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Abstract Recently, wireless broadcast environments

have attracted significant attention due to its high scala-

bility to broadcast information to a large number of mobile

subscribers. It is especially a promising and desirable dis-

semination method for the heavily loaded environment

where a great number of the same type of requests are sent

from the users. There have been many studies on pro-

cessing spatial queries via broadcast model recently.

However, not much attention is paid to the spatial queries

in road networks on wireless broadcast environments. In

this paper, we focus on three common types of spatial

queries, namely, k nearest neighbor (kNN) queries, range

queries and reverse nearest neighbor (RNN) queries in

spatial networks for wireless data broadcast. Specially, we

propose a novel index for spatial queries in wireless

broadcast environments (ISW). With the reasonable orga-

nization and the effectively pre-computed bounds, ISW

provides a powerful framework for spatial queries. Fur-

thermore, efficient algorithms are designed to cope with

kNN, range and RNN queries separately based on ISW. The

search space can be obviously reduced and subsequently

the client can download as less as possible data for query

processing, which can conserve the energy while not sig-

nificantly influence the efficiency. The detailed theory

analysis of cost model and the experimental results are

presented for verifying the efficiency and effectiveness of

ISW and our methods.

Keywords Wireless data broadcast � Spatial queries �
Road networks � ISW

1 Introduction

With the popularity of smart mobile devices and increasing

requirements for ubiquitous information access, there has

been an increasing interest in wireless data services from

both industrial and academic communities in recent years

[1–3]. There are two basic approaches for information

access through the wireless technology: on-demand access

and wireless data broadcast [4, 5]. For on-demand access, a

mobile client initiates a query to the server which in turn

processes the query and returns answers to the client

through a pre-established point-to-point channel. As a

traditional client-server approach, the on-demand mode is

suitable for answering customized queries from users.

Wireless data broadcast can be considered as a way of

disseminating data to a massive number of users, where the

query processing tasks are entirely executed at the client

sides. In this mode, the server only monitors the informa-

tion of the data objects, but it is unaware of the clients and

their queries because there is no uplink from clients to the

server. In this way, wireless data broadcast is expected to

have high scalability when dealing with some pre-defined

popular applications, such as weather forecast. In recent

years, many wireless data broadcast systems have been

applied. For example, the Ambient Information Network

[6] broadcasts the realtime data packets such as stocks,

weather, traffic and sports. It expects that a small amount of

wireless data can provide valuable information when

delivered in a timely manner to the mobile devices.

However, complex spatial query services have not been

offered by these systems.

Location based services are considered as the most

important applications via wireless broadcasting model.

Recently, a lot of research efforts have been conducted on

the spatial queries via data broadcast model, such as
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k nearest neighbor (kNN) query [4, 5, 7], range query [5, 7],

transitive nearest neighbor search [8], continuous nearest

neighbor query [9] etc. Most of the existing methods are

developed based on Euclidean space, while spatial queries

in road networks have not been sufficiently studied. In

practice, objects usually move along the pre-defined paths,

and therefore the spatial query over road networks are more

practical and can acquire higher accuracy [10]. In this

paper, we focus on dealing with spatial queries in road

networks via wireless data broadcast mode. In road net-

work, the distance computation is more complicate than in

Euclidean space. Besides, great amount of information is

needed be broadcast. Furthermore, many existing pruning

strategies are designed based on Euclidean metric and

invalid in the road network. Therefore, these difficulties

render the existing methods impractical for networks.

Based on this background, we focus on three common

snapshot spatial queries, in particular, kNN queries, range

queries and reverse nearest neighbor (RNN) queries in

spatial networks combing the context of wireless data

broadcast. Three examples of snapshot spatial queries are

given as follows to further illustrate our query scenarios. If

a continuous query is issued, our solution is executing

snapshot queries at each timestamp. Obviously, our system

does not perform well for continuous queries as for snap-

shot queries unless some optimized mechanism are added.

Example 1 A driver would like to query the k nearest

restaurants when he/she arrives at an unacquainted city.

The pre-stored map does not contain the information of this

city, so he/she has to request the answers through the

wireless data broadcast.

Example 2 A car would like to search the gas stations

within the range that it can reach with the remaining gas.

The answer can be acquired through the wireless broadcast

systems in which a server stores the information of all the

gas stations nearby.

Example 3 A restaurant would like to attract customers

from the markets which have the query point as the nearest

restaurant.

There are three steps for the wireless broadcast system

to handle these queries. Firstly, the server periodically

broadcasts the information (for example, in example 3 the

information contain the current positions of the passengers)

to the clients within its coverage, where the clients denote

the mobile devices. Secondly, when the user invokes a

spatial query, the client device tunes in the broadcast

channel and downloads the information disseminated by

the server. Thirdly, after receives the information, the cli-

ent executes the query.

Note that existing algorithms for processing spatial

queries in road networks [11–13] are mostly designed for

on-demand access, and can not be applied or simply

extended to wireless broadcast systems. That is because

these existing techniques are designed for the random

access disk which will incur a significant access latency for

broadcast model where data are sequently transmitted. As

an important step forward, Georgios Kellaris et al. [14]

focus on the shortest path computation in road networks for

wireless data broadcast. However, the technique can not

been extended to specific spatial queries such as kNN,

range and RNN queries. Hence, we argue that novel

techniques are necessary for solving spatial queries in

spatial networks for wireless data broadcast. To the best of

our knowledge, this is the first paper aiming to provide a

general framework for this problem. Specifically, our

contributions can be summarized as follows.

• We design a novel Index for Spatial queries for

wireless data broadcast (ISW), to provide a general

framework for spatial queries in road networks via

wireless broadcast. ISW can provide a powerful guide-

line for the client to only download the necessary data,

which is realized by its reasonable organization and the

tight pre-computed bounds.

• Based on ISW, algorithms for kNN , range and RNN

queries in road networks on data broadcasting, are

separately developed. Effective filter-refinement mech-

anisms are proposed for these queries.

• Detailed analysis of the cost model for ISW is given.

Besides, extensive experiments are implemented for

verifying the effectiveness of ISW and our methods.

The rest of this paper is organized as follows. Section 2

overviews related work. Section 3 proposes the structure of

ISW. Sections 4, 5 and 6 present algorithms for processing

kNN, range and RNN queries, respectively. Section 7

illustrates the experimental results and Sect. 8 concludes

the paper.

2 Related work

2.1 Wireless data broadcast

In a wireless broadcast system, the access efficiency and

energy conservation are two critical issues [4, 7] for

measuring the performance of client devices. First, a user

expects that the query can be responded in specified time.

