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Abstract Recent developments with the integration of

new vision capabilities into the wireless sensor devices

have resulted in the necessity of investigating the behavior

of well known image quality evaluation techniques in

Wireless Multimedia Sensor Networks (WMSN). Wireless

sensor devices can collect process and evaluate image data

with a camera module. These devices can also monitor the

image quality in order to take some adaptive precautions at

the communications layer protocols and thus guarantee

application layer quality requirements. In order to evaluate

the transmitted image quality results more accurately, it’s

imperative to analyze the factors which lead to change in

behaviors of existing image quality evaluation techniques.

In this work, the effect of the transmission distortions,

packet size, link and node correlation on the image quality

evaluation are highlighted. The success of prevalent image

quality metrics is also examined with emphasis on whether

these metrics can reflect implicitly the region of interest

(ROI) information in an image. Furthermore, a simple

metric is proposed to estimate an image quality on the fly

by considering the ROI parts of the image and using only

the average of the packets and their priority level. This

study leads to explore smart ways for the adaptation of the

communication protocols to the wireless environment.

Keywords Image quality � PSNR � WSNR � VIF � Block

based weighted PSNR � ROI � Region of interest �Wireless

Sensor Networks � WSN � WMSN � Correlation

1 Introduction

With the integration of new multimedia capabilities into

wireless sensor devices, Wireless Multimedia Sensor Net-

works (WMSN) has gained more attention of the research

community [1, 2]. Multimedia enabled sensor nodes can

collect and transmit multimedia data (audio, image, video)

from lossy environment. These networks provide a wide

range of applications from environmental applications, such

as animal habitats, building monitoring, to surveillance

systems such as locating missing people, border monitoring

and identifying criminals. Further examples of practical

applications for WMSN can be found in [1, 3]. Efficiently

gathering and transmitting data in order to satisfy the

application layer requirements in WMSN is imperative.

Many studies related to multimedia transmission in WMSN

are presented [1, 4, 5]. Due to the rigorous reliability demand

of multimedia transmission over wireless media, applica-

tion-specific requirements are also addressed in [6–8].

During transmission of an image over WMSN, image

packets may be subject to losses due to channel impair-

ments, node failures etc. This dynamic nature of the

wireless communication causes packet losses, which

noticeably affect the perceptual quality of the application.

Few studies consider the impact of the packet loss on

multimedia quality [5, 9–12]. Various different communi-

cation protocols are studied to increase the performance of

the multimedia transmission in WMSN [13–16]. However,

few of them have considered the impact of the used image

quality evaluation metric on obtained communication

performance [5, 9, 17]. Because of low complexity, peak

signal to noise ratio (PSNR) is widely used in the perfor-

mance of the communication protocols [17, 18]. However,

some studies have presented that PSNR poorly correlates

with subjective image quality [19]. Hence, in order to
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overcome the shortcomings of the PSNR, the other well

known metrics are used [5, 9, 20]. At this point, the per-

formance results of the studies should be comparable with

the ones which are obtained with alternative metrics.

In wireless transmission, nodes and links have tempo-

rally correlated reception which causes consecutive packet

loss. These losses are more harmful than the random packet

losses in the image. In this context, the effect of the varying

packet size should also be investigated in image evaluation

process. In the image, some portions of the image may hold

more information about the environment than the other

parts. This area is called as ROI which should be trans-

mitted more reliably. In order to investigate the perfor-

mance of the communication accurately, the used image

quality assessment (IQA) metric should reflect the effect of

the ROI corruption on its evaluation result [21]. Although

many image processing studies are focused in ROI concept,

few studies are performed to consider the effects on ROI in

image communications [22].

Considering the above, common image quality evalua-

tion metrics are analyzed to present their impact on image

evaluation process in wireless multimedia applications. In

this paper, transmitted image is distorted in two ways: (1)

Independent errors: The channel errors are randomly dis-

tributed over the image (2) Bursty errors obtained from real

testbed loss patterns: They are used to present the link and

node correlation effect on the received image. Many of the

well known image quality methods are used on the dis-

torted image in order to evaluate received image quality.

Then, the behavior of the IQA metrics are shown in terms

of ROI awareness, varying packet size and link and node

correlation effect. In the light of the above mentioned

investigations, the network image transmission perfor-

mance is also given in terms of quality, delay and energy

for varying number of flows.

The rest of the paper is organized as follows: Section 2

introduces related work. Section 3 describes the models and

assumptions. Section 4 presents the evaluation of the image

quality metrics in terms of correlation and packet size.

Section 5 presents the performance of the MMSPEED

routing protocol in terms of image quality, delay and energy.

Finally, conclusion and future work is given in Sect. 6.

2 Related work

When transporting an image over a wireless channel,

transmitted data are exposed to losses or errors due to

channel impairments. Wireless link quality fluctuates dra-

matically over time, dependent on the antenna’s radiation

characteristic, the distance between nodes, diffraction,

scattering and other inconveniences. This dynamic nature

of the wireless communication causes packet loss during

communication. In wireless transmission, links have tem-

porally correlated reception. Hence, packet losses are fol-

lowed by a group of consecutive successful transmissions

or vice versa, as given in Fig. 1. However, in the simula-

tions, the packet losses over different links are independent

random variables as shown in Fig. 2. This definitely eases

up the analytical modeling of the energy efficiency and

robustness, on the other hand, may be a strong assumption

for realistic sensor networks. Analyzing the effect of packet

loss pattern on the reconstructed multimedia quality is

critical for designing and accurately predicting the per-

formance of multimedia communication.

The effect of the packet length on energy and through-

put is researched in many studies [23–25]. A few studies

considered the impact of packet loss pattern and burst

length in multimedia communication [26, 27]. In [27], the

authors examine the distortion for independent packet loss

and model the mean-squared error (MSE) expected dis-

tortion for multiple losses as being proportional to the

number of losses that occur, average packet error rate. This

model is acceptable when the losses can be considered to

have independent effects where packet inter-arrival times

are large enough [28]. In [26], to estimate the expected

distortion, proposed model explicitly considers the effect of

different loss patterns, including burst losses and inde-

pendent (non-consecutive) losses. The study shows that

burst loss pattern generally produces a larger distortion

than an equal number of independent losses in video

communication. Apostolopoulos [29] also supports that the

length of a burst loss has an important effect on the

resulting distortion, where longer burst may cause signifi-

cantly more damage in the communication.

