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Abstract Deployment of a wireless sensor network is a

challenging problem, especially when the environment of

the network does not allow either of the random deploy-

ment or the exact placement of sensor nodes. If sensor

nodes are mobile, then one approach to overcome this

problem is to first deploy sensor nodes randomly in some

initial region within the area of the network, and then let

the sensor nodes to move around and cooperatively and

gradually increase the covered section of the area.

Recently, a cellular learning automata-based deployment

strategy, called CLA-DS, is introduced in literature which

follows this approach and is robust against inaccuracies

which may occur in the measurements of sensor positions

or in the movements of sensor nodes. Despite its advan-

tages, this deployment strategy covers every point within

the area of the network with only one sensor node, which is

not enough for applications with k-coverage requirement.

In this paper, we extend CLA-DS so that it can address the

k-coverage requirement. This extension, referred to as

CLA-EDS, is also able to address k-coverage requirement

with different values of k in different regions of the net-

work area. Experimental results have shown that the pro-

posed deployment strategy, in addition to the advantages it

inherits from CLA-DS, outperforms existing algorithms

such as DSSA, IDCA, and DSLE in covering the network

area, especially when required degree of coverage differs in

different regions of the network.

Keywords Mobile sensor network � Cellular learning

automata � Self-regulated deployment � k-Coverage

1 Introduction

The very first step in constructing a wireless sensor net-

work is to deploy sensor nodes throughout the targeted

environment [1]. The main objective of the sensor

deployment is to achieve desirable coverage of the network

area. Sensor deployment strategies can be classified into

the following four categories [2, 3]:

• Predetermined: This strategy is useful only if the

network environment is completely known [2, 4–8].

• Randomly undetermined: In this strategy, sensor nodes are

spread uniformly throughout the network area [3, 9–13].

• Biased distribution: In some contexts, the uniform

deployment of sensor nodes may not always satisfy the

design requirements and biased deployment can then be

a viable option [14].

• Self-regulated: In this strategy which is useful only in

mobile sensor networks, sensor nodes are deployed

randomly in some initial region within the area of the

network. After this initial placement, sensor nodes

move around and cooperatively and gradually find their

best positions within the area of the network [15–28].

In some contexts, neither predetermined nor random

deployment of sensor nodes is feasible. This can be due to

inaccessibility or hazardousness of the environment, cost-

inefficiency of the random scattering of sensor nodes,
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uncertainty about the resultant coverage, etc. Self-regulated

deployment strategies on the other hand are well suited to

such situations.

Recently, a cellular learning automata-based self-regu-

lated deployment strategy, called CLA-DS, has been

introduced [29], which is robust against inaccuracies which

may occur in the measurements of sensor positions or

in the movements of the sensor nodes. The novelty of this

strategy is that it works without any sensor to know its

position or its relative distance to other sensors. Despite its

advantages, CLA-DS covers every point within the area of

the network with only one sensor node, which is not

enough for applications with k-coverage requirement such

as intrusion detection [30, 31], data gathering [32, 33], and

object tracking [34]. In such applications, it is required for

every point within the area of the network to be covered by

at least k different sensor nodes. k is referred to as the

degree of coverage. To make CLA-DS capable of

addressing the k-coverage requirement, in this paper we

propose an extension to this deployment strategy, called

CLA-EDS, which is able to provide the k-coverage of the

entire area of the network. The key novelties and differ-

ences of this extended algorithm versus its basic algorithm,

CLA-DS, are as follows:

• CLA-EDS algorithm is capable of providing k-cover-

age of the entire area of the network.

• This extended algorithm is also able to address

k-coverage requirement with different values of k in

different regions of the network area.

• Unlike CLA-DS which is only capable of deploying

sensor nodes uniformly throughout the area of the

network, CLA-EDS algorithm is able to deploy sensor

nodes either uniformly or non-uniformly.

• If the value of k in the environment of the network

changes from time to time, CLA-EDS algorithm is

capable of adapting itself to such changes and provid-

ing the requested degree of coverage at any time.

Like CLA-DS, in CLA-EDS neighboring nodes apply

forces to each other. Then, each node moves according to

the resultant force vector applied to it from its neighbors.

Each node is equipped with a learning automaton. The

Learning automaton of a node at any given time decides for

the node whether to apply force to its neighbors or not.

This way, each node in cooperation with its neighboring

nodes gradually learns its best position within the area of

the network so as to fulfill the required degree of the

coverage. The learning model used in CLA-DS is enhanced

in CLA-EDS so that CLA-EDS is able to provide different

degrees of coverage in different regions of the network.

To study the performance of the proposed deployment

strategy, several experiments have been conducted and the

results obtained from CLA-EDS are compared with the

results obtained from existing self-regulated deployment

strategies, capable of providing k-coverage, such as DSSA,

IDCA, and DSLE. Experimental results show that, in terms of

the network coverage, the proposed CLA-EDS strategy, like

CLA-DS deployment strategy, can compete with the existing

deployment strategies in noise-free environments, and out-

performs existing deployment strategies in noisy environ-

ments, where utilized location estimation techniques such as

GPS-based devices and localization algorithms experience

inaccuracies in their measurements, or the movements of

sensor nodes are noisy. Results of the experiments also show

that when the required degree of coverage differs in different

regions of the network, CLA-EDS deployment strategy sig-

nificantly outperforms DSSA, IDCA, DSLE, and CLA-DS

algorithms with respect to the network coverage.

The rest of this paper is organized as follows. Section 2,

gives a brief literature overview on the self-regulated

deployment strategies and k-coverage providing algorithms

in wireless sensor networks. Cellular learning automata

will be discussed in Sect. 3. The problem statement is given

in Sect. 4. In Sect. 5 the proposed deployment strategy is

presented. Simulation results are given in Sect. 6. Section 7

is the conclusion.

2 Related work

In the following two subsections, we give a brief literature

overview on the self-regulated deployment strategies and

k-coverage providing algorithms in wireless sensor net-

works, respectively.

2.1 Self-regulated deployment strategies

Wang et al. in [35] groups the existing self-regulated

deployment strategies for mobile sensor networks into the

following three categories: coverage pattern based move-

ment, virtual force based movement, and grid quorum

based movement. Strategies in the coverage pattern based

movement group [21, 36, 37] try to relocate mobile nodes

based on a predefined coverage pattern. The most com-

monly used coverage pattern is the regular hexagon with

the sensing range Rs as its side length. In [21], initially one

node is selected as a seed. Seed node computes six loca-

tions surrounding itself so as to form a regular hexagon and

greedily selects its nearest neighbors to each of the selected

locations. Selected neighbors then move to the selected

locations and become new seeds. Another hexagonal cov-

erage pattern is given in [36] which can completely cover

the sensor field. According to this coverage pattern, final

locations of mobile nodes are specified. Sensor movement

problem then converted into a maximum-weight maxi-

mum-matching problem and centrally be solved. This
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approach is extended in [37] to provide k-coverage of the

environment.

In the group of virtual force based node movement strat-

egies [15–20], sensor nodes apply some sort of virtual forces

to their neighboring nodes. Resultant force vector, applied to

each sensor node from its neighboring nodes, specifies the

direction and distance that the node should move to. In [15], a

distributed potential-field-based approach is presented in

which each node is repelled by other neighboring nodes. In

addition to the repulsive forces, nodes are also subject to a

viscous friction force. This force is used to ensure that the

network will eventually reach static equilibrium; i.e., to

ensure that all nodes will ultimately come to a complete stop.

In [16, 18], a node may apply attractive or repulsive forces to

its neighboring nodes according to its distance with them.

Nearby neighbors are repelled and far away ones are attrac-

ted. In order to reduce the movement of sensor nodes, the

algorithm is virtually executed on cluster heads and then,

sensor nodes move directly to the locations specified for them

by the result of the algorithm. Like the deployment strategy

given in [15], the deployment strategy proposed in [17] is

also based on virtual potential fields, but it considers the

constraint that in the deployed network, each of the nodes has

at least K neighbors. Heo and Varshney in [19] proposed two

different distributed deployment strategies called DSSA,

IDCA. DSSA uses virtual repulsive forces between neigh-

boring nodes. IDCA modifies DSSA by filtering out nodes,

for which local density is very near to the desired density,

from moving. Wang et al. in [20] give two sets of distributed

protocols for controlling the movement of sensors, one

favoring communication and one favoring movement. In

each set of protocols, Voronoi diagrams are used to detect

coverage holes.

In the group of grid quorum based movement strategies

[22–28], the area of the network is divided into a number of

grid cells and each mobile sensor node must find a suitable

cell as its final location and move to that cell.