Besides, most mobile devices have to work with a battery,

so power consumption may become the bottleneck. To save

the power, client devices usually support active mode and

doze mode. Devices receive data in the active mode with

more power consumed. When a system becomes idle,

devices tune in the doze mode and only a little power is

consumed. In the literature [1, 7, 15], two performance
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metrics are usually used to measure the access efficiency

and energy conservation respectively.

• Tuning time. The time period a mobile client stays

active to receive the requested data.

• Access latency. The time elapsed from the moment a

query is invoked to the moment the answers are

received.

If there is no auxiliary information to indicate the

schedule of data, a client has to receive all data for spatial

queries. In this case, a lot of energy will be consumed since

the client is demanded to keep active during the whole

broadcast cycle. Air indexing mechanism [16] is the most

common organization of the broadcast cycle. The basic

idea is that the server constructs the index, and interleaves

it with the data. Since the index size is much smaller than

the data size, the client is expected to download less data

by accessing the index and pre-determining the arrival time

of the required data. The client can switch to the active

mode once the acquired data has arrived. In order to reduce

the waiting time for receiving the root node of a forth-

coming index, the index is copied m times and interleaved

with the data as shown in Fig. 1. As analyzed in [16],

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

size of data
size of index

q

can reach the optimal balance between

the tuning time and access latency.

2.2 Spatial queries in wireless broadcast systems

There are many studies about processing spatial queries

based in wireless broadcast environments from the data-

base communities in literature. Zheng et al. [7] propose a

Hilbert-curve based index, which can be used for kNN

queries and window queries via wireless data broadcast. A

cost model is developed to compare the performance of

the Hilbert-curve index with others. Furthermore, the

Hilbert-curve Index is also used for searching continuous

k nearest neighbors [9]. Mouratidis et al. [17] focus on the

continuous spatial queries in wireless broadcast environ-

ments. They propose the Broadcast Grid Index (BGI)

method for both snapshot and continuous queries. For

efficiently detecting the update of objects, a dirty grid is

built. Park et al. [2] aim to process the Mobile Continuous

Nearest Neighbor Query (MCNNQ) where service users

and target objects can move freely. The Guaranteed

Region (GR) is defined for dividing the query line into

disjoint lines where the nearest neighbor of any point

inside a GR is the same. Specially, an ESS_GR algorithm

is proposed to process the queries. Gedik et al. [4] propose

the exact kNN search on conventional sequential-access

R-trees, and optimize the kNN search algorithm. They use

the histograms to guide the search, and the analytical

results on the maximum queue size and node access count

are derived. Besides, Distributed spatial index (DSI) [18]

has a linear yet fully distributed structure, and facilitates

multiple search paths to be naturally mixed together by

sharing links over the whole broadcast cycle. DSI allows a

search to start right after a client tunes in the channel so it

is very efficient compared with other types of indexes.

This work also develops algorithms for snapshot window

queries, snapshot k nearest neighbor queries, continuous

window queries, and continuous nearest neighbor search

based on DSI. However, these spatial query methods are

designed for Euclidean space and they are not fit for

processing spatial queries in road networks for wireless

data broadcast.

In real-life applications, some data may be more popular

than others and be frequently accessed by clients. Thus, the

nonuniform broadcast provides a good performance on

reducing waiting time for the clients. Xu et al. [19] propose

a novel parameterized index, called the exponential index,

which can optimize the access latency with the tuning time

bounded by a given limit. Shen et al. [20] propose an

efficient nonuniform index called the skewed index, which

is built according to skewed access patterns of clients and

the popular data are allocated index modes more times than

less popular ones in a broadcast cycle. Zhong et al. [21]

firstly introduce Huffman tree into wireless broadcast

environments. The Huffman tree based index performs

better than B-tree based index. These nonuniform indexing

techniques are built based on the assumption that the access

frequency of data are known. While in our work, the fre-

quently accessed data are difficult to be obtained so the

uniform index is more suitable.

Kellaris et al. [14] address the shortest path computation

in road networks for wireless data broadcast, and they

propose two methods for this problem. The elliptic

boundary (EB) provides the client with an upper bound of

the shortest path distance between two regions, and then

prunes nodes that lie too far away to affect the shortest path

search. To improve the efficiency, the next region (NR)

further reduces the volume of received data. Their EB-

index records the minimum/maximum distance between

two regions, this is efficient for shortest path computation.

While for spatial queries, in order to significantly reduceFig. 1 (1,m) index mechanism
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the search space, more efficient organization of index

structure is necessary.

2.3 Spatial queries in road networks

There have been many solutions on processing spatial

queries over road networks. Papadias et al. [11] propose a

Euclidean restriction (IER) and a network expansion (INE)

method for kNN queries. Consider the IER (Incremental

Euclidean Restriction) method [11] which applies the

multi-step kNN methodology. In the broadcast setting,

once the user invokes a query, the device is waken up to

determine the first Euclidean nearest neighbor oE1. Then it

computes the network distance dN(q, oE1), and retrieves the

nearest neighbor in the area where the distances from q to

any objects are within [dE(q, oE1); dN(q, oE1)]. However,

the data of objects lying in such region may have already

been broadcasted and in such situation the device needs to

wait until the next broadcast cycle. This incremental

restriction procedure has to be repeated for at most k times,

and hence the access latency of the IER method is very

large as the device may have to wait at most k cycles.

Now consider the INE (Incremental Network Expansion)

[11] in the broadcast setting. The INE algorithm performs

network expansion starting from q, and examines objects in

the order they are encountered. The objects are organized by

R-tree which induces backtracking, so for each expansion

the needed data might have been broadcasted and the device

has to wait for the next broadcast cycle. The access latency

of the INE method may last for several cycles at most as the

number of the encountered objects.

The Voronoi-based kNN search method [12] adopts an

iterative filter/refinement process, and it saves on both

storage and computation by performing across-the-network

computation for only the border points of the neighboring

regions. The filter/refinement step must be invoked k times

for searching the kNN for q, which also means k cycles in

the broadcast setting. Quad tree is utilized for kNN search

by best-first manner in road networks [13], which dra-

matically reduces the storage. The shortest path computa-

tion needs the quad trees of all vertexes at the path if we

apply this method into wireless broadcast model. The quad

trees are needed to transmit for all vertexes because the

source vertex and the destination vertex cannot be pre-

specified. The quad trees can not be received until the

previous vertex is determined so we cannot filter the

unqualified vertexes and their quad trees. By this way,

the data volume we need to transmit is about O(n2.5) (n is

the number of nodes in road networks), and therefore this

approach would cause long broadcasting cycle if it is

adapted to wireless broadcast model. As shown in the

above analysis, the existing methods may incur significant

access latency if they are adapted into wireless broadcast

systems, so the new efficient method is necessary.

Range queries on road networks are also studied in [11].

