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Abstract The location management is one of the most

important tasks in current Public Land Mobile Networks

because of the number of mobile subscribers has increased

exponentially over the last decade. That is why systems

that automatically optimize the operations involved in the

location management (subscriber location update and

paging) are becoming more necessary. There are several

works in which different metaheuristics have been applied

to optimize the location management tasks. In these works,

the objective functions of the location update and paging

were linearly combined into a single objective function

with the goal of optimizing these two tasks by using Sin-

gle-Objective Optimization Algorithms. In this paper, in

order to avoid the drawbacks associated with the linear

aggregation of the objective functions, we have adapted

and modified two Multi-objective Evolutionary Algo-

rithms: Non-dominated Sorting Genetic Algorithm II and

Strength Pareto Evolutionary Algorithm 2. Furthermore,

we have performed an in-depth analysis of the Location

Areas scheme and its relation to the user’s call and mobility

patterns. This study concludes that the location areas are as

small as possible due to the fast increase of the paging cost,

and that the cells with higher mobile activity are located in

the center of its location area. Moreover, results show that

our algorithms outperform the single-objective optimiza-

tion algorithms proposed by other authors in the two most

complex test networks, as well as the advantages of using a

multi-objective approach.

Keywords Evolutionary computation � Multi-objective

optimization � Location Areas scheme � Mobility

management � Mobile network

1 Introduction

There has been a huge increment in the number of mobile

subscribers in the last decade due to services that are

provided by next generation mobile networks, e.g. voice

and data traffic (including real-time applications) regard-

less of the subscriber position and the moment at which

they are requested. That is possible because the Public

Land Mobile Networks (PLMNs) are characterized by a

high level of capillarity and the systematic reuse of fre-

quencies to serve a large traffic demand with limited radio-

electric resources. For it, the PLMNs divide the geo-

graphical coverage area into several smaller areas known

as cells [1–4]. Each cell is associated with a Base Station

(BS, the network entity which provides access to the sub-

scriber terminal). Therefore, and with the aim of properly

redirecting the incoming calls, every mobile network must

control the subscribers’ movement across the network

cells.

Commonly, the PLMNs are structured according to a

three-level hierarchical scheme [1]. The first level, known

as Mobile Subnet, is formed by all user terminals, or

Mobile Station (MS). The second one, called Access

Subnet or Radio Network, is constituted by all Base Station

Systems (BSSs), that is, all BSs and its Base Station
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Controllers (BSCs, the network entities that, in a central-

ized manner, perform the control tasks associated with

several BSs). And the third level, or Core Network,

includes the set of systems and registries related to network

tasks, e.g. the Mobile Switching Centers (MSCs), the

Home Location Registries (HLRs), and the Visitor Loca-

tion Registries (VLRs) are the network entities that control

the location management tasks. The MSC is the network

entity specialized in performing tasks as mobile location,

paging, and interoperability with other networks. The HLR

is the registry in which the information related to the

subscriber terminal is stored (identification code, sub-

scriber number, user location, etc.). And the VLR is the

register that stores information of the users served by its

associated MSC.

All network entities interact through an advanced sig-

naling system to make feasible the location update, paging,

and handover (automatic switching of the radio-electric

resources associated with a call-in process when the sub-

scriber moves to another cell) [5]. The location update and

paging are two of the most important management tasks in

current Public Land Mobile Networks. In fact, Nowoswiat

and Milliken show in [6] that the signaling traffic associ-

ated with the location update and paging in a large PLMN

is more than 33 % of the total signaling load. That is the

reason why the use of optimization techniques (such as

metaheuristics) to reduce the signaling load of these two

management tasks is an interesting research line. Usually,

the location update and paging are treated jointly by the

location management system to track the subscriber

movement inside the mobile network. In the manual

location update, or manual registration, every MS period-

ically measures the control channel associated with nearby

BSs and it tunes in the control channel with the highest

signal strength. Through this channel, the MS sends its

identification information to the MSC, which stores the

subscriber information (user location and user identifica-

tion) in its VLR and its HLR associated. On the other hand,

the paging procedure is performed to route the incoming

calls. For this purpose, the network must find the cell in

which the callee subscriber is located. In this procedure, the

HLR is interrogated to know the MSC related to that MS

and then, this MSC sends paging broadcast messages

around the last geographical area associated with the MS in

question [4]. Note that the location management tasks are

highly dependent on the number of mobile subscribers,

since an increment of subscribers involves a growth of the

user mobility among cells and an increase of the traffic

density.

The manual registration simplifies the location man-

agement tasks, but it leads to a huge signaling load asso-

ciated with the location update, since it is performed each

time the MS changes its cell. Therefore, other location

management strategies have been developed. They can be

classified into two main groups: static and dynamic loca-

tion update methods [5, 7]. In dynamic schemes, different

subscribers perceive a different logical topology of the

network. These logical topologies are dependent on the

user’s call and mobility patterns. On the other hand, static

schemes are characterized for providing the same logical

topology to all subscribers. These last schemes are more

popular than dynamic ones because they require fewer

network capabilities. Examples of static strategies are:

always update, never update, and location areas.

Furthermore, there are several strategies to manage the

paging procedure, mainly classified in two groups: without

delay constraint and with delay constraint [5]. In systems

without delay constraint, the paging procedure is per-

formed regardless of the execution time. Therefore, in

systems with delay constraint, the paging procedure must

be performed before the timer expires, known as maximum

paging delay. These last systems have been widely

researched because they are strategies used in real mobile

networks. Examples of paging procedures with delay

constraint are: blanket-polling, two-cycle sequential pag-

ing, and shortest distance.

This paper focuses on researching the Location Areas

(LAs) scheme, because it is a strategy widely applied in

current PLMNs [5] and it presents planning issues similar

to those that we will find in next-generation networks (e.g.

Tracking Areas in Long Term Evolution, LTE). The LAs

strategy exploits the cell architecture of the mobile network

by grouping cells into logical areas (or logical clusters).