2.2 k-Coverage providing algorithms

Notwithstanding the centralized approaches [38–43] in

providing k-coverage in wireless sensor networks, most of

the researches in this area are based on some sort of sleep/

wake scheduling of sensor nodes [44–55]. Slijepcevic et al.

in [44] introduced the ‘‘set k-cover’’ problem, which is to

organize mutually exclusive sensor nodes into a number of

covers or sets each of which can fully cover the network

area. The goal in this problem is to maximize the number of

covers. They first proved that this problem is NP complete

and then proposed a heuristic algorithm with time com-

plexity O(N2) for solving it. Makhoul et al. in [45] gave a

fully distributed algorithm for providing k (not necessarily

disjoint) cover sets for monitoring the entire area of a video

wireless sensor network. In [46], a greedy centralized

algorithm is given for constructing as many disjoint k-cover

sets as possible from the set of deployed sensor nodes. This

greedy algorithm makes use of the results reported in [47]

to check if a set of sensor nodes k-cover the entire area. [48]

provides a sufficiently and necessary rule which determines

whether a node is eligible to sleep (is a redundant node) for

the purpose of k-coverage or not. Using this rule, they

propose an algorithm called CCP to schedule the work state

of eligible nodes. [49] Proposes CGS algorithm, which

makes use of the notion of bipartite graphs for selecting a

subset of sensor nodes as active nodes so that every region

of the network area is covered by at least k active sensor

node. Performance of the CGS algorithm is analyzed in

[50]. [51] Proposes two greedy algorithms (one centralized

and one distributed) for selecting a subset of sensors from

the set of deployed sensors so that the selected subset

k-cover the entire area of the network. In [52], authors gave

a polynomial time, distributed scheduling algorithm for

maximizing the lifetime of the network. Lifetime is defined

as the time from the network startup until the time at which

the set of all sensors with non-zero remaining energy does

not provide k–coverage of the entire area. In [53] authors

derived, under the ideal case in which node density is suf-

ficiently high, a set of optimality conditions under which a

subset of active sensor nodes can be chosen for complete

coverage. Based on the optimality conditions, they then

devised a distributed algorithm, called OGDC, which can

maintain coverage as well as connectivity. They also dis-

cuss how their algorithm can be extended to ensure

k-coverage. Huang et al. in [54] proposed a decentralized

algorithm that schedules sensors’ active and sleeping peri-

ods to prolong the network lifetime while maintain the

sensing field sufficiently covered. Fusco and Gupta in [55]

defined a d-sensor as a sensor associated with multiple

sensing regions, out of which only one is active, depending

on the orientation assigned to the sensor. The problem

considered is as follows: Given a set of d-sensors with fixed

positions and a set of target points, select the minimum

number of d-sensors and their assigned orientations, such

that each target point is covered by at least k of the selected

d-sensors. Authors designed a distributed greedy algorithm

that k-covers at least half of the target points.

Another approach in providing k-coverage in wireless

sensor networks is to use the concept of e-net sets [56–58].

[56, 57] Use the concept of e-net sets to give an efficient

approximation algorithm for k-coverage problem which

achieves a solution of the size within a logarithmic factor

of the optimal. Authors proved that their algorithm is

correct and analyzed its complexity. A fully distributed

version of their algorithm is also presented. In [58], authors

claimed that the results reported in [56, 57] is fundamen-

tally flawed. Therefore, they tried to give a correct
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extension of the e-net technique for k-coverage problem.

Their algorithm gives a O(log(M))-approximation, where

M is the number of sensors in an optimal solution. A fully

distributed version of their algorithm is also presented.

Some other algorithms are also given in the literature for

providing k-coverage. Ammari et al. [59, 60] analyzed the

k-coverage problem in 3D wireless sensor networks and

showed that the extension of the analysis in 2D space to 3D

space is not straightforward due to the inherent character-

istics of the Reuleaux tetrahedron. Therefore they proposed

a new model that guarantees k-coverage for a 3D field. A

distributed k-coverage protocol for 3D wireless sensor

networks is also presented. In [61], authors claimed that

k-coverage of the area can be obtained by first covering the

entire area using a hexagonal grid pattern and then

increasing the density of the network by decreasing the

diameters of the hexagons gradually until the desired

coverage level is obtained. In [62], authors proposed a

mobility resilient coverage control mechanism to assure

k-coverage in the presence of mobility. In [63], authors

introduced a different version of k-coverage problem in

which, by assuming that a number of sensor nodes are

initially deployed within the network area, the goal is to

add additional M sensor nodes so that all points within the

network area are k-covered. They propose a heuristic

approach based on a dynamic model resembling gas bub-

bles to solve this problem. Sh. Tang et al. in [64] intro-

duced the problem of k-support coverage path in which,

given a pair of points (S, D), it is required to find a path

between S and D which is covered by at least k sensor

nodes. They proposed an optimal polynomial time algo-

rithm for this problem and proved that the time complexity

of the proposed algorithm is O(k2n2). In [65], a new con-

cept of coverage called k-barrier coverage that is appro-

priate for intrusion detection applications is proposed. A

sensor network provides k-barrier coverage if it guarantees

that every penetrating object is detected by at least k sen-

sors before crossing the barrier of the sensors. Ssu et al. in

[66] by proposing a distributed algorithm for k-barrier

coverage, argued that using directional antenna instead of

omni-directional antenna in this problem results in fewer

number of active nodes and more robust ability in con-

structing k-barrier coverage.

In [67] a generalized technique to extend any 1-coverage

technique to a k-coverage technique is proposed. The

general concept of this technique involves separating all

sensors into k mutually exclusive groups. Each group uses

1-coverage algorithm to optimize its sensing range or

chooses its sleep/wakeup schedule. Then, by layering the

k groups, k-coverage can be achieved.

A number of theoretical studies are also given in the

literature of the k-coverage problem [32, 47, 68–74].

Few attempts have been made to provide k-coverage

during the deployment of the sensor network. Bai et al. in

[75] proposed a centralized PSO-based algorithm which

attempts to deploy a number of mobile sensor nodes

throughout the network area so that the k-coverage

requirement is satisfied. Li and Kao [76] proposed a dis-

tributed deployment strategy which aims at providing

k-coverage of the network area. They first derived the

minimum number of sensor nodes required to achieve

k-coverage by modeling the sensing field using Voronoi

diagrams. Using the results of this study, each sensor node

is capable of locally determining the location it should

move towards to ensure k-coverage. The proposed algo-

rithm, called DSLE, makes use of this capability of sensor

nodes to ensure k-coverage over the entire network area.

3 Heterogeneous dynamic irregular CLA (HDICLA)

In this section we briefly review learning automaton (LA),

cellular learning automaton (CLA), irregular CLA (ICLA),

dynamic irregular CLA (DICLA), and then introduce het-

erogeneous dynamic irregular CLA (HDICLA).

3.1 Learning automata

Learning Automaton (LA) is an adaptive decision-making

device that operates on an unknown random environment.

A learning Automaton has a finite set of actions to choose

from and at each stage, its choice (action) depends upon its

action probability vector. For each action chosen by the

automaton, the environment gives a reinforcement signal

with fixed unknown probability distribution. The automa-

ton then updates its action probability vector depending

upon the reinforcement signal at that stage, and evolves to

some final desired behavior. A class of learning automata is

called variable structure learning automata and are repre-

sented by quadruple {a, b, p, T} in which a = {a1, a2, …,

ar} represents the action set of the automata, b = {b1,

b2, …, br} represents the input set, p = {p1, p2, …, pr}

represents the action probability set, and finally

p(n ? 1) = T[a(n), b(n), p(n)] represents the learning

algorithm. Let ai be the action chosen at time n, then the

recurrence equation for updating p is defined as

piðnþ 1Þ ¼ piðnÞ þ a:ð1� piðnÞÞ
pjðnþ 1Þ ¼ pjðnÞ � a:pjðnÞ 8j j 6¼ i

ð1Þ

for favorable responses, and

piðnþ 1Þ ¼ ð1� bÞ:piðnÞ

pjðnþ 1Þ ¼ b

r � 1
þ ð1� bÞpjðnÞ 8j j 6¼ i

ð2Þ
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for unfavorable ones. In these equations, a and b are reward

and penalty parameters respectively. For more information

about learning automata the reader may refer to [77–79].

3.2 Cellular learning automata

Cellular learning automaton (CLA), which is a combination

of cellular automaton (CA) [80] and learning automaton

(LA), is a powerful mathematical model for many decen-

tralized problems and phenomena. The basic idea of the

CLA is to utilize learning automata to adjust the state

transition of CA. A CLA is a CA in which a learning

automaton is assigned to every cell. The learning autom-

aton residing in a particular cell determines its action

(state) on the basis of its action probability vector. Like CA,

there is a rule that the CLA operates under. The local rule of

the CLA and the actions selected by the neighboring LAs of

any particular LA determine the reinforcement signal to the

LA residing in a cell. The neighboring LAs of any particular

LA constitute the local environment of that cell. The local

environment of a cell is non-stationary because the action

probability vectors of the neighboring LAs vary during

evolution of the CLA. A CLA is called synchronous if all

LAs are activated at the same time in parallel. CLA has

found many applications such as image processing [81],

rumor diffusion [82], channel assignment in cellular net-

works [83] and VLSI placement [84], to mention a few.

