
Opportunistic routing with in-network aggregation
for asynchronous duty-cycled wireless sensor networks

Jungmin So • Heejung Byun

Published online: 4 October 2013

� Springer Science+Business Media New York 2013

Abstract We propose an opportunistic routing protocol

for wireless sensor networks designed to work on top of an

asynchronous duty-cycled MAC. Opportunistic routing can

be very effective when used with asynchronous duty-

cycled MAC because expected waiting time of senders—

when they stay on active mode and transmit packet

streams—is significantly reduced. If there are multiple

sources, energy consumption can be reduced further

through in-network aggregation. The idea proposed in this

paper is to temporarily increase duty cycle ratio of nodes

holding packets, in order to increase chance of in-network

aggregation and thus reduce energy consumption and

extend network lifetime. In the proposed protocol called

opportunistic routing with in-network aggregation (ORIA),

whenever a node generates a packet or receives a packet to

forward, it waits for a certain amount of time before

transmitting the packet. Meanwhile, the node increases its

duty cycle ratio, hoping that it receives packets from other

nodes and aggregate them into a single packet. Simulation

results show that ORIA saves considerable amount of

energy compared to general opportunistic routing proto-

cols, as well as tree-based protocols.

Keywords Wireless sensor networks �
Opportunistic routing � In-network aggregation

1 Introduction

Energy efficiency is a well-known key factor in designing

wireless sensor networks. The major goal of MAC and

routing protocols is to put nodes into sleep mode as much

as possible, because energy consumption in sleep mode is

significantly lower than active mode [1]. Duty-cycling, in

which nodes periodically switch between active and sleep

mode, is a most widely used method for saving energy.

Duty cycle is the percent of time a node spends in an active

mode as a fraction of total time. A node can transmit or

receive packets while in active mode, but cannot commu-

nicate while in sleep mode. Thus, increasing duty cycle

results in higher energy consumption but lower delay,

while decreasing duty cycle produces an opposite effect.

MAC protocols using duty-cycling can be classified into

two categories: synchronized and asynchronous. A syn-

chronized MAC protocol synchronizes the active periods of

nodes so that they wake up at the same time. In some

protocols all nodes wake up at the same time, whereas in

other protocols node pairs in need of communication are

scheduled to wake up at the same time. Either way, a

sender can believe that the receiver is in active mode when

it transmits a packet. The problem with synchronized

protocols is that nodes need to be kept time-synchronized.

Control packets need to be transmitted periodically in order

to make the nodes synchronized, which is an overhead

required for these protocols. Also, if nodes become out of

sync, more energy is needed to restore the synchronization

again (such as occasionally having all nodes wake up for a

certain period of time). Asynchronous protocols do not

synchronize active periods, but makes the sender wait for

the receiver in active mode, until the receiver wakes up.

For example, if node A has a packet to transmit to node B,

node A wakes up and continuously transmits its packet,

J. So

Department of Computer Engineering, Hallym University,

Chuncheon, Korea

e-mail: jso1@hallym.ac.kr

H. Byun (&)

Department of Information and Telecommunications

Engineering, Suwon University, Hwaseong, Korea

e-mail: heejungbyun@suwon.ac.kr

123

Wireless Netw (2014) 20:833–846

DOI 10.1007/s11276-013-0645-2

until node B wakes up and receives the packet. When node

B receives the packet, it sends back an ACK so that node A

can stop transmitting the packet and go back to sleep.

Asynchronous protocols are simple to implement and

operate, one of these protocols, BoX-MAC [19] has been

selected as a default MAC protocol in TinyOS 2.9. More

details of existing synchronized and asynchronous proto-

cols will be discussed later in the paper.

A routing protocol, that runs on top of a MAC protocol,

is designed also with consideration for energy consump-

tion. Routing also depends on data collection pattern of an

application. Here, we consider a typical sensor network

application where sensor nodes send their readings to the

sink, if a certain conditions are met. A typical routing

strategy is to build a tree rooted at the sink node, and

packets are forwarded along the branches of the collection

tree. However, if we consider asynchronous duty-cycling at

the MAC layer, an opportunistic routing approach can

significantly reduce energy consumption. In an opportu-

nistic routing scheme, a node has multiple potential for-

warders instead of just one (the parent) as in a tree-based

routing. The node sends its packet to whoever wakes up

first, in order to reduce delay and also energy consumed

waiting for the receiver to wake up. ORW [3] is the pro-

tocol that uses this approach and is shown to save a sig-

nificant amount of energy compared to a tree-based

routing.

The problem with ORW is that it does not consider the

benefit of in-network aggregation. Suppose there are mul-

tiple sources that generate packets at a similar time. When

a node tries to send its packet to one of the forwarders,

some of them may already have other packets that are

waiting to be sent. In this case, it is better to send the

packet to that particular forwarder which already holds a

packet, since the packets can be aggregated into one

packet. In-network aggregation is a technique used in

wireless sensor networks to reduce number of packet

transmissions [4]. The size of a packet after aggregation

depends on the application. If the application is looking for

the minimum or the maximum, the packet size does not

have to increase. If the application is looking for an aver-

age, the packet needs to contain the total value and the

number of data aggregated. Thus the packet size does not

grow with the number of aggregated packets for average as

well. If the application needs to see the data separately, in-

network aggregation is still beneficial because the pream-

ble and the packet header occupy a significant portion of a

packet. Even if multiple data are concatenated, the packet

size does not grow linearly. In addition, overhead of

transmitting a packet, such as waiting time of the sender in

a duty-cycled MAC can be saved by in-network aggrega-

tion. In this paper, we assume perfect aggregation, which

means we neglect the packet size growth after aggregation.

If a node can forward its packet to a forwarder which

already holds a packet, energy consumption can be reduced

using in-network aggregation. However, the node does not

know which one of the forwarders is holding a packet. If

the packet sources and their routes to the sink are fixed as

in a tree-based protocol, this may be possible. But if packet

sources change dynamically and the routes are not fixed as

in an opportunistic routing, this knowledge is not given.

The motivation of this paper is simple: we would like to

increase chance of packets being aggregated at intermedi-

ate nodes, so that the energy is saved by reducing packet

transmissions. The proposed idea is to control duty cycle of

nodes depending on whether it has a packet to send or not,

so that nodes holding packets have a higher chance of

receiving packets from downstream nodes. This simple

idea can lead to considerable amount of energy savings, as

shown in the performance evaluation section.

The rest of the paper is organized as follows. In Sect. 2,

we summarize and discuss some relevant related work. In

Sect. 3, we provide preliminary background on asynchro-

nous duty-cycled MAC protocols and opportunistic routing

protocols. Also, we describe the network and application

model we use and motivate the problem. In Sect. 4, we

present our proposed protocol, opportunistic routing with

in-network aggregation (ORIA), which controls duty cycle

of nodes based on whether they have packet to send or not,

in order to promote in-network aggregation and extend

network lifetime. In Sect. 5, we evaluate performance of

the proposed protocol, in comparison with tree-based

routing protocols and opportunistic routing protocols.

Finally, we conclude with remarks on future work in Sect.

6.

