conclude this paper in Sect. 7.

2 Motivation

While significant efforts to save client’s energy have been

expended, the same has not been actively addressed for

access points (APs) because the APs are usually assumed

to be supported by AC power. However, a battery-limited

MAP is likely to suffer from significant energy drain like

typical mobile devices, and thus it needs to be considered

as well. Unfortunately, existing tethering schemes are

limited in terms of energy efficiency since they are not

designed with thorough consideration of the characteris-

tics of a MAP. In this section, we address the problems

with today’s Wifi tethering function of commercial

Android smartphones using the experimental measure-

ments and motivate the need for a new energy efficient

tethering solution by discussing opportunities for con-

serving power.

2.1 Impact on energy consumption

Figure 1 depicts the power consumption of two Galaxy

Nexus (Android 4.1.1) smartphones when one functions as

a MAP that has the 3G connection of a Korean telecom-

munications operator (SK Telecom) and the other functions

as a tethered client. The client turns on the Wifi interface

only, while the MAP turns on both Wifi and 3G interfaces.

During the experiment we did not generate any traffic to

investigate the idle power of a MAP. To measure the

amount of consumed power, we used Monsoon Power

Monitor [8] which is one of the most widely used external

energy meters that monitors the battery power of hand-held

devices in real time. As shown in the figure, the power

consumption of the client is pretty low because its Wifi

interface is in a low power state for most of the time it is

idle. As a result, the average power consumption is less

than 30 mW. On the other hand, when the Wifi tethering is

enabled, the power consumption of the MAP increases

significantly. As shown in the figure, the smartphone

working as the MAP operates in a high power state con-

stantly (e.g., 200 mW) even though there is no traffic at all.

This result indicates that the Wifi tethering leads to severe

drop of the battery lifetime. Intuitively, the MAP’s Wifi

interface should be put into a low power state to reduce the

use of the battery power when the network is idle, and thus

an energy efficient Wifi tethering solution for a MAP is

highly required to solve this problem.

Figure 2(a) represents the power measurement results of

a Galaxy Nexus client that receives a 1,024 byte packet

every 500 ms. Each down arrow in the figures indicates a

packet transmission to the client. As shown in the figure,

the client stays in a high power state and consumes more

than 100 mW for most of the time. Typically, clients can

enter the sleep state when there is no traffic for a certain

Fig. 1 Power consumption of smartphones working as a mobile AP

and a client. Periodic spikes in the figures represent beacon

transmission and reception over Wifi

964 Wireless Netw (2015) 21:963–980

123

period (which will be discussed in detail later). However,

in this case, subsequent packet arrivals hinder the client’s

transition to sleep mode. This implies that the client’s

battery exposed to the high voltage will lose the energy

quickly and also its lifetime will be shortened. On the other

hand, as shown in Fig. 2(b), when the same amount of

traffic is generated but transmitted at the different time in

bursts, the client can have more opportunities to enter the

sleep state by utilizing longer idle periods during data

transfers, and thereby it consumes less energy compared to

Fig. 2(a). This approach may lead to an additional delay for

each packet, but the client still receives the same number of

packets during the measurement. That is, it may not

degrade users’ QoS substantially since the increased delay

of a partial of the whole packets is not typically meaningful

for users. Rather, in most of applications which are not

delay-sensitive, the arrival time of the last packet is more

important. Based on this, it is possible to properly reshape

traffic pattern by squeezing the constant bit rate traffic, and

provide meaningful idle periods enough for clients to enter

the sleep state.

2.2 Impact on throughput

Figure 3 shows the bandwidth of a 3G client, an 802.11n

Wifi client connected to a normal AP, and a tethered client

(a client connected to a MAP with a 3G connection). From

the figure, it is observed that the Wifi client achieves eight

times higher throughput than the 3G client and the tethered

client, on average. In addition, the tethered client may not

achieve substantial throughput although it is connected to

the MAP over a high-speed Wifi link. This is obvious that

all packets the tethered client transmits/receives should be

passed through the cellular link of the MAP. As a result,

higher speed Wifi is bottlenecked by 3G connection, and

the tethered client is not able to fully utilize the Wifi

bandwidth. For this reason, the tethered client achieves

very similar throughput to the cellular client as shown in

the figure.

The above result implies that the MAP and its associated

client can put their Wifi interface in the sleep state for a

long period because the Wifi interfaces are bottlenecked by

cellular connection which offers lower throughput. There-

fore, we need to reduce the unnecessary energy waste

without a substantial impact on throughput and delay with

the consideration of this bandwidth discrepancy between

Wifi and 3G connections.

2.3 Impact on packet delay

To study the effect of the IEEE 802.11 power save mode

(PSM) on packet delay, we measured the packet delay

between a client and a server, which are connected via a

normal AP, when the server sends downlink traffic with

varying the packet generation interval from 10 ms to 5 s.

Figure 4 shows the observed delay result using a Galaxy

Nexus smartphone. From the figure, we can find that the

packet delay is bounded by approximately 300 ms and

periodically rounded up to the nearest 300 ms as the packet

generation interval increases.

According to the IEEE 802.11 standard [9], a client can

use a PSM to conserve its power by switching its Wifi

interface between an awake state and a sleep state. A PSM

client staying in the sleep state periodically wakes up to

listen to a beacon frame, and retrieves the buffered packets

(a) Normal traffic

(b) Burst traffic

Fig. 2 Power consumption results of a Galaxy Nexus client with

different traffic patterns

Fig. 3 Throughput measurements for a Wifi client, a 3G client, and a

tethered client connected to a mobile AP with 3G Internet connection

under a FTP traffic condition

Wireless Netw (2015) 21:963–980 965

123

from its associated AP if the received beacon frame con-

tains an identifier which indicates the presence of packets

destined to itself. This PSM mechanism saves a significant

amount of energy by putting the Wifi interface into a low

power state for most of time, however, it may hinder users

from receiving good quality of service for time-critical

VoIP applications, such as Skype and FaceTime, since the

PSM may cause intolerable delay. For this reason, most

recent smartphones and tablets adopt the adaptive PSM

(A-PSM) mechanism, which allows the Wifi interface

enters a sleep state only when there is no network activity

for a certain period. That period, called tail time, ensures

that the Wifi interface does not sleep in the middle of

packet inter-arrival times. Thus, as shown in the figure, the

observed packet delay is greatly reduced until the packet

interval reaches 100 ms. However, it is repeatedly rounded

up to the nearest 300 ms with increasing the interval due to

client’s periodic sleep and wake-up.

The above result implies that, the MAP does not need to

immediately forward the packets received from the 3G

network since the client staying in a sleep state cannot

receive them until it wakes up again. This is due to listen

interval (LI), the periodic intervals that a client awakens to

listen to a beacon from an AP. LI is a multiple of the

beacon interval (BI), the interval between successive two

beacons. Therefore, if the MAP can adjust the power state

of its Wifi interface, it does not need to immediately wake

up its Wifi interface to send data packets until the begin-

ning of the client’s next LI.

2.4 Summary

We first measured the power consumption of recent com-

mercial smartphones when they function as a MAP, and

identified that the MAP could suffer from a significant

energy drain problem even though there is no traffic at all.

We then showed that a client consumes energy differently

according to the traffic pattern, and found a way to save

power by properly reshaping the traffic into bursts without

throughput degradation. While the reshaped traffic may

cause an extra delay for each packet, it is hardly perceiv-

able by users in general since the delay of partial packets

may not degrade user’s QoS substantially except in the

case of time-critical applications.

We then illustrated that the Wifi link between a MAP

and a client is significantly underutilized due to the lower

bandwidth of cellular link than the Wifi link. Intuitively,

the Wifi interfaces of both MAP and its client could be put

into a sleep state for idle periods, and thereby provide an

additional opportunity for energy saving without any

impact on throughput. Finally, by using the delay mea-

surements at the client side, we showed that a PSM client is

unable to receive any packets until it wakes up at the

beginning of its next LI. That means, the packet delay may

not be significantly impacted although the MAP delays

packet transmissions until the client’s next LI.

Based on the above observations, we now present a new

scheme for saving power of a MAP, called sleeping mobile

AP (SMAP). The key idea of SMAP is to adaptively put the

Wifi interface of a MAP into a low power state and to stay

in this state for a certain period depending on the current

traffic load. Further, it schedules the best timing to forward

packets to a client with a negligible impact on the packet

delay, so as to increase the available sleep time of both

MAP and client. The detailed operation of SMAP will be

explained in the next section.