Thus, the subscriber location only is updated when the user

moves to another location area. For it, every BS periodi-

cally broadcast its cell global identification, a packet which

contains (among others) the Cell Id (CI) and the Location

Area Code (LAC) [3]. The Location Areas scheme reduces

the number of location updates with respect to the manual

registration, but it complicates the paging procedure

because the subscriber must be searched in the whole

location area. Therefore, the main challenge of this location

management strategy is to find the configurations of

Location Areas that minimize the number of location

updates and the number of paging messages.

In the literature, there are several works in which the

LAs Planning Problem (LAPP) was optimized with dif-

ferent metaheuristics of the single-objective optimization

field. For it, the objective functions of the LAPP were

linearly combined into a single objective function. Gondim

in [8] was one of the first authors to argue that the LAPP is

an NP-hard combinatorial optimization problem due to the

size of the objective space. That is why he proposed a

Genetic Algorithm (GA) for finding quasi-optimal config-

urations of LAs. Demestichas et al. in [9] developed three

Single-objective Optimization Algorithms (SOAs: Tabu
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Search (TS), Simulated Annealing (SA), and GA) to solve

the LAPP in different environments. Regrettably, a fair

comparison with [8] and [9] cannot be conducted because

the test networks used in these papers are not available.

Subsequently, Taheri and Zomaya in [7, 10–13] provided a

set of test networks in which the subscribers’ call and

mobility patterns are close to those that we can find in real

world networks. In order to solve these test networks, they

proposed several single-objective optimization algorithms:

GA, SA, Hopfield Neural Networks (HNNs), and combi-

nations of GA with HNNs (GA-HNNs). Recently, S.

M. Almeida-Luz et al. applied in [14] the Differential

Evolution algorithm (DE) to solve the test networks pro-

vided by Taheri and Zomaya in [7, 10–13].

However, the linear aggregation of the objective func-

tions has several important drawbacks (see Sect. 2). That is

why we propose the use of multi-objective metaheuristics.

Furthermore, a multi-objective optimization algorithm (in

contrast to single-objective optimization algorithms) pro-

vides a set of solutions among which the network operator

could select the one that best adjusts to the network real

state, e.g. when the signaling load associated with other

network operations is considered. A very preliminary ver-

sion of this work was presented at the conferences [15–17],

these works have been considerably extended with: the

improvement of our multi-objective algorithms (please, see

for example Sect. 3.6), which leads to an improvement of

our previous results, a complete statistical analysis (see

Sect. 4, and particularly Sect. 4.1) comparing our versions

of the Non-dominated Sorting Genetic Algorithm II

(NSGAII) and the Strength Pareto Evolutionary Algorithm

2 (SPEA2), and an in-depth study of the Location Areas

scheme and its relation to the user’s call and mobility

patterns (see Sect. 4.2, and the corresponding figures).

The paper is organized as follows. Section 2 defines the

LAs scheme. The main features of a multi-objective opti-

mization algorithm and our versions of NSGA-II and

SPEA2 are presented in Sect. 3. Results, comparisons with

other authors, and an analysis of the solutions obtained are

discussed in Sect. 4. Finally, Sect. 5 summarizes our

conclusions.

2 Location areas management scheme

The Location Areas (LAs) scheme is one of the most

common strategies to solve the location management

problem automatically. In this strategy, the network cells

are grouped into logical areas (known as location areas)

with the aim of reducing the signaling load associated with

the subscriber location update. Thus, a location update is

only performed when a subscriber moves to a new Loca-

tion Area. Consequently, the network knows the location of

its subscribers at a Location Area level, and hence, the

paging is only carried out in the networks cells within the

last updated Location Area [5]. Note that these two pro-

cedures (location update and paging) are conflicting. To

reduce the number of location updates (or location update

cost, LUcost), the size of the location areas should be as

large as possible, leading to an increase of the number of

paging messages (or paging cost, PAcost), since a higher

number of cells must be paged. For example, in the

hypothetical case of an only one location area (never

update strategy), the LUcost is zero and the PAcost is max-

imum because the subscriber must be searched in the whole

network. On the other hand, the PAcost is reduced to a

minimum when each cell belongs to a different location

area (always update strategy) because the network would

know the cell associated with every subscriber at each

moment. Nevertheless, this would increase the LUcost.

Then, we can conclude that a high LUcost involves a low

PAcost, and vice versa. That is, the Location Areas Planning

Problem defines a multi-objective optimization problem in

which the main challenge is to find the configuration of

LAs that simultaneously minimize the number of location

updates and the number of paging messages. In this paper,

we study test networks that have been defined for LAs and

the blanket-polling paging (i.e. all cells within the location

area of the callee subscriber are polled simultaneously) [7,

10–13]. The objective functions related to the location

update (f1) and paging procedure (f2) can be formulated as:

f 1 ¼ min LUcost ¼
XNCell

i¼1

XNCell

j¼1

qi;j � Ni;j

( )
; ð1Þ

f 2 ¼ min PAcost ¼
XNArea

k¼1

X

i2CAk

NICi � NAk

( )
; ð2Þ

subject to

NArea�NCell; ð3Þ
1�NAk �NCell; ð4Þ

XNArea

k¼1

li;k ¼ 1; 8i 2 ½1;Ncell�; ð5Þ

where the involved variables are: Ni,j: Number of sub-

scribers that move from cell i to cell j. qi,j: Binary variable

that indicates whether the cell i and cell j belong to dif-

ferent location areas (if it is equal to 1) or not (if it is equal

to 0). NICi: Number of incoming calls of the cell i. NAk:

Number of cells belonging to location area k. CAk: Vector

that stores the cells associated with the location area k.

