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Abstract The vehicle delay tolerant networks (DTNs)

make opportunistic communications by utilizing the

mobility of vehicles, where the node makes delay-tolerant

based ‘‘carry and forward’’ mechanism to deliver the

packets. The routing schemes for vehicle networks are

challenging for varied network environment. Most of the

existing DTN routing including routing for vehicular DTNs

mainly focus on metrics such as delay, hop count and

bandwidth, etc. A new focus in green communications is

with the goal of saving energy by optimizing network

performance and ultimately protecting the natural climate.

The energy–efficient communication schemes designed for

vehicular networks are imminent because of the pollution,

energy consumption and heat dissipation. In this paper, we

present a directional routing and scheduling scheme

(DRSS) for green vehicle DTNs by using Nash Q-learning

approach that can optimize the energy efficiency with the

considerations of congestion, buffer and delay. Our scheme

solves the routing and scheduling problem as a learning

process by geographic routing and flow control toward the

optimal direction. To speed up the learning process, our

scheme uses a hybrid method with forwarding and repli-

cation according to traffic pattern. The DRSS algorithm

explores the possible strategies, and then exploits the

knowledge obtained to adapt its strategy and achieve the

desired overall objective when considering the stochastic

non-cooperative game in on-line multi-commodity routing

situations. The simulation results of a vehicular DTN with

predetermined mobility model show DRSS achieves good

energy efficiency with learning ability, which can guaran-

tee the delivery ratio within the delay bound.

Keywords DTN � Vehicular networks �
Energy–efficient � Opportunistic routing � Scheduling

1 Introduction

Vehicular networks have been envisioned to be used in

road safety, emergency responses and many intelligent

transportation system based applications with the rapid

growth of city transportation [1]. Multi-hop data delivery

through vehicular networks is complicated because of the

vehicle mobility and varied network environment like

topology and traffic, etc. According to this, vehicular data

is collected by opportunistic communications, i.e., a vehi-

cle carries the packet until a relay vehicle is in its

communication range and then help to forward it in delay-

tolerant routing mechanism [2]. Delay Tolerant Networks

are suitable for applications of vehicular networks [3].

Vehicular DTN can provide a large-scale communications

by leveraging the large data storage and energy efficiency

Y. Zeng (&) � D. Li

School of Electronic Information, Wuhan University, Wuhan,

China

e-mail: zengyy@whu.edu.cn

D. Li

e-mail: dsli@whu.edu.cn

K. Xiang

School of Information Management, Hubei University of

Economics, Wuhan, China

e-mail: xksuckx@gmail.com

K. Xiang

National Engineering Research Center for Multimedia Software,

Wuhan University, Wuhan, China

A. V. Vasilakos

Department of Computer and Telecommunications Engineering,

University of Western Macedonia, Macedonia, Greece

e-mail: vasilako@ath.forthnet.gr

123

Wireless Netw (2013) 19:161–173

DOI 10.1007/s11276-012-0457-9



of vehicles. The application examples include the use of

vehicular DTN that provides low cost digital communica-

tion for remote villages [4] and vehicular sensing platforms

for urban monitoring such as CarTel [5]. But, the vehicular

DTN network topology changes dynamically, for the net-

work lacks continuous connectivity and may become par-

titioned at any instant. The uncertainty of network

environment in vehicle DTNs is a result of the mobility,

limit wireless radio range, sparsity of mobile nodes, energy

resources [6].

The existing DTN routing protocols mainly focus on the

schemes to increase the likelihood of finding opportunistic

paths [7]. But, it is difficult to model the DTNs and their

possible connections in realistic network situations. This is

especially worse for vehicular networks for varied traffic

and topology in the networks. For DTNs, the methods of

replicating data packets can improve the possibility of

opportunistic connections, but it also brings the burden for

storage and bandwidth resources. In order to utilize

resources effectively in DTN, nodes need to predict the

network environment and wisely allocate the network

resources. The existing routing schemes mainly utilize

metrics such as delay, hop count and bandwidth, etc.