3 Proposed protocol

As shown in Fig. 5, the overall architecture consists of two

parts, the client and the MAP. The SMAP at the client side

is implemented between link and IP layers to make it easily

deployable and to manage the traffic with minimal over-

head. On the other hand, the SMAP at the MAP side is

directly implemented on both Wifi driver and firmware. It

is composed of four components, traffic monitor (TM),

sleep scheduler (SS), traffic inactivity timer (TIT), and

packet buffer (PB). TM is a component that monitors the

amount of current network activity when the Wifi interface

is awake. Based on the information, SS calculates the duty

cycle to determine the required time to fully deal with the

current traffic load over Wifi. TIT is a timer component

that determines whether there is a traffic arrival during a

certain period, and PB is to buffer the packets arriving from

the upper layer during sleep periods. On the other hand, the

client has two components, blocking controller (BC) and

PB as shown in the figure. BC is a component that deter-

mines whether to buffer the packets arriving from the upper

Fig. 4 Packet delay of a client under periodic downlink traffic

966 Wireless Netw (2015) 21:963–980

123

layer or not, and PB is used for the same purpose as in the

MAP.

3.1 Basic operation

When tethering function is enabled, a MAP initially keeps

its Wifi interface awake and continuously monitors the

network activity by using TM. Based on the observed

result, it calculates the current traffic load at the beginning

of every BI. If it detects that the Wifi link is underutilized

(e.g., the level of network activity is lower than a thresh-

old), the MAP determines the duty cycle of the Wifi

interface to coordinate the ratio of its wake-up and sleep

periods using SS. Then, after a beacon transmission, the

MAP keeps awake during the calculated wake-up period,

and then initiates a power negotiation with clients to sleep.

For the power negotiation, the MAP sends a sleep

request message to its client, similar to DozyAP [7], and

puts its Wifi interface in sleep state if the client replies with

a sleep response message. Especially, each sleep request

message contains the sleep period (calculated by SS) for

which the MAP wants to sleep. This is to safely avoid any

possible packet loss with explicit guarantee that the client

would not send uplink traffic until the MAP goes back to an

awake state. If no sleep response is received, the MAP

simply retransmits the sleep request message to the client.

Note that, both sleep request and response messages are

transmitted in a unicast manner. This reason is that the

MAP should not enter the sleep state without explicit

agreements of all clients. If not, an uplink packet can be

transmitted while the MAP sleeps since some of clients

may not be aware of the sleep schedule, and it will be lost

after consecutive retransmission timeouts.

When the MAP puts its Wifi into a sleep state, all

packets arriving from the upper layer will be buffered into

PB and forwarded to the corresponding client in a burst

manner after it wakes up. Then, the MAP repeats the above

procedures. This enables both MAP and client to facilitate

energy saving by reducing substantial idle listening periods

between successive packets. For better understand, Fig. 6

shows the interactions between a MAP and a client. Here is

the scenario.

• At time t0, a MAP receives a data packet from a client

while its Wifi interface stays in an awake state.

• At time t1, the MAP finds out the underutilized Wifi

link and sends a sleep request including a sleep

duration. In this case, the sleep duration is t4 as shown

in the figure.

• Then, the MAP puts its Wifi into a sleep state after

receiving a sleep response from the client.

• For easier deployment, SMAP is implemented as a

module and loaded on the client without direct

modification to the Wifi kernel driver. For this reason,

the client using the normal A-PSM can go to a sleep

state after its tail time expires at time t3.

• For the subsequent packets, the MAP buffers all

packets and forwards them as a burst after the sleep

finishes at time t4.

The above algorithm is designed to reduce energy

consumption with the minimal adverse impact on the net-

work performance. Of course, it significantly reduces

power consumption by introducing a sleep cycle mecha-

nism into the power-hungry Wifi interface, but sometimes

limits the energy saving since the continuous traffic mon-

itoring process may be unnecessary if the MAP has no

traffic to transmit. To solve this problem, the MAP addi-

tionally uses traffic inactivity timer (TIT). TIT is a timer

that is used to check whether any packet arrives from the

client or the cellular network for a certain time period (TIT

threshold). Thus, whenever the MAP receives packets

before its TIT expires, it simply restarts the TIT. However,

if the TIT expires (that means, there is no traffic activity for

MAP

SMAP MAP Controller

Wifi

Packet
Buffer

Traffic
Timer

Client

SMAP Client Module

Wifi

Packet
Buffer

Blocking
Controller

Wireless Channel

Traffic
Monitor

Sleep
Scheduler

Fig. 5 SMAP architecture

ClientMAP

tr
af

fic
 <

 th
re

sh
ol

d

t0

t1

t2

t3

t4

S
le

ep

S
le

ep

id
le

 >
 ta

il
tim

e

Fig. 6 SMAP basic operation (Each triangle on MAP and client lines

indicates a data packet arriving from the upper layer.)

Wireless Netw (2015) 21:963–980 967

123

the time period of TIT threshold), the MAP immediately

initiates the power negotiation to put the Wifi interface into

a sleep state. This enables the MAP to enter the sleep state

more quickly and stay in a low power state for longer time.

However, this imposes two challenges. First, if there is

traffic of time-critical applications, the service quality

could be degraded due to intolerable packet delay [10].

Fortunately, there has been much work in identifying those

traffic from the traffic aggregate [11–13]. With the help of

the existing solutions, the MAP can appropriately decide

the transition to the sleep state only when no time-critical

packets are included in the current traffic. Second, without

a careful coordination of wake-up and sleep time,

throughput and delay performance can be negatively

impacted. To avoid the performance degradation, the MAP

adaptively determines the threshold, which will be dis-

cussed in detail later (in Sect. 3.3).

3.2 State transition

Figures 7(a) and 8 show the state transition diagram of a

MAP and its corresponding pseudo-code, respectively.

Note that, the pseudo-code does not show all of the oper-

ations for the MAP as the undescribed parts are the same as

the standard procedure defined in 802.11. As shown in

Fig. 7(a), a MAP has four states: normal, on-duty, proba-

tion, and sleep. The normal state is the initial state of the

MAP. It basically remains in this state when the Wifi

tethering function is enabled. In the normal state, the

MAP’s Wifi interface is in an awake state and it can

transmit and receive packets normally. At the same time, it

additionally monitors the current traffic activity over the

Wifi link while it is awake, so as to estimate the wake-up

period required to support the current traffic and to find an

opportunity to save power. If the MAP observes no time-

critical traffic and the underutilized Wifi link (e.g., no time-

critical traffic && traffic load \ threshold) (line 20), it

calculates the duty cycle and enters the on-duty state (lines

21–22). In the on-duty state, the MAP starts a sleep timer

set to the wake-up period and exchanges any data packet

with the client normally. When the timer expires, the MAP

sends a sleep request and then enters the probation state to

wait for the client’s response (lines 27–29). If the MAP

receives a sleep response message, the MAP transits to the

sleep state and puts the Wifi interface into a low power

state (lines 36–39); if it does not receive the expected sleep

response, it retransmits a sleep request. After the sleep

period finishes, the MAP changes from the sleep state to

the normal state (lines 42–45), and then sends a burst of the

packets buffered while it sleeps.

Meanwhile, the MAP in the normal state also constantly

checks the presence of data packets using TIT while

monitoring traffic load. If the TIT expires (that is, Wifi

interface is idle for a time period larger than the TIT

threshold), the MAP immediately enters the probation state

after sending a sleep request, as shown in the figure (lines

48–51). This is because the TIT expiration indicates that

the MAP no longer needs to stay awake since there is no

packet to send. After changing to the probation state, the

MAP goes to the sleep state if receiving the client’s reply,

and then goes back to the normal state when it wakes up.

Initially, the MAP uses 150 ms as a default TIT

threshold as in DozyAP [7], but re-sets the minimum inter-

frame gap3 (e.g., 1,023 backoff slots plus a succeeding

DIFS time) (line 50) when no traffic is observed during the

TIT threshold as shown in the figures, so as to provide

more opportunities for saving power. By minimizing the

TIT threshold, a longer sleep duration is available, ensuring

that the MAP and the client can increase the sleep time.