NCell: Number of cells. NArea: Number of location areas.

li,k: Binary variable that indicates whether the cell i

belongs to location area k (if it is equal to 1) or not (if it is

equal to 0).
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Constraints (3) and (4) establish that the maximum

number of location areas and the maximum size of a

location area are limited to the number of cells. Constraint

(5) establishes that the multilevel LAs scheme is not

allowed [18], i.e. a cell must only belong to one location

area. It should be noted that the total signaling traffic

related to the mobile location management also involves

other important factors (such as the cost of database

management, the cost associated with the communication

among network entities, the handover cost, and the packet

delivery cost) [19–22]. However, in a non-cooperative

mobile network, the signaling traffic generated in the Radio

Network is considered to be sufficient to compare different

location management strategies [19, 20].

In previous works, the LAPP was solved by using sin-

gle-objective optimization algorithms [7–14]. For it, the

LUcost and PAcost were combined into an only objective

function equal to the linear sum of weighted costs. Equa-

tion (6) presents the objective function used by these Sin-

gle-objective Optimization Algorithms (SOAs), where b is

a ratio constant defined to assign a higher priority to one of

the two costs, and it is commonly configured as 10.

f SOA bð Þ ¼ min Costtot bð Þ ¼ b� LUcost þ PAcostf g: ð6Þ

Several drawbacks arise when the LAs scheme is tack-

led with single-objective optimization algorithms. Firstly, a

very accurate knowledge of the problem is required, since

the obtained solutions are very sensitive to the values of the

weight coefficients. Secondly, it is possible that the proper

value of b might be different depending on the load of the

signaling network. And thirdly, a single-objective optimi-

zation algorithm must perform an independent run for each

value of b. That is why, in this paper, we propose the use of

multi-objective optimization algorithms to solve the

Location Areas Planning Problem. By means of this tech-

nique, we obtain simultaneously a set of solutions (each

one related to a b value) among which the network operator

could select the one that best adjusts to the real state of the

mobile network at the same time as the LUcost and the

PAcost are reduced to a minimum.

3 Multi-objective Evolutionary Algorithms (MOEAs)

Many real-world problems involve two or more conflicting

objectives [23], as the Location Areas Planning Problem in

mobile location management. In this kind of problems, the

search of a single solution (typical of Single-objective

Optimization Problems, SOPs) is replaced by the search of

a wide range of solutions, each one related to a specific

trade-off among objectives. Such problems are commonly

referred as Multi-objective Optimization Problems (MOP)

and can be formally represented as a quadruple (X, Z, f,

mode), where X is defined as the decision space, Z denotes

the objective space, f : X ! Z consists in several objective

functions fi which assign to each decision vector x [ X an

objective vector z = f(x) [ Z under the constraints estab-

lished by e(x), and mode defines the optimization mode

(maximization or minimization) for each fi [24]. Thus, a

MOP can be formulated as follows:

Optimize z ¼ f xð Þ ¼ f1 xð Þ; f2 xð Þ; . . .; fk xð Þð Þ;
subject to

where

e xð Þ ¼ e1 xð Þ; e2 xð Þ; . . .; em xð Þð Þ� 0;
xi ¼ xi

1; x
i
2; . . .; xi

n

� �
2 X;

zi ¼ zi
1; z

i
2; . . .; zi

k

� �
2 Z:

ð7Þ

The set of decision vectors that meet the constraints

e(x) defines the feasible decision space (Xf), and its image

is known as feasible objective space (Zf = f(Xf)). There-

fore, the goal of a MOP is to find the set of feasible vectors

x* [ Xf that optimize the function vector f(x). A funda-

mental concept in a MOP is the Pareto Dominance: if we

assume a minimization problem (without loss of general-

ity) the decision vector x1 is said to dominate the decision

vector x2 (denoted by x1 � x2) if and only if 8i 2 I ¼
1; 2; . . .; kf g; z1

i � z2
i ^ 9i 2 I : z1

i \z2
i . Thus, the set P* of

decision vectors that satisfy 8x� 2 P�; 9= x 2 Xf : x � x� is

defined as Pareto Optimal Set and its image is known as

Pareto Front (PF� ¼ z ¼ f x�ð Þ : x� 2 P�f gÞ. And hence,

obtaining the best possible approximation set to the PF* is

the main goal of a multi-objective optimization algorithm,

i.e. it should identify a set of solutions evenly distributed

and as close as possible to the surface of the PF* [25]. For

notation, this set of solutions is denoted as Papp. However,

the Pareto Optimal Set is unknown in many real-world

engineering problems (as the problem addressed in this

manuscript). In such cases, it is widely accepted the use

of multi-objective indicators that do not need this infor-

mation. These indicators can estimate the quality of a Papp

[26, 27].

In this paper, we use two of the most popular indicators:

the Hypervolume (IH(A)) and the Set Coverage (C(A,B)). In

the following, we assume the study of a MOP with two

objectives, as the LAPP. The Hypervolume indicator is

used to estimate the quality of the Papp obtained. This

indicator (IH(A)) can be defined as the area of the objective

space (Z) that is dominated by the approximation set A and

is bounded by the reference points. These reference points

are calculated by means of the maximum and minimum

values of each objective function. Taking into account that

the target of a multi-objective optimization algorithm

consists in finding a diverse set of non-dominated solu-

tions, the approximation set A ( Xf will be better than the

approximation set B ( Xf if IH(A) [ IH(B). Figure 1

shows an example of the Hypervolume calculation. And

the Set Coverage indicator (C(A,B)) is used to know the

proportion of solutions of the set B ( Xf that are weakly
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dominated by the solutions of the set A ( Xf. Note that the

solution or decision vector x1 is said to weakly dominate

the decision vector x2 (denoted by x1
4 x2) when 8i 2 I ¼

1; 2; . . .; kf g; z1
i � z2

i [27].