For more information about CLA the reader may refer to

[85–88].

3.3 Irregular CLA

An Irregular cellular learning automaton (ICLA) is a cel-

lular learning automaton (CLA) in which the restriction

of the rectangular grid structure in traditional CLA is

removed. This generalization is expected because there are

applications such as wireless sensor networks, immune

network systems, graph related applications, etc. that can-

not be adequately modeled with rectangular grids. An ICLA

is defined as an undirected graph in which, each vertex

represents a cell which is equipped with a learning

automaton. Despite its irregular structure, ICLA operation

is equivalent to that of CLA. ICLA has found a number

of applications in wireless ad hoc and sensor networks

[89–91].

3.4 Dynamic irregular CLA

Dynamic irregular cellular learning automaton (DICLA)

has been recently introduced in [29]. DICLA is an ICLA

with dynamic structure. In other words, in DICLA the

adjacency matrix of the underlying graph of the ICLA can

be changed over time. This dynamicity is required in many

applications such as mobile ad hoc and sensor networks,

web mining, grid computing, etc.

3.5 Heterogeneous dynamic irregular CLA

We define Heterogeneous DICLA (HDICLA) as an undi-

rected graph in which, each vertex represents a cell and a

learning automaton is assigned to every cell (vertex). A

finite set of interests and a finite set of attributes are defined

for the HDICLA. In HDICLA, the state of each cell consists

of the following three parts:

• Selected action: The action selected by the learning

automaton residing in the cell.

• Tendency vector: Tendency vector of the cell is a vector

whose jth element shows the degree of tendency of the

cell to the jth interest.

• Attribute vector: Attribute vector of the cell is a vector

whose jth element shows the value of the jth attribute

within the cell’s locality.

Two cells are neighbors in HDICLA if the distance

between their tendency vectors is smaller than or equal to

the neighborhood radius.

Like CLA, there is a local rule that HDICLA operates

under. The rule of HDICLA, the actions selected by the

neighboring learning automata of any particular learning

automaton LAi, and the attribute vector of the cell in

which LAi resides (ci) determine the followings: 1. The

reinforcement signal to the learning automaton LAi and 2.

The restructuring signal to the cell ci, which is used to

update the tendency vector of the cell. Figure 1 gives a

schematic of HDICLA. An HDICLA is formally defined

below.

Definition 1 A heterogeneous dynamic irregular cellular

learning automaton (HDICLA) is a structure A ¼
ðG\E;V [ ;W;K;A;U\a; w; k[ ; s;F;ZÞ where

1. G is an undirected graph, with V as the set of vertices

and E as the set of edges. Each vertex represents a cell

in HDICLA.

2. W is a finite set of interests. Cardinality of W is

denoted by jWj.
3. K is a finite set of attributes. Cardinality of K is

denoted by jKj.
4. A is the set of learning automata each of which is

assigned to one cell of the HDICLA.

5. U a;w; k
D E

is the cell state. State of a cell ci (Ui)

consists of the following three parts:

5-1 ai which is the action selected by the learning

automaton of that cell.
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5-2 A vector w
i
¼ ðwi1; . . .;wi Wj jÞ

T
which is called

tendency vector of the cell. Each element wik [
[0, 1] in the tendency vector of the cell ci shows

the degree of tendency of ci to the interest

wik [ W.

5-3 A vector ki ¼ ðki1; . . .; ki Kj jÞT which is called

attribute vector of the cell. Each element

kik 2 Rin the attribute vector of the cell ci shows

the value of the attribute kk [ K in the locality of

the cell ci.

6. s is the neighborhood radius. Two cells ci and cj of the

HDICLA are neighbors if w
i
� w

j

���
���� s. In other

words, two cells of the HDICLA are neighbors if the

distance between their tendency vectors is smaller than

or equal to s.

7. F : Ui ! b; 0; 1½ � Wj j
D E

is the local rule of HDICLA in

each cell ci, where Ui ¼ Uj w
i
� w

j

���
���� s

���
n o

þ fUig
is the set of states of all neighbors of ci, b is the set of

values that the reinforcement signal can take, and

0; 1½ � Wj jis a Wj j-dimensional unit hypercube. From the

current states of the neighboring cells of each cell ci,

local rule performs the followings: 1. Gives the

reinforcement signal to the learning automaton LAi

resides in ci and 2. Produces a restructuring signal

(f
i
¼ ðfi1; . . .; fi Wj jÞT ) which is used to change the

tendency vector of ci. Each element fij of the

restructuring signal is a scalar value within the close

interval [0, 1].

8. Z : ½0; 1� Wj j � ½0; 1� Wj j ! ½0; 1� Wj j is the restructuring

function which modifies the tendency vector of a cell

using the restructuring signal produced by the local

rule of the cell.

In what follows, we consider HDICLA with N cells. The

learning automaton LAi which has a finite action set ai is

associated to cell ci (for i = 1, 2, …, N) of HDICLA. Let

the cardinality of ai be mi. The state of the HDICLA is

represented by the triple p;w; k
D E

, where

• p ¼ ðp
1
; . . .; p

N
ÞT , where p

i
¼ pi1; pi2; . . .; pimi
ð ÞT is the

action probability vector of LAi.

• w ¼ ðw
1
; . . .;w

N
ÞT , where wi is the tendency vector of

the cell ci.

• k ¼ ðk1; . . .; kNÞT , where ki is the attribute vector of the

cell ci.

The operation of the HDICLA takes place as the fol-

lowing iterations. At iteration n, each learning automaton

chooses an action. Let ai 2 ai be the action chosen by LAi.

Then, each learning automaton receives a reinforcement

signal. Let bi 2 b be the reinforcement signal received by

LAi. This reinforcement signal is produced by the appli-

cation of the local rule FðUiÞ ! b; 0; 1½ � Wj j
D E

. Each LA

updates its action probability vector on the basis of the

supplied reinforcement signal and the action chosen by the

cell. Next, each cell ci updates its tendency vector using

the restructuring function Z (Eq. (3)).

w
i
ðnþ 1Þ ¼ Z w

i
nð Þ; f

i
ðnÞ

� �
: ð3Þ

After the application of the restructuring function, the

attribute vector of the cell ci may change due to the

modifications made to its local environment.

An HDICLA is called asynchronous if at a given time

only some cells are activated independently from each

other, rather than all together in parallel. The cells may be

activated in either time-driven or step-driven manner. In

time-driven asynchronous HDICLA, each cell is assumed

to have an internal clock which wakes up the LA associated

to that cell while in step-driven asynchronous HDICLA a

cell is selected in fixed or random sequence.

3.5.1 HDICLA norms of behavior

Behavior of the HDICLA within its environment can be

studied from two different aspects; the operation of the

HDICLA in the environment, which is a macroscopic view

of the actions performed by its constituting learning auto-

mata, and the restructurings of HDICLA, which is the result

of the application of the restructuring function. To study

the operation of the HDICLA in the environment we use

entropy and degree of expediency and to study the

τ

LAj

LAi

LAk LAl

iΦ
Local 
Rule,

i
β ζ

HDICLA

Restructuring 
Function (    )

, , jj j
α ψ λ

Neighborhood 
Radius (  )Ζ

jΦ

, , ii i
α ψ λ

, , kk k
α ψ λ , , ll l

α ψ λ

iΦ

iΦ

lΦ

kΦ

Fig. 1 Heterogeneous dynamic irregular cellular learning automaton

(HDICLA)
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restructurings of the HDICLA we use restructuring

tendency.

3.5.1.1 Entropy Entropy, as introduced in the context of

information theory by Shannon [92], is a measure of

uncertainty associated with a random variable and is

defined according to Eq. (4),

HðXÞ ¼ �
X
X2v

PðXÞ � lnðPðXÞÞ; ð4Þ

where X represents a random variable with set of values v
and probability mass function P(X). Considering the action

chosen by a learning automaton LAi as a random variable,

the concept of entropy can be used to measure the

uncertainty associated with this random variable at any

given time instant n according to Eq. (5),

HiðnÞ ¼ �
Xmi

j¼1

pijðnÞ � lnðpijðnÞÞ; ð5Þ

where mi is the cardinality of the action set of the learning

automaton LAi. In the learning process, Hi(n) represents the

uncertainty associated with the decision of LAi at time

instant n. Larger values of Hi(n) mean more uncertainty in

the decision of the learning automaton LAi. Hi can only

represent the uncertainty associated with the operation of a

single learning automaton, but as the operation of the

HDICLA in the environment is a macroscopic view of the

operations of all of its constituting learning automata, we

extend the concept of entropy through Eq. (6) in order to

provide a metric for evaluating the uncertainty associated

with the operation of a HDICLA.