Obviously, the TIT threshold is initialized to the default

value (150 ms) if a MAP newly receives a packet to

transmit (line 8).

Figures 7(b) and 9 represent the state transition diagram

and the pseudo-code of a client, respectively. Unlike the

MAP, the client has only two states: normal and block, as

shown in Fig. 7(b). In the normal state, the client com-

municates with the associated MAP normally. If the client

(a) MAP

(b) Client

Fig. 7 Transition diagram for a MAP and a client

3 TIT threshold of a MAP should be larger than the maximum

backoff period to receive the clients’ uplink packets in a conservative

manner.

968 Wireless Netw (2015) 21:963–980

123

receives a sleep request from the MAP and it can agree the

request (if there is no packet to send), it replies with a sleep

response message and enters the block state (lines 7–9). In

this state, the client does not send packets to the MAP

anymore until the sleep duration in the sleep request fin-

ishes, by buffering data packets arriving from the upper

layer. This forces the client’s tail time to be expired, and

thereby provides an opportunity to save power. After the

sleep duration finishes (lines 13–15), the client is able to

return to the normal state and operate normally according

to the 802.11 standard operation.

3.3 Calculation of duty cycle

As mentioned in the previous section, the sleep cycle of a

MAP imposes the challenges to deciding the wake-up and

the sleep periods without affecting the throughput and

delay performance. To solve those problems, the MAP

adaptively calculates the duty cycle every BI using the

monitored traffic activity, and starts sleep and wake-up

processes. Note that, the duty cycle is the ratio of the wake-

up time to the total period. Therefore, the MAP first esti-

mates the required wake-up time to successfully deal with

the current traffic load, and then calculates the sleep time of

the duty cycle. However, the duty cycle calculation is

challenging because the network condition (i.e., traffic

pattern and mobility) is likely to change over time. One

possible solution is to compute the duty cycle using the

entire history of the monitored traffic. This is easy to do

since the computation only requires the number of packets,

the packet size, and the initial time where the observation

began. Unfortunately, this scheme can degrade the user

QoS as it takes a long time to adjust to changes due to the

old history. In other words, the network throughput (energy

saving) will be degraded since the duty cycle cannot be

quickly adjusted when the traffic load is drastically

increased (decreased).

To make the duty cycle more responsive to changes,

SMAP computes it over a sliding window. This means that,

the old history will be eventually removed from the history

window and no longer included in the duty cycle calcula-

tion. However, if the history window does not capture a

large enough sample of the traffic patterns, it may fluctuate

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

Called when SMAP protocol starts
procedure BEGINSMAP()

Start at the normal state
Start TM and TIT # execute TM and TIT

On receiving data packets
procedure RECEIVEDATAPACKETS (packet)

Re-set the default TIT threshold
if (the current state is the sleep)

Buffer packet
else

Forward packet
if (the current state is the probation)

Change to the normal state
Start TIT

Called when the MAP sends a periodic beacon frame
procedure SENDBEACON ()

Send a beacon frame
if (no time-critical and low traffic is observed)

Calculate the duty cycle # compute wake-up/sleep time
Change to the on-duty state
Stop TIT
Start a sleep timer with the wake-up period

Called when the required wake-up period finishes
procedure SLEEPTIMEREXPIRED ()

SendSleepRequest (sleep period of the duty cycle)
Change to the probation state

Called when the MAP wants to sleep
procedure SENDSLEEPREQUEST (Dur)

Send a sleep request message with Dur

Called when receiving a sleep response
procedure RECEIVESLEEPRESPONSE (Dur in Sleep Request)

Stop TM and TIT
Change to the sleep state
Put Wifi interface into a low power for Dur

Called when the current sleep period finishes
procedure SLEEPEXPIRED ()

Put Wifi interface into a high power
Start TM and TIT
Change to the normal state

Called when there is no traffic until TIT expires
procedure TITEXPIRED ()

SendSleepRequest (remaining time until the next LI)
Reset TIT to the minimum IFS value
Change the probation state

Fig. 8 SMAP algorithm of a MAP

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Called when SMAP protocol starts
procedure BEGINSMAP()

Change to the normal state

Called when receiving a sleep request
procedure RECEIVESLEEPREQUEST (packet)

Change to the block state
Start a sleep timer for the duration in packet
Buffer all packets arriving from the upper layer
Send a sleep response message

Called when the current sleep period finishes
procedure SLEEPTIMEREXPIRED ()

Change to the normal state
if (buffered packets exist)

Send buffered packets to the MAP

Fig. 9 SMAP algorithm of a client

Wireless Netw (2015) 21:963–980 969

123

and not reach the sweet point. Therefore, SMAP uses one-

second history window as the training period (that is, 10

BIs) which hits the sweet point across all the traffic patterns

that we studied, so as to adaptively calculate the duty cycle

over time.

Based on this, the MAP monitors the ongoing traffic

using TM over Wifi link and records the results (the

number of packets for each device in the neighborhood and

the average packet length) while it awakens. Then, based

on (8) in [14], the MAP calculates the expected transmis-

sion probability si for device i over Wifi as

si ¼
CiF

Q
ð1Þ

where Q is the total period for which the MAP performed

traffic monitoring, Ci is the number of packets that device

i transmitted, and F is the slot time.

Next, let Ptr and Ps be the total probability that at least

one packet transmission is initiated and a packet trans-

mission is successful over the shared medium, respectively.

Then, they can be derived as

Ptr ¼ 1�
YN�1

i¼0

ð1� siÞ ð2Þ

Ps ¼
P

x2G sx

Q
y2G�fxg ð1� syÞ
Ptr

ð3Þ

where N and G are the total number of devices in the

neighborhood and a set of those devices, respectively.

Finally, based on (12) in [14], the normalized duty cycle

S required to serve the current traffic while contenting with

N devices can be obtained as

S ¼ PsPtrTs

ð1� PtrÞF þ PtrPsTs þ Ptrð1� PsÞTc

ð4Þ

where Ts and Tc are the average channel busy time when a

packet is successfully transmitted and collided, respec-

tively. Thus, Ts = RTS ? SIFS ? CTS ? SIFS ? L ?

SIFS ? ACK ? DIFS and Tc = RTS ? DIFS can be

derived since RTS/CTS (or CTS-to-self) needs to be used

by 802.11g/n clients to protect subsequent 11g/n trans-

mission, where L is the average packet length (in slot unit).

However, since S ranging between 0 and 1 just repre-

sents the ratio of the wake-up time to the total period, it

does not indicates the actual time duration. To obtain the

wake-up time (as well as the sleep time), the MAP deter-

mines the total period, which is the latter goal in this

section. This should be carefully determined because the

longer total time leads to longer sleep duration and more

energy saving, but also increases the packet delay. To

minimize the negative impact on the delay, the MAP

decides the total period based on client’s LI. As discussed

in Sect. 2.3, a PSM client stays in a lower state when the

network is idle, and it wakes up every LI to retrieve any

possible packets buffered at the AP. Based on this, the

MAP determines the total period using the remaining time

until the beginning of the client’s next LI, LIremain, so as to

reduce the extra packet delay for the PSM client.

Using those results, the MAP calculates the actual wake-

up and the sleep period as follows.

Twake�up ¼ S� LIremain ð5Þ

Tsleep ¼ ð1� SÞ � LIremain ð6Þ

Figure 10 shows an illustrative example when a MAP

and a client communicate with each other. In the figure,

each reverse triangle indicates a packet arrival. The MAP

first monitors the current traffic load over Wifi while awake

(time t0–t1). As shown in the figure, the MAP simply for-

wards a received packet to the corresponding client when it

is active. Then, the MAP calculates the duty cycle using the

monitored results at the next BI at time t1. As discussed, the

wake-up and sleep durations are determined based on the

traffic load and the client’s LI. Assume that the normalized

duty cycle is 0.2 according to Eq. (4) in Sect. 3.3, and the

LI is 3 (the client wakes up every 3rd beacon, as shown in

the figure). Then, the MAP decides to keep awake for

60 ms (20 % of 300 ms). During the wake-up period, it

normally transmits/receives packets. However, if the wake-

up period finishes and there is no packet to send, the MAP

transits to the on-duty state and starts the sleep request-

response process to sleep until the beginning of the next LI

(time t4). After that, it goes to the sleep state, and all

subsequent packets are buffered at the MAP. This allows

the client to enter a low power state by forcing its tail time

to be expired. Then, when the client’s next LI starts at time

t4, both the MAP and the client wake up at the same time,

and all of the buffered packets are transmitted to the client

as a burst during the new wake-up period.