Evolutionary Algorithms (EAs) are very suitable to

solve multi-objective optimization problems, because they

obtain a set of solutions simultaneously. An EA is a pop-

ulation-based metaheuristic optimization algorithm that

uses the typical evolutionary operators (EVOPs) of bio-

logical systems (mutation, crossover, and natural selection)

in order to improve a set of solutions by means of an

iterative method [28]. Every individual of the population is

an encoded solution of the problem (xi), and stores the

individual’s biological genotype. This genotype encodes

the phenotype (zi ¼ f xið Þ) and is constituted by one or

more chromosomes, where each chromosome is composed

of several genes. The gene value (xi
j; 8j 2 1; 2; . . .; nf g) is

known as allele and takes on values defined in a particular

genetic alphabet [26], see Fig. 3. Mutation and crossover

are two operations that modify the individual’s genotype,

and hence, they are defined in the decision space (X). On

the other hand, the individual’s survival depends on the

individual’s ability to adapt to the environment (i.e. the

natural selection is dependent on the phenotype), so the

natural selection is defined in the objective space (Z).

A Multi-Objective Evolutionary Algorithm (or MOEA)

requires k ? 1 functions: the fitness function and k

objective functions. The k objective functions are those

that the MOEA must to optimize: f(x) = {f1(x), f2(x),…,

fk(x)}. And the fitness function is the one which assigns a

real-value to every objective vector zi. This value is pro-

portional to the solution quality in the multi-objective

context and allows discriminating among solutions.

As mentioned before, a MOEA finds the best possible

Papp by means of an iterative method. In the first step, the

individual initialization is carried out to obtain the initial

population of parents. For it, a decision vector (and hence,

an objective vector) is calculated for every individual.

Then, these objective vectors are used to evaluate each

individual by using the fitness function. The next step

consists in finding new solutions by using the crossover (or

recombination of parents) and the mutation operations.

With the crossover operation, an offspring population is

generated from the parent population, where each offspring

has genetic information of its parents. For detailed infor-

mation about the crossover operation, please see Sect. 3.4.

On the other hand, the mutation operation consists in

changing the value of one or more genes. Commonly, a

chromosomal repair function is applied after the crossover

and mutation operations, since the new solutions might be

outside the feasible decision space (Xf), and consequently,

outside the feasible objective space (Zf). Finally, the off-

spring is evaluated and the best individuals found so far are

selected as the new parent population. Figure 2 shows the

task decomposition of a MOEA.

In this paper we present our versions of two well-known

MOEAs to solve the LAPP: the Non-Dominated Sorting

Genetic Algorithm-II (NSGA-II) and the Strength Pareto

Evolutionary Algorithm 2 (SPEA2). We have chosen these

algorithms because they are considered as standards in the

multi-objective evolutionary optimization field. These two

algorithms have been adapted to solve the LAPP (i.e. we

use our evolutionary operators specific to solve the LAPP)

and modified with the inclusion of a transformation func-

tion. This function allows us to redirect the search of the

algorithms and improve the results of our previous works

[15, 16]. These evolutionary operators and transformation

function will be explained in the following subsections

(from 3.3 to 3.6).

In order to obtain a fair comparison, both algorithms use

the same EVOPs, with the exception of the selection pro-

cedure because each MOEA has its own fitness function.

Sections 3.1 and 3.2 show a detailed explanation of our

modified versions of NSGA-II and SPEA2 respectively.

Section 3.3 presents the individual representation and the

initialization operator. The crossover and mutation opera-

tors are discussed in Sects. 3.4 and 3.5, respectively. In

addition to the evolutionary operators of any MOEA, we

Fig. 1 Hypervolume for a minimization problem with two objectives

Fig. 2 Main tasks of a MOEA
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have implemented a transformation function which allows

us to achieve a wide spread of Papp, and hence a higher IH

value. This function is described in Sect. 3.6. Note that, in

this paper, all random variables are associated with a uni-

form probability density.

3.1 Non-Dominated Sorting Genetic Algorithm-II

The Non-Dominated Sorting Genetic Algorithm-II

(NSGA-II) is proposed by Deb et al. in [29] as an improved

version of the original NSGA, defined by Srinivas and Deb

in [30]. The main contributions of NSGA-II with respect to

its predecessor are: less computational complexity and the

use of elitism. The authors of NSGA-II have not explicitly

defined a fitness function in their paper. However they

propose a two step method for classifying a set of objective

vectors. Firstly, the Pareto Dominance concept is used to

arrange these objective vectors in groups (or fronts, func-

tion R(zi) in Eq. 8) in a way that the Pareto Dominance

cannot be established among any pair of vectors of the

same front. This procedure is commonly known as non-

dominated sorting. And then, the density estimation is

performed to measure the density of solutions surrounding

a particular point in the feasible objective space (Zf). The

density value associated with each objective vector (also

called crowding distance, function C(zi) in Eq. 8) is the

sum of distances between the processed solution and its

closest solution in each objective. An important criterion

that has to be considered in the calculation of the crowding

distance is the fact that solutions with the highest or lowest

value of each objective are prioritized with the aim of

favoring the spread of Papp. For detailed information of

these procedures, please see [29]. Considering the defini-

tions of the non-dominated sorting and the crowding dis-

tance, we propose the following fitness function for

normalized values of the objective vectors:

f NSGA�II
fitness zi

� �
¼ 10 blog10 2�NObjð Þcþ1ð Þ � NF � R zi

� �� �

þ C zi
� �

; ð8Þ

where NObj is the number of objective functions, NF is the

number of fronts provided by the non-dominated sorting

procedure, R(zi) is a function that returns the identifier of

the front associated with the objective vector zi (where the

fronts are arranged from the best to the worst), and C(zi) is

a function that returns the crowding distance of the

objective vector zi, where we have considered that the

infinite value is equal to the upper bound to all the objec-

tive functions multiplied by the number of objectives. In

this work, we use normalization (in the range [0,1]) to

ensure that the two objective functions have the same

influence in the fitness function. It should be noted that this

fitness function must be maximized.

The pseudo-code of our modified version of NSGA-II is

shown in Algorithm 1, where Npop is the population size,

PC is the crossover probability, and PM is the mutation

probability. This pseudo-code defines an iterative algo-

rithm that is executed until the stop condition is reached. In

this work, we use the same stop condition as other authors:

the maximum number of generations.