HðnÞ ¼
XN

i¼1

HiðnÞ: ð6Þ

In the above equation, N is the number of learning auto-

mata in the HDICLA. The value of zero for H(n) means

pijðnÞ 2 f0; 1g; 8i; j. This means that no learning

automaton in the HDICLA changes its selected action over

time, or in other words, the behavior of the HDICLA

remains unchanged over time. Higher values of H(n) mean

higher rates of changes in the behavior of the HDICLA.

3.5.1.2 Degree of expediency To introduce the ‘‘degree

of expediency’’ measure, we have to first define the concept

of expediency for the HDICLA.

Definition 2 The total average penalty received by an

HDICLA at state p;w; k
D E

is the sum of the average pen-

alties received by all of its learning automata, that is,

DðpÞ ¼
X

i

DiðpÞ; ð7Þ

where DiðpÞ is the average penalty received by the learning

automaton LAi.

Definition 3 A pure-chance automaton is an automaton

that chooses each of its actions with equal probability i.e.,

by pure chance.

Definition 4 A pure-chance HDICLA is an HDICLA in

which, every cell contains a pure-chance automaton instead

of a learning automaton. The state of a pure-chance HDI-

CLA is denoted by p0;w; k
D E

.

Definition 5 An HDICLA is said to be expedient if

lim
n!1

E DðpðnÞÞ
h i

\Dðp0Þ: ð8Þ

In other words, an HDICLA is expedient if it performs

better than a pure-chance HDICLA.

Degree of expediency (Md), defined according to Eq.

(9), is a measure for comparing the average penalty

received by an HDICLA with the average penalty received

by a pure-chance HDICLA. Md \ 0 indicates that the

HDICLA performs worse than a pure-chance HDICLA,

Md = 0 indicates that the HDICLA is pure-chance, and

Md [ 0 indicates that the HDICLA is expedient (performs

better than a pure-chance HDICLA). Higher value of Md

means that the HDICLA is more expedient. Md attains its

maximum value (Md = 1) if the HDICLA receives no

penalty (DðpðnÞÞ ¼ 0).

Md ¼ 1�
lim

k!1
E D p kð Þ

� �h i

D p0
� �

0
B@

1
CA: ð9Þ

3.5.1.3 Restructuring tendency Restructuring tendency

(t), as defined by Eq. (10), is used to measure the

dynamicity of the structure of the HDICLA.

tðnÞ ¼
XN

i¼1

fiðnÞj j: ð10Þ

The value of zero for t(n) means that the tendency vector

of no cell of the HDICLA during the nth iteration has

changed which means that no changes has occurred in the

structure of the HDICLA during the nth iteration. Higher

values of t(n) mean higher changes in the structure of the

HDICLA during the nth iteration.

4 Problem statement

Consider N mobile sensor nodes s1, s2, …, sN with equal

sensing (Rs = r) and transmission ranges (Rt = 2.r) which

are initially deployed in some initial region within an
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unknown 2 dimensional environment X. Assume that a

rough estimate of the surface of X (bSX) is available (using

Google maps for example). Sensor nodes are able to move

along any desired direction within the area of the network

at a constant speed, but they cannot cross the barrier of X.

We assume that sensor nodes have no mechanism for

estimating their physical positions or their relative dis-

tances to each other.

Definition 6 Sensing region of a sensor node si denoted

by C(si) is a circle with radius Rs centered on si.

Definition 7 Coverage function Cxl;yl
ðsiÞ is defined

according to the following equation:

Cxl;yl
ðsiÞ ¼

1; ðxl; ylÞ 2 CðsiÞ
0; otherwise

�
: ð11Þ

In other words, Cxl;yl
ðsiÞ=1, if (xl, yl) is within the sensing

region of the sensor node si.

We assume that different regions within the network

area require different degrees of coverage. Let X1, X2, …,

XM be M regions within the X with the following

properties:

Xi \ Xj ¼ ;; for i 6¼ j

[M
i¼1

Xi ¼ X

Let bSXi
and rdc(Xi) be the estimated surface and the

required degree of coverage of the ith region respectively.

It is straight forward that the required degree of coverage

of every point (xl, yl)[Xi is equal to rdc(Xi), that is,

ðxl; ylÞ 2 Xi ) rdcðxl; ylÞ ¼ rdcðXiÞ. We assume that there

exists a notification-based mechanism in the network

(using local base stations for example) which notifies the

values of bSXi
and rdc(Xi) in each region Xi to the sensor

nodes within that region.

Consider the following definitions.

Definition 8 Covered sub-area denoted by C(X) refers to

the set of the points (xl, yl) within the network area, each is

covered with at least rdc(xl, yl) sensor nodes. C(X) is stated

through Eq. (12) given below.

CðXÞ¼
[M
i¼1

ðxl;ylÞ ðxl;ylÞ2Xi;
XN

j¼1

Cxl;yl
ðsjÞ�rdcðXiÞ

�����

( ) !
:

ð12Þ

Definition 9 Covered section denoted by SC Xð Þis the

surface of the covered sub-area.

Definition 10 Deployment strategy is an algorithm which

gives for any given sensor node si a certain position within

the area of the network.

Definition 11 Deployed network refers to a sensor net-

work which results from a deployment strategy.

Definition 12 Self-regulated deployment strategy is a

deployment strategy in which each sensor node finds its

proper position within the network area by exploring the

area and cooperating with its neighboring sensor nodes.

Definition 13 A connected network is a network in which

there is a route between any two sensor nodes.

Using the above definitions and assumptions, the prob-

lem considered in this paper can be stated as follows:

Propose a self-regulated deployment strategy which

deploys N mobile sensor nodes throughout an unknown

network area X with estimated surface bSX so that the

covered section of X (SC Xð Þ) is maximized and the

deployed network is connected.

5 CLA-EDS: an extension to CLA-DS deployment

strategy

In this section, we first give a short description of CLA-DS

deployment strategy and then propose CLA-EDS deploy-

ment strategy.

5.1 CLA-DS

CLA-DS deployment strategy consists of the following 4

major phases:

• Initial deployment: During the initialization phase,

sensor nodes are initially deployed in some initial

region within the area of the network.

• Mapping phase: The network topology is mapped into a

DICLA model.

• Deployment phase: Deploying sensor nodes throughout

the area of the network is performed during the

deployment phase. Deployment phase for each sensor

node si is divided into a number of rounds; each is

started by the asynchronous activation of the cell ci of

the DICLA. Upon the startup of the nth round in the cell

ci, LAi randomly selects one of its actions (‘‘apply force

to neighboring nodes’’, or ‘‘do not apply force to

neighboring nodes’’). This selection is then broadcasted

within the neighborhood of the node si. Sensor node si

then waits for certain duration to receive the selected

actions of its neighboring nodes. When this duration is

over, sensor node si collects following statistics from

the received information: number of received packets

and number of neighbors selecting ‘‘apply force to

neighboring nodes’’ action. According to the collected

statistics, local rule of the cell ci computes the
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reinforcement signal bi(n) and the restructuring signal

f
i
ðnÞ which are used to update the action probability

vector of LAi and the tendency vector of ci. Next, sensor

node si uses vector f
i
ðnÞ as its movement path. In other

words, if si is located at (xi(n), yi(n)), it moves to

ðxiðnþ 1Þ; yiðnþ 1ÞÞ ¼ ðxiðnÞ þ f1;i; yiðnÞ þ f2;iÞ.
Afterward, sensor node si waits for the next activation

time of its corresponding cell ci in the DICLA to start

its next round. Deployment phase for a sensor node si

is completed upon the occurrence of one of the

followings:

• Stability: Sensor node si moves less than a specified

threshold.

• Oscillation: Sensor node si oscillates between

almost the same positions.

• Maintenance phase: Deployed network is maintained in

order to compensate the effects of possibly node

failures on the covered sub-area (C(X)).

5.2 CLA-EDS

Like CLA-DS, CLA-EDS deployment strategy also con-

sists of initial deployment, mapping, deployment, and

maintenance phases. We explain these 4 phases in more

details in the subsequent sections.

5.2.1 Initial deployment

Like CLA-DS, initial deployment of the sensor nodes in

CLA-EDS deployment strategy can be done using any of

the following strategies:

• Random deployment: In random deployment strategy, a

random based deployment strategy [3, 9–14] is used to

deploy sensor nodes uniformly at random throughout

the network area (X).

• Sub-area deployment: In this deployment strategy,

sensor nodes are placed manually in some initial

positions within a small accessible sub-area of the

network.

• Hybrid deployment: In this approach, sensor nodes are

deployed randomly within a small sub-area of the

network.