If the proposed scheme is not applied, the MAP and the

client cannot enter the sleep state. However, with the help

of duty cycle and traffic reshaping, the MAP and the client

have an opportunity to sleep regardless of traffic activity,

and thereby conserve their power as shown in the figure.

3.4 Supporting multiple clients

Although multiple clients are associated to the same MAP,

SMAP can operate normally. If there is traffic activity, the

MAP calculates the transmission probability for each cli-

ent, the total probability that at least one packet transmis-

sion is initiated, and the normalized duty cycle by using the

Eqs. (1)–(4), so as to obtain appropriate wake-up and sleep

periods, as discussed in Sect. 3.3. Based on the results, the

MAP sends a sleep request message to each of clients in a

970 Wireless Netw (2015) 21:963–980

123

unicast manner. The MAP will enter a sleep state when

receiving the corresponding sleep response messages from

all of its clients, ensuring that all clients agree not to send

any packets until it wakes up. However, this will spend

more energy and time due to separate negotiations with all

of clients. This problem can be more important when

multiple clients use different PSM methods. Constantly

awake mode (CAM) aiming at maximizing the network

throughput constantly keeps awake to immediately deal

with possible uplink/downlink traffic, but PSM and A-PSM

put the client’s Wifi interface into a sleep state when no

traffic exists, as discussed in Sect. 2.3. Thus, it is more

difficult for the MAP to negotiate with all clients in the

coexistence environment, because some of clients may not

be unable to participate in the power negotiation due to

their own sleep process. For example, with CAM clients,

the MAP can immediately start the power negotiation and

enter a sleep state when it wants to sleep since the CAM

clients always stay in an awake state. On the other hand,

when CAM and PSM (or A-PSM) clients coexist, the MAP

may not quickly enter the sleep state since it cannot finish

the power negotiation with all clients until all of the PSM

clients wake up again. As a result, the energy saving of the

MAP can be degraded. However, this problem is not

serious in most cases because the Wifi tethering is usually

used for personal Internet access when there is no available

AP. That is, only a few client devices are likely to connect

to a MAP (we will discuss the impact of multiple clients

later in Sect. 5), and thus substantial performance degra-

dation due to multiple clients may not be induced.

Meanwhile, if multiple clients wake up at the same time

for receiving the beacon frame to check for the presence of

any buffered packets, they have to contend with each other to

retrieve the buffered packets and some of them have to wait

in a high power state while one client retrieves a packet. This

problem is already addressed and aligned with the AP vir-

tualization technique in [15], but it is hard to be applicable to

the MAP. While the virtualization functionality is widely

available in most AP (e.g., an Atheros chipset allows up to

four virtual APs), it is not included in most of smartphones,

and therefore substantial modification needs to be required

to leverage the virtual AP function. To mitigate this prob-

lem, SMAP exploits the client’s LI information. Most of

recent smartphones use a multiple of BIs as the LI to reduce

energy waste due to the frequent wake-up to receive bea-

cons, and they wake up at least every 2nd beacon. The MAP

forces clients to synchronize to different BI by evenly dis-

tributing them when they try to associate with the MAP. This

reduces the number of clients that wake up at the same time,

and thereby mitigates energy consumption caused by con-

tention among them.

4 Delay analysis

In this section, we analyze the delay when a MAP uses the

sleep cycle of the proposed scheme, based on M/G/1

queuing model. Depending on the current traffic activity, a

MAP transits between awake and sleep states. Let Ln, An,

and Rn be the queue length after a MAP sends/receives nth

packet, the number of packets enqueued during the service

time of nth packet, and the number of packets arrived

during the sleep duration of a MAP, respectively. In

addition, let Qn be the number of packets arrived before

TIT expires, while the queue is empty (Qn = 0 implies that

MAP enters a sleep state due to TIT expiration), it is

possible to express Ln?1 as a function of Ln, Qn, and An?1,

and the sequence {Ln;n = 1, 2, …} constitutes a Markov

chain [16]. Suppose that p is the probability that the MAP

with an empty queue receives n ? 1th packet when it is in

the wake-up period of its duty cycle, then Ln?1 can be

described in the following four cases.

• Case I: As shown in Fig. 11(a), if one or more packets

already remain in the MAP’s queue (Ln [0) after the

nth packet departs, and if zero or more packets

additionally arrive during the service time of n ? 1st

Fig. 10 An illustrative example of a MAP and a client operation (B: beacon, Data: data packet, Req: sleep request, Res: sleep response)

Wireless Netw (2015) 21:963–980 971

123

packet (An?1 C 0), then the number of buffered packets

after n ? 1th packet is serviced equals to Ln ?

An?1 - 1.

• Case II: While the MAP is in a sleep state (Ln = 0,

Qn = 0) after TIT expires, one or more packets

including n ? 1st packet could arrive (Rn C 1), and

zero or more packets further arrive during the service

time of n ? 1st packet (An?1 C 0), then the number of

buffered packets after n ? 1th packet is serviced equals

to Rn ? An?1 - 1. Figure 11(b) shows an example

when the MAP receives packets after TIT expires.

• Case III: As shown in Fig. 11(c), there is no packet in

the queue (Ln = 0) when nth packet departs. If n ? 1st

packet arrives before TIT expires (1� Pr Qn ¼ 0½ �) and

the MAP’s wake-up period finishes (p), and if zero or

more packets arrive during the service time of the

n ? 1st packet (An?1 C 0), then the number of buffered

packets after n ? 1th packet is serviced equals to is

An?1.

• Case IV: There is no packet in the queue (Ln = 0) when

nth packet departs. If n ? 1st packet arrives before TIT

expires (1� Pr Qn ¼ 0½ �), but the MAP already enters a

sleep state due to underutilized Wifi link (1 - p), and if

zero or more packets arrive during the service time of

the n ? 1st packet (An?1 C 0), then the number of

packets arrived after n ? 1th packet is serviced equals

to is Rn ? An?1 - 1 (see Fig. 11(d)).

As a result, the queue length after n ? 1th packet is

serviced can be derived as:

Lnþ1 ¼

Ln þ Anþ1 � 1; for Ln [0

Rn þ Anþ1 � 1; for Ln ¼ 0; Qn ¼ 0

Anþ1; for Ln ¼ 0; Qn [0; p

Rn þ Anþ1 � 1; for Ln ¼ 0; Qn [0; 1� p:

8
>><

>>:

ð7Þ

Meanwhile, let pk and L be the probability of the queue

length being k and the queue length in the steady state,

respectively. Then pk can be denoted as pk ¼
P1

j¼0 Pr½Ln ¼
j� � Pr½Lnþ1 ¼ kjLn ¼ j� and also pk ¼ Pr L ¼ k½ � since the

next queue length is basically influenced by the previous

length, where
P1

j¼0 Pr Ln ¼ j½ � ¼ 1. Based on the above

equations, for four cases, pk can be described as:

An+1

n+1st packet

MAP

Client

Active

Ln > 0
Ln+1 =

Ln+An+1-1
Queue
Size

time

time

An+1

 Active

n+1st packet

MAP

Client

 Active

Ln = 0
Ln+1 =

Rn+An+1-1
Queue
Size

time

time

Sleep

Rn

TIT expires

Qn = 0

(a) Case I (Ln > 0) (b) Case II (Ln = 0, Qn = 0)

An+1

n+1st packet

MAP

Client

 Active

Ln = 0
Ln+1 =

An+1

Queue
Size

time

time

Qn > 0
An+1

 Active

n+1st packet

MAP

Client

 Active

Ln = 0
Ln+1 =

Rn+An+1-1
Queue
Size

time

time

Sleep

RnQn > 0

Sleep due to low traffic

(c) Case III (Ln = 0, Qn > 0, P) (d) Case IV (Ln = 0, Qn > 0, 1 – P)