Fig. 1 Transmitted images at different packet error rates in testbed

Fig. 2 Transmitted images at different packet error rates in

simulation
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Image transmission algorithms should fulfill the per-

ceptual quality requirements of wireless image transmis-

sion. In order to judge the quality of the transmitted image

in a more realistic manner, proper metrics are required to

measure the perceptual quality. In transmission of the

image, communication parameters such as packet error rate

and signal to noise ratio may not present the transmitted

image quality. Hence, the communication protocols may

require using an image quality metric to provide end to end

perceptual quality by human visual system (HVS). By

doing so, in addition to providing better correlation with

human perceived quality, image quality monitoring and

resource management for wireless imaging services is also

required. There are three types of image quality assessment

methods in image processing algorithms: No-Reference

(NR) [30], Reduced-Reference (RR)[31], and Full-Refer-

ence (FR) metrics [32]. This classification is based on

availability of the original image which is used to compare

to the distorted image. As no-reference metrics try to

model the judgment of image quality without the original

image, reduced reference metrics rely on the low band-

width information extracted on the original image. Most

common approaches for quality measurement are FR

metrics which are frequently studied in the literature [33,

34].

A well known FR metrics is PSNR which is used as an

image quality metric for evaluating image processing

algorithms. Many study use PSNR due to its simplicity and

widespread usage [5, 18, 35]. These studies also try to

avoid loss of generality by using PSNR. However, it is

known that PSNR does not always rank quality of an image

in the same way that a human being would [36]. Hence, in

order to overcome shortcomings of the above mentioned

measures, we use additional quality metrics such as

weighted signal noise ratio (WSNR) [32], visual informa-

tion fidelity (VIF) [37], structural similarity index (SSIM)

[38] to compare their image quality prediction performance

in WMSN. Here, depending on the communication layout,

image loss pattern and burst length, our study tries to

enable WMSN researchers to compare their performance

results in terms of one of the IQA techniques (PSNR,

WSNR, SSIM, VIF) to the other one.

Depending on the application, some parts of an image

may hold more information. This area is called as region of

interest (ROI). ROI also influences viewer’s subjective

feeling since artifacts on a ROI are much more noticeable

than those appearing on an inconspicuous area [39].

However, little study has been taken on identifying how

and to what extent ROI will influence image quality mea-

surements in WMSN. Although the reference image usu-

ally provides much better prediction performance than NR

and RR methods, quality awareness before the whole

image transmitted is extremely important in order to satisfy

the application layer perceptual quality. Hence, a simple

image evaluation method named Block Based Weighted

Peak Signal to Noise Ratio (WBBSNR) is also proposed

and evaluated in this paper. Because wireless sensor nodes

are inherently resource constrained in terms of energy and

computation power, WBBSNR is simple and scalable.

WBBSNR is extensively investigated to present whether it

can reflect the real time image quality before the commu-

nication between the source and the sink ends.

WBBSNR algorithm utilizes a prioritized block based

approach to estimate the image quality before the whole

image reached to the sink. In this algorithm, the blocks

included in ROI area are assigned higher priority. Hence,

each lost block in ROI area causes a sharper decrease of the

received image quality than the other blocks which are not

located in ROI. In here, WBBSNR uses block averages and

packet priority in order to predict the image quality.

Considering the above mentioned constraints, this paper

examines the question of whether the image loss pattern,

and in particular the burst length, is important for image

transmission. The effects of independent losses and burst

losses may be very different in terms of image quality

assessment metrics. We study the behavior of the IQA

metrics applied on degraded images for the following

research questions: (1) In order to explore an appropriate

image quality metrics for WMSN applications, the effects

of the packet loss patterns on the obtained image quality

are investigated (2) We investigate the impact of both

bursty and independent losses on IQA metrics in order to

expose whether their behaviors change or not. (3) The

applications may require knowing the quality of the ROI

parts in the distorted image rather than other parts. Which

image quality metrics are more sensitive to the ROI parts in

image quality evaluation?

WMSN is used for practical applications in real world

environments. In many cases, multimedia data must be

delivered subject to time and perceptual quality constraints so

that appropriate observations can be made or actions can be

taken. Very few results exist to date with regard to meeting

real-time requirements in WMSN [13, 14, 40]. MMSPEED

protocol [14] is a hop by hop routing algorithm which does not

require routing tables. All QoS algorithms in MMSPEED

work locally without global network state information and

end-to-end path setup. Hence it is scalable and adaptive to

network dynamics. Although MMSPEED is promising for

WMSN applications, it has not provided the integration of

their performance results to quality evaluation techniques.

Considering the mentioned problem, we perform a

group of simulation tests to present the performance of the

image transmission for varying number of flows in terms of

delay, energy and image quality. We use MMSPEED

protocol in the performance tests. It is modified to support

packet based reliability and speed options to transmit an
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image from the source to destination so that prioritized

packets and non-prioritized packets in a flow can be dif-

ferentiated. Then, the quality of the transmitted image is

evaluated in terms of PSNR, WSNR, SSIM, VIF and

WBBSNR. We also give the energy and delay performance

of the transmitted images to present the performance of the

network for varying packet size and number of flows.

3 System description

3.1 General WMSN scenario

Sensor network based homeland security systems consti-

tute an active research field for WMSN due to their

importance, challenges and inherent complexity. We con-

sider a WMSN based border surveillance system entailing

two types of sensors; Type 1 Ci; i ¼ 1; 2; . . .;W sensors are

camera nodes and Type 2 Sj; j ¼ 1; 2; . . .; k sensors are

relay sensors, depicted in the Fig. 3.

In the design of the camera nodes, two components are

required: camera board and sensor mote. We assume that

Ci imaging sensors are equipped with CMOS cameras

which can be interfaced with commercially available sen-

sor platforms such as MicaZ , TelosB or Tmote Sky. Two

such commercially available multimedia platforms for

sensor motes are ’’Cyclops’’ and ’’CMUcam3’’ [1, 4].

Cyclops is an electronic interface between a CMOS

camera module and a wireless mote such as Mica2 or

MicaZ. It comprises of an Agilent ADCM-1700 CMOS

camera module from Agilent Technology, a Xilinx FPGA

and an ATMega128 microcontroller. The Cyclops

communicates with MicaZ via I2C bus and uses a 2.4GHz

CC2420 radio chip as the wireless component. The other

platform, CMUCam3 camera card supports a set of built-in

image processing algorithms, including JPEG compression,

frame differencing, color tracking, histogramming, and

edge detection.

Considering these commercially available camera sen-

sor platforms with image processing capabilities, ROI

localization can practically be employed by using several

lightweight algorithms. For example, two cost-effective

algorithms based on edge and entropy measures are used in

order to identify ROI parts of the images in [41]. These

algorithms are applicable to the image-blocks without

requiring the whole image .

In this scenerio, if one or more intruders cross the bor-

der, one or more of Ci(s) will capture the image of the

intruder(s). Then they will send these images to the sink via

sensors Sj, which are used for forwarding data to the sink.

For example, Fig. 3 portrays a scenario where Ci-

1, Ci, Ci?1 detect the intruders, and one of them (or more)

will send the image or images to the sink by identifying the

ROI parts of the captured image. The used test image and

its region of interest area are given in the Fig. 4.

3.1.1 Assumptions

Assumptions used for the general scenario are listed as

follows:

1. Ci’s capability is higher than that of the Sj’s in terms of

energy, processing power, and storage capacity.