2 Related work

Huge amount of research efforts have been put into wire-

less sensor networks during the last decade. Although

similar to wireless multi-hop networks such as ad-hoc

networks, wireless sensor networks have unique charac-

teristics that make protocol design different from other

types of wireless networks [5]. The most important char-

acteristic is that nodes are energy limited, and typically

expected to run without human intervention for a very long

time. Thus, energy efficiency is the most significant factor

in making design choices. Traffic pattern is another thing

that is unique to the sensor networks. In typical applica-

tions traffic load is low, and the traffic is directed towards

the sink or multiple sinks. In most cases, prolonging net-

work lifetime is preferred to increasing reliability or

reducing packet delay. Although not considered typical,

there are applications that require high traffic load, such as

wireless multimedia sensor networks [6]. Also, quality of

834 Wireless Netw (2014) 20:833–846

123

service requirements may exist, such as reliability or delay

[7].

Medium access protocols for wireless sensor networks

can be divided into synchronized and asynchronous pro-

tocols. A synchronized protocol synchronizes active times

of sender and receiver, so that the receiver is awake when

the sender transmits its packet. While there are many ways

of synchronizing sender and receiver, using common active

periods is a well-known approach. SMAC [9] is the basic

protocol in this category. In SMAC, all nodes in the net-

work wake up at the same time and stay in active mode for

a fixed duration of time. Time is synchronized among

nodes by exchanging SYNC messages at the beginning of

an active time. To avoid collision, the RTS/CTS mecha-

nism is used. TMAC [10] is an improved version of

SMAC, in which the duration of active period adaptively

shortened if there is no more traffic. In DSMAC [11], the

duration of active period is adaptively increased and

decreased based on delay requirements and traffic load.

Many different protocols build upon these basic schemes to

minimize energy consumption using common active peri-

ods [12–16].

Asynchronous protocols do not synchronize active times

of sender and receiver, but let the sender wait for receiver

to wake up while transmitting on the channel. B-MAC [17]

is the basic protocol, where the sender sends a preamble on

the channel for the duration of a whole wakeup period, and

nodes that receive the preamble stays up until the sender

sends a packet. In X-MAC [18], the sender sends short

preambles, with a time gap between two preambles where a

receiver can send back an ACK. The preamble includes the

destination address, so nodes other than the destination can

go back to sleep right after checking the preamble. In BoX-

MAC [19], the sender sends the entire packet repeatedly,

instead of preambles. When the receiver sends back an

ACK, the communication is finished without needing

another exchange of packets. Other protocols exist that

follow the line of asynchronous wakeup [20–22].

Routing protocols run top of MAC protocols and decide

the paths where packets are forwarded. Protocols designed

for multi-hop ad hoc networks or mesh networks may work

in wireless sensor networks, but typically they are not

suitable because they are not designed for energy effi-

ciency, and they do not consider the benefit of in-network

aggregation. Krishnamachari et al. [4] proposed three

mechanisms for selecting routes considering aggregation.

Among the schemes, the greedy incremental tree (GIT)

provides the minimum number of transmissions, thus

minimum energy consumption. Aonishi et al. [23] pro-

posed a new metric for selecting routes considering

aggregation efficiency. The idea is that if aggregation

efficiency is low, it would be better to use the shortest path

instead of the path that leads to better aggregation. Mottola

et al. proposed the Muster protocol [24], which is a routing

protocol designed for multi-sink environment where

packets from a source are forwarded to multiple sinks. The

aim is to maximize aggregation, so that number of trans-

missions is minimized. Liu et al. [27] proposed a routing

protocol with in-network aggregation, where they have

considered what they call the aggregation ratio. The

aggregation ratio is the maximum number of packets that

can be aggregated into a single packet. If the aggregation

ratio is infinite, it is the perfect synchronization. The

routing strategy when aggregation ratio is finite is to

choose a parent node with a packet that has room left for

more packets to be aggregated. [27] assumes that all nodes

in the network are packet sources, and thus the best strat-

egy is to build an aggregation tree that balances the number

of descendants among siblings. Villas et al. proposed

DRINA, a tree-based routing protocol designed to achieve

maximum benefit from in-network aggregation [28]. In

DRINA, multiple nodes sensing an event form a cluster by

electing a cluster head and send their packets to the cluster

head for aggregation. Also, the cluster heads are connected

to the sink by a tree. Initially, a tree rooted at the sink is

built in the network, and the hop distance of a node is the

distance between itself and the sink. When an event occurs,

the path from the cluster head to the sink becomes an

‘‘established route’’. The hop distance of all other nodes are

updated so that their hop distance is the shortest distance

between itself and a node in the established route. Using

this hop distance metric, a GIT-style structure is built in the

network, which is shown to perform well with in-network

aggregation. These routing protocols are designed to min-

imize packet transmissions using by promoting in-network

aggregation, but they do not consider opportunistic routing.

With opportunistic routing, packets are not forwarded

along an established tree, and the packet aggregation will

not happen if packet follow different paths. These protocols

have no mechanism to improve chance of aggregation

when opportunistic routing is used.

Opportunistic routing protocols have been proposed in

the context of ad-hoc networks and sensor networks. In

ExOR [2], the sender includes a prioritized list of for-

warders in the packet header. When a node receives the

packet, it forwards the packet after a certain delay com-

puted from the priority of itself in the list of forwarders.

Other nodes who overhear the packet transmission cancels

its transmission, thus avoiding redundant forwarding. This

protocol is not suitable for wireless sensor network, since

nodes cannot overhear packet transmissions while sleeping.

GeRaF [25] decides the forwarder list based on the location

information. Nodes that are geographically close to the

destination becomes the forwarder. To avoid multiple

nodes forwarding the same packet, busy tone is used. Ge-

RaF has similar problems with ExOR when applied in

Wireless Netw (2014) 20:833–846 835

123

duty-cycled wireless sensor networks. Gu et al. proposed

DSF [26], an opportunistic routing protocol designed to

work with synchronized MAC. Forwarding nodes are

selected based on sleep schedules as well as delay, reli-

ability and energy consumption. The protocol requires

control message overhead in order to distribute sleep

schedules of nodes. Aitsaadi et al. proposed three variants

of opportunistic routing protocols for duty-cycled MACs

[29]. The first one, called Basic-opportunistic, forwards the

packet to the node that wakes up first, if the node is geo-

graphically closer to the sink than the sender. The second

one, called Opportunistic with delay, limits the waiting

time of the sender. The packet is discarded if a time limit is

reached, where in Basic-opportunistic the packet may wait

for an unlimited time. The time limit is used to avoid

draining the energy of a node waiting for the receiver,

sacrificing reliability. The third one, called Opportunistic

with backtracking, allows a packet to move further away

from the sink, if there is no path that moves toward the

sink. This scheme is proposed to avoid route holes in the

network. Landsiedel et al. have proposed ORW [3], which

is also targeted for asynchronous duty-cycled networks.

Similar to [29], ORW selects the first node that wakes up as

the forwarder, among a set of candidate forwarders. The

candidate forwarders are selected based on a metric called

EDC (Expected Duty Cycled Wakeups), which is based on

number of neighbors and link quality. Since ORW is used

as a ground for our proposed protocol, we discuss ORW in

more detail in the next section. These opportunistic routing

protocols can reduce significant amount of energy com-

pared to unicast routing protocols. However, they both do

not consider benefit of in-network aggregation when

selecting the forwarder. Considering in-network aggrega-

tion can further reduce energy consumption, especially

when packets are generated from multiple nodes. It is the

aim of our proposed protocol.

3 Preliminaries

3.1 Asynchronous duty-cycled MAC protocols

B-MAC [17], X-MAC [18], and BoX-MAC [19] are the

most widely known asynchronous MAC protocols. Their

common feature is that if a node has a packet to send, it

wakes up and waits for the receiver to wake up, while

continuously transmitting something on the channel.