First, it initiates a range query at the datasets which returns

objects within Euclidean distance r from q (r is the desired

range value). Then the Range Network Expansion (RNE)

method refines the results by qualifying segments within

the network range r from q and then retrieves the objects

falling in these segments. If we adapt the RNE into the

wireless broadcast system, two challenges have to be faced.

First, the Euclidean bound of distance r is too loose to

contain a large number of false hits. Second, examining

each subset of query segments means accessing R-tree

nodes that overlap some unqualified segments, which

invokes backtracking and raises the access latency.

Yiu et al. [22] first address the pruning methods for RNN

query in graphs. They propose the eager and lazy algorithms,

where the eager algorithm minimizes the I/O cost and can be

more CPU-intensive than lazy algorithm for certain net-

works. The pruning granularity of these algorithms is object,

while in wireless broadcast model data are transmitted in the

form of packets so they can not perform well if they are

adapted into wireless broadcast model.

In a word, the existing k nearest neighbor, range and

RNN query approaches designed for random access disk

are not suitable for the wireless broadcast setting where

data are transmitted sequentially.

3 Index for spatial queries in wireless data

environments

To address the demand of spatial queries in road networks

through the data broadcast environments, we design a gen-

eral spatial index structure, namely ISW, to allow a client to

download as less as possible data for query processing which

can conserve the energy without significantly lengthening

the access latency. ISW can provide an effective guideline

for greatly reducing the search space, which is realized by its

reasonable organization and the pre-computed bounds.

In the following, we first introduce the index structure of

ISW, and then we propose the computation of the effec-

tively pre-computed bounds. At last, the cost model of

ISWis analyzed.

3.1 The structure of ISW

Generally, the road network is modeled as a weighted

directed graph G = {E, V, W}, where vi 2 V denotes a

conjunction node or vertex in the network, and eij 2 E

represents the edge connecting vi and vj in the network.

Given eij 2 E;wðeijÞ denotes the weight value of eij, where
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the weight can be distance, travel time, cost etc. The

objects are denoted as O ¼ fo1; o2; . . .; ong, which lie at

some conjunction nodes or edges of the road networks (as

the solid square in Fig. 2). In road networks, the network

distance between two objects is determined by the length of

the shortest path connecting two objects, which is denoted

as dN(vi, vj) between vi and vj. If there is an object oi in

the edge eij, then dN(oi, q) = min{dN(oi, vi) ? dN(q, vi),

dN(oi, vj) ? dN(q, vj)}, where dN(oi, vi)(dN(oi, vj)) denotes

the network distance from oi to vi(vj).

The query results are usually centralized in some small

domain, while searching the overall space will dramatically

affect the performance. Thus, we partition the space into

some disjoint regions in order to reduce the search space for

a query and subsequently reduce the volume of accessed

data. In the real world, the objects are usually not uniformly

distributed in the road networks. For example, the density of

restaurants is higher in downtown than in the industrial area.

Therefore, the straightforward method that partitions the

space into cells with the equal size leads to the density

imbalance of the cell containment and affects the benefits of

the partitions. We adopt the kd-tree partitioning [14, 23]

which is simple and effective. The kd-tree partitioning

method divides the whole space into several regions with the

equal number of objects, which will results in a lower tuning

time in average compared with the straightforward method.

As shown in Fig. 2, firstly the network is partitioned into

two regions by a straight line parallel to y-axis. In our case,

this line is denoted as x = x1 and it ensures that the left and

the right parts have equal number of objects. Then the left

part of the network is divided into two regions by y = y1,

and the right part of the network is divided into two regions

by y = y2. This process continues and alternates between

the two axes, until the desired number of regions

is reached. Figure 3 depicts the kd-tree structure

corresponding to the partitions of Fig. 2, where each leaf

node denotes a region and an intermediate node denotes a

line that is used to divide the upper-level space. For

example, the leaf node R1 denotes the region R1 and the

intermediate node x2 denotes that the child nodes are

divided by the line x = x2. ISW based on kd-tree is trans-

mitted in the breadth-first order, and the identifier of each

region is determined from the leftmost leaf to the right. For

example, the regions in Fig. 2 are identified from R1 to R16

according to the kd-tree structure in Fig. 3. Once the clients

receive the index, they can easily reconstruct the space.

The kd-tree partition is also adopted by Kellaris and

Mouratidis [14], which focuses on the shortest path com-

putation in road networks for wireless data broadcast. They

give a maximum/minimum distance table as the bounds,

which are effective and efficient for pruning unnecessary

cells when the shortest path computation is executed.

However, our ISW has two advantages compared with the

EB-index. Firstly, the ISW reduces the tuning time of the

client devices, because the ISW can prune more objects.

ISW provide tighter bounds than the EB-index, which can

prune more regions especially when the database is of large

size(will be illustrated in Sect. 3.2). By the ISW, we can

obtain the specified bounds for different query q, which is

important since we focus on location-dependent query. For

EB-index, the bounds may be the same if the positions of

q are at the same region. In the case that the region is large,

the bounds given by the EB-index will be coarse. There-

fore, the pruning power of ISW is much better than EB-

index when the cell is large. Secondly, the ISW shortens the

access latency compared with the EB-index, because less

data are needed to receive by the client devices. As illus-

trated above, the ISW has higher pruning power and more

regions can be pruned, which will reduce the volume of

data needed to be downloaded and hence the average

access latency is shortened.

Figure 4 illustrates the structure of ISW. Take the leaf

node which stores R14 as an example. The cardinality of the

objects inside this cell (R14.c) is also recorded. Besides, the

leaf node contains a pointer to the data of R14, which is

denoted by an offset set as the number of packets before the

data of R14 are broadcasted. The data store the adjacent list

Fig. 2 Partition the whole spatial networks into small cells which

contain equal number of objects

Fig. 3 kd-tree structure according to the partition of Fig. 2
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of objects inside each cell. The leaf node stores Nc (number

of cells) pairs of parameters for R14 and any other cell.

3.2 Effective bounds

Partitioning the overall space into cells provides a chance

for shrinking the search space, based on which effective

bounds can be proposed for pruning the unqualified cells.

We propose a new method for providing effective bounds

½u�ðq;RjÞ;uþðq;RjÞ� which are tighter than the maximum/

minimum distance bounds and ensure that no cells are

missed during pruning. Further, our bounds can restrict the

distance between the query point and the other cells, and

thus can be efficiently applied into pruning process.