2. The energy issue is not the primary problem for Ci and

the sink nodes.

Fig. 3 General WMSN

scenario
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3. Sj do not die while receiving or transmitting the

packets heading to it during a communication interval.

4. Sink’s capability is higher than all other kind of the

sensors.

5. The sink and Ci nodes don’t die during the commu-

nication. This assumption is based on the premises that

these nodes are relatively more complex and powerful

sensor nodes.

6. Each Ci node transmits its image without exposing to

any combining operation with the other images

captured by the other Ci nodes.

7. ROI parts of the image is identified by a low

complexity algorithm, presented in [42].

3.2 Channel and radio model

The channel model links the average packet error rate with

physical channel impairments. In this study, we adopted a

channel and radio model from [43] applicable to real

WMSN settings. We assume a shadowing channel [44] to

obtain the packet error rates. Packet error rate (p) at a

distance (d) for the encoding and modulation assumed in

this analysis is given as follows: The packet error rate is

computed as a function of the distance d between the

nodes. The signal to noise ratio (SNR) is defined as

cðdÞ ¼ Pout � PLðd0Þ � 10c log10

d

d0

� �
þ Xr � Pc ð1Þ

where c(d) is the SNR for a given (d), d is the Transmitter–

receiver distance, Pout is the output power of the

transmitter. Pc, c, Xr, d0, PL(d0) are constants, which are

defined as the noise floor, the path loss exponent, a zero

mean Gaussian (in dB) with standard deviation r
(multipath effect), a reference distance and the power

decay for this distance, respectively. Assuming NRZ

encoding and NCFSK modulation as utilized in various

practical WMSN systems [45], packet error rate (p) at a

distance (d) is given as follows:

p ¼ 1� 1� 1

2
exp�

cðdÞ
2

1
0:64

� �8f

ð2Þ

where f is the frame size in bytes.

3.3 Testbed

In order to compare the image transmission quality results

to the results obtained from the simulations, an indoor, 10-

hops testbed by using 20 Tmote Sky sensor nodes [46] is

setup. This device is equipped with CC2420 radio trans-

ceiver, MSP430 microcontroller, and ST M25P80 flash

memory. TinyOS v2.1 with nesC v1.3 [47] is utilized to

realize a simple still-image transmission over a chain

topology. Node deployment and image transmission setup

is described extensively in [16]. In this paper, we use the

packet loss patterns obtained from the testbed.

3.4 Image quality metrics

In this study, five image quality metrics are used as per-

formance criteria to measure packet loss effect on trans-

mitted image quality: PSNR, WSNR [32], VIF [37], SSIM

[38], and WBBSNR.

PSNR is calculated with the mean squared error (MSE),

computed by averaging the squared intensity differences of

distorted and reference image pixels, along with the related

quantity of PSNR. As PSNR is simple to calculate, has

clear physical meanings, and is mathematically convenient

in the context of optimization, it is a commonly used

metric. However, PSNR may not very well match with

perceived visual quality [19]. The simplest implementation

of this concept is the MSE, which objectively quantifies the

strength of the error signal. But two distorted images with

the same MSE may have very different types of errors,

some of which are much more visible than others [48].

WSNR is the second metric which is a linear spatially

invariant approximation of the HVS. It is an efficient

objective quality measure in image processing applications

[32].

SSIM approach is based on extracting structural infor-

mation from images. Hence, a measure of the structural

information change can be used to quantify perceived

distortions [37]. SSIM is derived by capturing the infor-

mation loss of image structures, while VIF employs the

mutual information between the original and test image to

evaluate the image quality. In [49], it has been demon-

strated that SSIM and VIF have similar performances.

Fig. 4 Original image and its region of interest area (ROI)
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3.4.1 Peak signal to noise ratio (PSNR)

In this metric, we measure image quality distortion com-

paring the input image of the source’s encoder against the

impaired image of the destination’s (sink) decoder. The

image quality is measured as the MSE value which is

defined as

MSE ¼ 1

N1 � N2

XN1

i

XN2

j

Iði; jÞ � bIði; jÞh i2

ð3Þ

where, N1 9 N2 is the number of pixels in an image, I(i, j)

and bIði; jÞ are the pixel value of the reconstructed image

from the input of the source code’s image encoder, and that

at the destination’s decoder, respectively. We use the

following PSNR metric:

PSNRðdBÞ ¼ 20 log10

2s � 1

RMSE
ð4Þ

where s is the largest possible value of the signal (s = 8, i.e.

2s - 1 = 255 for grayscale images), and RMSE is the root

mean square error between the two images given above,

respectively.

3.4.2 Weighted signal to noise ratio (WSNR)

WSNR uses a frequency domain transform function nam-

ing contrast sensitivity function (CSF). CSF is utilized to

filter spatially all inappreciable frequencies by the human

visual context. This quality measure can take into account

the effects of image dimensions, viewing distance, printing

resolution, and ambient illumination. First step for calcu-

lating WSNR is to find an error image by computing the

difference between original image and distorted image.

Then, the error image is weighted by a linear spatially

invariant approximation to frequency response of the HVS

given by CSF. Finally, WSNR is computed [32]. This

procedure can be given as

WSNR(dB) ¼ 10 log10

X
i;j

If ði; jÞCSFði; jÞ
�� ��2

X
i;j

Xði; jÞCSFði; jÞj j2

2
664

3
775 ð5Þ

where

Xði; jÞ ¼ If ði; jÞ � bIf ði; jÞ ð6Þ

and If ði; jÞ; bIf ði; jÞ and CSF(i, j) represent the Discrete

Fourier Transform (DFT) of the input image, reconstructed

image and CSF, respectively.

3.4.3 Visual information fidelity (VIF)

VIF [37] views image quality assessment problem as an

information degradation of visual quality due to a distor-

tion process. This approach attempts to relate signal fidelity

to the amount of information that is shared between ref-

erence and distorted image signals. In VIF model, the

reference image is modeled by a wavelet domain Gaussian

scale mixture (GSM), which has been shown to effectively

represent the non-Gaussian marginal distributions of the

wavelet coefficients of natural images, while also capturing

the dependencies between the magnitudes of neighboring

wavelet coefficient.

3.4.4 Structural similarity index (SSIM)

The SSIM index [38] is evolved to the assumption that

HVS is based on extracting structural information from an

image. Structural information is independent of the illu-

mination of an image. SSIM index compares two image

patches which are taken from the same location to predict

structural degradations. The structure degradation is com-

puted after normalizing the image patches for mean lumi-

nance and contrast. Comparison operation on the image

patches is based on finding similarities between their local

intensities, contrasts and structures. Suppose that x and y

are local images. The final SSIM index is expressed by

SSIMðx; yÞ ¼
ð2lxly þ C1Þð2rxy þ C2Þ

ðl2
x þ l2

y þ C1Þðr2
x þ r2

y þ C2Þ
ð7Þ

where lx and ly are the mean intensity of image x and

image y respectively, rx and ry are contrast of image

signals respectively, and rxy denotes the covariance

between x and y. The constants C1 and C2 are utilized to

refrain instabilities in the structural similarity comparison

that may occur for certain mean intensity and contrast

combinations.