Otherwise, nodes wake up according to their duty cycles,

unsynchronized with their neighbors.

In B-MAC, the sender transmits a long preamble while

waiting for the receiver. When a node wakes up according

to its schedule, it listens to the channel to see if there is any

preamble being transmitted. If there is a preamble, it stays

up. If not, the node goes back to sleep. The sender trans-

mits the preamble long enough so that all of its neighbors

are awake when the sender transmits the data packet. If the

duration of a wakeup period (a duration of time between

two active modes) is the same for all nodes, the sender

must transmit the preamble for the duration of a whole

wakeup period. If wakeup periods are different, the sender

must transmit the preamble for the duration of the longest

wakeup period. Followed by the preamble, the sender

transmits the data packet which should be received by the

receiver, since the receiver will be awake. B-MAC has two

problems that lead to waste of energy. First, even if the

receiver wakes up shortly after the sender starts transmit-

ting preamble, both the sender and the receiver should wait

in active mode until the end of the preamble. Second, nodes

that are not the destination of the packet should also be

awake until the packet is transmitted.

X-MAC addresses the two problems of B-MAC using

short preambles. Instead of sending a long preamble, the

sender transmits a stream of short preambles that include

the destination address. When a node wakes up according

to its schedule, it listens on the channel for a duration time

enough to receive a short preamble. If a preamble is

received, the node checks to see if the packet is destined for

the node. If the node is not the destination, it goes back to

sleep. If it is indeed the destination, it sends an acknowl-

edgement (ACK) packet to the sender. Then the sender

sends the data packet, and the receiver replies back with an

acknowledgement for the data packet. BoX-MAC is

slightly different from X-MAC. In BoX-MAC, instead of

sending preambles, the sender sends the packet itself in

streams. This removes one of the two handshakes in

X-MAC. Also, nodes waking up do not wait for the whole

packet duration, but checks the channel to see if there is

energy on the channel, and go back to sleep if no energy is

detected. This reduces the wakeup duration for nodes when

there is no transmission taking place. Specifically, a node

running X-MAC should stay up for 20ms to find out that it

can go back to sleep, while a node running BoX-MAC only

needs to stay up for 5.61ms [19].

Figure 1 describes the behavior of BoX-MAC.

3.2 Opportunistic routing protocols

The general concept of opportunistic routing is that a node

can have multiple potential receivers instead of a single

destined receiver. The node forwards its packet to one of

the receivers who is in the best condition. [2]. Protocols

using opportunistic routing in wireless networks often

selects the receiver that has the best link condition at the

point of packet transmission, increasing packet delivery

ratio and reducing delay.

836 Wireless Netw (2014) 20:833–846

123

When an opportunistic routing is combined with asyn-

chronous duty-cycled MAC, the routing protocol can

choose the receiver that wakes up first. This reduces packet

delay, but what is more important is that it can save sig-

nificant amount of energy that the sender consumes waiting

for the receiver to wake up. Protocols proposed in [29] and

[3] use this approach, and is shown to outperform tree-

based routing protocols in terms of energy consumption.

The behavior of an opportunistic routing protocol is

illustrated in Fig. 2. Suppose node B and C are candidate

forwarders of node A. When node A has a packet to send, it

wakes up and starts sending its packet in streams. Suppose

by chance node B wakes up earlier than C. When node B

receives the packet it sends back an ACK to node A which

can finish transmission and go back to sleep. If C wakes up

first, C will also accept the packet from A. Thus, if there

are N forwarders, the expected waiting time for the sender

is reduced to 1/N.

The candidate forwarders of a node can be chosen in

various ways. The simplest method is to include all

neighbors that have shorter hop distance to the sink in the

forwarder set. To implement this, each node only needs to

know its hop distance to the sink. A node does not even

need to know who are the neighbors, unless its hop distance

is not changed. The problem with this method is that if the

packet is forwarded along nodes with very few number of

neighbors, the total energy consumed for delivering this

packet to the sink may be large. Also, it may be beneficial

to send the packet to a node with the same or even larger

hop distance than the sender, depending on the expected

wait time of these nodes. Thus, ORW [3] proposes a metric

call EDC (Expected Duty Cycled Wakeup), which con-

siders the number of neighbors when selecting the for-

warder set. (ORW also considers link delivery ratio, but it

is omitted here for simplicity.)

EDC of a node is calculated as follows. For a subset Si

of node i, EDCi is:

EDCiðSiÞ ¼
1

jSij
þ
P

j2Si
EDCj

jSij ð1Þ

The first term is the expected wait time of the node

itself, and the second term is the average expected wait

time after the node is forwarded. Initially, Si is empty. For

each iteration, a neighbor j with the lowest EDC is inserted

into Si, and EDCi(Si) is updated. This iteration stops when

EDCj becomes larger than EDCi(Si). As shown in Sect. 5,

using EDC improves network lifetime compared to just

using hop distance. However, in an environment where

network topology changes frequently, nodes need to

exchange messages with neighbors to constantly update

the EDC. In this paper we consider both methods of

selecting candidate forwarders.

Without in-network aggregation, there is no need for

priority among nodes in the forwarder set. A node can just

forward its packet to the node that wakes up first. However,

if some of the nodes in the forwarder set already have a

packet waiting to be sent, there is a chance for further

energy saving by forwarding the packet to one of these

nodes. This observation motivates an opportunistic proto-

col that is designed to benefit from in-network aggregation.

3.3 Network model and motivation

We consider a wireless sensor network with N nodes. One

of the node is the sink node, which serves as a data col-

lection point. We focus our attention to a single sink case,

although the proposed idea can be directly applied to a

multi-sink environment. Once deployed, each node peri-

odically generates a packet if a certain criteria is met. Thus,

only a portion of nodes may become packet sources, and

they can change over time. An example application that has

this kind of traffic pattern is temperature and humidity

monitoring in a building, where nodes are configured to

Fig. 1 Behavior of BoX-MAC. The sender transmits packets in

streams, until the receiver wakes up and receives the packet. On

receiving the packets, the receiver sends back an ACK and goes back

to sleep. The sender also goes back to sleep when it receives the ACK

Fig. 2 Behavior of an opportunistic routing protocol with duty-

cycled MAC. In this example nodes B and C are As candidate

forwarders. Whoever wakes up first receives the packet and sends

back an ACK back to the sender

Wireless Netw (2014) 20:833–846 837

123

send periodic reports when a certain criteria is satisfied. On

generating a packet, the node forwards the packet to the

sink using opportunistic routing.

Now consider the scenario in Fig. 3. At a period, nodes

A and B become packet sources because their sensor

readings meet the predefined criteria. Suppose node B, C,

and D are the members of A’s forwarder set. Using

opportunistic routing, node A will send its packet to

whoever wakes up first among B, C, and D. Suppose node

C or D receives the packet. Then, the node should forward

the packet to the sink. Meanwhile, node B also has to

transmit, because it has a packet generated by itself. Now,

suppose node B receives node As packet. Then, neither

node C nor D needs to transmit a packet. B does not need to

transmit twice, since the data can be aggregated into a

single packet. (As mentioned earlier, we neglect the

increase of packet size after aggregation.) Thus, in terms of

total energy consumption, it would be a better choice if

node A can forward its packet to node B, and not to C or D.