3.2 Strength Pareto Evolutionary Algorithm 2

The Strength Pareto Evolutionary Algorithm 2 (SPEA2) is

proposed by Zitzler et al. in [31]. SPEA2 presents two main

differences with respect to its predecessor SPEA, defined

by Zitzler and Thiele in [32]. First, it incorporates the

density estimation into the fitness function, technique that

allows redirecting the search of the algorithm to areas of

the feasible objective space with less number of solutions.

And second, it uses an enhanced archive truncation

method. The main difference between SPEA2 and NSGA-

II is that SPEA2 defines an archive of configurable size in

which the best solutions found so far are stored. Further-

more, these solutions are used to generate the offspring

population by means of an elitist crossover.

Zitzler et al. define in [31] the fitness function used by

SPEA2. This fitness function has two main terms: the

density estimation and the raw fitness. The raw fitness of a

solution zi can be defined as the sum of ‘‘strengths’’ of its

dominating solutions (z j � zi), where the ‘‘strength’’ of a

solution zj (function S(zj) in Eq. 9) is the number of

Algorithm 1 Pseudo-code of our modified version of NSGA-II

1: % Initialization of the population (parent population)

2: Indv / InitializationProcedure (Npop);

3: % Evaluation of the population

4: Indv / ObjectiveFunctionsEvaluation(Indv);

5: Indv / FitnessFunctionEvaluation (Indv);

6: % Main loop

7: while (Stop condition = TRUE) {

8: % Crossover or recombination of parents

9: Offsp / ElitistCrossover (Indv, PC);

10: % Mutation of the offspring

11: Offsp / Mutation (Offsp, PM);

12: % Evaluation of the offspring

13: Offsp / ObjetiveFunctionsEvaluation(Offsp);

16: % Transformation function

17: Offsp / TransformationFunction(Offsp, Npop/2);

14: % Evaluation of all population

15: [Indv, Offsp] / FitnessFunctionEvaluation(Indv, Offsp);

16: % Selection of the fittest individuals

17: Indv / NaturalSelection(Indv, Offsp);

20: }
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solutions dominated by zj. And the density estimation of

solutions around the solution zi is calculated by means of

the Euclidean distance between zi and its k-th nearest

objective vector (d(zi,zk)), where k is commonly configured

as the square root of the sample size (equal to the sum of

the archive size and the population size). Equation (9)

shows the SPEA2’s fitness function. In this equation, Pt

and Pt
arch are the set of individuals stored in the population

and in the archive at the time t. It should be noted that this

fitness function must be minimized, and we have defined it

for normalized values of z [ Zf in order to avoid prioriti-

zation among objectives.

f SPEA2
fitness zi

� �
¼ 1

2þ d zi; zk
� �þ

X

j2PtþParch
t ;z j�zi

S z j
� �

; ð9Þ

As in Sect. 3.1, the pseudo-code of our modified version

of SPEA2 defines an iterative algorithm with a stop condi-

tion, which will be the same as the one used in NSGA-II (the

maximum number of generations). This pseudo-code is

presented in Algorithm 2, where Narch is the archive size.

3.3 Individual representation and initialization

As mentioned before, each individual encodes a solution of

the problem. In this work, every individual is represented

by a vector in which we store the location area associated

with each network cell. Figure 3 shows the individual

representation used in this paper. In order to obtain the first

population, every vector is filled with a random pattern of 0

and 1 s, and then this pattern is used to determine the LAs

configuration. For it, every location area is composed by a

continuous and non-overlapped group of cells with the

same value of vector. This is shown in Fig. 4.

3.4 Crossover operation

The crossover operation is used by the EA to obtain a new

set of solutions known as offspring population. This

operation is performed according to the crossover proba-

bility (PC) and it is mainly constituted by two procedures:

selection of parents and recombination of selected parents.

In this paper, we have implemented an elitist crossover, i.e.

four individuals grouped in pairs are randomly selected,

and then each parent is the best individual of each group.

After that, the recombination procedure is performed to

obtain the offspring. For it, each parent (or chromosome) is

cut and recombined with pieces of the other parent. In this

procedure, the number of crossover points and their posi-

tions are randomly determined in the range [1, 4] and [0,

Algorithm 2 Pseudo-code of our modified version of SPEA2

1: % Initialization of the population

2: Indv / InitializationProcedure (Npop);

3: % Evaluation of the population

4: Indv / ObjectiveFunctionsEvaluation(Indv);

5: %Create the archive

6: Arch / CreateEmptyArchive(Narch);

7: % Main loop

8: while (Stop condition = TRUE) {

9: % Evaluation of all population

10: [Indv, Arch] / FitnessFunctionEvaluation(Indv,Arch);

11: % Copy the fittest individuals in the archive (Natural Selection)

12: Arch / Copy(Arch, Indv);

13: % Crossover or recombination of the archived individuals

14: Indv / ElitistCrossover (Arch, PC);

15: % Mutation of the offspring

16: Indv / Mutation (Indv, PM);

17: % Evaluation of the offspring

18: Indv / ObjetiveFunctionsEvaluation(Indv);

19: % Transformation function

20: Indv / TransformationFunction(Indv, Npop/2);}

Fig. 3 Individual representation

Fig. 4 Individual initialization. Centre number: LA identifier. Upper

left number: Cell identifier
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NCell-1], respectively. The crossover operation provides

two offspring but we only store the best one in the off-

spring population. An example of the crossover operation

is shown in Fig. 5.

3.5 Mutation operation

The previous crossover operation provides solutions with a

high number of location areas. That is why we have defined

two mutation operations which allow us to explore regions

of Zf with high PAcost: Gene Mutation (GM) and Merge-LA

Mutation (MLAM). The GM consists in changing the gene

value of a boundary cell (a cell that is border among two or

more location areas) by its neighboring location area with

less number of cells, see Fig. 6. And the MLAM merges

the smallest location area with its neighboring location area

of lower size, see Fig. 7. Finally, in order to transform

invalid solutions in feasible solutions, we apply a chro-

mosomal repair function which deletes location areas

constituted by separated groups of cells, see Fig. 4.