3.4.5 Weighted block-based peak signal to noise ratio

(WBBSNR)

In this paper, an image quality assessment metric,

WBBSNR is proposed for measuring of visual quality

impairments influenced during wireless sensor network

communication. It deals with transmitted image quality by

considering packet loss nature of the WMSN. Generally,

all image quality metrics in literature focus on distortions

due to compression, dithering, and printing effect on the

quality of the image. However, transmission of the images

over WMSN channels is packet based. Hence, the impact

of packet loss on image quality assessment is primary issue

448 Wireless Netw (2013) 19:443–460
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for WMSN. Also, depending on the application in WMSN,

the interest of area in the image may need more reliability

due to contained information in. Therefore, the transmis-

sion distortion within these attended areas should be con-

sidered more severe than elsewhere [50]. In this context,

the transmission of the background area may also be

required in order to analyze the full environment in detail.

Hence, image quality assessment method should consider

this issue by assigning different weights to the ROI and

Non ROI (background) parts of the image in the quality

evaluation phase.

In WBBSNR, images are partitioned into the s 9 s

blocks. The averages of the blocks in the image are found.

Then blocked mean squared errors are calculated sepa-

rately for both ROI and Non ROI area. It is given by

BMSEl ¼
1

M �M

XM
i

XM

j

Nlðsi; sjÞ �cNlðsi; sjÞ
h i2

ð8Þ

where l �fR;NRg: In here, l = R depicts the ROI area,

l = NR background area, BMSEl is block mean square

error, M2 is the number of blocks in an image, N(si, sj)

and bNðsi; sjÞ are the average of the block’s of the

reconstructed image from the input of the source code’s

image encoder, and that at the destination’s decoder,

respectively.

In the calculation of WBBSNR, ROI and background of

the image (ROI and NonROI) is calculated separately. It is

given as:

WBBSNRlðdBÞ ¼ 20 log10

2c � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BMSEl þ hl

p ð9Þ

where c is the largest possible value of the signal and hl is a

regulatory parameter, very small number, in order to pre-

vent a divide-by-zero condition.

Then overall WBBSNR is given by

WBBSNR ¼ kRWBBSNRR þ kNRWBBSNRNR ð10Þ

where k R is the weighting coefficient for the ROI part of

the image and kNR is the weighting coefficient for the

background part of the image. In the selection of these

weighting coefficients, the following equation must be

satisfied:

ROI distorted test images, which are given in the Fig. 5,

are obtained by applying with different packet loss pattern.

Then, WBBSNR evaluations corresponding to these dis-

torted images are performed, where all possible combina-

tions of the kR coefficient are integrated with WBBSNR.

Consequently, obtained WBBSNR qualities and the

impaired images are visually diagnosed for finding the best

(kR) for the considered scenario.

kR þ kNR ¼ 1 ð11Þ

Here, in order to pay more attention to visual quality of

ROI parts of the image, (kR) should be greater than (kNR).

(a) (b)

(c) (d)

(e)

Fig. 5 ROI distorted test images for five different error rates. a Error

rate (%) = 1, b Error rate(%) = 3, c Error rate(%) = 5, d Error

rate(%) = 7, e Error rate(%) = 9

1 3 5 7 9

5
15
25
35
45
55
65
75

Image Error Rate (%)

W
B

B
SN

R
 (

dB
) 

λ
R
=0.9 λ

R
=0.7 λ

R
=0.5 λ

R
=0.3 λ

R
=0.1

Fig. 6 WBBSNR versus error rate for different lambdaR coefficients

Wireless Netw (2013) 19:443–460 449

123



As shown in the Figs. 5 and 6, higher (kR) leads to put

more emphasis at ROI parts of the image in the measured

image quality and vice versa. According to these empirical

tests, it is suitable for the considered scenario that k R and

kNR are selected as 0.7 and 0.3, respectively.

4 Performance analysis of IQA techniques

In this section, three types of performance tests are given to

illustrate the effect of wireless sensor network nature on

image quality: packet size, ROI susceptibility and link

correlation. Once the image is obtained to be transmitted to

the sink, packet loss patterns obtained through the channel

model are applied, in order to eliminate the lost pixels from

the original image.

To examine the performance of transmission algorithms,

we have conducted comprehensive sets of simulation

experiments in MATLAB. The considered WMSN setup

follows the scenario described in Sect. 3. In the simula-

tions, we have used five gray-scale test images. The

selection criteria of the test images are their suitability to

the border surveillance applications.

In this part of the simulations, only one source generates

image data and this image is transmitted to the sink. The

used test image and its region of interest area are given in

the Fig. 4. The figures containing IQA results versus image

error rate is based on this test image. The packet loss

patterns obtained through the simulations and testbed are

applied to the test image in order to constitute the distorted

ones. Then, image quality assessment metrics (PSNR,

WSNR, SSIM, VIF and WBBSNR) are applied on them to

evaluate the effect of the correlation and packet size. Three

image distortion methods are used, given in Fig. 7: (1)

Whole image is distorted by means of the packet loss

patterns (Image) (2)The image parts excluding region of

interest are distorted (Background) (3) Only region of

interest parts of the image is distorted (ROI).

Many studies are done related to the packet loss over

wireless networks which cope with determining the opti-

mal packet size based on different metrics, such as

throughput, goodput, transmission range, and energy effi-

ciency [25, 51–53]. In this study, we investigate packet size

impact on well known IQA metrics in order to explore their

behaviors for varying error rates. Hence, our study leads to

make a comparison among image communication studies

which may use different packet size, IQA metrics and

environment (simulation, testbed).

We repeated each simulation 50 times with different

packet loss patterns where different packet sizes (ps) are

used (16, 64, 256). The obtained image quality results are

processed to calculate the average quality of the transmit-

ted image. Table 1 shows our performance metrics used in

this part of the simulations.

In the simulations, we used the channel and radio model

given in Sect. 3.2. Packet error rate is derived from the

physical layer characteristics such as output power and

distance. To acquire the constant packet error rates in

simulations, we have tested several experiments to find

proper configuration by varying distance between nodes.

The packet loss probabilities are assumed to be indepen-

dent among links, and identically distributed (i.i.d.) random

variables. There is no spatial correlation of losses [28].

Furthermore, in order to explore the correlation effect on

the IQA techniques, the packet loss patterns which are

coming from a real testbed are used. The explanation about

the testbed is also given in the Sect. 3.3.