Fig. 11 The number of queue

length at a MAP after sending

n ? 1st packet to a client

pk ¼

Pkþ1
j¼1 pj Pr½An ¼ k � jþ 1�; for j [0

Pr½Qn ¼ 0� �
Pkþ1

l¼1 Pr½Rn ¼ l� Pr½An ¼ k � lþ 1�
� �

; for j ¼ 0; Qn ¼ 0

ð1� Pr½Qn ¼ 0�Þ � Pr½An ¼ k� � p; for j ¼ 0; Qn [0; p

Pr½Qn ¼ 0� �
Pkþ1

l¼1 Pr½Rn ¼ l� Pr½An ¼ k � lþ 1�
� �

� ð1� pÞ; for j ¼ 0; Qn [0; 1� p:

8
>>>><

>>>>:

ð8Þ

972 Wireless Netw (2015) 21:963–980

123

where k = Ln ? 1, j = Ln. By combining the above four

cases into a single equation, pk is expressed as:

pk ¼ p0 p 1� q0ð Þak þ ð1� pþ pq0Þ
Xkþ1

l¼1

rlak�lþ1

 !" #

þ
Xkþ1

j¼1

pjak�jþ1 ð9Þ

where qm = Pr[Qn = m], ak = Pr[An = k], and rl =

Pr[Rn = l] for m and k C 0, and l C 1. Let the PGF of pk

be PðzÞ ¼
P1

k¼0 zkpk, then it is represented as:

PðzÞ ¼ p 1� q0ð Þp0

X1

k¼0

zkak þ ð1� pþ pq0Þp0

X1

l¼1

zl�1rl

�
X1

k0¼0

zk0ak0 þ
PðzÞ � p0

z

� �X1

k0¼0

zk0ak0 :

ð10Þ

Let the PGF of ak be A zð Þ ¼
P1

k¼0

akzk. PGF is closely

related to LST that can represents with respect to the time

domain. Suppose that the LST of service time tx distribu-

tion can be represented as f �x ðsÞ, the packet arrival rate has

a Poisson distribution with rate ka which is independent

with tx. Then, according to [17, 18], A zð Þ ¼ f �x sð Þ ¼
f �x ðka � kazÞ.

Similarly, let R zð Þ ¼
P1

l¼0 rlz
l be the PGF of rl distri-

bution. Then, PðzÞ can be derived as:

PðzÞ ¼ p0 1� pð1� q0Þz� 1� pþ pq0ð ÞRðzÞ½ �f �x ðka� kazÞ
f �x ðka� kazÞ� z

ð11Þ

Since Pð1Þ ¼ 1, we can derive p0 from (11) as:

p0 ¼
1� q

pð1� q0Þ þ ð1� pþ pq0ÞE½R�
ð12Þ

where q be the ka=kx. Substituting (12) into (11), we have

PðzÞ ¼
ð1� qÞ 1� pð1� q0Þz� 1� pþ pq0ð ÞRðzÞ½ �f �x ðka � kazÞ

pð1� q0Þ þ ð1� pþ pq0ÞE½R�½ �½f �x ðka � kazÞ � z� :

ð13Þ

According to [16], assume that the traffic arrival follows

the Poisson distribution, the TIT threshold has the density

function fI(t), mean 1/kI , variance VI , and the LST f �I ðsÞ.
Then,

q0 ¼
Z1

t¼0

e�katðkatÞ0

0!

" #
fIðtÞdt ¼ f �I ðkaÞ ¼ e�ka=kI ð14Þ

Meanwhile, suppose that the LST of the packet delay td
is f �d sð Þ. Then, using the differentiation in the s-domain

property, the expected packet delay E[td] can be obtained

since the differentiation of Pð1� s=kaÞ by s corresponds to

the time domain [19]. Thus,

E½td� ¼�
df �d ðsÞ

ds

����
s¼0

¼�dPð1� s=kaÞ
ds

����
s¼0

¼ ð1�pþpe�ka=kI Þka

2kD½pð1� e�ka=kI Þð1� e�ka=kDÞkDþð1�pþpe�ka=kI Þka�

þ ð1�Vxk
2
xÞka�2kx

2ðka�kxÞkx

:

ð15Þ

Here, kx, ka, kI , kD, and Vx represent the service rate

(1/tx), packet arrival rate, TIT expiration rate (1/TIT), sleep

rate (1
LI�½1�p�), and the variance of service rate (1/k2

x). p is

basically determined by the current traffic load (e.g.,

channel utilization), and we assume that p follows expo-

nential distribution with ka=kx since p is determined

according to the traffic load. Figure 12 shows the variation

of the expected delay with respect to ka. While the packet

delay usually increases with increasing ka, this is not the

case with a low traffic load as shown in the figure. Observe

that the expected packet delay of SMAP is higher than the

normal MAP, but lower than DozyAP with a low ka. While

DozyAP can sleep for up to 500 ms when no traffic arrives

for traffic inactivity threshold, SMAP stays in a low power

state until the client’s next LI, which is much less than the

sleep duration of DozyAP. However, SMAP shows higher

delay than DozyAP as ka increases. Again, this is because

SMAP buffers packets and sends a burst by combining

small idle periods caused by bandwidth discrepancy

between Wifi and 3G. Of course, this trend does not con-

tinue when ka becomes much higher than the service rate

kx.

λα (unit λx)

10-5 10-4 10-3 10-2 10-1 100

D
el

ay
 (

m
s)

0

100

200

300

400

500
Ana, Normal
Ana, SMAP
Ana, DozyAP
Exp, Normal
Exp, SMAP
Exp, DozyAP

Fig. 12 Analysis and experimental delay results as a function of the

packet arrival rate ka (TIT threshold 150 ms, Sleep duration

(DozyAP) 500 ms [7], Sleep duration (SMAP) 300 ms)

Wireless Netw (2015) 21:963–980 973

123

5 Performance evaluation

5.1 Evaluation methodology

For experimental evaluation, we implemented SMAP on

Samsung Galaxy Nexus smartphones that have a detach-

able battery, a Broadcom 802.11a/b/g/n network interface

(version 5.90.195.61) [20], and a Wifi tethering function of

Android 4.1.1 (kernel version 3.0.31).

As shown in Fig. 5, SMAP is implemented into the

client and the MAP. The client’s SMAP is implemented

between the link and the IP layers. It blocks packets

arriving from the upper layer (IP layer) using a packet

buffer if it replied to a sleep request with a sleep response,

and then it forwards all buffered packets to the lower layer

(link layer) later when the sleep duration finishes. The

MAP’s SMAP, on the other hand, is directly modified from

the Wifi driver and kernel OS to implement the power

negotiation and duty cycle calculation algorithms. Once

receipt of the sleep response, the MAP buffers the suc-

ceeding packets which arrive from the upper layer until the

sleep duration finishes, so as not to send packets received

from the cellular interface over Wifi while it sleeps.

However, there are two difficulties concerning the

implementation of SMAP. Firstly, the power state transi-

tion of the MAP’s Wifi interface is practically difficult

since this part is implemented in the firmware, not the Wifi

driver and the kernel OS. To solve this problem, we

modified the firmware based on a reverse engineering

method [21] that provides a fundamental solution for the

modification of the Wifi firmware in Android smartphones.

In analyzing the firmware, we found that most of functions

in the firmware have a special wrapper which checks a

special function table and jumps to the relevant code if

necessary. Based this finding, we changed the Wifi driver

and the firmware to make the wrapper point to new codes

in the Wifi driver with the fixed memset, and implemented

the power state transition of the Wifi interface. Secondly, to

ensure periodic beacon transmission during the sleep

duration, we implemented an additional timer in SMAP.

When the MAP enters a sleep state, it checks whether or

not the sleep duration is longer than the time remaining

until the beginning of the next BI. If not longer, the MAP

simply enters the sleep state without any additional oper-

ations, and it wakes up when the sleep duration finishes.

Otherwise, the MAP starts the timer which will expire

before the next beacon transmission, and then it wakes up

when the timer expires so as to transmit a beacon. After

sending the beacon, the MAP enters the sleep state again if

the previous sleep duration is not finished.

In evaluation, five client phones were placed within 1 m

from the MAP phone, and connected to Monsoon Power

Monitor, an external real-time power monitoring device [8]

for measuring the power consumed by smartphones. To

isolate the power consumption of Wifi interface, we ini-

tialized all of the smartphones in a factory default setting

with no application running in the background, disabled all

other communication interfaces such as GPS, Bluetooth,

and NFC, and turned down the backlight. In addition, we

measured the packet delay, which is another important

performance metric. We developed a simple Java program

and installed it on both a client connected to a MAP and the

corresponding server to measure end-to-end delay accu-

rately. This Java program records a timestamp at both end

for every packet to calculate the delay. To reduce time

error introduced by different system clock, we ran the NTP

daemon on the server and synchronized the clock of the

client with the server.