For evaluating the bounds, we first define a pair of

parameters, namely g- and g? for Ri and Rj (1 B i,

j B Nc). Eqs. (1, 2) show the computation of the two

parameters:

g�ðRi;RjÞ ¼ min1� i;j�Nc

dNðoi
k; o

j
lÞ

dEðoi
k;RjÞ

( )

; ð1Þ

gþðRi;RjÞ ¼ max1� i;j�Nc

dNðoi
k; o

j
lÞ

dEðoi
k;RjÞ

( )

; ð2Þ

where oi
k denotes an object lying in Ri, oj

l denotes an object

lying in Rj, and dEðoi
k;RjÞ) denotes the Euclidean distance

between oi
k and any points in Rj. Notice that g-(Ri, Rj) is

different from g-(Rj, Ri) and vice versa. For instance,

dN(o2, q) = 8, dN(o2, o1) = 6 (as shown in Fig. 2), max

(dE(q, R3)) = 12, max(dE(o1, R3)) = 10, and hence g�ðR14;

R3Þ ¼ min 8
12
; 6

10

� �

¼ 0:6. Similarly, min(dE(q, R3)) = 6,

min(dE(o1, R3)) = 5, and hence gþðR14;R3Þ ¼ max 8
6
; 6

5

� �

¼ 1:33. For each pair of Ri and Rj, the values of g-(Ri, Rj)

and g?(Ri, Rj) are pre-computed and stored in the leaf node

of ISW, as shown in Fig. 4. When a query is issued, the

position of q is known, and therefore the bounds restricting

the network distance between q and any cell Rj can be

computed as follows.

u�ðq;RjÞ ¼ g�ðRi;RjÞ � minðdEðq;RjÞÞ ð3Þ

uþðq;RjÞ ¼ gþðRi;RjÞ � maxðdEðq;RjÞÞ ð4Þ

Continuing the above example, [g-(R14, R3), g?

(R14, R3)] = [0.6, 1.33] (as shown in Fig. 4), min(dE(q,

R3)) = 6 and max(dE(q,R3)) = 12, and the bounds of q to

R3 are ½u�ðq;R3Þ;uþðq;R3Þ� ¼ ½3:6; 15:96�. Lemma 1 and

Lemma 2 illustrate that minðdNðRq;RjÞÞ�u�ðq;RjÞ
�minðdNðq;RjÞÞ and maxðdNðq;RjÞÞ�uþðq;RjÞ�max

ðdNðRq;RjÞÞ, which ensures the pruning effect of

½u�ðq;RjÞ;uþðq;RjÞ�.

Lemma 1 For the query point q and the region Rj, the

bounds of ½u�ðq;RjÞ;uþðq;RjÞ� is tighter than [min(d-

N(Rq, Rj)), max(dN(Rq, Rj))], where Rq denotes the region

in which q lies.

Proof By Eqs. (1, 3), u�ðq;RjÞ ¼ g�ðRq;RjÞ � minðdEðq;
RjÞÞ ¼ min1� j�Nc

dN ðoq
k
;oj

l
Þ

dEðoq
k
;RjÞ

n o

� minðdEðq;RjÞÞ.
If q is located in Ri, then u�ðq;RjÞ ¼

min1� j�Nc

dNðoq
k
;oj

l
Þ

dEðoq
k
;RjÞ

n o

� minðdEðq;RjÞÞ. For two pairs of

nodes (oi, oj) and ðo0i; o0jÞ, if dNðoi; ojÞ� dNðo0i; o0jÞ, then

we suppose that
dN ðoi;ojÞ
dN ðo0i;o0jÞ

� dEðoi;ojÞ
dEðo0i;o0jÞ

. Such assumption is made

according to the observation that the network distance

connecting two points are much longer than the straight-

line distance connecting two points especially when the

distances are large. Therefore,
dN ðoq

k
;oj

l
Þ

minðdN ðRq;RjÞÞ �
dEðoq

k
;oj

l
Þ

minðdEðq;RjÞÞ )

min1� j�Nc

dN ðoq
k
;oj

l
Þ

dEðoq
k
;RjÞ

n o

� minðdEðq;RjÞÞ�minðdNðRq;RjÞÞ.
Hence, u�ðq;RjÞ�minðdNðRq;RjÞÞ.

Likewise,
maxðdN ðRq;RjÞÞ

dN oq
k
;oj

lð Þ � maxðdEðq;RjÞÞ
dE oq

k
;oj

lð Þ , and uþðq;RjÞ ¼

max1� j�Nc

dNðoq
k
;oj

l
Þ

ðdEðoq
k
;RjÞÞ

n o

� maxðdEðq;RjÞÞ�maxðdNðRq;RjÞÞ.
Therefore, minðdNðRq;RjÞÞ�u�ðq;RjÞ�uþðq;RjÞ�max

ðdNðRq;RjÞÞ and the bounds of ½u�ðq;RjÞ;uþðq;RjÞ� are

tighter than [min(dN(Rq, Rj)), max(dN(Rq, Rj))]. h

Lemma 2 For the query point q and the region Rj;

u�ðq;RjÞ�min dN q; oj
k

� �� �

oi
k 2 Rj

� �

, and maxðdNðq; oj
kÞÞ

ðoi
k 2 RjÞ�uþðq;RjÞ.

Proof By Eqs. (1, 3), u�ðq;RjÞ ¼ g�ðRq;RjÞ � minðdE

ðq;RjÞÞ ¼ min1� j�Nc

dN oq
k
;oj

lð Þ
dE oq

k
;Rjð Þ

� �

� minðdEðq;RjÞÞ. Because

min1 � j � Nc

dN ðoq
k
;oj

l

dEðoq
k
;RjÞ

n o

� minðdN ðq;RjÞÞ
minðdEðq;RjÞÞ ; u�ðq; RjÞ � minðdN

ðq; oj
kÞÞ.

Fig. 4 Content of ISW
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Likewise, uþðq;RjÞ�maxðdNðq; oj
kÞÞ and u�ðq;RjÞ�

minðdNðq; oj
kÞÞ ðoi

k 2 RjÞ � maxðdNðq; oj
kÞÞðoi

k 2 RjÞ �
uþðq;RjÞ. h

The value of [g-(Ri, Rj), g?(Ri, Rj)] can be computed by

traversing all the objects inside Ri and Rj, and the time

complexity is the same as the computation of maximum/

minimum distance bounds.

3.3 Cost model

We conduct a performance analysis based on the assump-

tion that the clients tune into the channel randomly and

each object has the same probability to be accessed. In

order to facilitate the following analysis, Table 1 lists the

symbols and their definitions. We utilize the number of

access data packets to denote the average access latency

and the average tuning time.

Theorem 1 The access latency of a spatial query can be

represented as follows:

Acl ¼ 1

2
I þ D

m

	 


þ I þ D

m

	 


� i �
X

m

i¼0

Pi þ I þ D

2m

	 


;

ð5Þ

Pi ¼
0 i ¼ 0; . . .; s� 1

Cs�1
i�1

1
m

� �s
i ¼ s; . . .;m:

�

ð6Þ

Proof The first term of Eq. (5) is the duration of the initial

probe which starts when a client tunes into the broadcast

channel till the moment the index is received. In average, it

takes 1
2

I þ D
m

� �

time.