If packet sources are always the same for every period,

we can build a collection tree considering in-network

aggregation as in [4]. However, if packet sources change

over time, it is not possible to predict who is the best next

hop node in terms of total energy consumption. One pos-

sibility is to include a flag in the packet header. If the flag is

set, only node that already have another packet receives the

packet. If no node receives the packet for a certain duration

of time, the sender can reset the flag so that any node can

receive the packet. This will increase chance of packet

aggregation, but average waiting time may increase

depending on the number of source nodes. If there are

small number of sources compared to the total number of

nodes, this strategy will significantly increase waiting time

and thus energy consumption.

In this paper, we propose to control the duty cycle of

nodes in order to promote aggregation. When a node is

holding a packet, it temporarily increases its duty cycle in

order to increase the chance of receiving other packets. The

details of the proposed protocol is described in the next

section.

4 The proposed protocol: ORIA

The proposed protocol is called ORIA. The basic operation

of opportunistic routing is similar to ORW [3]. When a

node sends a packet, it does not specify a destination.

Instead, the packet header includes information on who can

receive this packet. Any receiver who wakes up and

receives the packet checks whether it should accept the

packet or not. If the receiver accepts the packet, it sends an

ACK back to the sender. The sender stops transmitting the

packet once it receives the ACK. For selecting the for-

warder set, we consider both schemes: hop distance-based

and EDC-based.

4.1 Initial operation and updates

When nodes are deployed, they start their duty cycle by

switching between active and sleep modes. The initial sleep

period is set to ts for all nodes. (Although the sleep period is

the same, nodes wake up at different times since they are not

time synchronized.) Then, the nodes need to find the hop

distance to the sink. To find out its distance to the sink, a

node starts transmitting a PATH-REQUEST message on the

channel, as a stream of packets. A neighboring node wakes

up according to its wakeup schedule and receives the packet.

If the receiver knows its hop distance to the sink, it replies

with an ACK which includes its hop distance. Once the

sender receives an ACK, it stops sending PATH-REQUEST

and goes back to sleep. If multiple nodes simultaneously

receive the PATH-REQUEST message and send ACKs to

the sender, The ACKs will collide. In this case, the sender

will continue sending its PATH-REQUEST packet. If the

sender does not receive an ACK for a certain amount of

time, it stops transmitting, goes back to sleep and tries it

again after some time. The node can also send a PATH-

REQUEST during operation, if it fails to send its packet to

any of the receivers. To use EDC, nodes periodically

exchange HELLO message, including their EDCs in the

packet. HELLO messages are broadcast, and they do not

require ACKs.

4.2 Packet generation and forwarding

Once a node finds out its distance to the sink, it is ready to

check sensor readings and generate packets if the condi-

tions are met. (To use EDC, a node should find out the

EDCs of its neighbors.) When a node generates a packet, it

should forward the packet to the sink. In ORIA, the node

does not immediately transmit the packet, but waits for a

Fig. 3 A motivating example of the proposed scheme. If nodes A and

B are packet sources, it is better for node A to send its packet to B,

because packet aggregation leads to energy saving

838 Wireless Netw (2014) 20:833–846

123

duration of time called packet holding time. During the

packet holding time, the node performs fast wakeup, in

which the node increases its duty cycle in order to increase

chance of receiving packets from other nodes. An inter-

mediate node who receives a packet from another node also

goes through packet holding time before forwarding the

packet. A node already in its packet holding time does not

extend the packet holding time even if it receives a packet

from a neighbor. The wakeup behavior of a node running

ORIA is described in Fig. 4.

When the packet holding time is finished, the node

checks the channel to see if it is idle, and transmits the

packet in streams similar to the BoX-MAC. When using

the hop distance metric, the sender includes its hop dis-

tance to the sink in the packet header. When using EDC,

the forwarder set is included in the header. Neighboring

nodes receive the packet once they wake up. If a node

receives the packet, it looks at the header and see if it

should receive the packet. When using the hop distance

metric, the node accepts the packet if it has a shorter hop

distance to the sink than the sender. Optionally, if the node

has the same hop distance with the sender, it can still

accept the packet if it is already holding another packet. If

ORIA is using EDC as the metric, then the receiver simply

accepts the packet if it is included in the forwarder set.

An example operation of ORIA using hop distance

metric is shown in Fig. 5. In the figure, node T is the

current packet sender. Nodes B and C (shown in gray filled

circles) have packets to send, and are in the packet holding

time. Nodes that receive T’s packet are A, B, and C. Nodes

A and B can accept the packet because they are closer to

the sink, whereas node C can accept the packet because it

has the same hop distance to the sink as the sender, and it is

in packet holding time. Node D does not accept T’s packet,

even if it is the first node to wake up and receive the packet.

If a node accepts the packet, it sends an ACK packet back

to node T. On receiving ACK, node T stops transmitting

packet streams and goes back to sleep.

Length of the packet holding time and the fast wakeup

rate are parameters that can affect system performance. If

the packet holding time is too short, the chance of

aggregation will decrease. If it is too long, packet delay

will be too high. Even if we consider applications with no

real-time delay requirements, long packet delay often

decreases the value of information. For applications with

delay limits, the packet holding time can be set according

to the requirements. If the fast wakeup rate is too low, it

will reduce chance of aggregation. If the fast wakeup rate is

too high, energy consumption will increase because nodes

wake up too often. In Sect. 5, we evaluate the impact of

these parameters on system performance.

4.3 Dealing with multiple node reception

The problem with opportunistic routing is that multiple

nodes may receive the packet, if they are awake at the same

time. If this happens, multiple nodes send ACKs to the

sender, which will cause collision. The sender will con-

tinue transmitting its packet since no ACK is received. The

problem becomes more severe because multiple nodes that

received the packet will forward the packet anyway,

causing redundancy and unnecessary energy consumption.

Landsiedel et al. [3] suggests using probabilistic ACK

transmission. When a node receives a duplicate packet, it

sends an ACK with 50 % probability and forwards the

Fig. 4 The wakeup behavior of a node running ORIA. When a node receives a packet, it does not immediately send the packet, but waits for a

duration called packet holding time. During this period, the node increases its duty cycle to receive packets from other nodes

Fig. 5 An example scenario. T is the node transmitting packet. Nodes

B and C are holding packets and are in the packet holding time. Nodes

that can receive Ts packet are nodes A, B, and C

Wireless Netw (2014) 20:833–846 839

123

packet only when it decides to send an ACK. Although this

mechanism may reduce amount of redundant packets, it

still produces a lot of duplicate packets. First, the multiple

receivers still forward the first copy of packets that they

receive. Also, as the number of neighbors increase, 50 %

probability can still produce large number of ACK colli-

sions. One can reduce the forwarding probability after each

duplicate packet, but a lot of duplicates will be generated

until only one packet is received at the sender.

In ORIA, we propose to use CONFIRM packets, which

the data packet transmitter sends back to the receiver after

receiving an ACK correctly. The CONFIRM packet con-

firms that the sender received a single ACK, and also

specifies who should forward the packet to its upstream

node. The CONFIRM packet includes the ID (or address) of

the node who sent the ACK, telling the receiver to forward

the packet to its upstream node (forwader set). This proce-

dure is shown in Fig. 6. If an ACK collision occurs, the

sender will not receive an ACK and thus does not send a

CONFIRM packet. A node that receives a packet does not

forward it unless a CONFIRM packet is received. This

prevents redundant packet forwarding which causes signif-

icant waste of energy. When a node receives a data packet

and does not receive a subsequent CONFIRM packet, it may

still choose to keep the data for a certain duration. Later if

the node has other packets to send, this data can be aggre-

gated into the packet to increase reliability.