5.2.2 Mapping

The second phase of CLA-EDS deployment strategy

involves the creation of a time-driven asynchronous HDI-

CLA, which is isomorphic to the sensor network topology.

In this HDICLA, any cell ci corresponds to the sensor node

si located at (xi, yi) in the sensor network.

The set of interests of the HDICLA has two members;

X-axis and Y-axis of the network area. Tendency levels

of each cell ci to these two interests are initially set

to wi1ð0Þ ¼
xið0Þ

MaxðMaxX;MaxYÞ and wi2ð0Þ ¼
yið0Þ

MaxðMaxX;MaxYÞ
respectively. (MaxX, MaxY) refers to the farthest location

within the network area at which a sensor node can be

located.

Attribute set of the HDICLA has two member;

required degree of coverage (rdc), and estimated surface

(bS) of the region requires this rdc. As it was mentioned

before, the values of these attributes differ in different

regions of the network and there exists a notification-

based mechanism which notifies rdc(Xj) and bSXj
of each

region Xj to the sensor nodes within that region.

According to these assumptions, the local values of the

rdc (rdci) and bS(bSi) attributes are known to every cell ci

of the HDICLA. Initially, rdci(0) and bSi(0) are set to 1

and bSX (the rough estimate of the surface of the network

area) respectively.

The neighborhood radius (s) of the HDICLA is set to
Rt

MaxðMaxX;MaxYÞ. This means that two cells ci and cj in the

HDICLA are adjacent to each other if their corresponding

nodes si and sj in the sensor network are within the trans-

mission ranges of each other.

It should be noted that the values of wi1ð0Þ and wi2ð0Þ
cannot be computed here due to the fact that the sensor

nodes are not aware of their physical positions. As a con-

sequence, one may think that the adjacent cells of a cell

cannot be specified for the HDICLA. But this is not true due

to the fact that the neighboring cells of each cell are

implicitly specified here according to the topology of the

network (two cells are adjacent to each other if their cor-

responding sensor nodes are within the transmission ranges

of each other).

Each cell ci of the HDICLA is equipped with a learning

automaton LAi with two actions; a0 and a1. Action a0 is

‘‘apply force to the neighboring nodes’’ and action a1 is

‘‘do not apply force to the neighboring nodes’’. The

probability of selecting each of these actions is initially

set to .5.

5.2.3 Deployment

In CLA-EDS, like CLA-DS, each sensor node can be in

one of the following two states: mobile and fixed. The

initial state of each sensor node is selected randomly with

probability of selecting fixed state to be Pfix. Pfix is a con-

stant which is known to all sensor nodes. The deployment

phase is executed only on mobile sensor nodes.

Deployment phase of a ‘‘mobile’’ sensor node si consists

of a number of rounds Ri(0), Ri(1),…. A new round Ri(n) is

Wireless Netw (2013) 19:945–968 953

123



started by the asynchronous activation of the cell ci of the

HDICLA, which occurs at time di þ n� ROUND

DURATION. Here, di is a random delay, generated for cell

ci and is used for reducing the probability of collisions

between neighboring nodes. ROUND_DURATION is an

upper bound for the duration of a single round.

Following steps are performed during the execution of

each round Ri(n):

• LAi selects one of its actions randomly according to its

action probability vector. Selected action can be either

of ‘‘apply force to the neighboring nodes’’, or ‘‘do not

apply force to the neighboring nodes’’

• Sensor node si creates an APPLIED_FORCE packet

which includes the state of the node and the selected

action of LAi. This packet is then broadcasted in the

neighborhood of si.

• Sensor node si starts collecting APPLIED_FORCE

packets, sent from its neighboring nodes. This step lasts

for certain duration (COLLECTING_DURATION). Col-

lected packets are stored into a local database within

the node.

• Sensor node si collects the following statistics from

the stored information in its local database: number of

received packets (Nr
i ðnÞ) and number of neighbors

selecting ‘‘apply force to the neighboring nodes’’ action

(Nf
i ðnÞ).

• Considering the collected statistics, the local rule of the

cell ci is applied and the reinforcement signal bi(n) and

the restructuring signal f
i
ðnÞ are generated. Details on

this step will be given in Sect. 5.2.3.1.

• Using the generated reinforcement signal bi(n), the

selected action of LAi is rewarded or penalized using

Eqs. (1) or (2).

• Sensor node si uses vector f
i
ðnÞ as its movement path

for the current round. In other words, if si is located

at (xi(n), yi(n)), then it moves to (xi(n ? 1),

yi(n ? 1)) = (xi(n) ? fi1, yi(n) ? fi2).

• Tendency levels of the cell ci are updated by the

application of the restructuring function Z. This is

performed using Eq. (13) given below.

•

wi1ðnþ 1Þ ¼ Zðwi1ðnÞ; fi1ðnÞÞ ¼ wi1ðnÞ þ
fi1ðnÞ

MaxðMaxX;MaxYÞ

wi2ðnþ 1Þ ¼ Zðwi2ðnÞ; fi2ðnÞÞ ¼ wi2ðnÞ þ
fi2ðnÞ

MaxðMaxX;MaxYÞ

8>><
>>:

:

ð13Þ

• Sensor node si waits for certain duration

(WAIT_FOR_LOCAL_INFO_DURATION) to receive

a packet which notifies the local values of rdci and bSi

in its new position. If such a notification packet is

received within this duration, the local values of rdci

and bSi are updated accordingly.

• Sensor node si waits for the next activation time of its

corresponding cell ci in the HDICLA.

The above steps are performed iteratively until one of

the following conditions occurs:

Stability: During consequent Nr rounds, sensor node si

does not move more than LEAST_DISTANCE.

Oscillation: Sensor node si oscillates between two

positions for more than No rounds.

On the occurrence of one of the above conditions, sensor

node si sets its state to ‘‘fixed’’ and starts with the main-

tenance phase.

5.2.3.1 Applying local rule The local rule of a cell ci

generates the reinforcement and the restructuring signals

(bi and f
i
) as given below in details.

Reinforcement Signal: To generate the reinforcement

signal, a sensor node si first computes the minimum num-

ber of sensor nodes (NMin
i ðnÞ) that if exist within its

transmission range, then the required degree of coverage of

its local region is satisfied. Using the theorems and results

given in [70] and by ignoring the border effect [93],

NMin
i ðnÞ can be computed using Eq. (14) given below.

NMin
i ðnÞ ¼ Min

l� 1
E C

rdciðnÞ
l

h i
� 1� e

n o
� qiðnÞ � 1; ð14Þ

where e� 1 is a positive constant, qiðnÞ ¼
p�R2

tbSiðnÞ
, and

E C
rdciðnÞ
l

h i
(given by the iterative Eq. (15)) is the expected

surface that is rdc-i-covered (covered with rdci sensor

nodes) by randomly deploying l sensor nodes.

E C
rdciðnÞ
l

h i
¼ ð1� qiðnÞÞ � E C

rdciðnÞ
l�1

h i
þ qiðnÞ

� E C
rdciðnÞ�1
l�1

h i
: ð15Þ

The reinforcement signal for the nth round in a node si is

generated based on a comparison between the number

of neighbors of si (Nr
i ðnÞ) and NMin

i ðnÞ. According to this

comparison, following cases may occur:

• NMin
i ðnÞ�Nr

i ðnÞ� 2 � NMin
i ðnÞ: In this case, if the

selected action of LAi is ‘‘do not apply force to the

neighboring nodes’’, then the reinforcement signal is to

reward the action. Otherwise, the reinforcement signal

is to penalize the action.

• Nr
i ðnÞ\ NMin

i ðnÞ or Nr
i ðnÞ[ 2 � NMin

i ðnÞ: In this case, if

the selected action of LAi is ‘‘apply force to the

neighboring nodes’’, then the reinforcement signal is to

reward the action. Otherwise, the reinforcement signal

is to penalize the action.
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In other words, if the number of neighboring nodes of

the sensor node si is at least equal to the minimum required

number of sensor nodes (NMin
i ðnÞ), but not greater than its

twice (2 � NMin
i ðnÞ), then it is better for this node not to

apply any forces to its neighbors. Otherwise, and if the

number of neighbors of si is less than NMin
i ðnÞ or more than

2 � NMin
i ðnÞ, then it is better for it to apply forces to its

neighbors.

Restructuring Signal: Since the interest set of the HDI-

CLA has two members, the restructuring signal must be a 2

dimensional vector. To generate this vector, first an angle h
is selected randomly and uniformly from the range [0, 2p]

and then the elements of the vector are computed according

to the following equation:

fi1ðnÞ ¼ Nf
i ðnÞ � cosðhÞ

fi2ðnÞ ¼ Nf
i ðnÞ � sinðhÞ

(
: ð16Þ

In the above equation, Nf
i ðnÞ is the number of neighbors

selecting ‘‘apply force to the neighboring nodes’’ action.