As defined in Table 1, in order to receive necessary data

for processing a spatial query such as the kNN, range or

RNN query, we must to access s data blocks. We denote

the last one of s data packets as slast, and then the

probability that slast resides at Bi can be represented by

Eq. (6). The slast data block can not reside at Bi when

i ¼ 0; . . .; s� 1. The probability that slast resides at Biði ¼
s; . . .;mÞ is Ps ¼ 1

m

� �

1
m�1

� �

. . . 1
m�s

� �

. Because

s� m;Ps ¼ 1
m

� �s
. Therefore, the expectation value that

slast resides at Bi can be represented as i*
P

k
i Pi. Conse-

quently, before we access the last object, I þ D
m

� �

� i �
Pm

i¼0 Pi value of data have been disseminated.

The term of I þ D
2m represents the time consumed by the

final probe process. According to the above three parts, we

can infer the average access latency as in Theorem 1. h

Theorem 2 The average tuning time of a spatial query

can be represented as:

T ¼ Ti þ Td; ð7Þ

Ti ¼
m

mI þ D
� ðI þ 1Þ þ mðI � 1Þ þ D

mI þ D
� ð1þ IÞ ¼ I þ 1;

ð8Þ
Td ¼ s: ð9Þ

Proof The average tuning time T includes Ti and Td, where

Ti denotes the time to download the index and Td denotes the

time to download the relative data for the queries. When a

user issues a spatial query, the client tunes into the broadcast

channel, and searches for the root of the index. Since the

client can starts to probe the broadcast channel at any time,

we analyze the first phase by two cases:

Case 1 The first visited data packet is exactly the one

before the packet containing the root node of the index. In

this case the client can directly receive the index. The

probability of this case is m
mIþD, and the average tuning time

of this case is m
mIþD � ðI þ 1Þ (suppose that the initial probe

costs one data packet).

Case 2 The first visited packet is a data packet or an

index bucket excluding the root node. The client needs to

wait for the next root node of the index. This has a prob-

ability of
mðI�1ÞþD

mIþD , and average tuning time is
mðI�1ÞþD

mIþD �
ð1þ IÞ (suppose that the initial probe costs one data

packet).

For the phase of downloading data, the client tunes in

the doze mode until the required data arrives, and then

tunes in the active mode again to download the relative

data. Suppose that the average data packets of the spatial

query is s. Thus, the tuning time is represented by

Eq. (7). h

Choosing a suitable partition for the space is an

important problem for spatial queries via wireless data

broadcast. If the partition number is too small, then the

Table 1 Commonly used symbols

Symbol Definition

N Number of objects

Nc Number of cells

D Size of data used to include all the objects

Information (number of data packets)

Acl Average access latency of a spatial query

Tun Average tuning time of a spatial query

Bi The i-th data block in a cycle, and size of Bi

Is equal to D/m

Pi Probability that some desired data reside

In Bi

I Size of ISW (number of data packets)

s Number of data packets needed to be accessed

When a spatial query is executed
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effect of pruning is limited and the tuning time is influ-

enced as well. If the number of cells is too large, then the

size of index is large and the access latency will be long.

Therefore, we need to choose a suitable partition for

achieving the optimal tradeoff between tuning time and

access latency. In order to choose a suitable value for

partitioning the space, we have to consider two factors:

the size of the road networks and the volume of objects.

For example, if the road network and the number of

objects are large, we had better partition the space into

more regions. Note that in theory, the optimal partition

number can not be efficiently evaluated. Alternatively,

once a new data set is given, we need to do some

experiments to choose a suitable value by which the

system can acquire optimal performance. Then, this size is

utilized to the system until new dataset is given. We will

analyze the proper partition number in our experiment

section.

4 k nearest neighbor query processing

Given a query point q, and a spatial dataset O, a k nearest

neighbor (kNN) query retrieves the k objects ofO closest to

q according to the network distance. This section presents

an efficient algorithm for kNN queries, based on ISW.

4.1 Filter by ISW

Since a kNN query only cares about the k objects with the

minimal network distance from q, efficient algorithms

should avoid the retrieval of any unnecessary objects.

Thus, an important goal for processing kNN search is to

obtain a small search range in the estimate phase in order

to reduce the tune-in time. We develop efficient kNN

query processing algorithm based on ISW. The detailed

algorithm comprises two steps: (1) The client downloads

the index, and analyzes the index to determine the bound

dk that contains at least k nearest neighbors of q. (2) The

client downloads all the necessary data according to the

precious step, and then examines the candidate set to

obtain the exact answer set. We first develop Lemma 3

for filtering.

Lemma 3 Given a query point q and a cell Ri, if

u�ðq;RiÞ[ dk, then any objects in Ri will not appear in

the answer set, where dk is the minimum of uþðq;RiÞði ¼
1; . . .;NcÞ satisfying that Ri and the regions dominated by

Ri contain at least k objects.

Proof For q, we define that Ri dominates Rj (denoted as

Ri 	 Rj), if uþðq;RiÞ�u�ðq;RjÞ. If u�ðq;RiÞ[ dk holds,

the object oi
tðoi

t 2 RiÞ can not belong to the k nearest

neighbors of q since there always exist at least k objects

with distances smaller than or equal to dk. Therefore, the

answer set kNN(q) will not contain such an oi
tðoi

t 2 RiÞ
according to the kNN definition. In other words, the fact

that ot
i is the k nearest neighbors of q implies

u�ðq;RiÞ� dkðoi
t 2 RiÞ. h

We utilize the bound dk to eliminate the regions that do

not contain any kNN of q. It is interesting to note that, the

bound of dk is not a circle around q, while dk denotes a

range which is represented by the network distance. If any

region Rj with u�ðq;RjÞ[ dk, then Rj can be safely pruned

because any objects lie in Rj will not be the result. As

depicted at Section 3, for each region Ri and Rj, the

[g-(Ri, Rj), g?(Ri, Rj)] have been pre-computed and stored

in the corresponding leaf node. With the location of q and

the pre-computed information, the bounds of Ri and q can

be computed as ½u�ðq;RiÞ;uþðq;RiÞ�. This pair of bounds

can be used for determining the suitable dk. For regions

Ri, Rj, and q, if uþðq;RiÞ�u�ðq;RjÞ;Ri and any region

RlðRl 	 RiÞ contain at least k objects, then at least k objects

are nearer to q than objects in Rj. Similarly, at least k

objects are nearer to q than objects in Rj. According to this,

if dk is determined, then a region Ri does not have to be

considered if u�ðq;RjÞ[ dk. Suppose uþðq;R3Þ is

dkðuþðq;R3Þ ¼ 15:96 as computed in Section 3.2), and

u�ðq;R12Þ ¼ 16:34. Because u�ðq;R12Þ[ dk;R12 can be

safely pruned. Two Lemmas are proposed for quickly

determining the value of dk.