The Pearson product-moment correlation coefficient

denoted by r is also used to present the correlation between

the image error rate and each IQA metric. The stronger the

association of the two variables the closer the Pearson

correlation coefficient, r, will be to either ?1 or -1

depending on whether the relationship is positive or neg-

ative, respectively. A value of 0 indicates that there is no

association between the two variables. Here, all IQA

Fig. 7 Transmitted images for three different distortion models

Table 1 Performance metrics

Meaning Variable

Distortion styles via loss patterns

Distortion of the whole image Image

Distortion of the ROI part of the image ROI

Distortion of the background part of the image Background

Packet size (ps) 16, 64, 256

IQA Techniques

Weighted signal to noise ratio WSNR

Peak signal to noise ratio PSNR

Weighted block-based PSNR WBBSNR

Structural similarity index SSIM

Visual information fidelity VIF

Meaning Value

WBBSNR Coefficients

The coefficient kR for the ROI part 0.7

The coefficient kNR for the background part 0.3
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results for the five test images are considered together in

order to obtain Pearson coefficients.

4.1 Packet size and ROI awareness

Many studies were performed on energy optimization for

changing packet size. However, the effect of the packet

length on transmitted image quality has not been studied as

extensively. In this study, IQA metrics’ behaviors against

varying packet sizes are analyzed for transmitting images

in WMSN in order to determine the application layer image

quality requirements. After capturing the image in the

camera node, image is converted to data packets in order to

transmit to the sink. Depending on the underlying network

layout, several packet sizes are used. Due to wireless

channel fluctuations, packet losses frequently occur during

transmission. Packet size may also affect the evaluated

image quality at the end node depending on the image

quality assessment method used. We analyze the packet

size effect on the quality of the image in terms of PSNR,

WSNR, SSIM, VIF and WBBSNR. In this part, we use the

channel error model explained in the Sect. 3.2 in the

simulation.

Figure 8 shows that image quality versus error rate in

terms of PSNR, WSNR, SSIM,VIF, WBBSNR for different

packet sizes (ps = 16, 64, 256). The image errors occur on

the image uniformly, not depending on the importance of the

part of image data being transmitted. Figure 8(a) presents

the PSNR performance for varying image error rates. For all

packet sizes, PSNR shows the same behaviors. It starts from

nearly 26 dB and goes to 16 dB. We also know that the

acceptable quality for PSNR is approximately 20–17 dB in

wireless networks. 10 –15 % packet losses cause the

received image quality to be unacceptable. It is shown that

packet size does not affect the received image quality in

terms of PSNR.

Figure 8(b) shows WSNR performances of the images

for varying error rates for different packet sizes. WSNR

behaves differently from the other IQA metrics. As packet

sizes are increasing, the image quality decreases where test

images are impaired with the same error rate. For example,

when image error rate is 10 %, WSNR presents 13.06,

11.48 and 10.82 dB image quality results for the packet

sizes 16, 64, 256, respectively. As a result of this phe-

nomenon, WSNR operational thresholds are determined

depending on the packet size. We found that WSNR

operational threshold value can be chosen as 17–14 dB

which is the lowest image quality bound of the transmitted

image.

Due to the use of the structural information of the image

such as mean, variance etc, SSIM is a very common metric

to capture better perceptual quality as compared to PSNR

and WSNR. Figure 8(c) presents SSIM performance of the

images for varying error rates. As opposite to WSNR, when

the packet size is increasing, SSIM performance increases

for the corrupted images at the same error rate. That means

there is positive correlation between packet size and the

image quality in terms of SSIM. For example, SSIM drops

from 0.95 to 0.64 in response to an increase of error rate

from 1 to 10 % when packet size is 16. Although the image

is corrupted at the same error rate, the performance results
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of the SSIM for ps = 256 gives from 3.2 to 31.2 %

increment over the results for ps = 16. Hence, SSIM gets

different threshold values depending on the packet size.

The operational thresholds of the SSIM are approximately

0.8, 0.9 and 0.95 for packet sizes with 16, 64, 256

respectively. Hence, network aware services, in order to

provide acceptable quality during transmission, should be

adaptive to such changes.

Figure 8(d) shows the VIF image quality versus error

rate for ps = 16, 64, 256. As increasing error rate, VIF

moves from 0.8 to 0.2 which will result in 75 % perfor-

mance reduction for ps = 16. However, when the packet

size is increased, VIF behaves similar to SSIM. There is a

positive correlation between packet size and the image

quality in terms of VIF. When the error rate increases, its

performance reduction will be 41.9 and 25 % for ps = 64,

256 respectively. Although the image is corrupted at the

same error rate, the performance results of the VIF for

ps = 256 represents 20–260 % increase over the results for

ps = 16. As a result of these values, it can be said that VIF

is more sensitive than SSIM for varying error rates and

packet sizes. The operational thresholds of the VIF is

approximately 0.6, 0.8 and 0.9 for packet sizes with 16, 64,

256 respectively.

Figure 9 shows image quality assessment methods ver-

sus image error rates where the errors are distributed on the

ROI part of the image. In this figure, we aim to present the

behavior of the IQA metrics in terms of region of interest

awareness. Figure 9(a) shows PSNR performance for ROI

corrupted image when increasing the error rate. Fig-

ure 9(a) shows that PSNR performance decreases approx-

imately 2 dB as compared to the one obtained in the

Fig. 8(a) for all packet sizes. Due to nature of the PSNR, It

may not be accurate to make a general statement that

packet losses in ROI area adversely affect PSNR perfor-

mance. As pixel values in ROI area are closer to 255 for

gray-scale image, the PSNR result will be worse or vice

versa. Figure 9(b) shows WSNR performance of the ROI

corrupted image for different error rates. When increasing

error rate, WSNR performance increases from 19.83 to

9 dB for ps = 64. Both PSNR and WSNR are calculated

based on the signal to noise ratio. Hence, pixel values in the

image play an extremely important role. When we analyze

the histogram of the ROI parts in the image, there is a huge

pixel group whose value is bigger than 150. On the con-

trary, the pixel value in the background parts of the image

is clustered under 150 as shown in the Fig. 10(b). As a

result of this tests, we have a conclusion that SNR based

methods are tightly coupled with the image properties [54].

Figure 9(c) presents SSIM image quality performance

for ROI corrupted image under varying error rates and

different packet sizes. SSIM quality variation decreases

significantly in this Figure. For example, when the packet

size is 16, SSIM performance starts from 0.96 to 0.85.

Furthermore, SSIM gives the same performance which

starts with 0.97 and goes to 0.85 for both packet sizes.

When the error rate is approximately 10 %, SSIM gives

greater improvement 32.8, 9 and 1.2 % over the perfor-

mance in the Fig. 8(c). When the packet size is increasing,
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the gap between ROI and equally corrupted image per-

formances closes, in terms of SSIM. Figure 9(d) also

shows that SSIM and VIF behave similarly. All of the

image test results present that as increasing error rate, VIF

performance variation decreases for all of the packet sizes.

The operational thresholds for SSIM and VIF should also

be increased to 0.95 and 0.85, respectively.

Figure 10 presents a histogram of the pixel intensity

values of the used test image which is shown in Fig. 4.