5 Performance evaluation

5.1 Simulation setup

Performance of the proposed protocol is evaluated using a

simulator written in C??. We compare performance of the

following six protocols:

1. TREE: This is a standard tree-based protocol, such as

[8]. The packets are passed from the source nodes to

the sink via established tree routes. For fair compar-

ison, packets are aggregated if multiple packets happen

to meet at a node.

2. TREE-HOLD: This is similar to TREE, but each node

waits for packet hold time as in ORIA before

transmitting the packet to its upstream node. Mean-

while, packets coming from downstream nodes are

aggregated into a single packet.

3. OPPO: This is an opportunistic protocol that uses hop

distance metric. When a sender transmits a packet, a

neighboring node who is closer to the sink than the

sender receives the packet and replies back with an

ACK. Although proposed as a part of ORIA, the

CONFIRM packet is also used in the OPPO protocol to

reduce the negative effect of multiple node reception.

4. ORW: This is an opportunistic protocol proposed in

[3]. Each node selects its forwarder set according to

the EDC metric, and only nodes in the forwarder set

receives the packet. CONFIRM packet is used here

too, since how to deal with multiple node reception is

not well defined in [3].

5. ORIA-HOP: This is the proposed protocol which uses

the hop distance metric. Nodes hold on to the packets

for packet hold time before transmitting, and mean-

while temporarily increase their duty cycle in order to

increase chance of in-network aggregation. In this

protocol, a node may receive the packet if it is closer to

the sink than the sender, or it has the same hop distance

with the sender but is holding a packet.

6. ORIA-EDC: This is the proposed protocol which uses

the EDC metric. Only the nodes in the forwarder set

receive the packet.

For simplicity, the link quality of all links is set to 1,

which means no packet loss is occurred due to out-of-band

interference or data packet collision. However, ACK col-

lision is modeled in the simulation, which is considered a

significant factor affecting the performance of opportunis-

tic protocols. When the simulation starts, a number of

nodes, as well as the sink node are randomly placed in a

100m x 100m region. The transmission range of a sensor

node is 20 m, and the carrier sense range is 40 m, which is

twice the transmission range. All nodes start with

2000mAh of energy which is a typical capacity of an AA-

type rechargeable battery. The current consumption for Tx

mode and Rx mode is 17.4 and 19.7 mA, respectively [1].

Also, the current consumption for switching between active

and sleep mode is 0.3 mA [30]. When a node wakes up, it

stays on the channel for 5.61ms and goes back to sleep if

there is no signal on the channel. If there is a packet on the

channel but the node decides not to receive it, the node

CONFIRM

Fig. 6 The protocol behavior of ORIA. The sender sends packet

streams until one of the potential forwarders receive the packet and

replies with an ACK. Then, the sender sends a CONFIRM packet to

the receiver indicating that the receiver is the only forwarder

840 Wireless Netw (2014) 20:833–846

123

stays in the active mode for 20ms. Finally, if the node

receives the packet, it stays in the active mode for 50ms

[19]. Once the nodes are deployed, control messages are

exchanged in order to establish a tree rooted at the sink.

The cost of establishing a tree, as well as the cost of

updating routes or EDC, are not included in the energy

consumption. Once the tree is established, nodes start

generating packets. Unless otherwise specified, the packets

are generated at random nodes according to the given

packet generation rate. If the packet generation rate is 30

packets per 30 s, a packet is generated every 1 s at a ran-

dom node. If a node generates a packet, it does not generate

another packet for 30 s. The simulation ends when the first

node runs out of energy, and the whole duration is con-

sidered as the network lifetime. Each point in the graphs is

an average of results obtained from 50 different topologies

and 20 different seed for each topology (a total of 1,000

runs).

5.2 Results

5.2.1 Impact of node density

In the first simulation, we compared the network lifetime of

the protocols varying number of nodes. Since the size of

the simulation area is fixed, number of nodes translates into

node density. Normal wakeup time is 2 s, meaning each

node wakes up every 2 s to check the channel. The boot up

time of the nodes are randomized, so that the exact wakeup

times vary among nodes. For TREE-HOLD, ORIA-HOP

and ORIA-EDC, the packet hold time is 10 s, and the fast

wakeup time is 500 ms.

The result is shown in Fig. 7. Figure 7(a) is the result

when the packet generation rate is low, and Fig. 8(b) is the

result when the packet generation is higher. As the node

density increases, the network lifetime of protocols other

than the tree-based protocols increase. The tree-based

protocols do not benefit from increased node density since

the routes are fixed. OPPO and ORIA show similar speed

of increase in network lifetime. When the number of nodes

is 100, ORIA achieves twice the network lifetime com-

pared to OPPO. When the number of nodes is 700, ORIA

achieves 33 % longer network lifetime. Comparing ORW

and ORIA-EDC is the most interesting. ORW and ORIA-

EDC significantly outperforms OPPO and ORIA-HOP, by

considering the total wakeup time. When the number of

nodes is 100, ORIA-EDC achieves much longer network

lifetime than ORW. However, as node density increases,

the network lifetime of ORIA-EDC grows slower than

ORW. So when the number of nodes is 700 and the packet

generation rate is 20 packets per 30 s, ORW achieves

longer lifetime than ORIA-EDC. This is because when the

traffic load is low compared to the number of nodes, the

opportunity of in-network aggregation is small. In frequent

cases, a node may not receive a single packet during the

entire packet hold time. Then the node has wasted energy

doing fast wakeups. This result shows that when the traffic

load is very low, the cost is larger than the benefit for

ORIA-EDC. However, when the traffic load is not too low

as in Fig. 7(b), ORIA-EDC achieves longer network life-

time compared to ORW even when the number of nodes is

700.

5.2.2 Impact of traffic load

In the next simulation, packet generation rate was varied to

see its impact on performance. Similar to the previous

experiment, the normal wakeup time is 2 s, the fast wakeup

time is 500 ms, and the packet hold time is 10 s. Figure 8

shows the result. In the figures, the X-axis indicates the

number of packets generated in 30 s. The total number of

nodes is 200 in Fig. 8(a), and 700 in Fig. 8(b).

As the packet generation rate increases, network lifetime

of protocols decrease in general, since more packets need

to be transmitted. However, the drop speed of OPPO and

ORW is much faster than those of ORIA-HOP and ORIA-

EDC. This is because the amount of energy saved from in-

network aggregation increases with the traffic load. When

half of the nodes generate packets every 30 s, the network

lifetime of ORIA-EDC is significantly higher than ORW

(300 % at 200 nodes and 150 % at 700 nodes.)

5.2.3 Impact of number of sources

In the previous simulation, the packets are generated at

random nodes, which means the packet sources change

over time. In this simulation, we choose a subset of nodes

as packet sources at the beginning of simulation, and do not

change the sources during the run. The packet generation

rate of each node is fixed at 1 packet per 30 s. So if 30

nodes are selected as packet sources, the packet generation

rate becomes 30 packets per 30 s. The results shown in

Fig. 9 has a similar pattern with Fig. 8. When the number

of sources is small, ORIA-HOP and ORIA-EDC do not

benefit from packet aggregation, and thus have shorter

lifetime compared to OPPO and ORW because of the fast

wakeup time. As the number of sources increase, ORIA-

HOP and ORIA-EDC outperforms OPPO and ORW due to

energy savings from packet aggregation.