Lemma 4 For the current dk, if A Ri, uþðq;RiÞ\dk, and

Ri contains at least k objects, then dk can be updated as

uþðq;RiÞ.

Proof If Ri contains at least k objects, then there are at

least k objects whose distances to q are smaller than dk

due to uþðq;RiÞ\dk. Because dk is defined as a safe

bound that contains at least k objects which have the

shortest distance from q, the value of dk can be safely

updated as uþðq;RiÞ. h

Lemma 5 For the current dk; 9Ri;Rj;u�ðq;RiÞ\
u�ðq;RjÞ\dk;uþðq;RjÞ\dk;Ri contains l objects and Rj

contains l0 objects. If Ri dominates Rj and lþ l0[ k, then dk

can be updated as uþðq;RjÞ.

Proof If Ri dominates Rj, then uþðq;RiÞ\u�ðq;RjÞ
\uþðq;RjÞ\dk. Suppose an object ok

i locates in Rj, then

any objects ok
i residing in Ri is nearer to q. According to Ri

containing l objects, if Rj contains k - l objects, then

uþðq;RjÞ contains at least k objects that have shorter dis-

tance to q than the objects outside uþðq;RjÞ. If lþ l0[ k,

then dk can be updated as uþðq;RjÞ. h

484 Wireless Netw (2013) 19:477–494

123



4.2 kNN query processing

Figure 5 depicts the procedure of a kNN query. Once the

user invokes a kNN query, the client device tunes in

the broadcast channel, and receives the index. Through the

analysis of the index, the client learns which cells may

contain the results, such as the grey regions in Fig. 5. The

time when to wake up and receive the information is

determined by the pointers in the leaf nodes, and by them

the client device receives the required data and executes

the query.

In order to compute the distance between q and the

object oi, the intermediate nodes in path(q, oi) (path from

q to oi is denoted as path(q, oi)) and the distance of each

interval between two nodes are also needed to be received.

Lemma 6 illustrates that by our pruning strategies all

intermediate nodes for computing kNN are also received.

Lemma 6 8o 2 C, if dNðo; qÞ\dk; 8o0 2 pathðq; oÞ
! o0 2 C.

Proof Because o0 2 pathðq; oÞ; dNðo0; qÞ\dNðo; qÞ\dk.

Suppose o0 resides at R0i, then u�ðq;R0iÞ\dNðo0; qÞ\dk, so

objects reside at R0i are also in candidate set C. h

Algorithm 1 demonstrates the detail steps of kNN query

processing. As the client device receives ISW, it first ini-

tializes a heap with the root node of ISW (line 2). To

accelerate the query processing, this algorithm next esti-

mates a candidate set by dk to prune the unnecessary

regions (line 3–15). According to dk, the client device can

determine which regions are necessary for the query pro-

cessing, and it finds the needed data by some pointers. In

the second step, the client device receives the necessary

data as pre-determined, namely, the region Ri which sat-

isfies u�ðq;RiÞ\dk are needed to be received (line 24).

The objects in these regions are put into the candidate set C

(line 25). After all necessary data are received, the client

device executes the kNN query (line 28) locally by the IER

method. As illustrated by Lemma 6, for any object oj 2 C,

if dN(o, q) \ dk, the nodes that pass by the path(q, oj) are

also in C. Hence, kNN can be computed inside C.

5 Range query processing

Given a query point q, a value r and a spatial dataset O,

a range query retrieves all objects from O that are

within network distance r from q, that is, RQðq; rÞ ¼
foijoi 2 O; dNðoi; qÞ\rg. In the Euclidean space, the range

queries are easily answered by comparing the coordinates

of objects with the bounds of query windows. However, in

road networks, whether the object o belongs to RQ(q, r) is

determined by the network distance between o and q. The

shape of the query window is irregular and the results are

difficult to be acquired.

The naive solution for range queries over road networks

first examines each segments within r from q and then puts

the encountered object o into the result set if dN(o, q) \ r.

Obviously, this solution would traverse the whole segment

set and the cost is very large. We propose a filter-refine-

ment mechanism for efficiently executing the range queries

by ISW, which greatly reduces the volume of data reception

and reduces the computations. Firstly, the client tunes in

the broadcast channel and receives the index, and analyzes

the index to prune unnecessary cells. The cells can be

Fig. 5 kNN query processing

Algorithm 1 kNN query processing
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classified into three types according to the value of

½u�ðq;RiÞ;uþðq;RiÞ� with r, where ½u�ðq;RiÞ;uþðq;RiÞ�
denote the bounds of distance from q to the cell Ri. If

u�ðq;RiÞ[ r, then Ri can be safely pruned (Lemma 7). If

uþðq;RiÞ\r, then 8oi
k 2 Ri can be put into the result set

(Lemma 8). If u�ðq;RiÞ\r and uþðq;RiÞ[ r, then Ri

should be put into the candidate set. The data of the second

and the third type of cells should be received for answering

queries. Secondly, the client analyzes the candidate objects

by examining each path(o, ni), where ni is a point on a path

and dN(o, ni) = r. All objects in segment path(o, ni) are put

into the result set.

Lemma 7 For any region Ri, if u�ðq;RiÞ[ r, then Ri

can be safely pruned.

Proof For any object ok
i in Ri; dNðq; oi

kÞ[ u�ðq;RiÞ[ r,

and hence Ri can be safely pruned. h

Lemma 8 For any region Ri, if uþðq;RiÞ\r, then the

objects ok
i within Ri can be put into the result set.

Proof For any object ok
i which resides in Ri; dNðq; oi

kÞ
\uþðq;RiÞ\r. Therefore, ok

i is the result. h

Figure 6 shows the filter step, where r = 9, R1, R2,

R4, R5, R6, R7, R10 and R11 can be pruned according to the

Lemma 7. Due to uþðq;R14Þ ¼ 7:86\r, the objects lie in

R14 can be directly put into the result set. Besides,

R3ð½u�ðq;R3Þ;uþðq;R3Þ� ¼ ½3:6; 15:96�Þ;R8;R9;R12;R15

and R16 should be received as the candidate set. Figure 7

shows the refinement step of range queries, where several

segments are examined and the final results are returned.

Algorithm 2 gives the detail steps of the range queries.