For comparison, we measured the power consumption

and the packet delay of a normal MAP, DozyAP, and

SMAP using four different applications, web browsing,

music and video streaming, and FTP. Among them, web

browsing traffic is significantly affected by the behavior of

users, and thus we used the real traces collected from real

users [22] to get reliable results. The traces have the history

of the Internet usage for 24 iPhone 3GS users, including

users’ unique ID, the timestamp, and a specific URL

address that the users visited via a 3G network. Among

them, we chose one trace of the most active user to rep-

resent a baseline for achievable performance in a conser-

vative manner, and put it into our Java program to send and

receive packets according to the same time and order as the

trace. In music traffic, we used Google Play Music (a

popular application sharing and playing the music on

Android) and played a 262 s long music song. In video

traffic, we executed Youtube application and watched a

153 s video clip. In FTP, we download a 22.6 MB data file

using AndFTP application on Android.

Figure 13 shows the traffic patterns of four applications

which is used in our experiments. To capture the traffic on

a tethered client, we used tcpdump, a common packet

analyzer. From web traffic in Fig. 13(a), sporadic spikes

can be observed for the measurement period. The reason is

that, once a user sends out a page request to a web server

and downloads the corresponding data, then the user reads

the page for some amount of time, and thus there are

several idle periods between web page retrievals. On the

other hand, music data is transmitted in one burst as shown

in Fig. 13(b), since a music content is continuously trans-

mitted until the whole-file is delivered. However, once the

transfer completes before playback finishes, a long idle

period will last because the user simply listens to the

remaining time of play without further network activity. In

video streaming, a long idle period can be seen between

consecutive bursts from Fig. 13(c). Typically, a video

streaming server would send a burst of data for the initial

974 Wireless Netw (2015) 21:963–980

123

buffering, and stop it if the client’s playback buffer

becomes full at some point. Obviously, if the buffer lies

within the underflow threshold, the server sends a data

again until the buffer fullness is reached. In Fig. 13(d), FTP

traffic shows a similar trend to music traffic. From the

figure, one burst can be observed during the measurement

period because the FTP traffic source will not stop the data

transmission till the whole file is delivered. Thus, there is

no a long idle period exists during the measurement period.

Based on those traffic, each experiment is lasted until the

application is finished (e.g., 180 s of web browsing trace,

262 and 153 s of music/video data, and 22.6 MB of data

file).

5.2 Energy and delay of a MAP

Figure 14(a) shows the amount of energy consumed by

normal MAP, DozyAP, and SMAP. The results for the four

applications show that SMAP can save 17–56 % energy

compared to normal MAP. Furthermore, SMAP saves

6–16 % of energy consumed by DozyAP which employs

an energy saving mechanism for a MAP. The main reason

is that DozyAP can sleep only when the traffic does not

exist for a certain period, whereas SMAP exploits not only

idle periods due to no traffic activity, but also small idle

periods between successive packets to sleep longer.

Unfortunately, SMAP does not outperform DozyAP

substantially in web traffic, compared to the other appli-

cations. However, this is because the web traffic is typi-

cally the low volume of data. The main advantage of

SMAP is to provide meaningful time periods enough to

sleep by combining small idle periods between consecutive

packet transfers. As shown in Fig. 13(a), web traffic con-

tains only a few small idle periods whereas it has a lot of

long idle periods due to the user’s thinking time. For this

reason, SMAP may not substantially achieve energy saving

more than DozyAP.

Figure 14(b) shows the packet delay performance. In the

figure, SMAP tends to incur extra delay compared to the

other schemes. The reason is that SMAP buffers packets

and sends them with a burst to provide meaningful idle

period for sleep. However, this extra delay is hardly per-

ceivable by users because the user’s QoS is typically

determined by the arrival time of the last packet (that is,

finish time) rather than the delay of each packet. Figure

14(c) shows the finish time of normal MAP, DozyAP, and

SMAP for the four traffic types of applications. As shown

in the figure, SMAP achieves very compatible finish time

for all applications although it increases the average packet

delay. From Fig. 14(a–c), SMAP saves energy more than

the other schemes without substantial delay increase.

5.3 Energy consumption of a client

Figure 15 shows the energy consumption of a client for the

four traffic patterns. Compared to normal MAP, SMAP

reduces the energy consumption by up to 8.3 % while

DozyAP increases the energy consumption by up to 3 %.

This reason is that the client in DozyAP has to additionally

receive a sleep request and reply a sleep response to

explicitly show the agreement on the request. On the other

hand, unlike DozyAP or normal MAP cannot enable the

client to enter a sleep state under intensive traffic condition,

SMAP provides a longer idle time enough to sleep by

combing small idle periods between successive packets.

This produces the result that SMAP client’s energy is

saved. To better understand this effect, we measured

sequence numbers of FTP traffic, which is shown in

(a) Web browsing (b) Music streaming

(c) Video streaming (d) FTP download

Fig. 13 Traffic patterns by

throughput of four different

applications

Wireless Netw (2015) 21:963–980 975

123

Fig. 16. As shown in the figure, the ongoing packets of

normal MAP and DozyAP are evenly distributed in the

stream. In contrast, SMAP makes the traffic more burst

while the overall throughput keeps unchanged. This burst in

SMAP provides potentials to save energy by putting the Wifi

interface into a low power state during idle periods. Thus,

the client can sleep during the idle periods, wake up at the

beginning of the next LI and receive packets, and thus the

energy consumption on its Wifi interface can be reduced.

Figure 17 shows the proportion of time that Wifi inter-

face spent at each state. To present an unbiased result, we

captured 30 s in the middle of FTP download. As shown in

(a) Energy consumption

(b) Delay

(c) Finish time

Fig. 14 Energy consumption, delay, and finish time measurements

for four applications

Fig. 15 Energy consumption of a client for four traffic patterns

Fig. 16 Time-Sequence graph of FTP traffic downloading by a

tethered client

(a) MAP

(b) Client

Fig. 17 Wifi usage of a MAP and a client under FTP traffic

976 Wireless Netw (2015) 21:963–980

123

Fig. 17(a), normal MAP never sleeps and spends most of

the time in idle. Although DozyAP employs a power saving

mechanism, it seldom goes to the sleep state due to the

frequent traffic activity. On the other hand, SMAP enables

the Wifi interface to stay in the sleep state longer than

others. We can see the similar trend at the client side. As

shown in Fig. 17(b), the client in normal MAP or in

DozyAP hardly transits to the sleep state because the

subsequent packet always arrives before the tail time

expires due to the bulk download of FTP traffic. However,

SMAP provides longer idle periods enough for the tail time

to expire, and thereby the client can put its Wifi interface

into the sleep state more frequently.

5.4 Impact of TIT threshold

Figure 18 shows the energy consumption when the default

TIT threshold is varied between 10 ms and 1,000 ms under

Web traffic condition. In the figure, we can see that Doz-

yAP and SMAP save the energy by 42.2–53.0 % and

48.3–59.4 % compared to normal MAP, respectively.

There are a couple of trends to discuss from the results.

First, regardless of the TIT threshold values, there is no

change in energy consumed by normal MAP. This is

obvious that normal MAP does not use the TIT threshold

for a sleep mode, and thus it represents constant energy

consumption while increasing the TIT threshold. On the

other hand, both DozyAP and SMAP employ the TIT

threshold to enter a sleep state when no traffic exists for the

threshold, and thereby save significant energy. Second, as

the TIT threshold increases, the amount of energy con-

served by DozyAP and SMAP gradually decreases. The

reason is that a higher TIT threshold leads to a more

infrequent sleep transition since a MAP puts its Wifi

interface into a low power state when there is no traffic

activity for a certain interval longer than the TIT threshold.

Of course, as discussed in Sect. 3.2, the MAP resets the

minimum inter-frame gap when the previous sleep was

successful so as to reduce the awake state until the sub-

sequent TIT expiration. However, the default TIT threshold

can affect only the first TIT expiration since the TIT

threshold is reset to the default value (e.g., 150 ms)

whenever any traffic arrives. For this reason, the variation

depending on the TIT threshold is not so significant.