3.6 Transformation function

In this work, we propose the use of a novel strategy that

allows us to achieve a greater IH value. We have imple-

mented a function that transforms solutions with high

LUcost (configurations with a high number of small location

areas) into solutions with high PAcost (configurations with a

small number of large location areas). For it, every location

area which consists of only one network cell is merged

with its neighboring location area of highest size. There-

fore, this function transforms the always update strategy

(where every network cell belongs to a different location

area) into the never update strategy (where all the network

cells belong to the same location area). This function is

only applied to the first half of the population with the aim

of exploring areas of Zf with high LUcost and PAcost

simultaneously.

4 Experimental results

With the purpose of determining the behavior of our pro-

posals, we have studied five test networks of different

complexity: LA25 (a test network with 5 9 5 cells) [10,

11], LA35 (a test network with 5 9 7 cells) [10, 11], LA49

(a test network with 7 9 7 cells) [10, 11], LA63 (a test

network with 7 9 9 cells) [10, 11], and the BALI-2 net-

work (a realistic mobile network of 90 cells and 66,550

subscribers) [34]. The test networks published in [10, 11]

have got associated a mobile activity trace based on the

subscriber’s call and mobility patterns defined in [5]. These

mobile activity traces are processed and compressed with

the aim of deleting useless information. And the BALI-2

network is a mobile activity trace (proposed by the Stan-

ford University [34] ) that is well-validated against real-

world data measured in the San Francisco Bay (USA).

Therefore, if we assume that the user’s call and mobility

Fig. 5 Crossover operation

Fig. 6 Example of Gene Mutation. Centre number: LA identifier.

Upper left number: Cell identifier

Fig. 7 Example of Merge-LA Mutation. Centre number: LA identi-

fier. Upper left number: Cell identifier
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patterns are approximately known, the network operator

could use our algorithms to find the configurations of

Location Areas that best meet the real state of the signaling

network considering the subscribers’ behavior.

Furthermore, with the aim of knowing the quality of our

solutions we have compared our results with those obtained

by other authors, who developed other metaheuristics to

solve the test networks proposed in [10, 11]: Hopfield

Neural Network (HNN) [13], Simulated Annealing (SA)

[11], Genetic Algorithm (GA) [10], combinations of GA

with HNN (GA-HNN) [7], and Differential Evolution (DE)

[14]. All of them optimize the LAPP by means of single-

objective optimization strategies, where the objective

function is Eq. (6) with b equal to 10. In contrast to a multi-

objective approach, a single-objective optimization algo-

rithm only provides a single solution, the one that best

meets its objective function. Thus, to compare our multi-

objective optimization algorithms with these single-objec-

tive optimization algorithms, we must search in each Papp

the solution that minimizes Eq. (6).

On the other hand, we have calculated two indicators

from the multi-objective optimization field that allow us to

compare NSGA-II with SPEA2: the Hypervolume (IH(A))

and the Set Coverage C(A,B). Remember that these two

indicators have been defined in Sect. 3. Note that NSGA-II

and SPEA2 are stochastic algorithms, so in order to make

decisions with a certain level of confidence, we have per-

formed a statistical study of the results obtained [33].

Figure 8 shows the statistical study followed in this work.

Firstly, we use the Shapiro–Wilk test to determine if the

sample of an experiment follows a normal distribution. If

this test is positive for every experiment, the Levene test is

applied to check the homogeneity of the variances. Finally,

when the Levene test is positive, the balanced one-way

ANOVA analysis is performed to determine whether there

is a significant difference among the means of the experi-

ments. On the other hand, when the Shapiro–Wilk test or

the Levene test are negatives, we apply the Wilcoxon rank

sum test to check whether there is a significant difference

among the medians of the experiments. All tests mentioned

before are configured with a confidence level equal to 95 %

(a significance level of 5 %), which means that the dif-

ferences are unlikely to have occurred by chance with a

probability of 95 %.

A further novel contribution of this paper is the analysis

of the LAs configuration for several values of b and the

relation between a particular LAs configuration and the

user’s call and mobility patterns. Section 4.1 shows our

results and comparisons with other authors. An analysis of

the solutions obtained and its relation to the user’s call and

mobility patterns are discussed in Sect. 4.2. And Sect. 4.3

presents the study of a realistic mobile network.

4.1 Comparisons among algorithms

In this section, we present a comparison of our multi-

objective optimization algorithms with the single-objective

optimization algorithms proposed in [7, 10, 11, 13, 14]. For

it, we have searched in the Papp of each multi-objective

optimization algorithm (NSGA-II and SPEA2) the solution

that minimizes Eq. (6) with b equal to 10. Moreover, we

have performed a comparison between NSGA-II and

SPEA2 by using the multi-objective indicators described in

Sect. 3. These indicators allow us to compare the quality of

the Papp obtained by each MOEA.

To perform a fair comparison, we use the same popu-

lation size and the same stop condition (maximum number

of generations) as in [7, 10, 11, 13, 14]. The other

parameters of each MOEA have been tuned separately with

the purpose of maximizing the Hypervolume value,

because this is the indicator used in this manuscript to

estimate the quality of the Papps obtained. Furthermore, we

have performed a statistical study in each experiment to

ensure that the results obtained are statistically relevant.