Firstly, a client device receives the index and looks up the

bounds of ½u�ðq;RiÞ;uþðq;RiÞ�. According to Lemma 7,

the regions whose bound of uþðq;RiÞ are larger than r can

be safely pruned (line 2–4). According to Lemma 8, the

regions with the bound of u�ðq;RiÞ smaller than r can be

received (line 5–7), and the objects residing in these

regions should be put into the result set (line 10–12). The

other regions whose bound of u�ðq;RiÞ are smaller than r

and the bound of uþðq;RiÞ larger than r should be received

as the candidate set C (line 8). For regions in the candidate

set, all objects should be received and the distances from

them to q are computed and compared with r (line 13–17).

6 Reverse nearest neighbor query processing

Reverse nearest neighbor (RNN) query is very useful in

applications such as the decision support and the resource

allocation. Given a dataset O and a query point q, a RNN

query retrieves all objects o 2 O that have q as their nearest

neighbor. The naive method for searching RNN is

traversing the network from q, and searching the nearest

neighbor for each encountered object o 2 O. If there is no

o0 satisfying dNðo; o0Þ[ dNðo; qÞ, then o 2 RNNðqÞ. The

number of objects in RNN(q) is not fixed, and the distance

from o to q may be very far, so every object in the road

networks has to be examined.

We adopt ISW to support the RNN query and to opti-

mize the system performance. It is difficult to determine a

bound for RNN query, but two Lemmas can be utilized to

prune some unqualified regions and further reduce the

tuning time.

Lemma 9 For regions Ri and Rj, if uþðRi;RjÞ\
u�ðq;RiÞ, then Ri can be safely pruned.

Proof uþðRi;RjÞ is defined as gþðRi;RjÞ � maxðdEðRi;

RjÞÞ. Because gþðRi;RjÞ ¼ max
dN ðoi

k ;o
j
l
Þ

dEðoi
k
;RjÞ

n o

; gþðRi;RjÞ�

maxðdEðRi;RjÞÞ�maxðdNðoi
k; o

j
lÞÞ. For any object o which

Fig. 7 Refinement step for range query

Fig. 6 Filter step for range query
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in Ri, if uþðRi;RjÞ\u�ðq;RiÞ, then there is an object

o0 which in Rj that dNðo; o0Þ �maxðdNðoi
k; o

j
lÞÞ�

uþðRi;RjÞ\u�ðq;RiÞ�minðdNðq; oi
kÞÞ� dNðo; qÞ. Due to

dNðo; o0Þ\dNðo; qÞ, the nearest neighbor of o could not be

q, and the RNN of q would not contain o. Hence, Ri can be

safely pruned. As shown in Fig. 8, uþðR6;R8Þ\u�ðq;R6Þ,
so R6 can be pruned. h

Lemma 10 For the region Ri, if uþðRi;RiÞ\u�ðq;RiÞ
and Ri contains at least two objects, then Ri can be safely

pruned.

Proof Suppose o and o0 are located in Ri; dNðo; o0Þ
� maxðdNðRi;RiÞÞ � uþðRi;RiÞ\u�ðq;RiÞ � minðdNðq;
oi

kÞÞ � dNðo; qÞ; dNðo; o0Þ � maxðdNðRi;RiÞÞ � uþðRi;RiÞ
\u�ðq;RiÞ�minðdNðq; oi

kÞÞ� dnðo0; qÞ, so q can not be

the nearest neighbor of o or o0. Hence, Ri can be safely

pruned. As shown in Fig. 9, uþðR3;R3Þ\u�ðq;R3Þ, so R3

can be pruned. h

Algorithm 3 describes the procedure of RNN query

algorithm, which is executed in three steps. The first step

analyzes ISW and prunes some regions by Lemmas 9 and

10 (line 4–8). The second step receives the objects in pre-

selected regions, and these objects form a small size can-

didate set C (line 11, 12). The third step refines the can-

didate set by examining the nearest neighbor of each

object. To accelerate the local query, the lazy algorithm

[22] is adopted.

7 Performance evaluation

This section evaluates the performance of ISW for sup-

porting kNN queries, range queries and RNN queries. All

the experiments were executed on a PC with 2.5 GHz CPU

and 2 GB main memory and the algorithms are imple-

mented with C??. Each set of experiments are executed

on the real road network dataset, CA, obtained from the

Digital Chart of the World Server. In particular, CA cap-

tures the road networks in California, and contains 21,047

nodes and 21,692 edges [24]. The packet size is set to 128

bytes. We assume two types of bandwidth for the broadcast

channel, 2 Mbps and 384 Kbps respectively, which are

typical in 3G networks for static and moving devices.

In order to compare with ISW index, we also evaluate

the search algorithm based on the following two indexing

techniques and test their performance.

Fig. 9 Example for Lemma 10

Fig. 8 Example for Lemma 9

Algorithm 2 Range query processing
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• EB-index [14], which adopts the same space partition-

ing mechanism with ISW, and the maximum/minimum

distance table is computed as the bounds.

• R-tree. We employ the (1, m) interleaving scheme, and

adopt the best-first manner for kNN search.

We first test the effect of the region number on the index

size. We set the number of objects as 5K and vary the

number of regions from 32 to 512. The size of both ISW

and EB-index increases with the increasing number of

regions as shown in Fig. 10. The size of ISW is a litter

larger than that of EB-index, because ISW stores two pairs

of parameters for a pair of cells while EB-index stores a

pair of bounds for a pair of cells. The size of R-tree has no

relationship with the region number so that the index size

does not change with the increasing region number.

7.1 Evaluation of kNN queries

In this section we compare ISW against EB-index and

R-tree for processing kNN query, in terms of tuning time

and access latency, respectively.

The first experiment studies the tuning time for kNN

queries as a function of region number, which is shown in

Fig. 11 (k is set to 50, and the number of objects is set to

5K). The tuning time equals to the volume of data packets

received by the clients. As the region number increases, the

volume of packets received by the clients with EB-index

and ISW first reduce then keep stable. The reason is

threefold. Firstly, with the smaller granularity of region, the

clients can receive less data through the pruning methods.

Secondly, the finer partition of space results in that many

data packets are not full, which weakens the benefits of the

smaller region. Thirdly, larger number of regions will

result in larger size of index. Therefore, both ISW and EB-

index perform best when the number of regions is set as

128. The tuning time of ISW is a little lower than that of

EB-index because the pruning strategy of ISW is more

powerful. The tuning time of R-tree is stable and is much

higher than the others (We do not draw the line of R-tree

because it is too high than the other two indexes), because

the organization of R-tree does not take into account the

space partitioning.