5.5 Impact of multiple clients

In Fig. 19, we measured the energy consumed when mul-

tiple clients are associated with a MAP. We vary the

number of clients from 1 to 5 under Web traffic condition

and measure the energy consumed at the MAP. As shown

in the figure, DozyAP and SMAP that reduce the amount of

time the MAP remains in a high power state consume less

energy than normal MAP. Furthermore, by combining

small idle periods between subsequent packets, SMAP is

able to save more energy than DozyAP. As a result, SMAP

saves 36.3–52.6 % and 9.9–11.0 % more energy than

normal MAP and DozyAP, respectively.

In the figure, the energy consumption gradually increa-

ses as increasing the number of clients. The first reason is

that multiple clients tend to increase the amount of traffic

load, forcing the MAP to stay awake longer to deal with the

increased traffic activity. The second reason is that the

power negotiation becomes more difficult as the number of

clients increases. As discussed in Sect. 3.1, the MAP has to

receive agreements from all associated clients to enter a

sleep state. However, it is more difficult to perform the

sleep request-response process in a network environment

where multiple clients exist because each of the clients

may use a power save mechanism which hampers imme-

diate power negotiation between a MAP and clients. Thus,

the transition to the sleep mode will be delayed until all of

the clients agree not to send any packet while the MAP

Fig. 18 Energy consumption of a MAP with varying the TIT

threshold between 10 and 1,000 ms (Web traffic is used for this

experiment)

Fig. 19 Energy performance of the MAP with varying the number of

clients (Web traffic is used for this experiment)

Wireless Netw (2015) 21:963–980 977

123

sleeps, and finally the amount of energy saving is decreased

as shown in the figure.

6 Related work

Energy efficient Wifi operation is a very hot topic for more

than a decade, and thus extensive research has been con-

ducted to save power of Wifi devices. In previous studies,

however, energy saving of the AP has not been considered

important since it is typically assumed to be supported by

constant AC power. However, with the increasing popu-

larity of Wifi tethering, energy of an AP or a MAP with

limited battery power also needs to be conserved. Con-

sidering the scenario in Fig. 1, a MAP constantly remains

in a high power state regardless of the traffic activity, and

thus it may deplete its battery power rapidly. Nevertheless,

very little work for saving MAP’s power has been reported

in the literature. One study is DozyAP [7], in which the

energy consumption of a MAP is reduced by putting its

Wifi interface into a low power state when all its associated

clients agree not to send any traffic while the MAP sleeps.

This is facilitated in DozyAP by introducing ‘‘sleep

request’’ and ‘‘sleep response’’ messages, and a new protocol

on both AP and client devices. As discussed in Sect. 1,

however, DozyAP is limited by energy saving since it can

enter a sleep state only when no traffic exists at all for a

certain period.

Unlike an AP or a MAP, on the other hand, extensive

studies on client’s power saving have been done. They can

be classified into several approaches such as packet

scheduling, MAC parameter adaptation, contention avoid-

ance, and sleep scheduling. In packet scheduling approach,

packets are scheduled in a bursty basis so that the sleep

time of Wifi clients can be maximized [23–26]. In PSM-

throttling [23], the authors consider a significant amount of

energy wasted on idle channel listening. The streaming

servers reshape the traffic into periodic bursts using

bandwidth throttling, and the client can turn its interface on

and off at the right time according to the burst and idle

phases. [24] turns the network interface off and saves its

energy while the level of the playback buffer is above a

certain threshold and a streaming multimedia application

consumes the backlog. In [25], the authors employ a web

proxy at the AP performing a data transfer from a server by

splitting TCP flows, and maximize the energy saving by

regulating the relaying of the packets back to the client

while minimizing the flow delay. In [26], the authors

employ a pair of proxies, located on the client and server.

To minimize the energy consumption, the mobile clients

carry out automatic updates for dynamic contents browsing

on its cache storing the responses to the previous requests,

and reduce the number of wireless data transfers to and

from clients. The above schemes are quite related to SMAP

since it also use packet scheduling approach that reshapes

the original traffic. However, the main difference is that

SMAP considers the bandwidth discrepancy between Wifi

and 3G links, an essential characteristic of a MAP, whereas

the existing schemes exploit the RTT or buffer/cache

storage to save power.

MAC parameter adaptation approach reduces unneces-

sary energy consumption of clients by adjusting their MAC

parameters [27–29]. In [27], the authors address the problem

that frequent periodic scanning process could incur high

energy consumption, and propose to adaptively increase the

scanning intervals depending on the amount of time the

client remains in disconnected or idle state. C-PSM [28]

selects optimal PSM parameters (e.g., BI and listening

interval) based on traffic patterns and reduces the number of

simultaneous clients’ wakeups by employing a wake-up

schedule to increase energy efficiency. STPM [29] adap-

tively determines its power management policy based on

network traffic patterns, the costs (e.g., time and energy)

required to transit between constantly awake mode (CAM)

and PSM, and the expected costs after the transition.

Contention avoidance approach basically isolates traffic

to reduce the energy consumption caused by contention

between clients [15, 30, 31]. In [30], the authors address

the impact of background traffic on the energy consump-

tion of clients, reduces the energy consumption due to the

contention by adopting the mechanism of time division and

adjusting the power state of the clients. In NAPman [15],

the authors address the issues of unnecessary retransmis-

sions and unfairness due to competing between background

and PSM traffic, and propose an energy-aware fair sched-

uling algorithm to minimize the client’s energy and

unnecessary retransmissions by distinguishing between

traffic of a PSM client and that of CAM clients. Further-

more, in SleepWell [31], the authors consider that power

consumption tends to increase due to high contention when

a large number of PSM clients and APs share the channel.

To solve this problem, the APs stagger wake up of PSM

clients to reduce contention by spreading APs’ beacons.

In sleep scheduling approach, client’s sleep duration is

dynamically adjusted based on traffic patterns, so as to

extend the battery lifetime without substantial delay

increase [32–35]. In BSD [32], the authors address the

problem that mobile devices unnecessarily spend their

energy to wake up periodically during long idle periods

under typical Web browsing workloads. The PSM clients

reduce the energy consumption by extending the period of

low power state while guaranteeing (1 ? p) times longer

than the measured RTT. In SPSM [33], the authors con-

sider the tradeoff relationship between energy conservation

and delay performance. To minimize the energy con-

sumption while guaranteeing a desired delay performance

978 Wireless Netw (2015) 21:963–980

123

for each user, a client determines its actions (e.g., wake up

or sleep) based on a penalty function. SiFi [34] reduces the

energy consumption during the silence period of a VoIP

call by predicting the length of future silence periods based

on historical data. In [35], the authors propose micro power

management (lPM), which predicts the arrival time of next

incoming frame and outgoing frame, and enters power

saving modes by exploiting short idle intervals between

MAC frames.

The existing schemes in the above approaches basically

use the traffic patterns or user preferences to reduce the

adverse impact on delay. However, it is not easy to estimate

the sleep duration accurately because those (e.g., traffic

pattern and user preference) can vary considerably depend-

ing on the time. On the other hand, SMAP calculates the

sleep duration by using the current traffic load and client’s

listen interval which is a fixed PSM parameter, and thus it can

provide more reliable performance than existing schemes.

7 Conclusions

Power saving for Wifi devices is an important issue for

battery-driven mobile devices as Wifi interface consumes a

significant portion compared to other system components.

To save energy of power-hungry mobile devices, PSM and

its variants have been proposed, but most of them just

focused on the client side. With increasing the popularity

of Wifi tethering, it is imperative to have a new solution to

save energy of both MAP and client. This paper presents a

new tethering solution called sleeping mobile AP (SMAP)

that increases the battery lifetime by exploiting the feature

of asymmetric bandwidth of a MAP. Further, SMAP

minimizes the delay increase by adaptively determining the

duty cycle using the current traffic load as well as client’s

PSM parameters. The experimental measurements prove

that SMAP can significantly increase the battery lifetime of

a MAP and a client with small extra delay. Also, SMAP

reduces the energy consumption of the client as well. Our

future work is to increase the energy saving gain of

smartphones with consideration of the characteristics of the

cellular interface.

Acknowledgments This research was supported by the Basic Science

Research Program through the National Research Foundation of Korea

(NRF) funded by the Ministry of Education (2013R1A1A2065379).