5.2.4 Maintenance

Maintenance phase of CLA-EDS deployment strategy is

the same as the maintenance phase of CLA-DS. This phase

is identical to the deployment phase with the exception that

the sensor nodes do not move. Additionally, each sensor

node si keeps track of its ‘‘fixed’’ neighboring nodes during

this phase. If one of these neighbors is unreachable

(a neighbor is considered unreachable if no APPLIED_

FORCE packet can be received from it for more than t

rounds), then it can be concluded that a hole may occur in

the vicinity of si. As a result, si leaves the maintenance

phase, set its state to ‘‘mobile’’ and starts over with the

deployment phase in order to fill any probable holes.

6 Experimental results

To evaluate the performance of CLA-EDS deployment

strategy, several experiments have been conducted and the

results are compared with the results obtained from DSSA

and IDCA algorithms given in [19], DSLE algorithm given

in [76], and CLA-DS algorithm. It should be mentioned

here that DSSA and IDCA algorithms are not primarily

designed for providing k-coverage. Instead, the goal of

these two algorithms is to control the movements of sensor

nodes in such a way that in the deployed network, the

average distance between sensor nodes is almost equal to

the desired distance of sensor nodes in a uniform distri-

bution. This approach enables us to use these algorithms

for providing k-coverage by simply changing the input

parameter ‘‘desired distance of sensor nodes’’ from davg to
davg

k . In the experiments given in this section, we use DSSA

and IDCA algorithms with this modification.

For comparison of the mentioned algorithms, we use the

following criteria:

• Coverage: Fraction of the area which is covered by the

deployed network. Coverage is specified according to

Eq. (17).

Coverage ¼
SCðXÞ

SX
ð17Þ

• Node separation: Average distance from the nearest-

neighbor in the deployed network. Node separation

can be computed using Eq. (18). In this equation,

dist(si, sj) is the Euclidean distance between sensor

nodes si and sj. Node separation is a measure of the

overlapping area between the sensing regions of

sensor nodes; smaller node separation means more

overlapping.

Node separation ¼ 1

N

XN

i¼1

Min
sj2NeiðsiÞ

ðdistðsi; sjÞÞ ð18Þ

• Distance: The average distance traveled by each node.

This criterion is directly related to the energy consumed

by the sensor nodes.

Network area is assumed to be a 100 (m) 9 100

(m) rectangle. Networks of different sizes from N = 500 to

N = 1,500 sensor nodes are considered for simulations.

Sensing ranges (Rs = r) and transmission ranges

(Rt = 2.r) of sensor nodes are assumed to be 5 (m) and 10

(m) respectively. Energy consumption of nodes follows the

energy model of the J-Sim simulator [94]. Table 1 gives

the values for different parameters of the algorithm.

All simulations have been implemented using J-Sim

simulator. J-Sim is a java based simulator which is

implemented on top of a component-based software

architecture. Using this component-based architecture, new

protocols and algorithms can be designed, implemented

and tested in the simulator without any changes to the rest

of the simulator’s codes.

All reported results are averaged over 50 runs. We have

used CSMA as the MAC layer protocol, free space model

as the propagation model, binary sensing model and Omni-

directional antenna.

6.1 Experiment 1

In this experiment we compare the behavior of CLA-EDS

algorithm with that of DSSA, IDCA, DSLE, and CLA-DS

algorithms in terms of coverage as defined by Eq. (17). For
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this experiment, sensor nodes are initially deployed using a

hybrid deployment method within a square with side length

10 (m) centered on the center of the network area. We

assume that M = 1, that is, the required degree of coverage

(k) throughout the network area is uniform. The experiment

is performed for k = 1, 2, 3, 4, and 5. Figures 2, 3, and 4

give the results of this experiment for networks of different

sizes (N = 500, 1,000, and 1,500). From the results we can

conclude the following:

• The performance of CLA-EDS algorithm in covering

the network area, for different values of k and

networks of different sizes, can compete with that of

DSSA and IDCA algorithms. Such performance, when

considering the fact that CLA-EDS algorithm does not

use any information regarding sensor positions or their

relative distances to each other, indicates the effi-

ciency of the learning automata in guiding the sensor

nodes throughout the network area for finding their

best positions.

• Performances of CLA-EDS and DSLE algorithms in

covering the network area are almost the same in

networks of small sizes (N \ 1,000), but in networks

of large sizes (N [ 1,000), CLA-EDS outperforms

DSLE in terms of the coverage criterion. The reason

behind this phenomenon is that DSLE algorithm

makes use of the Voronoi diagram for guiding the

movements of sensor nodes throughout the network

area, but the information coded in the Voronoi

diagram of a highly dense network is not as useful

as that coded in the Voronoi diagram of a sparse

network.

• CLA-EDS outperforms CLA-DS algorithm in terms of

the coverage criterion when k [ 1. This superiority is

expected since CLA-DS is designed for providing

1-coverage of the network area, whereas its extension,

CLA-EDS, is designed for providing k-coverage.

6.2 Experiment 2

In this experiment, we compare CLA-EDS algorithm with

DSSA, IDCA, DSLE, and CLA-DS algorithms in terms of

the node separation criterion given by Eq. (18). The

simulation settings of experiment 1 are also used for this

experiment. Figures 5, 6, and 7 give the results of this

experiment for networks of different sizes. Node separa-

tion is a measure of the overlapping area between the

sensing regions of sensor nodes; smaller node separation

means more overlapping. Results of this experiment

indicate that:

• Performances of CLA-EDS, CLA-DS, and DSLE

algorithms in terms of the node separation criterion

for different values of k and networks of different sizes

are almost the same. In other words, the overlapping

areas resulted from CLA-EDS, CLA-DS, and DSLE

algorithms are almost the same.

• Node separation of the CLA-EDS algorithm is less than

that of DSSA and IDCA algorithms. Since the coverage

of CLA-EDS algorithm is almost equal to that of DSSA

and IDCA algorithms in almost all cases, having

smaller node separation or more overlapped area makes

CLA-EDS superior to DSSA and IDCA algorithms due

to the following two reasons:

• The fraction of the network area, which is under the

supervision of more than one sensor node, is higher

in CLA-EDS algorithm than in DSSA and IDCA

algorithms. This increases the tolerance of the

network against node failures.

• In occurrences of coverage holes (due to node

failures or deaths for example), neighboring nodes

need fewer movements to heal the holes when node

separation is smaller.

Table 1 Parameters of CLA-EDS algorithm and their values

Parameter Value

Pfix 0

ROUND_DURATION 11 (s)

COLLECTING_DURATION 10 (s)

WAIT_FOR_LOCAL_INFO_DURATION 2 (s)

LEAST_DISTANCE 1 (m)

Nr 3 Rounds

No 6 Rounds

e .01

a (Reward parameter) .25

b (Penalty parameter) .25

t 3 rounds

0.1
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Fig. 2 Comparison of CLA-EDS with existing deployment algo-

rithms in terms of the coverage criterion for N = 500 sensor nodes
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6.3 Experiment 3

In this experiment, CLA-EDS algorithm is compared with

DSSA, IDCA, DSLE, and CLA-DS algorithms in terms of

the distance criterion. The simulation settings of experi-

ment 1 are also used for this experiment. Figures 8, 9, and

10 give the results of this experiment for networks of

different sizes. These figures show that in terms of the

distance criterion, CLA-EDS is the worst algorithm among

the compared algorithms. This is due to the fact that CLA-

EDS algorithm does not use any information regarding the

position of the sensor nodes or their relative distances to

each other. To compensate this weakness, CLA-EDS

algorithm has a parameter pfix which can be used to make a

tradeoff between the distance and coverage criteria. By

increasing the value of pfix, one can decrease the average

distance moved by sensor nodes at the expense of less

network coverage (refer to experiment 7).

6.4 Experiment 4

In this experiment, CLA-EDS algorithm is compared with

DSSA, IDCA, DSLE, and CLA-DS algorithms in terms of

coverage, node separation, and distance criteria when

devices or algorithms used for location estimation in

sensor nodes experience different levels of noise. Such

noises due to inaccuracies in measurements are common

both in GPS-based location estimator devices [95] and

localization techniques adopted to wireless sensor net-

works [96, 97]. For simulating a noise level of 0 \k\1,
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for each sensor node si two numbers Rndi(x) and Rndi(y)

are selected uniformly at random from the ranges

[-MaxX, MaxX] and [-MaxY, MaxY] respectively and

are used for modifying the position (xi, yi) of the node

according to Eq. (19). For this study, k is assumed to be

one of the following: .1, .2, .3, .4, and .5.

xNoisy
i ¼ xi þ k:RndiðxÞ

yNoisy
i ¼ yi þ k:RndiðyÞ

(
ð19Þ

We assume that M = 1, N = 1,500, and k = 5. Sensor

nodes are initially deployed using a hybrid deployment

method within a square with side length 10 (m) centered on

the center of the network area. Figures 11, 1213 give the

results of this experiment for different criteria. These

figures show that:

1. Noise level has no effect on the performance of CLA-

EDS and CLA-DS algorithms with respect to cover-

age, node separation and distance criteria. This is due

to the fact that CLA-EDS and CLA-DS algorithms do

not use any information about the position of the

sensor nodes.