5.2.4 Impact of packet hold time

The main idea of ORIA is that the nodes hold on to packets

while performing fast wakeups in order to promote in-

network aggregation, which leads to energy savings. Thus,

the length of packet hold time and fast wakeup time will

Wireless Netw (2014) 20:833–846 841

123

have a significant impact on the system performance. The

next simulations study the effect of protocol parameters. In

Fig. 10, the packet hold time was varied from 0 to 30 s. In

Fig. 10(a) and (b), the four lines indicate results when the

fast wakeup rate is 500, 1,000, 1,500, and 2,000 ms. In

Fig. 10(c) and (d), the four lines indicate results when the

fast wakeup rate is 2,000, 3,000, 4,000, and 5,000 ms. The

four graphs, Fig. 10(a)–(d), have different node density and

packet generation rate in order to study the impact of

parameters in various network environments. ORIA-EDC

was used for this simulation.

Generally, the network lifetime of ORIA-EDC increases

with the packet hold time, since more packets can be

aggregated if the packet hold time is long. However, if the

fast wakeup time is too short, then a long packet hold time

can degrade the performance. There are two reasons for

this. First, a node spends more energy when performing

fast wakeup. Second, if the nodes wake up too frequently,

number of ACK collisions increase which results in

increased energy consumption. For example, in Fig. 10(b),

when the fast wakeup time is 500ms, the network lifetime

decreases when the packet hold time is longer than 15 s.

This result shows that even without application delay

requirements, long packet hold time may not be always

good, if fast wakeup time is not properly set. The optimi-

zation of packet hold time and fast wakeup time involves

factors such as number of nodes, traffic load and pattern,

and normal wakeup interval. Optimizing parameters will be

a subject for our future work.

In addition to network lifetime, we show the average

packet delay in Fig. 11. The four graphs (a)–(d) have the

same number of nodes and packet generation rate as in

 0

 200

 400

 600

 800

 1000

 100 200 300 400 500 600 700

N
et

w
or

k
lif

et
im

e
(d

ay
s)

Number of nodes

Network Lifetime vs. Number of Nodes

TREE
TREE-HOLD

OPPO
ORW

ORIA-HOP
ORIA-EDC

(a)

 0

 200

 400

 600

 800

 1000

 100 200 300 400 500 600 700

N
et

w
or

k
lif

et
im

e
(d

ay
s)

Number of nodes

Network Lifetime vs. Number of Nodes

TREE
TREE-HOLD

OPPO
ORW

ORIA-HOP
ORIA-EDC

(b)

Fig. 7 Network lifetime varying node density. The X-axis indicates the number of nodes, and the Y-axis indicates the time until the first node

runs out of energy. a 20 packets per 30 s. b 100 packets per 30 s

 0

 100

 200

 300

 400

 500

 600

 700

 800

 10 20 30 40 50 60 70 80 90 100

N
et

w
or

k
lif

et
im

e
(d

ay
s)

Number of packets generated during 30 seconds

Network Lifetime vs. Packet Generation Rate

TREE
TREE-HOLD

OPPO
ORW

ORIA-HOP
ORIA-EDC

(a)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 50 100 150 200 250 300 350

N
et

w
or

k
lif

et
im

e
(d

ay
s)

Number of packets generated during 30 seconds

Network Lifetime vs. Packet Generation Rate

TREE
TREE-HOLD

OPPO
ORW

ORIA-HOP
ORIA-EDC

(b)

Fig. 8 Network lifetime varying packet generation rate. The X-axis indicates the number of packets generated in 30 s, and the Y-axis indicates

the time until the first node runs out of energy. a 200 nodes. b 700 nodes

842 Wireless Netw (2014) 20:833–846

123

Fig. 10. In general average packet delay increases pro-

portional to the packet hold time, since there is no other

factor that significantly affects the packet delay as the

packet hold time. When the traffic load is high though, the

congestion causes high packet delay, as shown in

Fig. 11(d). Even when the packet hold time is 0, the

average packet delay is higher than 20 s when the fast

wakeup time is 5,000 ms. One possibility regarding packet

hold time is that it can be controlled based on the deadline

of the packet. Then, packet hold time will be decided based

on where the packet is generated. If the packet is generated

at a node far away from the sink, the packet hold time of

the packet needs to be shorter at each hop compared to

packet hold time of a packet generated one hop away from

 0

 100

 200

 300

 400

 500

 600

 10 20 30 40 50 60 70 80 90 100

N
et

w
or

k
lif

et
im

e
(d

ay
s)

Number of source nodes

Network Lifetime vs. Number of Source Nodes

TREE
TREE-HOLD

OPPO
ORW

ORIA-HOP
ORIA-EDC

(a)

 0

 100

 200

 300

 400

 500

 600

 50 100 150 200 250 300 350

N
et

w
or

k
lif

et
im

e
(d

ay
s)

Number of source nodes

Network Lifetime vs. Number of Source Nodes

TREE
TREE-HOLD

OPPO
ORW

ORIA-HOP
ORIA-EDC

(b)

Fig. 9 Network lifetime varying number of sources. The X-axis indicates the number of sources, and the Y-axis indicates the time until the first

node runs out of energy. a 200 nodes. b. 700 nodes

 0

 100

 200

 300

 400

 500

 600

 0 5 10 15 20 25

N
et

w
or

k
lif

et
im

e
(d

ay
s)

Packet hold time (s)

Network Lifetime vs. Packet Hold Time

 500ms

1000ms

1500ms

2000ms

(a)

 0

 100

 200

 300

 400

 500

 600

 0 5 10 15 20 25

N
et

w
or

k
lif

et
im

e
(d

ay
s)

Packet hold time (s)

Network Lifetime vs. Packet Hold Time

 500ms

1000ms

1500ms

2000ms

(b)

 0

 200

 400

 600

 800

 1000

 1200

 0 5 10 15 20 25

N
et

w
or

k
lif

et
im

e
(d

ay
s)

Packet hold time (s)

Network Lifetime vs. Packet Hold Time

2000ms

3000ms

4000ms

5000ms

(c)

 0

 200

 400

 600

 800

 1000

 1200

 0 5 10 15 20 25

N
et

w
or

k
lif

et
im

e
(d

ay
s)

Packet hold time (s)

Network Lifetime vs. Packet Hold Time

2000ms
3000ms
4000ms
5000ms

(d)

Fig. 10 Network lifetime varying packet hold time. The X-axis

indicates the packet hold time and the Y-axis indicates the time until

the first node runs out of energy. a–d differ in number of nodes

(n) and packet generation rate (r). a n = 200, r = 20. b n = 200,

r = 100. c n = 600, r = 60 d. n = 600, r = 300

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25A
ve

ra
ge

 P
ac

ke
t D

el
ay

 (
s)

Packet hold time (s)

Average Packet Delay vs. Packet Hold Time

 500ms
1000ms
1500ms
2000ms

(a)

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25A
ve

ra
ge

 P
ac

ke
t D

el
ay

 (
s)

Packet hold time (s)

Average Packet Delay vs. Packet Hold Time

 500ms
1000ms
1500ms
2000ms

(b)

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25A
ve

ra
ge

 P
ac

ke
t D

el
ay

 (
s)

Packet hold time (s)

Average Packet Delay vs. Packet Hold Time

2000ms
3000ms
4000ms
5000ms

(c)

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25A
ve

ra
ge

 P
ac

ke
t D

el
ay

 (
s)

Packet hold time (s)

Average Packet Delay vs. Packet Hold Time

2000ms
3000ms
4000ms
5000ms

(d)

Fig. 11 Average packet delay varying packet hold time. The X-axis

indicates the packet hold time and the Y-axis indicates the average

time a generated packet reaches the sink. a–d differ in number of

nodes (n) and packet generation rate (r). a n = 200, r = 20.

b n = 200, r = 100. c n = 600, r = 60. d n = 600, r = 300

Wireless Netw (2014) 20:833–846 843

123

the sink. Since multiple packets with different deadlines

can be aggregated into a single packet, the packet hold time

will be decided based on the earliest deadline.