References

1. Chetan Sharma Consulting. http://www.chetansharma.com/.

2. Yetim, O. B., & Martonosi, M. (2012). Adaptive usage of cellular

and WiFi bandwidth: An optimal scheduling formulation. In

CHANTS, 2012.

3. Rahmati, A., & Zhong, L. (2007). Context-for-wireless: Context-

sensitive energy-efficient wireless data transfer. In ACM MobiSys

2007.

4. Apple Ios. https://developer.apple.com/technologies/ios/.

5. Windows Phone. www.windowsphone.com/.

6. Android Phone. http://www.android.com/.

7. Han, H., Liu, Y, Shen, G., Zhang, Y., & Li, Q. (2012). DozyAP:

Power-efficient Wi-Fi tethering. In ACM MobiSys, 2012.

8. Monsoon Solutions Inc. http://www.msoon.com/LabEquipment/

PowerMonitor/.

9. IEEE 802.11, Part 11: Wireless LAN Medium Access Control

(MAC) and Physical Layer (PHY) Specifications, Standard,

IEEE, Aug. 1999.

10. Namboodiri, V., & Gao, L. (2010). Energy-efficient VoIP over

wireless LANs. IEEE TMC, 9(4), 566–581.

11. Bonfiglio, D., Mellia, M. Meo, M., Rossi, D., & Tofanelli, P.

(2007). Revealing Skype traffic: When randomness plays with

you. In ACM SIGCOMM, 2007.

12. Wang, X., Chen, S., & Jajodia, S. (2005). Tracking anonymous

peer-to-peer VoIP calls on the Internet. In ACM CCS, 2005.

13. Li, B., Ma, M., & Jin, Z. (2010). A VoIP traffic identification

scheme based on host and flow behavior analysis. Journal of

Network and Systems Management, 19(1), 111–129.

14. Bianchi, G. (2010). Performance analysis of the IEEE 802.11

distributed coordination function. IEEE JSAC, 18(3), 535–547.

15. Rozner, E., Navda, V., Ramjee, R., & Rayanchu, S. (2010).

NAPman: Network-assisted power management for WiFi Devi-

ces. In ACM MobySys, 2010.

16. Yang, S.-R., & Lin, Y.-B. (2005). Modeling UMTS discontinuous

reception mechanism. IEEE TWC, 4(1), 312–319.

17. Daigle, J. N. (1992). Queueing theory for telecommunications.

Reading, MA: Addison-Wesley.

18. Takagi, H. (1991). Queueing analysis: Vol. 1, vacation and pri-

ority systems. North Holland, Amsterdam.

19. Heidemann, D. (1994). Queue length and delay distributions at

traffic signals. Transportation Research Part B, 28(5), 377–389.

20. Broadcom, BCM4330. http://www.broadcom.com/.

21. http://bcmon.blogspot.com/.

22. Shepard, C., Rahmati, A., Tossell, C., Zhong, L., & Kortum, P.

(2010). LiveLab: measuring wireless networks and smartphone

users in the field. In ACM SIGMETRICS performance evaluation

review, December 2010.

23. Tan, E., Guo, L., Chen, S., & Zhang, X. (2007). PSM-throttling:

Minimizing energy consumption for bulk data communications in

WLANs. In ICNP, 2007.

24. Bertozzi, D., Benini, L., & Ricco, B. (2002). Power aware net-

work interface management for streaming multimedia. In IEEE

WCNC, 2002.

25. Ding, N., Pathak, A., Koutsonikolas, D., Shepard, C., Hu, Y. C.,

& Zhong, L. (2012). Realizing the full potential of PSM using

proxying. In IEEE Infocom, 2012.

26. Armstrong, O. T, Amza, C., & deLara, E. (2006). Efficient and

transparent dynamic content updates for mobile clients. In ACM

MobiSys, 2006.

27. Gupta, A., & Mohapatra, P. (2007). Energy consumption and

conservation in WiFi based phones: A measurement-based study.

In IEEE SECON, 2007.

28. Xie, Y., Luo, X., & Chang, R. K. C. (2009). Centralized PSM: An

AP-centric power saving mode for 802.11 infrastructure net-

works. In SARNOFF, 2009.

29. Edmund, M., Nightingale, E., & Flinn, J. (2003). Self-tuning

wireless network power management. In ACM MobiCom,

2003.

30. Heand Y., & Yuan, R. (2009). A novel scheduled power saving

mechanism for 802.11 Wireless LANs. In IEEE TMC, 2009.

Wireless Netw (2015) 21:963–980 979

123

http://www.chetansharma.com/
https://developer.apple.com/technologies/ios/
http://www.windowsphone.com/
http://www.android.com/
http://www.msoon.com/LabEquipment/PowerMonitor/
http://www.msoon.com/LabEquipment/PowerMonitor/
http://www.broadcom.com/
http://bcmon.blogspot.com/

31. Manweiler, J., & Choudhury, R. R. (2011). Avoiding the rush

hours: WiFi energy management via traffic isolation. In ACM

MobySys, 2011.

32. Krashinsky, R., & Balakrishnan, H. (2002). Miniminzing energy

for wireless web access using bounded slowdown. In ACM Mo-

biCom, 2002.

33. Qiao, D., & Shin, K. (2005). Smart power-saving mode for IEEE

802.11 wireless LANs. In IEEE Infocom, 2005.

34. Pyles, A. J., Ren, Z., Zhou, G., & Liu, X. (2011). SiFi: Exploiting

VoIP silence for WiFi energy savings in smart phones. In Ubi-

Comp, 2011.

35. Liu J., & Zhong, L. (2008). Micro power management of active

802.11 interfaces. In ACM MobiSys, 2008.

Kyoung-Hak Jung received the

B.S. degrees in Computer

Engineering from Dankook

University, Seoul, Korea, in

2007, and his Ph.D. degree in

Computer Science and Engi-

neering from Pohang University

of Science and Technology

(POSTECH), Pohang, Korea, in

2014. He is currently a research

engineer in the Pohang Infor-

mation Research Lab (PIRL) at

POSTECH. His research inter-

ests include delay tolerant net-

works, software radio, power

management, and wireless LAN MAC protocol.

Jae-Pil Jeong received the B.S.

degrees in Computer Engineer-

ing from Kyoungpook National

University, Daegu, Korea, in

2009. He is currently a Ph.D.

student in the Department of

Computer Science and Engi-

neering at Pohang University of

Science and Technology (POS-

TECH). His research interests

include wireless LAN MAC

protocol, wireless mesh net-

works, LTE network, and video

streaming over wireless

networks.

Young-Joo Suh received his

B.S. and M.S. degrees in Elec-

tronics Engineering from

Hanyang University, Seoul,

Korea, in 1985 and 1987

respectively, and his Ph.D.

degree in Electrical and Com-

puter Engineering from Georgia

Institute of Technology,

Atlanta, Georgia, in 1996. He is

currently a professor in the

Department of Computer Sci-

ence and Engineering at the

Pohang University of Science

and Technology (POSTECH),

Pohang, Korea. From 1988 to 1990, he was a research engineer at the

Central Research Center of LG Electronics Inc, Seoul, Korea. From

1990 to 1993, he was an assistant professor in the Department of

Computer Science and Engineering at Chung-Cheong College, Korea.

After receiving Ph.D. he worked as a postdoctoral researcher in the

Computer Systems Research Laboratory in the School of Electrical

and Computer Engineering at the Georgia Institute of Technology

from 1996 to 1997. From 1997 to 1998, he was a research fellow of

the Real-Time Computing Laboratory in the Department of Electrical

Engineering and Computer Science at the University of Michigan,

Ann Arbor, Michigan. His current research interests include wireless

LAN MAC protocol, mobility management, ad hoc networks, 4G

Wireless Mobile Networks, etc. Dr Suh is a member of the IEEE and

the IEEE Communications Society.

980 Wireless Netw (2015) 21:963–980

123

	Sleeping mobile AP: a novel energy efficient Wifi tethering scheme
	Abstract
	Introduction
	Motivation
	Impact on energy consumption
	Impact on throughput
	Impact on packet delay
	Summary

	Proposed protocol
	Basic operation
	State transition
	Calculation of duty cycle
	Supporting multiple clients

	Delay analysis
	Performance evaluation
	Evaluation methodology
	Energy and delay of a MAP
	Energy consumption of a client
	Impact of TIT threshold
	Impact of multiple clients

	Related work
	Conclusions
	Acknowledgments
	References