Thus, it presents the distribution of pixels in the used

images, which has a value from 0 (which is black) to 255

(which is white). The left side of the histogram shows the

black end of the scale and the right side represents white.

Table 2 presents the correlation between IQA perfor-

mances and error rates for the test images when the losses

are in the whole image, background image and ROI parts

of the image. In Table 2, SSIM and later VIF are the most

correlated metrics in terms of the error rate. Table 2 pre-

sents VIF is the most affected metric by packet size and

ROI loss.

It is expected that ROI losses decrease the VIF perfor-

mance. On the contrary, we have observed an increase on

the quality in terms of VIF metric. Table 3 also enables a

comparison between simulation quality results and testbed

quality results in terms of Pearson correlations, where

packet size is 16. Table 3 also presents that VIF and

WBBSNR are the most affected metrics by the packet loss

pattern which comes from testbed or simulation. It is also

show that SSIM metric has the best correlation with the

error rate in the testbed.

All IQA data points from the five images are considered

together in order to obtain Pearson coefficients for Tables 2

and 3. As shown in the Tables 2 and 3, obtained confidence

intervals for this group of the images are highly acceptable.

However, if more sources of different content were jointly

assessed, the Pearson correlation would be much lower

than this.

4.2 Performance analysis of the WBBSNR metric

In this paper, a simple metric named WBBSNR is proposed

to obtain the image quality monitoring before the test

image is reached to the destination.

In this paper, the ROI percentage of the selected images

is nearly 10 %, and background parts is 90 %, remaining

part of the image. Figure 11 presents the WBBSNR per-

formance versus equally, ROI area and Background area

corrupted images separately. In order to show WBBSNR

behavior for varying error rate and to compare the

WBBSNR behaviors between ROI and equally corrupted

image regions accurately, Fig. 11(a) and (c) should have

the same order of magnitude. However, Fig. 11(b) implies

the distortions on background parts of the images. In order

to analyze the behavior of the WBBSNR in depth, we

select its order of magnitude from 10 to 90 %. Hence, if

all of the background parts are distorted, the healthy

blocks are composed of the ROI parts, as shown in the

Fig. 11(b).

Figure 11(a) shows equally corrupted image quality

evaluation for all packet sizes when the error rate increases.

As mentioned in the Sect. 3.4.5, this metric has also

coefficients which provide to emphasize some blocks of the

images over other ones. Note that they may also change

depending on the application. WBBSNR also behaves like

SSIM and VIF for increasing packet size. Its performance

increases with the packet size as it is positive correlated

due to its block based nature. As increasing of the error

rate, its performance decreases by 91.8 and 84.1 % for

ps = 64 and 256, respectively. Although the image is
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Fig. 10 Histogram of the test image. a Histogram of the ROI parts in

the image. b Histogram of the background parts in the image
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corrupted at the same error rate, the performance results of

the WBBSNR for ps = 256 gives from 58.8 to 206.1 %

increment over the results for ps = 64.

Figure 11(b) shows the WBBSNR performance of the

image with background parts corrupted versus image error

rate for different packet sizes. This figure presents that

WBBSNR is robust for losses in the ROI areas. Its perfor-

mance decreases from 48 to 28 dB when the error rate

increases approximately from 0.9 to 89 % for ps = 16. As

increasing the packet size, the performance of the WBBSNR

increases as expected. As the error rate increases, the

improvement of the WBBSNR for ps = 64 is from 12.5 to

21.4 % over the performance with ps = 16. Due to priori-

tization coefficient used, it is expected that WBBSNR per-

formance in this scheme is better than Fig. 11(a) and (c).

Figure 11(c) presents the ROI corrupted image perfor-

mance versus error rate for the different packet sizes. As

compared to Fig. 11(b), performance reduction is shown

clearly. However, it gives better performance than the

WBBSNR in Fig. 11(a). Because the number of none pri-

oritized blocks are clearly more dominant for equally

corrupted images. Hence, the adjustment of the thresholds

should also be chosen more sophistically.

4.3 Link and node correlation effect on IQA methods

In this part, we aim to present the link and node correlation

effect on the image quality assessment methods. The node

and link correlation causes burst losses during transmis-

sion. Figures 12 and 13 present that the effect of the

channel errors and burst losses on the image quality

Table 2 Pearson correlations

between error rate and image

quality for varying packet size

(95 % confidence interval for r,

significance level � 0.00001,

sample size = 500)

Metric Image Background ROI

(a) Simulation (ps = 64)

PSNR -0.90 -0.94 -0.93

(-0.91, -0.88) (-0.95, -0.93) (-0.94, -0.92)

WSNR -0.90 -0.95 -0.94

(-0.91, -0.88) (-0.96, -0.94) (-0.95, -0.93)

SSIM -0.99 -0.95 -0.98

(-0.995, -0.993) (-0.96, -0.95) (-0.98, -0.97)

VIF -0.97 -0.86 -0.88

(-0.97, -0.96) (-0.88, -0.84) (-0.89, -0.85)

WBBSNR -0.64 -0.94 -0.94

(b) Simulation(ps = 256)

PSNR -0.84 -0.94 -0.84

(-0.86, -0.81) (-0.95, -0.93) (-0.86, -0.81)

WSNR -0.84 -0.94 -0.84

(-0.86, -0.81) (-0.95, -0.93) (-0.86, -0.81)

SSIM -0.99 -0.98 -0.96

(-0.995, -0.993) (-0.99, -0.98) (-0.96, -0.95)

VIF -0.92 -0.92 -0.89

(-0.94, -0.91) (-0.93, -0.91) (-0.91, -0.88)

WBBSNR -0.61 -0.94 -0.88

(-0.56, 0.66) (-0.95, -0.93) (-0.90, -0.86)

Table 3 A comparison of both testbed and simulation quality results in

terms of Pearson correlations between error rate and image quality ((95 %

confidence interval for r, significance level� 0.00001, sample size = 500)

Metric Image Background ROI

(a) Simulation (ps = 16)

PSNR -0.94 -0.95 -0.94

(-0.95, -0.93) (-0.95, -0.94) (-0.95, -0.93)

WSNR -0.94 -0.96 -0.96

(-0.95, -0.93) (-0.97, -0.95) (-0.96, -0.95)

SSIM -0.99 -0.92 -0.97

(-0.99, -0.994) (-0.93, 0.90) (-0.97, -0.96)

VIF -0.97 -0.85 -0.86

(-0.97, -0.96) (-0.87, -0.83) (-0.88, -0.84)

WBBSNR -0.92 -0.95 -0.94

(b) Testbed (ps = 16)

PSNRtb -0.69 -0.86 -0.86

(-0.73, -0.64) (-0.88, -0.83) (-0.88, -0.84)

WSNRtb -0.70 -0.87 -0.89

SSIMtb -0.88 -0.91 -0.96

(-0.90, -0.85) (-0.93, -0.90) (-0.97, -0.96)

VIFtb -0.65 -0.75 -0.81

(-0.70, -0.60) (-0.79, -0.71) (-0.84, -0.78)

WBBSNRtb -0.46 -0.90 -0.86
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performances in terms of PSNR, WSNR, VIF, SSIM and

WBBSNR for ps = 16. Figure 12 presents that whole

image is corrupted by means of the testbed loss patterns

and the channel errors used. To compare the results coming

from the channel and real testbed image quality results, we

give the all results for ps = 16 in Fig. 12.