Green ICT (information and communication technol-

ogy) is focused for reported high carbon emissions each

year. In terms of the global carbon emissions, some ana-

lysts have reported that ICT accounts for 2–2.5 % of all

harmful emissions, which is equal to the global aviation

industry [8]. The scheme designed for Green vehicular

networks aims to reduce energy consumption and then help

to protect our environment by less carbon compound

emissions.

Grossglauser et al. [2] suggest that delay-tolerant

applications can take advantage of node mobility to sig-

nificantly optimize the network capacity. Though network

environment varied dynamically in vehicular DTNs, the

traffic situations are often related with time, traveling

roadmap and other factors. These factors are useful infor-

mation to make data delivery in DTNs. For example, in

Wuhan city, the harsh hour often occurs from 8 a.m. till 10

a.m. in the morning and 5 p.m. till 7 p.m. in the afternoon,

and the traffic situations are often serious around the main

road and city center areas. Beyond this, most of the vehi-

cles have their rules of mobility. For an example, buses

have their fixed route and most taxis move around some

city areas especially some ‘‘popular’’ zones. Reinforcement

learning could be used to predict the vehicular related

traffic distribution and network topology without much

prior knowledge. In this paper, we present a directional

routing and scheduling scheme (DRSS) for green com-

munications in vehicular DTNs based on Nash Q-learning

approach, which is designed to explicitly optimize the

energy efficiency by considering congestion, buffer and

delay. DRSS can predict the network model and update the

communication strategy by an immediate cost for the

current state. DRSS converges to an optimal policy as long

as all state-action pairs are continually updated. For on-

line, multi-commodity communications, different agents

contend with each other. DRSS uses Nash Q-learning for

each agent to learn and perform the best actions for the

network.

The main contributions of this paper include:

• DRSS utilizes a hybrid method to carry, geographically

forward and replicate traffic data packets toward the

optimal direction with slot allocation by predicting the

network environment.

• DRSS optimizes the routing decision to achieve green

communications by considering congestion, buffer and

delay bound.

• DRSS uses multi-agent Q-learning approach for on-line

multi-commodity communication situations and pro-

vides the Nash equilibrium strategy.

The following of the paper is organized as follows.

Section 2 presents the related work. Section 3 presents

some definitions and models. We present the details of

DRSS in Sect. 4. Section 5 is simulation results. Finally,

Sect. 6 concludes this paper.

2 Related work

The existing routing schemes in DTN can be classified into

two categories that are based on replication and routing,

respectively. The kind of routing schemes focus on whether

the packets can be successfully received by the destination

with less consideration of timeliness and rate [9]. Then the

routing schemes use a ‘‘carry and forward’’ approach [10]

that store and carry the data locally, then eventually

delivering it either to the destination or to a relay deemed

to meet the destination sooner.

Replication schemes are to replicate copies of a packet

in the hope that it will succeed in reaching its destination.

The schemes are commonly used to maximize the proba-

bility of a packet being successfully transferred. The kinds

of routing schemes differ in the replication model and ways

to cut down the replication overhead. Epidemic routing

protocol [11] is a naive flooding, but it wastes resources

and degrade the network performance. Spray and Wait

routing scheme [12] replicates the packet by bounding the

number of replicas, but it is feasible with large amounts of

local storage and enough bandwidth. There are some

routing schemes that limit the packet replication with the

consideration of storage constraints [13–16]. RAPID [17] is

an intentional DTN routing protocol, which treat routing as

a resource allocation problem and decides on packet
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replication according to per-packet utilities. Replication

scheme increases the opportunistic communication proba-

bility with the tradeoff of big burden on network resources

like available storage and link bandwidth.

Forwarding schemes maintain at most one copy of a

packet in the network during routing process. The for-

warding based routing schemes forward the packet toward

the direction of optimizing routing metrics. Jain et al. [18]

proposed a modified Dijkstra algorithm based on a time-

dependent Graph. Hay et al. [19] proposed a deterministic

DTN routing and scheduling when the contact times

between nodes are known in advance or can be predicted.