2. DSLE algorithm is highly affected by increasing the

noise level. This is because the deployment strategy

used in this algorithm is highly dependent on the exact

positions of sensor nodes.

3. The impact of noise level on the performances of

DSSA and IDCA algorithms with respect to coverage

and node separation criteria is not too significant. This

is due to the fact that these algorithms, like CLA-EDS

algorithm, try to minimize the difference between local

density and expected local density of sensor nodes

which is not sensitive to noise level.

4. Noise level highly affects the performances of DSSA

and IDCA algorithms with respect to distance crite-

rion. This is because DSSA and IDCA algorithms,

unlike CLA-EDS, use the relative distances of neigh-

boring sensor nodes, which is sensitive to noise level,

in order to minimize the difference between local

density and expected local density of sensor nodes.

6.5 Experiment 5

In this experiment, we compare the behavior of CLA-EDS,

DSSA, IDCA, DSLE, and CLA-DS algorithms with respect

to coverage, node separation and distance criteria when the

movements of sensor nodes are not perfect and follow a

probabilistic motion model. A probabilistic motion model

can better describe the movements of sensor nodes in real
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world scenarios. We use the probabilistic motion model of

sensor nodes given in [98]. In this probabilistic motion

model, movements of a sensor node si for a given drive

(di(n)) and turn (ri(n)) command is described using the

following equations:

xiðnþ 1Þ ¼ xiðnÞ þ DiðnÞ � cos hiðnÞ þ TiðnÞ
2

� �

þCiðnÞ � cos hiðnÞ þ TiðnÞþp
2

� �

yiðnþ 1Þ ¼ yiðnÞ þ DiðnÞ � sin hiðnÞ þ TiðnÞ
2

� �

þCiðnÞ � sin hiðnÞ þ TiðnÞþp
2

� �

hiðnþ 1Þ ¼ ðhiðnÞ þ TiðnÞÞ mod ð2pÞ

8>>>>>>>><
>>>>>>>>:

ð20Þ

In Eq. (20), hiðnÞ þ TiðnÞ
2

is referred to as the major axis of

movement, hiðnÞ þ TiðnÞþp
2

is the minor axis of movement

(orthogonal to the major axis), and Ci(n) is an extra lateral

translation term to account for the shift in the orthogonal

direction to the major axis. Di(n), Ti(n), and Ci(n) are all

independent and conditionally Gaussian given di(n) and

ri(n):

DiðnÞ	N diðnÞ; d2
i ðnÞ � r2

Dd
þ r2

i ðnÞ � r2
Dr
þ r2

D1

� �

TiðnÞ	N riðnÞ; d2
i ðnÞ � r2

Td
þ r2

i ðnÞ � r2
Tr
þ r2

T1

� �

CiðnÞ	N 0; d2
i ðnÞ � r2

Cd
þ r2

i ðnÞ � r2
Cr
þ r2

C1

� �

8>>>><
>>>>:

ð21Þ

where N(a, b) is a Gaussian distribution with mean a and

variance b, and r2
Dd

, r2
Dr

, r2
D1

, r2
Td

, r2
Tr

, r2
T1

, r2
Cd

, r2
Cr

, and

r2
C1

are all parameters of the specified motion model.

Table 2 gives values of these parameters used for this

experiment.

We assume that M = 1, k = 5, and N = 1,500. Sensor

nodes are initially deployed using a hybrid deployment

method within a square with side length 10 (m) centered on

the center of the network area. Figures 14, 1516 show the

results of this experiment. The results indicate the fol-

lowing facts:

• Using the probabilistic motion model instead of the

perfect motion model significantly degrades the per-

formances of DSSA, IDCA, and DSLE algorithms in

terms all three criteria, but does not affect the

performances of CLA-EDS and CLA-DS algorithms

substantially.

• When the probabilistic motion model is used, CLA-

EDS algorithm outperforms the existing algorithms in

terms of coverage and node separation criteria.

• For probabilistic motion model, the average distance

moved by sensor nodes for all algorithms is higher than

when perfect motion model is used. When the proba-

bilistic motion model is used the performances of CLA-

EDS, DSSA, IDCA, DSLE, and CLA-DS algorithms in

terms of distance criterion are degraded by 6, 200, 201,

153, and 4 % respectively. This indicates that CLA-

EDS and CLA-DS algorithms are more robust to the

deviations in the movements of sensor nodes than

DSSA, IDCA, and DSLE algorithms.

6.6 Experiment 6

This experiment is conducted to study the behavior of

CLA-EDS, DSSA, IDCA, and DSLE algorithms in con-

trolling the local density of sensor nodes in the network

during the deployment process. The results of this experi-

ment also show that CLA-EDS algorithm gradually learns

the expected local density. For this study, we assume that

M = 1 and k = 5. Sensor nodes are initially deployed

using a hybrid deployment method within a square with

side length 10 (m) centered on the center of the network

area. We repeat the experiment for N = 500, 1,000, and

1,500. Figures 17, 1819 give the results of this experiment.
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In these figures, X-axis gives the overall distance moved by

all sensor nodes during the deployment process and Y-axis

shows the local density of sensor nodes as measured during

the deployment process. These figures show that CLA-EDS

algorithm, without any node knowing its physical position

or its relative distances to its neighbors, controls the local

density of sensor nodes in such a way that the local density

approaches its expected value just as other algorithms do.

Table 2 Parameters of the specified probabilistic motion model and their corresponding values

Parameter r2
Dd

r2
Dr

r2
D1

r2
Td

r2
Tr

r2
T1

r2
Cd

r2
Cr

r2
C1

Value .021869 .010731 .000001 .000345 .338267 .666048 .008588 .013427 .000014
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Of course, it takes longer time for CLA-EDS to achieve

this. This is due to the fact that CLA-EDS does not use any

information regarding the physical positions of sensor

nodes or their relative distances to each other.

6.7 Experiment 7

This experiment is conducted to study the effect of the

parameter Pfix on the performance of CLA-EDS algorithm.

For this study, we let M = 1 and k = 5. We consider a

network of N = 1,500 sensor nodes which are initially

deployed using a hybrid deployment method within a

square with side length 10 (m) centered on the center of the

network area. Figures 20, 2122 give the results of this

experiment. These figures indicate that by increasing the

value of parameter Pfix in CLA-EDS algorithm, the covered

section of the area, node separation and the average dis-

tance traveled by each sensor node decrease. In other

words, higher values of Pfix results in more energy saving

during the deployment process at the expense of poor

coverage. Determination of Pfix for an application is very

crucial and is a matter of cost versus precision. For better

coverage, higher price must be paid.

6.8 Experiment 8

In this experiment, we study the behavior of CLA-EDS,

DSSA, IDCA, DSLE, and CLA-DS algorithms with respect

to coverage, node separation, and distance criteria when the

required degree of coverage differs in different regions of

the network. For this experiment, we consider M = 10

different regions. Each region is a circular sub-area within

the network area with a radius, which is randomly selected

from the range [5, 37] meters, and a required degree of

coverage, which is selected randomly from the range [1, 5].

The experiment is performed for N = 500, 1,000, and

1,500 sensor nodes which are initially deployed using a

hybrid deployment method within a square with side length

10 (m) centered on the center of the network area. Fig-

ures 23, 2425 give the results of this experiment. From

these figures, one may conclude the following facts:

• CLA-EDS algorithm significantly outperforms DSSA,

IDCA, DSLE, and CLA-DS with respect to the

coverage criterion in networks of different sizes,

especially when N \ 1000. This indicates that the

learning mechanism utilized in CLA-EDS algorithm is
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able to adapt itself to the different degrees of coverage

needed in different regions of the network.

• According to Fig. 24, CLA-EDS is superior to CLA-DS

and DSLE algorithms in terms of the node separation

criterion, that is CLA-EDS better spreads sensor nodes

throughout the network area than CLA-DS and DSLE

algorithms. This figure also shows that the node

separation of DSSA and IDCA algorithms are higher

than that of CLA-EDS algorithm. But with a similar

discussion given in experiment 2, this also indicates that

CLA-EDS algorithm is superior to IDCA and DSSA

algorithms with respect to the node separation criterion.

• In terms of the distance criterion, CLA-EDS has the

worst performance among the compared algorithms.

This inferiority is expected as it was mentioned in

experiment 3.