As shown in the Fig. 12(a), PSNR testbed results for

PSNRtb are nearly the same as PSNR where the corrupted

image is provided by the channel errors. PSNRtb starts from

26–16 dB for increasing error rates. As similar to

PSNRtb, WSNRtb also gives a close quality performances to

the WSNR channel model results. As shown in this figure,

as WBBSNRtb channel performance presents performance

fluctuations for increasing error rate, WBBSNR gives more

stable performance reduction. WBBSNRtb starts from 34 to

1 dB for increasing error rate.

Figure 12(b) presents VIF and SSIM performance for

corrupted images in the channel and testbed. SSIM testbed

quality results (SSIMtb) moves from 0.96 to 0.76 and gains

from 1.1 to 26.7 % improvement over SSIM channel model

results. As similar to the SSIMtb performance, testbed VIF

performance VIFtb has also performance improvement

from 5.0 to 48.3 % over VIF channel results.

To give the IQA performance of the impaired ROI areas

in case of the burst and channel loss, we give the Fig. 13

for ps = 16 when the error rate is increased. Fig-

ure 13(a) shows that PSNRtb performance starts from

25.33 dB to 14.25 for increasing error rate. PSNRtb and

PSNR channel performance is nearly the same in this fig-

ure. WSNRtb performance has a behavior similar to PSNRtb

as expected. WSNR and WSNRtb show very similar per-

formance as the error rate increases. As compared to the

whole image corruption of the WBBSNRtb in the Fig. 12(a),

ROI corrupted WBBSNRtb performance presents worse

image quality from 9 dB when the error rate is 0.1.

Figure 13(b) gives VIF and SSIM performance for

increasing error rate. In this figure, SSIMtb shows the SSIM

performance in case of the burst loss provided by the testbed.

It is interesting that SSIMtb presents similar performance

SSIM channel performance results. SSIMtb performance

1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60

Image Error Rate (%)

W
B

B
SN

R
ps=16
ps=64
ps=256

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

30

40

50

60

Image Error Rate (%)

W
B

B
SN

R
 (

dB
)

ps=16
ps=64
ps=256

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

Image Error Rate (%)

W
B

B
SN

R

ps=16
ps=64
ps=256

(a)

(b)

(c)

Fig. 11 WBBSNR performances versus image error rate where errors

are distributed randomly on the image. a WBBSNR versus image error

rate for equally corrupted images, b WBBSNR versus image error rate

for background corrupted images, c WBBSNR versus image error rate

for ROI corrupted images
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Fig. 12 IQA performances versus image error rate where simulation

errors are randomly distributed on the parts of image. a Testbed and

simulation comparisions in terms of PSNR, WSNR and WBBSNR for

decreasing error rate. b Testbed and simulation comparisions in terms

of SSIM and VIF for decreasing error rate
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starts approximately from 0.97 to 0.86. VIFtb gives 8.9 %

improvement over VIF channel performance when the error

rate is 1.06 %. When increasing error rate, the performance

of VIFtb and VIF channel performance gets closer and

eventually show the same image quality value (0.85).

5 Performance analysis of IQA techniques

with a underlying routing protocol

In this section, to analyze the performance of image quality

metrics and packet size with an underlying routing protocol

(MMSPEED) [14], we performed a group of simulations

using J-SIM network simulator [55]. Table 4 shows the

MMSPEED simulation parameters used in J-Sim. In our

work, a packet train traffic model is used between one or

more sources and single destination, which is common in

WMSN applications. The packets in a packet train are

transmitted back to back by a node without releasing the

channel which causes the burst losses or vice versa. In this

work, 100 nodes are placed in a 100 m 9 100 m region.

We set the transmission range to 40 m, the bandwidth

250 kbps. In the simulations, we used a gray-scale image

which is shown in Fig. 4. We repeated each simulation 15

times with different performance metrics. The simulation

results are used to calculate the average quality of the

transmitted image in terms of PSNR, WSNR, SSIM, VIF

and WBBSNR.

In this part of the analysis, it is assumed that there are

one or more sources which may generate image data. In the

communication, when the number of sources are greater

than one, the received image quality is evaluated the results

coming from the one of the sources. End-to-End packet

delay, packet delivery performance, normalized energy

consumption are the metrics used to analyze the perfor-

mance of image transmission.

The service differentiation of the MMSPEED is actually

based on inter-prioritization of different data types i.e.

scalar data, audio, video etc. However, image transmission

requires the intra-image prioritization in order to assign

different priorities to the packets. Hence, MMSPEED

routing protocol is also modified to perform intra image

prioritization based on the ROI areas of the image. In the

performance results, transmitted image blocks are priori-

tized depending on whether the packet is in ROI area or

not. The packets in the ROI area are prioritized as high

priority packets or vice versa. Hence, their required reli-

ability and deadline constraints are tried to be satisfied by

the network layer. The requirements for low and high

priority packets are also given in the Table 4. We give the

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

Image Error Rate (%)

Im
ag

e 
Q

ua
lit

y 
(d

B
) 

PSNR PSNR
tb WSNR WSNR

tb WBBSNR WBBSNR
tb

1 2 3 4 5 6 7 8 9 10

0.7

0.8

0.9

1

Image Error Rate (%)

Im
ag

e 
Q

ua
lit

y 
 

VIF VIF
tb SSIM SSIM

tb

(a)

(b)

Fig. 13 IQA performances versus image error rate where simulation

errors are distributed randomly on the parts of image which are included

in ROI. a Testbed and simulation comparisions in terms of PSNR, WSNR

and WBBSNR for decreasing error rate. b Testbed and simulation

comparisions in terms of SSIM and VIF for decreasing error rate

Table 4 System and simulation parameters

Parameter Value

Environment settings

Transmitted block size (n) 16

Symbol size (m) 8 bit

Reliability threshold for high

priority packets

0.9

Reliability threshold for low

priority packets

0.1

Deadline for high priority packets 2 s

Deadline for low priority packets 5 s

Size of the image (N1 9 N2) 256 9 256 pixel

Traffic model Packet Train

Radio range (d) 40 m

Terrain 200 m 9 200 m

Node number 100

Node placement Fixed

Data rate (R) 2 Mbps

Energy consumption

Initial energy Einit 100 J

Current consumption for

transmitting radio signal

0.66 W

Current consumption for receiving

radio signal

0.39 W

Energy consumption for sleeping 0.13 W
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performance of MMSPEED routing protocol for varying

number of flows in terms of PSNR, WSNR, SSIM, VIF,

and WBBSNR.