Table 1 shows the parameter configuration of our MO-

EAs, where Npop is the population size, PC is the crossover

probability, PM is the total mutation probability, and Narch

is the archive size. The total mutation probability is con-

figured such that PM = 2PGM = 2PMLAM, where PGM is

the Gene Mutation probability and PMLAM is the Merge-LA

Mutation probability. Table 2 presents the comparison of

our multi-objective implementations with the single-

objective optimization algorithms proposed in [7, 10, 11,

13, 14]. This table reveals that there is at least one solution

Fig. 8 Statistical analysis methodology

Table 1 Configuration of MOEAs

Algorithm Parameter

Npop Generations PC PM Narch

NSGA-II 250 5,000 0.90 0.20 –

SPEA2 250 5,000 0.90 0.26 300
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in each Papp that outperforms the results obtained by the

single-objective approaches in the two most complex test

networks: LA49 and LA63. Table 3 shows statistical data

(median and interquartile range) of the Hypervolume

obtained by our multi-objective optimization algorithms,

where each experiment consists of 31 independent runs, as

well as the Set Coverage (C(A, B)) of the median Papp of

each MOEA. For notation, we define ~x as the median value

of the sample x. And in Table 4, we present a summary of

the statistical study performed to compare the IHs of

NSGA-II and SPEA2, which provides a coefficient known

as p value (a p value lower than the significance level

means that we have sufficient evidence to conclude that

there are significant differences between the samples

studied). These tables reflect that NSGA-II provides better

and more stable results than SPEA2, since NSGA-II

achieves a higher IH value than SPEA2 in all test networks

and with a lower interquartile range value. It should also be

noted that, according to the Set Coverage indicator, SPEA2

is weakly dominated by NSGA-II in all test networks.

Furthermore, although the IH values of NSGA-II and

SPEA2 are very similar at first glance, Table 4 clarifies that

there is a significant difference between the IHs of NSGA-II

and SPEA2 in all test networks, since the p value provided

by the statistical study is lower than the desired signifi-

cance level (0.05). That is due to the small value of the

interquartile ranges. Finally, Fig. 9 shows a graphic rep-

resentation of the median Papp obtained by NSGA-II and

SPEA2 for each test network. This figure also shows the

LAs configuration of our solutions in Table 2 and the

position of each one in the corresponding Papp. In this

figure, we can observe:

• A high spread of the Papps obtained, which include the

never-update and always-update strategies.

• A decrease of the Papp density when the size of the

location areas increases (i.e. solutions with high

PAcost), because of there is a less number of feasible

solutions.

• The paging cost increases faster than the location

update cost.

• In Fig. 9(g), there is a huge number of LAs configu-

rations between the solutions associated with Costtot(1)

and Costtot(5). This indicates that b is a real number,

which greatly complicates the configuration of this

coefficient in single-objective optimization algorithms.

4.2 Analysis of solutions

In this section, we have performed an in-depth study of the

LAs configuration for several values of b and its relation to

the user’s call and mobility patterns. This analysis is a

novel contribution and will allow us to understand the

behavior of the LAs scheme. Figure 11 shows the results of

the study for the most complex test network (LA63). First,

Fig. 10(a) presents the number of incoming and outgoing

users per cell. Figure 10(b) shows the number of incoming

calls per cell. From Fig. 11(a) to (j), the LAs configuration

and the Costtot(b) per cell for b equal to 1, 5, 10, 15, and 20

are presented. These figures provide us important infor-

mation. Firstly, it should be noted that the LAs configu-

ration has a huge number of location areas when the LUcost

and the PAcost are equally treated (b = 1), although the

number of incoming and outgoing users per cell is higher

than the incoming calls per cell. This is because the PAcost

increases faster than the LUcost, as was demonstrated in

Sect. 4.1. That is why the Costtot(1) per cell is very similar

to the user’s mobility pattern, Figs. 10(a),

Table 2 Comparison with single-objective algorithms

Algorithm Test network

LA25 LA35 LA49 LA63

NSGA-II 26,990 39,832 60,685 89,085

SPEA2 26,990 39,832 60,685 89,085

HNN[13] 27,249 39,832 63,516 92,493

SA[11] 26,990 42,750 60,694 90,506

GA[10] 28,299 40,085 61,938 90,318

GA-HNN1[7] 26,990 40,117 62,916 92,659

GA-HNN2[7] 26,990 39,832 62,253 91,916

GA-HNN3[7] 26,990 39,832 60,696 91,819

DE[14] 26,990 39,859 61,037 89,973

Eq. (6): Costtot(10)

Table 3 Multi-objective indicators

Multi-objective indicator Test network

LA25 LA35 LA49 LA63

median (IH(Papp
NSGA-II))(%) 76.351 80.870 83.732 84.179

median (IH(Papp
SPEA2))(%) 76.309 80.813 83.608 84.055

iqr (IH(Papp
NSGA-II))(%) 0.006 0.020 0.037 0.046

iqr (IH(Papp
SPEA2))(%) 0.013 0.025 0.158 0.114

C ~PNSGA�II
app ; ~PSPEA2

app

� �
ð%Þ 91.124 94.800 83.714 60.937

C ~PSPEA2
app ; ~PNSGA�II

app

� �
ð%Þ 55.526 36.163 26.034 38.881

Table 4 Results from the statistical study

Test network

LA25 LA35 LA49 LA63

p value 3.336e-11 3.332e-11 1.609e-10 5.706e-9
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Fig. 9 Median Papp of NSGA-

II and SPEA2 and the LAs

configuration of solutions in

Table 2 for: a, b LA25, c,

d LA35, e, f LA49, g, h LA63
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11(b) respectively. Therefore, it is concluded firstly that

cells with higher exchange of users are grouped in location

areas as small as possible with the aim of reducing the

LUcost without greatly increasing the PAcost. And secondly,

an increment of b implies an increase of the LAs size in

order to minimize the LUcost. So doing, the number of

boundary cells is reduced and cells with higher number of

incoming and outgoing users are located in the centre of its

location area, see cells 31 and 32 of Fig. 11(h). Further-

more, the maximum values of Costtot(b) are located in

boundary cells, as expected because LUcost has a greater

contribution in Costtot(b) than PAcost.