5.2.5 Impact of fast wakeup time

In this simulation, we varied the fast wakeup time from 0.2

to 2 s. Other parameters are the same as the previous

simulation. The results are shown in Fig. 11. Similar to the

previous simulation, we run simulations on four different

environments. For each graph in Fig. 12, the four lines

indicate results when the packet hold time is 0, 10, 20, and

30 s.

When the packet hold time is zero, the fast wakeup time

has almost no effect, since a node only performs fast

wakeup as it waits to acquire the channel and transmit its

packet. When the packet hold time is nonzero, the fast

wakeup time affects the network lifetime. As the fast

wakeup time is shortened (duty-cycle is increased), the

network lifetime is improved. However, if the fast wakeup

time is too short, the lifetime suddenly degrades, especially

when the packet hold time is long. This is due to the rea-

sons previously mentioned. The energy consumption

caused from ACK collisions and frequent wake ups

degrades the network lifetime when the fast wakeup time is

very short. Thus, the fast wakeup time should be set shorter

than the normal wakeups, but not too short. In general,

setting the fast wakeup time to 30–40 % showed a good

performance under various environment.

5.2.6 Impact of wakeup interval

This simulation was conducted to study the impact of duty

cycle on the protocol performance. In this simulation, we

varied the wakeup interval from 500ms to 5000ms. The fast

wakeup time is set to be 25 % of the normal wakeup time.

The packet hold time is 10 s for TREE-HOLD, ORIA-HOP

and ORIA-EDC. The results are shown in Fig. 13. In

general, network lifetime of opportunistic protocols

(OPPO, ORW, ORIA-HOP, and ORIA-EDC) increases as

the wakeup interval becomes larger, but after some point

the network lifetime starts to decrease. When the wakeup

interval is short, energy consumption from frequent wake-

ups and ACK collisions degrade the network lifetime.

When the wakeup interval is long, the long wait time of

senders is the main reason for degradation of network

lifetime. When the wakeup interval is very short, ORIA-

EDC performs worse than ORW. This is because ORIA-

EDC suffers from ACK collisions more than ORW due to

fast wakeup. As the wakeup interval increases (duty cycle

decreases), the network lifetime of ORIA-EDC overtakes

that of ORW. The four graphs show that the optimal

wakeup interval depends on the environment, especially

node density. The optimal wakeup interval is longer when

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

N
et

w
or

k
lif

et
im

e
(d

ay
s)

Fast Wakeup Time (s)

Network Lifetime vs. Fast Wakeup Time

 0 sec
10 sec
20 sec
30 sec

(a)

 0

 100

 200

 300

 400

 500

 600

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

N
et

w
or

k
lif

et
im

e
(d

ay
s)

Fast Wakeup Time (s)

Network Lifetime vs. Fast Wakeup Time

(b)

 0

 200

 400

 600

 800

 1000

 1200

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

N
et

w
or

k
lif

et
im

e
(d

ay
s)

Fast Wakeup Time (s)

Network Lifetime vs. Fast Wakeup Time

(c)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

N
et

w
or

k
lif

et
im

e
(d

ay
s)

Fast Wakeup Time (s)

Network Lifetime vs. Fast Wakeup Time

(d)

 0 sec
10 sec
20 sec
30 sec

 0 sec
10 sec
20 sec
30 sec

 0 sec
10 sec
20 sec
30 sec

Fig. 12 Network lifetime varying fast wakeup time. The X-axis

indicates the fast wakeup time and the Y-axis indicates the time until

the first node runs out of energy. a–d differ in number of nodes

(n) and packet generation rate (r). a n = 200, r = 20. b n = 200,

r = 100. c n = 600, r = 60. d n = 600, r = 300

 0

 100

 200

 300

 400

 500

 600

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

N
et

w
or

k
lif

et
im

e
(d

ay
s)

Wakeup Interval (s)

Network Lifetime vs. Wakeup Interval (s)

TREE
TREE-HOLD

OPPO
ORW

ORIA-HOP
ORIA-EDC

(a)

 0

 100

 200

 300

 400

 500

 600

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

N
et

w
or

k
lif

et
im

e
(d

ay
s)

Wakeup Interval (s)

Network Lifetime vs. Wakeup Interval (s)

TREE
TREE-HOLD

OPPO
ORW

ORIA-HOP
ORIA-EDC

(b)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

N
et

w
or

k
lif

et
im

e
(d

ay
s)

Wakeup Interval (s)

Network Lifetime vs. Wakeup Interval (s)

TREE
TREE-HOLD

OPPO
ORW

ORIA-HOP
ORIA-EDC

(c)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

N
et

w
or

k
lif

et
im

e
(d

ay
s)

Wakeup Interval (s)

Network Lifetime vs. Wakeup Interval (s)

TREE
TREE-HOLD

OPPO
ORW

ORIA-HOP
ORIA-EDC

(d)

Fig. 13 Network lifetime varying wakeup interval. The X-axis

indicates the wakeup interval and the Y-axis indicates the time until

the first node runs out of energy. a–d differ in number of nodes

(n) and packet generation rate (r). a n = 200, r = 20. b n = 200,

r = 100. c n = 600, r = 60. d n = 600, r = 300

844 Wireless Netw (2014) 20:833–846

123

the network density if higher, because the loss from ACK

collision is more severe than the loss from long wait time

of senders. This trade-off invites the normal wakeup time

to the set of parameters that need optimization, along with

packet hold time and fast wakeup time.

6 Conclusion

In this paper we propose an opportunistic routing protocol

for data aggregation in wireless sensor networks that works

on top of a duty-cycled MAC such as BoX-MAC. The

design goal of the proposed protocol ORIA is to increase

the chance of in-network aggregation in order to reduce

energy consumption and extend network lifetime. A node

who possesses a packet to be forwarded waits for other

packets to arrive before sending out the packet, and at the

same time increases its wakeup rate temporarily so that the

possibility of receiving packets from other node becomes

higher. In order to avoid negative effects of multiple node

reception and ACK collision, the sender sends a CON-

FIRM packet to the receiver after receiving ACK, thus

allowing only a single node to forward its packet. The

simulation results confirm that ORIA achieves significantly

longer network lifetime compared to a general opportu-

nistic routing protocol and a tree-based protocol, when the

traffic load is not too low in the network. This protocol can

be used in practice for applications that do not require real-

time data collection. For applications with delay require-

ments, the packet hold time can be controlled in order to

minimize energy consumption while meeting the delay

requirement. In the future work, we plan to optimize

parameters such as packet hold time and fast wakeup rate,

based on factors such as number of neighbors, traffic load,

link conditions, and residual energy.

Acknowledgments This research was supported by Hallym Uni-

versity Research Fund HRF-2013-015.

References

1. Chipcon, A. S. (2004). Chipcon AS SmartRF CC2420 Pre-

liminary Datasheet (rev 1.2).

2. Biswas, S., & Morris, R. (2005). Exor: Opportunistic multi-hop

routing for wireless networks. In Proceedings of ACM SIG-

COMM, pp. 133–144.