End to end delay is a crucial metric for WMSN. Mul-

timedia data may require that each packet should reach its

destination by the deadline. Hence, in this paper, we ana-

lyze the delay performance of the image transmission for

increasing number of flows. End-to-end delay is the aver-

age delay between sending the data packet by the source

and its receipt at the destination. The delay includes the

elapsed time caused by route acquisition, buffering and

processing at intermediate nodes, and retransmission

delays at the MAC layer for a given simulation time.

Multimedia applications generate huge data delivered

over WMSN, resulting in the difficulty for both reliable

communication and network lifetime especially consider-

ing the scarce energy constraint of the sensor nodes. Hence,

energy is a crucial design issue in WMSN. In this paper, at

the start up of the simulation, we assign a constant energy

value to each node in the network. During the communi-

cation, each node updates its energy level depending on

participation on the communication. Energy consumption

is given for different packet sizes for increasing number of

flows. Total energy consumed by all sensor nodes are

retrieved for analysis at the end of the simulation. In this

study, the energy parameters used in the simulations are

shown in Table 4. The effect of packet sizes on the com-

munication performance is also investigated in terms of

delay and energy. Figure 14 shows the image quality per-

formances of the MMSPEED in terms of IQA techniques
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Fig. 14 MMSPEED image transmission performances versus num-

ber of flows in terms of image quality. a PSNR, WSNR and

WBBSNR versus number of flows for packet size 16 and 64, b SSIM

and VIF versus number of flows for packet size 16 and 64
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Fig. 15 MMSPEED image transmission performances versus num-

ber of flows in terms of delay and energy. a Delay of the routing

protocols versus number of flows. b Total energy dissipation of

MMSPEED routing protocol
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for varying number of flows. Figure 14(a) presents PSNR,

WSNR and WBBSNR performance for varying number of

flows for ps = 16 and ps = 64. When increasing the

packet size, PSNR performance increases from 10 to 3 dB

as expected. Because, as packet size is increasing, the

packet reception rate also increases at the destination.

Actually, excluding PSNR, all other metrics are affected by

packet size. It is now known that the nature of the PSNR is

not affected by the size of the lost packet. Hence, we can

conclude that increasing the packet size in a network may

cause highly distorted images at the sink. As shown in the

Figure, the acceptable quality of the image is provided

when the number of flows is less than 6 in terms of PSNR.

This conclusion is also valid in terms of other metrics

results in this figure. However, especially the operational

thresholds of the WBBSNR metric for acceptable image

quality should be changed depending on the packet size in

order to decide whether the image has enough quality or

not. Because, all of the three metrics depends on the signal

to noise ratio, their performance holds the condition that

they are comparable.

The most affected metrics by the packet size are VIF and

SSIM. Fig. 14(b) presents the performance of these metrics

for increasing number of flows with different packet sizes.

When the packet size is 16, SSIM performance changes

from 0.98 to 0.78 while number of flows is between 1 and

12. When the packet size is increased to 64, its performance

is between 0.97 and 0.53 depending on number of flows. As

a result of this, distortion difference for transmitted images

with different packet sizes is greater than expected due to

varying packet sizes. The results should be investigated that

the transmitted image qualities in terms of SSIM and VIF

are not only affected the network performance but also used

packet size and the location of the loss packets affects the

transmitted image quality. Furthermore, if these metrics are

used in the network monitoring, operational thresholds

should be adjusted depending on the packet size before the

transmission of the image. Figure 15 presents the delay and

energy performance versus number of flows for packet sizes

(16, 64). These tests are performed to consider the effect of

the collisions, routing decisions, and wireless channel

affects. In these results, the different packet size is used to

monitor the performance of the network during transmis-

sion. The results show that when decreasing the packet size,

the performance of the transmission in terms of energy is

reduced. Figure 15(a) presents that smaller packet size

(ps = 16) causes an increase of the delay 752 % over the

one with ps = 64, when the number of flows is 16. When the

number of flows is 16, this figure also presents the perfor-

mance gap is lesser between ps = 64 and ps = 256. Fig-

ure 15(b) presents as increasing the packet size, the

consumed energy also increases. Particularly, the energy

consumption of the ps = 16 presents 295 % increase

over the one with ps = 256 when the number of flows goes

to 16.

6 Conclusion

In this work, the impact of the packet size, link and node

correlation effect and loss areas on evaluated image quality

of a distorted image are evaluated with respect to wireless

networks errors. The performances of well known image

quality metrics (PSNR, WSNR, SSIM, VIF) are given to

understand their suitability to wireless communication for a

group of test images. In this paper, we also give a simple

image quality estimation method (WBBSNR) based on

transmitted packet averages and their importance level. It

can be used to evaluate image qualities on the fly without

using all of the image pixel information at the intermediate

nodes. From the experimental results, this metric can

estimate the image quality with a high accuracy. By means

of this proposed metric, communication protocols adap-

tively adjust their behaviors depending on the estimated

image quality offered by the network. This metric is also

appropriate for the communication protocols which have

a prioritization operation before communication starts up.

The performance results show that packet length and

link and node correlation does not have an impact on

PSNR. Hence, observed image quality results obtained

from the testbed and simulation are nearly the same in

terms of PSNR. PSNR also does not present a different

behavior in case of packet losses in the region of interest

areas of the image. The determining factor in PSNR is the

pixel values of the lost packet. Hence, when the pixel

values in ROI region are closer to zero, the PSNR increases

or vice versa. The packet size effect on WSNR is different

from all the other image quality metrics. As packet size

increases, the WSNR quality of the distorted image sub-

jected to the same error rate decreases for our test images.

Real testbed and simulation loss patterns also give similar

image quality results in terms of WSNR.

The effect of the packet length and correlation on SSIM

and VIF are similar. As packet size increases, the presented

image quality in terms of SSIM and VIF also increase.

However, VIF is more sensitive to the packet size than

SSIM. Furthermore, testbed image quality results are better

than simulation results in terms of VIF and SSIM. The

performance results also present that although SSIM and

VIF are more sensitive than PSNR and WSNR in terms of

ROI awareness, the quality of the ROI distorted image is

increased in terms of SSIM and VIF.

As further improvement, prevalent image quality met-

rics (PSNR, WSNR, SSIM and VIF) can be modified to

increase the effect on the ROI parts on the evaluated image

quality. IQA metrics can be combined with a weighting
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operation in order to represent overall image quality.

Another suggestion would be that the quality evaluation of

the ROI and background parts of an image can be per-

formed separately. This work may also be expanded so that

the behaviors of the IQA techniques can also be analyzed

for a large number of images which are classified for dif-

ferent multimedia applications.

Furthermore, this study leads to explore smart ways for

the adaptation of the communication protocols to the

wireless environment for a multimedia transmission. For

example, on-the-fly image quality assessment techniques

can be combined with a QoS based routing protocol to

obtain the required image quality by the application layer.
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