4.3 Study of a realistic mobile network

Once we have determined the goodness of the multi-

objective optimization and that our proposals outperform

other optimization techniques published in the recent lit-

erature, we optimize the Location Areas Planning Problem

in a realistic mobile network [34]. This mobile network is

called BALI-2 and consists of 90 cells and 66,550 sub-

scribers. We have chosen this network because it is well-

validated against real-world data measured in the San

Francisco Bay (USA). Figure 12 shows a graphical repre-

sentation of the BALI-2 network. This study will give us

information about the behavior of our proposals when they

optimize the LAPP in a realistic mobile environment.

Figure 13 shows the median Papp obtained by our proposals

in the BALI-2 network. And Table 5 gathers the results of

this experimental study, where we have performed 31

independent runs per experiment. In this table, we present

statistical data (median and interquartile range) of the

Hypervolume, and also the Set Coverage (C(A, B)) of the

median Papps. The reference points used in Fig. 13 are: (0,

1570807) and (243951, 141372630). This figure reveals

that our proposals also obtain good Papp in a realistic

mobile network (and hence, in a more complex problem

instance). Furthermore, if we analyze the results in Table 5

we can obtain several conclusions. Firstly, the Hypervo-

lume indicator establishes that our version of NSGA-II

obtains better and more stable results than our version of

SPEA2. In this experimental study, the p value is equal to

1.402e-11, so we can conclude that the differences between

our proposals are statistically significant. On the other

hand, the Set Coverage indicator determines that our ver-

sion of SPEA2 performs better than our version of NSGA-

II. This is because SPEA2 obtains better results than

NSGA-II in those regions of the objective space with

higher location update cost. In such cases, a graphical

representation could be of great assistance (see Fig. 13).

Figure 13 clarifies that our proposals obtain very similar

results in regions of the objective space with higher loca-

tion update cost, and that NSGA-II performs better than

SPEA2 in regions of the objective space with higher paging

cost. Therefore, we could conclude that our version of

NSGA-II in better than our version of SPEA2. The paging

procedure used in this experimental study is the blanket

polling paging (see Sect. 2).

5 Conclusions and future work

In this paper, we research one of the most important tasks

in the Public Land Mobile Networks, the location man-

agement. There are several strategies to manage this task

but we focus on the LAs scheme, because it is widely used

in current terrestrial mobile networks. In this scheme, the

location management task is defined as a multi-objective

optimization problem with two costs that must be mini-

mized: location update (LUcost) and paging (PAcost). Pre-

viously, the LAs scheme was solved by using single-

objective optimization techniques, where the LUcost and

Fig. 10 a Number of incoming and outgoing users and b incoming calls per cell for LA63
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Fig. 11 LAs configuration and

Costtot(b) for LA63: a, b b = 1,

c, d b = 5, e, f b = 10, g,

h b = 15, i, j b = 20
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PAcost were combined in a weighted objective function, see

Eq. (6). However, several drawbacks arise when the LA

Planning Problem is tackled with single-objective approa-

ches. Firstly, an accurate knowledge of the problem is

required to properly configure the value of the weight

coefficient (b), which is a real value (as was demonstrated

in Sect. 4.1). Secondly, a temporal variation of the network

state should be considered when setting this coefficient.

And thirdly, a single-objective optimization algorithm must

perform an independent run for each value of b. That is

why we have proposed the use of multi-objective optimi-

zation algorithms to solve the LAPP. In contrast to a sin-

gle-objective approach, a multi-objective optimization

algorithm provides a set of solutions among which the

network operator could select the one that best adjusts to

the real state of the signaling network. Moreover, these

solutions are obtained simultaneously and each one is

associated with a value of the weight coefficient (b).

In this work, we propose our versions of two multi-

objective optimization algorithms that could be considered

as standards of the multi-objective evolutionary optimiza-

tion field: Non-Dominated Sorting Genetic Algorithm-II

(NSGA-II) and Strength Pareto Evolutionary Algorithm 2

(SPEA2). These two algorithms have been adapted (i.e. we

use our evolutionary operators specific to solve the Loca-

tion Areas Planning Problem) and modified with the

inclusion of a transformation function. With the aim of

checking the quality of our algorithms, we have solved four

test networks of different complexity and we have com-

pared our results with those obtained by other authors, who

developed single-objective optimization algorithms to

optimize the same instances (there are no other previous

proposals that tackle the LAPP with a multi-objective

approach). For it, we have searched in the set of solutions

the one that minimizes the objective function used by these

single-objective optimization algorithms. Results show that

our multi-objective implementations outperform the results

obtained by other authors in the two most complex test

networks: LA49 and LA63.

On the other hand, we have calculated indicators of the

multi-objective optimization field to compare our modified

versions of NSGA-II and SPEA2. A statistical study has

been performed to determine whether the differences

between these multi-objective evolutionary algorithms are

significant with a certain level of confidence. This study

establishes that NSGA-II is slightly superior to SPEA2 in

all test networks. Furthermore, we have analyzed the

configurations of LAs for several values of b. This analysis

is a novel contribution of this paper and clarifies that the

cells with higher mobile activity are grouped in location

areas as small as possible with the goal of reducing the

LUcost without greatly increasing the PAcost. Moreover, it

should be noted that these cells are located in the centre of

their location area. Finally, we have demonstrated that our

proposals also obtain good results in a realistic mobile

network. In future work, it would be interesting to imple-

ment other multi-objective optimization algorithms to

solve these instances and compare them with our versions

of NSGA-II and SPEA2. Furthermore, it would be a good

challenge the study of other location management strate-

gies. In particular, different mobile location management

Fig. 12 Graphical

representation of the BALI-2

network

Fig. 13 Graphical representation of the median Papps

Table 5 Multi-objective indicators

Multi-objective indicator Algorithm

NSGA-II SPEA2

median(IH(Papp))(%) 93.095 92.250

iqr(IH(Papp))(%) 0.001 0.004

C ~PNSGA�II
app ; ~Px

app

� �
ð%Þ – 29.926

C ~PSPEA2
app ; ~Px

app

� �
ð%Þ 40.376 –
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strategies based on mobility patterns and movement pre-

diction could be implemented and evaluated in a multi-

objective manner.
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