3. Landsiedel, O., Ghadimi, E., Duquennoy, S., Johansson, M.

(2012). Low power, low delay: Opportunistic routing meets duty

cycling. In Proceedings of IPSN, pp. 185–196.

4. Krishnamachari, B., Estrin, D., Wicker, S. (2002). Modelling

data-centric routing in wireless sensor networks. In Proceedings

of IEEE INFOCOM.

5. Bachir, A., Dohler, M., Watteyne, T., Leung, K. (2010). MAC

essentials for wireless sensor networks. IEEE Communications

Surveys & Tutorials, 12(2), 222–248.

6. Akyildiz, I.F., Melodia, T., & Chowdhury, K.R. (2007). A survey

on wireless multimedia sensor networks. Elsevier Computer

Networks, 51, 921–960.

7. Ergen, S. C., & Varaiya, P. (2007). Energy efficient routing with

delay guarantee for sensor networks. Springer Wireless Networks,

13(5), 679–690.

8. Gnawali, O., Fonseca, R., Jamieson, K., Moss, D., Levis, P.

(2009). Collection tree protocol. In Proceedings of the ACM

international conference on embedded networked sensor systems,

pp. 1–14.

9. Ye, W., Heidemann, J., Estrin, D. (2002). An energy efficient

MAC protocol for wireless sensor networks. In Proceedings of

IEEE INFOCOM, pp. 1567–1576.

10. van Dam, T., & Langendoen, K. (2003). An adaptive energy-

efficient MAC protocol for wireless sensor networks. In Pro-

ceedings of ACM Sensys, pp. 171–180.

11. Lin, P., Qiao, C., Wang, X. (2004). Medium access control with a

dynamic duty cycle for sensor networks. In Proceedings of

WCNC, pp. 1534–1539.

12. Ye, W., Heidemann, J., Estrin, D. (2004). Medium access control

with coordinated, adaptive sleeping for wireless sensor networks.

IEEE Transactions on Networking, 12(3), 493–506.

13. Merlin, C. J., & Heinzelman, W. B. (2010). Duty cycle control

for low-power-listening MAC protocols. IEEE Transactions on

Mobile Computing, 9(11), 1508–1521.

14. Sun, Y., Du, S., Gurewitz, O., & Johnson, D. B. (2008). DW-

MAC: a low latency, energy efficient demand-wakeup MAC

protocol for wireless sensor networks. In Proceedings of ACM

MobiHoc, pp. 53–62.

15. Zhao, Y. Z., Ma, M., Miao, C. Y., Nguyen, T. N. (2010). An

energy-efficient and low-latency MAC protocol with adaptive

scheduling for multi-hop wireless sensor networks. Computer

Communications, 33(12), 1452–1461.

16. Zhao, Y. Z., Miao, C. Y., Ma, M. (2012). An energy-efficient

self-adaptive duty cycle mac protocol for traffic-dynamic wireless

sensor networks. Wireless Personal Communications, 68(4),

1287–1315.

17. Polastre, J., Hill, J., Culler, D. (2004). Versatile low power media

access for wireless sensor networks. In Proceedings of ACM

Sensys, pp. 95–107.

18. Buettner, M., Yee, G., Anderson, E., Han, R. (2006). X-MAC: A

short preamble mac protocol for duty-cycled wireless sensor

networks. In Proceedings of ACM Sensys, pp. 307–320.

19. Moss, D., & Levis, P. (2008). BoX-MACs: Exploiting physical

and link layer boundaries in low-power networking. Stanford

University, technical report 08-00.

20. Miller, M., & Vaidya, N. (2005). A MAC protocol to reduce

sensor network energy consumption using a wakeup radio. IEEE

Transactions on Mobile Computing, 4(3), 228–242.

21. Bachir, A., Barthel, D., Heusse, M., Duda, A. (2006). Micro-

frame preamble MAC for multi-hop wireless sensor networks. In

Proceedings of IEEE ICC, Istanbul, pp. 3365–3370.

22. Park, T., Park, K., Lee, M. J. (2009). Design and analysis of

asynchronous wakeup for wireless sensor networks. IEEE

Transactions on Wireless Communications, 8(11), 5530–5541.

23. Aonishi, T., Matsuda, T., Mikami, S., Kawaguchi, H., Ohta, C.,

Yoshimoto, M. (2006). Impact of aggregation efficiency on GIT

routing for wireless sensor networks. In Proceedings of IEEE

international conference on parallel processing workshops,

pp. 151–158.

24. Mottola, L., & Picco, G. (2010). Muster: Adaptive energy-aware

multi-sink routing in wireless sensor networks. IEEE Transac-

tions on Mobile Computing, 10(12), 1694–1709.

25. Zorzi M., & Rao, R. (2003). Geographic random forwarding

(GeRaF) for ad hoc and sensor networks: Multi-hop performance.

IEEE Transactions on mobile computing, pp. 337–348.

Wireless Netw (2014) 20:833–846 845

123

26. Gu Y., & He T. (2007). Data forwarding in extremely low duty-

cycle sensor networks with unreliable links. In Proceedings of

ACM Sensys, pp. 321–334.

27. Liu, C. & Cao, G. (2010). Distributed monitoring and aggregation

in wireless sensor networks. In Proceedings of IEEE INFOCOM,

pp. 1–9.

28. Villas, L., Boukerche, A., Ramos, H., de Oliveira, H., de Araujo,

R., Loureiro, A. (2013). DRINA: A lightweight and reliable

routing approach for in-network aggregation in wireless sensor

networks. IEEE Transactions on Computers, 62(4), 676–689.

29. Aitsaadi, N., Blaszczyszyn, B., Muhlethaler, P. (2012). Perfor-

mance of opportunistic routing in low duty-cycle wireless sensor

networks. In Proceedings of IFIP wireless days, pp. 1–3.

30. Jurdak, R., Ruzzelli, A., O’Hare, G. (2008). Adaptive radio

modes in sensor networks: How deep to sleep? In Proceedings of

IEEE SECON, pp. 386–394.

Author Biographies

Jungmin So received the B.S.

degree in computer engineering

from Seoul National University

in 2001, and Ph.D. degree in

Computer Science from Uni-

versity of Illinois at Urbana-

Champaign in 2006. He is cur-

rently an assistant professor in

Department of Computer Engi-

neering, Hallym University. His

research interests include wire-

less networking and mobile

computing.

Heejung Byun received the B.S

degree from Soongsil Univer-

sity, Korea, in 1999, the M.S.

degree from Korea Advanced

Institute of Science and Tech-

nology (KAIST), Korea, in

2001, and the Ph.D. degree from

KAIST in 2005. She was a

senior researcher in Samsung

Electronics, Ltd. from 2007 to

2010. She is currently a profes-

sor with the Department of

Information and Telecommuni-

cations Engineering, Suwon

University, Korea. Her research

interests include network protocol, network modeling, controller

design, and performance analysis.

846 Wireless Netw (2014) 20:833–846

123

	Opportunistic routing with in-network aggregation for asynchronous duty-cycled wireless sensor networks
	Abstract
	Introduction
	Related work
	Preliminaries
	Asynchronous duty-cycled MAC protocols
	Opportunistic routing protocols
	Network model and motivation

	The proposed protocol: ORIA
	Initial operation and updates
	Packet generation and forwarding
	Dealing with multiple node reception

	Performance evaluation
	Simulation setup
	Results
	Impact of node density
	Impact of traffic load
	Impact of number of sources
	Impact of packet hold time
	Impact of fast wakeup time
	Impact of wakeup interval

	Conclusion
	Acknowledgments
	References