Figure 12 illustrates the tuning time of kNN queries for

various database sizes, ranging from 1 to 10K objects. The

performance of ISW is better than EB-index due to its more

effective pruning bounds. As the data size increases, the

density of objects increases and hence more data are nee-

ded to be received. R-tree receives most data in a fixed area

which increases slowly with the increasing data size, so the

tuning time increases slowly as well (Due to the space

limitation, the line of R-tree is not painted).

Figure 13 investigates the effect of the query selectivity

(k) on the tuning time for kNN queries. As k increases from

20 to 500, the tuning time of all indexing techniques grows

due to the larger search region and result size. ISW is

consistently better than its competitors.
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Figure 14(a, b) depicts the access latency for kNN

queries as a function of region number, under 2 Mbps

(Fig. 14(a)) and 384 Kbps (Fig. 14(b)) broadcast channels

respectively. The latency equals to the time interval

between the first time the clients tune in the broadcast

channel to the time the clients receive the last data for a

query. As the region number increases, the access latency

of EB-index and ISW first reduce then increase slowly.

When the space is partitioned into 128 regions, the system

performs best. Even though the index segment is smaller

when the region number is small, the latency is larger

because the clients need to receive more objects. On the

other hand, a finer partition means a larger index and hence

lengthens the broadcast cycle and consequently the access

latency. The performance of ISW is better than EB-index.

Figure 15(a, b) illustrates the effect of datasize on the

access latency under 2 Mbps (Fig. 15(a)) and 384 Kbps

(Fig. 15(b)) broadcast channels respectively. The access

latency of all indexing techniques increases as the data size

increases from 1 to 10 K. The access latency of ISW and

EB-index is much lower than that of R-tree because they

can execute the queries in one cycle, while the methods

adopting R-tree have backtracking and consume more than

one broadcasting cycle.

Figure 16(a, b)) shows the effect of k on access latency

under 2 Mbps (Fig. 16(a)) and 384 Kbps (Fig. 16(b))

broadcast channels respectively. As the k increases, so does

the latency. The reason is that more objects are needed to

be received with the increasing k. ISW performs better than

EB-index due to its more effective bounds. The access

latency by adopting R-tree are much larger than by the

other index. The reason is, with the increasing k, the

required data and the volume of backtrack increase.

7.2 Evaluation of range queries

In this subsection we investigate the performance of the

tuning time and access latency for the range query. As shown

in Fig. 17, with the increasing number of regions, the tuning

time by adopting both EB-index and ISW first increases

significantly and then increases slowly. The reason is the

same with Fig. 11. The tuning time by adopting ISW-index

is less than the EB-index, and this graph describe the dif-

ference of a single query. Therefore, if the clients invoke

queries frequently, the saving power is considerable.

Figure 18 depicts the effect of data size on tuning time.

The tuning time by adopting R-tree is significantly larger

than by ISW and EB-index because the search space can not

be pruned by R-tree and all data are needed to be received.

The tuning time of both ISW and EB-index increases when

data size increases from 1K to 10K. As the data size

increases, the density of objects increases, so that for the

same query more data are needed to be received for ISW

and EB-index. As the involving data increases, more
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unfilled packets are needed to be received, leading to

increased tuning time.

We furthermore test the effect of the query range on the

tuning time in Fig. 19. We vary the range from 2 to 15 %

of the whole space and set the number of objects to 5K.

The tuning time by adopting ISW increases with the

increasing range, because larger range means more regions

are needed to be downloaded. The tuning time by adopting

R-tree is large and stable due to it receives all data no

matter how large the range is.

We illustrate the access latency with the function of

region number for the range query, under the 2 Mbps

(Fig. 20(a)) and 384 Kbps (Fig. 20(b)) broadcast channels

respectively. The latency of ISW and EB-index acquire the

minimum value when the region number equals to 128.

The reason is the same with the effect of region number on

latency for kNN query.

Figure 21 shows the access latency for various data

sizes ranging from 1 to 10 K, under the 2 Mbps

(Fig. 21(a)) and 384 Kbps (Fig. 21(b)) broadcast channels

respectively. The latency of ISW and EB-index increases

slowly. As the density of objects increases with the

increasing data size, the number of objects inside the same

range increases with the data size. The range is very small

comparing to the whole search space so that the increasing

objects inside the range do not significantly increase the

latency of ISW and EB-index.

Finally, we test the effect of the query range on the

access latency for range queries, under the 2 Mbps

(Fig. 22(a)) and 384 Kbps (Fig. 22(b)) broadcast channels

respectively. As the query range increases from 2 to 15 %

of the whole space, the latency of all algorithms lengthens

due to the larger search region and result size. ISW and

EB-index are consistently better than R-tree, for the reason

that both ISW and EB-index can provide pruning strategies

and R-tree can not.

7.3 Evaluation of RNN queries

In this subsection we study the performance of tuning time

and access latency for RNN query. Figure 23(a) depicts the
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tuning time of RNN queries by adopting EB-index, ISW

and R-tree. ISW performs better than any other index with

varying region number. The main reason is, through the

partition of the whole space, some unqualified regions are

pruned and the tuning time is reduced by ISW index.

Figure 23(b) shows the tuning time for RNN queries with

the varying data size. Likewise, ISW performs better than

the other indexes because ISW can prune more data that are

not the query results.

In the next set of experiments, we compare ISW with

other indexes in RNN queries with the varying number of

objects (data size) from 1 to 10K. The results are shown in

Fig. 24(a, b). We can observe that the access latency by

adopting ISW is much lower than others. The main reason

is that the methods adopting ISW can execute the queries in

one cycle, while the methods adopting R-tree have back-

tracking and consume more than one broadcasting cycle.

Moreover, the bounds of ISW are tighter than those of

EB-index.

Lastly, we illustrate the access latency with the change

of the region number for the range query, under the

2 Mbps (Fig. 25(a)) and 384 Kbps (Fig. 25(b)) broadcast

channels respectively. The access latency of ISW is lower

than that of EB-index and R-tree. And the latency of ISW

and EB-index acquire the minimum value when the region

number equals to 128. The reason is the same with the
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effect of the region number on the latency for the kNN

query and range query.

8 Conclusions

This paper addresses the problem of answering kNN, range

and RNN queries in road networks via broadcast channels.

A new index structure based on kd-tree, namely ISW-index,

is proposed to support the above spatial queries. For the

query point q and any cell, ISW provides a pair of distance

bounds, which is effective and powerful for pruning the

search space. In this way, ISW can present a basic and

general framework for processing spatial queries, and

algorithms for kNN, range and RNN queries, based on

ISW, are thus separately developed. Finally, we demon-

strate the effectiveness and efficiency of our index tech-

nique and spatial query methods through the theoretical

analysis and experiments.

In the future, we will design optimized mechanism for

efficiently executing continuous spatial queries in spatial

networks via broadcast channels.
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