6.9 Experiment 9

The aim of conducting this experiment is to study the

behavior of CLA-EDS deployment strategy in controlling

the local density of sensor nodes within different regions,

each having a different requirement of degree of coverage,

during the deployment process. The simulation settings of

the experiment 8 are also used for this experiment. The

experiment is performed for N = 1,500 sensor nodes which

are initially deployed using a hybrid deployment method

within a square with side length 10 (m) centered on the

center of the network area. Figures 26, 2728 give the

results of this experiment for 3 randomly selected regions

with the following properties:

• Region 1: Radius = 24 m, k = 5

• Region 2: Radius = 16 m, k = 3

• Region 3: Radius = 36 m, k = 4

These figures show that CLA-EDS algorithm, without

any node knowing its physical position or its relative dis-

tances to its neighbors, controls the local density of sensor

nodes in such a way that the local density in each region

approaches its expected value in that region. The figures

also show that DSSA, IDCA, DSLE, and CLA-DS algo-

rithms are not able to perfectly control the local density of

sensor nodes when the expected local density differs in

different regions of the network.

6.10 Experiment 10

This experiment is conducted to study the behavior of the

HDICLA as a learning model in CLA-EDS algorithm. For

this study, we set M = 1, k = 5, and N = 1,500. Sensor

nodes are initially deployed using a hybrid deployment

method within a square with side length 10 (m) centered on

the center of the network area. Figure 29 depicts the action

probability vector of a randomly selected learning autom-

aton from the HDICLA. As it can be seen, at the beginning

of the deployment process, the action probability of ‘‘apply

force to neighboring nodes’’ action increases. This is due to

the fact that the density of sensor nodes in the initial hybrid

deployment method is very high and hence, sensor nodes

must apply force to each other to spread through the area.

As time passes, the action probability of ‘‘do not apply

force to neighboring nodes’’ action gradually increases and

approaches unity. As a result, local node density gradually

approaches its desired valued.

Figure 30 shows the HDICLA entropy during the

deployment process. This figure indicates that the entropy

of the HDICLA is high at initial rounds of CLA-EDS

algorithm, but gradually decreases as time passes. It goes

below 70 at about round number 100. This means that after

this round, the entropy of each learning automaton LAi in

the HDICLA is on average below .047. If the entropy of a

two-action learning automaton is below .047, then it can be

concluded that the action probability of one of its actions is

higher than .992. This means that action switching in each

learning automaton in the HDICLA rarely occurs after

round number 100.
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Figure 31 gives the degree of expediency (Md) of the

HDICLA during the deployment process of CLA-EDS

algorithm. As it can be seen from this figure, Md is initially

low, but as time passes, it gradually increases. In other

words, the HDICLA, with the local rule of CLA-EDS

algorithm, gradually improves its performance and learns

to receive fewer penalties from the environment in com-

parison to a pure-chance HDICLA. To have a better

understanding of the expediency concept, we change the

local rule of the HDICLA in CLA-EDS algorithm to form

three new algorithms called Modified-CLA-EDS-1, Modi-

fied-CLA-EDS-2, and Modified-CLA-EDS-3. The local

rules used in these modified algorithms are as follows:

• Modified-CLA-EDS-1 algorithm:

• NMin
i ðnÞ�Nr

i ðnÞ� 3 � NMin
i ðnÞ: In this case, if the

selected action of LAi is ‘‘do not apply force to

neighboring nodes’’, then the reinforcement signal

is to reward the action. Otherwise, the reinforce-

ment signal is to penalize the action.

• Nr
i ðnÞ\ NMin

i ðnÞ or Nr
i ðnÞ[ 3 � NMin

i ðnÞ: In this

case, if the selected action of LAi is ‘‘apply force to

neighboring nodes’’, then the reinforcement signal

is to reward the action. Otherwise, the reinforce-

ment signal is to penalize the action.

• Modified-CLA-EDS-2 algorithm:

• If NMin
i ðnÞ � Nr

i ðnÞ
�� ��� 1 then: if the selected action

of LAi is ‘‘do not apply force to neighboring nodes’’,

then the reinforcement signal is to reward the

action. Otherwise, the reinforcement signal is to

penalize the action.

• If NMin
i ðnÞ � Nr

i ðnÞ
�� ��[ 1 then: if the selected action

of LAi is ‘‘apply force to neighboring nodes’’, then

the reinforcement signal is to reward the action.
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in region 2
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Otherwise, the reinforcement signal is to penalize

the action.

• Modified-CLA-EDS-3 algorithm: In this algorithm, a

pure-chance HDICLA is used and therefore, local rule is

useless.

Figure 31, compares the degree of expediency of the

HDICLA, used in CLA-EDS algorithm, with that of the

HDICLAs, used in the modified versions of CLA-EDS

algorithm. As it can be seen from this figure, the HDICLA,

used in CLA-EDS algorithm, is more expedient than that

used in the modified versions of CLA-EDS algorithm. To

study the effect of the degree of expediency on the per-

formance of the HDICLA, we compare CLA-EDS algo-

rithm with its modified versions in terms of the coverage,

node separation, and distance criteria. The results of this

comparison, which are given in Table 3, show that:

• CLA-EDS algorithm outperforms all of its modified

versions in terms of all mentioned criteria.

• Modified-CLA-EDS-1 algorithm, which is more expe-

dient than all algorithms but CLA-EDS, outperforms

Modified-CLA-EDS-2 and Modified-CLA-EDS-3 algo-

rithms in terms of all mentioned criteria.

• Modified-CLA-EDS-3 algorithm, in which a pure-

chance HDICLA is used, has the worst performance

among CLA-EDS algorithm and its modified versions

in terms of coverage, node separation, and distance

criteria.

In other words, the performance of an HDICLA, which

uses the local rule of CLA-EDS algorithm, is higher than

that of an HDICLA, which uses the local rule of the

modified versions of CLA-EDS algorithm. This indicates

that the degree of expediency is a measure of the perfor-

mance of the HDICLA; higher values of Md results in better

performance of the HDICLA. Since the degree of expedi-

ency of an HDICLA with a specific structure depends

directly on the local rule of that HDICLA, we can conclude

that for increasing the performance of an HDICLA, it is

enough to devise local rules which increase the degree of

expediency of that HDICLA.

Figure 32 depicts the changes in the HDICLA restruc-

turing tendency during the deployment process. This figure

shows that the restructuring tendency of the HDICLA is

initially high and gradually approaches zero. It is initially

high because during initial rounds, the magnitude of the

force vector applied to each sensor node is large, and it

gradually approaches zero because as time passes, the local

density of the sensor nodes approaching its expected value

which results in the magnitude of the force vector applied

to each sensor node to approach zero.

7 Summary of results

In this study, we compared the performance of CLA-EDS

deployment algorithm with respect to coverage, node

separation, and distance criteria with DSSA, IDCA, DSLE,

and CLA-DS deployment algorithms. Comparisons were

made for different network sizes, different degrees of

coverage, and noise free and noisy environments. From the

results of this study we can conclude that:

• In noise free environments, the proposed algorithm

(CLA-EDS) can compete with existing algorithms in

terms of the coverage criterion, outperforms existing

algorithms in terms of the node separation criterion,

and performs worse than the existing algorithms in

terms of the distance criterion.

• CLA-EDS and CLA-DS algorithms, unlike DSSA,

IDCA, and DSLE algorithms, do not use any informa-

tion regarding the position of the sensor nodes or their

relative distances to each other and therefore, in noisy

environments, where utilized location estimation tech-

niques such as GPS-based devices and localization

algorithms experience inaccuracies in their measure-

ments, outperform existing algorithms in terms of the

coverage and node separation criteria.

• The algorithms which are least affected by the selection

of the ‘‘node movement model’’ of sensor nodes are

CLA-EDS and CLA-DS.

• When required degree of coverage differs in different

regions of the network, CLA-EDS performs signifi-

cantly better than the existing algorithms with respect

to the coverage and the node separation criteria.

• CLA-EDS algorithm, unlike existing algorithms, has a

parameter (Pfix) for controlling the tradeoff between the

network coverage and the average distance traveled by

sensor nodes.
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8 Conclusion

In this paper, a new deployment strategy based on cellular

learning automata called CLA-EDS for mobile sensor

networks was proposed. The proposed deployment strategy

is an extension to a recently introduced deployment strat-

egy, called CLA-DS, which can provide k-coverage of the

network area even if k (required degree of coverage) differs

in different regions of the network. CLA-EDS deployment

strategy, unlike similar existing deployment strategies,

does not use any information regarding the sensor positions

or their relative distances to each other. Using the proposed

movement strategy, each node in cooperation with its

neighboring nodes gradually learns its best position within

the area of the network in order to attain high coverage.

Experimental results showed that the proposed deployment

strategy, in addition to the advantages it inherits from

CLA-DS, outperforms existing algorithms such as DSSA,

IDCA, and DSLE in providing k-coverage, especially when

required degree of coverage differs in different regions of

the network.
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