Bulut et al. [20] proposed a conditional shortest path

routing by using metric called conditional intermeeting

time. For forwarding routing, there is one copy of each

packet sent during the routing process. So it is difficult to

gather the knowledge of future contacts and network

environment information. Recently, intelligent algorithms

are utilized in DTN routing. Ahmed et al. [21] proposed a

Bayesian classifier based DTN routing framework to infer

the optimized routing. Huang et al. [22] proposed a fuzzy

logic based routing in DTNs, which is exploited to select

the close-by intermediate node on the path to the destina-

tion. Dvir et al. [23] proposed a dynamic backpressure

routing in DTNs.

Different from general DTNs, vehicular DTNs face with

more challenges for large scale sparse networks, variable

delays, nonexistence of an end-to-end path, etc. Pereira

et al. [24] addressed some specific issues such as routing,

scheduling, traffic differentiation, contact time estimation

for vehicular DTNs that can provide cost-effective support

for applications. In vehicular DTNs, the vehicle mobility

also creates opportunities for contacts, i.e., nodes can

buffer and carry the packets until finds vehicles in the

vicinity that can help packet delivery. The delay-tolerant

based opportunistic connections for vehicular networks

have been studies. The vehicle mobility pattern can be

utilized to assist data delivery. Zhao et al. [10] presented

vehicle-assisted data delivery in vehicular networks to

forward the packets to the best road direction with the

lowest data delivery delay. Leontiadis et al. [25] proposed

Geographical Opportunistic Routing (GeOpps) by sug-

gesting routes to select vehicles that are likely to move

closer to the final destination of a packet. GeOpps calcu-

lates the shortest distance from packet’s destination to the

nearest point of vehicles’ path and estimate the arrival of

time of a packet to the destination. Ros et al. [26] proposed

a broadcast algorithm with acknowledgment based on

connected dominating set, which can provide high reli-

ability and message efficiency. In wireless networks,

scheduling is usually related with routing metrics to opti-

mize the network resources. Zhou et al. [27] proposed a

fully distributed scheduling scheme with the goals of

optimize the network video streaming. In their paper, the

proposed scheduling scheme addresses the fairness prob-

lem to keep the balance between the selfish local motiva-

tion and global performance.

Green communications and computing have been pro-

posed as a solution to addressing the growing cost and

environmental impact of telecommunications recently.

Sanctis et al. [28] discussed several techniques on energy

efficient wireless networks towards green communications

and outline challenges and open issues. Wang et al. [29]

discussed various remarkable techniques toward green

mobile networks. They summarized the current research

related green mobile networks along with the taxonomy of

energy–efficiency metrics.

For general vehicular networks and DTNs, energy effi-

ciency is not the main concern [30]. The routing metrics

such as delay, bandwidth, and hop count are usually

involved. The node energy can be used as a resource

constraint, but few papers take it as the main optimization

objective. Different from the previous work, we examine

green routing and scheduling scheme for vehicular

DTNs in this paper, and we propose a hybrid way of for-

warding and replication methods according to network

environment.

3 System models

We assume that: each node gets knowledge of its locations

and is aware of its trajectory by equipping with GPS and

pre-loaded digital maps. The node information of its

vicinity can be known by periodic beacon messages. There

are some static access points are deployed in DTN network

that help to make connections and disseminate global

network information. Through the above, each node is

aware of its own location, the location of the destination,

and the locations of its potential next hops. In our

assumptions, no further traffic statistic of the network is

needed.

In order to discuss the routing and scheduling problems,

we need some definitions and models to describe the net-

work. A vehicular DTN is composed of vehicles participate

in the network with computing and communication capa-

bilities. The links of the network may go up and down over

time due to mobility and the event. In such DTNs, the

routing is based on opportunistic contact of vehicles. More

than one contact may be available between a pair of

vehicles. In this case, routing metrics are used to make

decisions on the optimal route and flow schedule selection.

The contact schedule contains a set of time slots that are

available for communications, which is related with com-

munication performance. The routing strategies are used to

deliver the packets over each hop by knowledge of the
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networks. The packets will be buffered at each intermedi-

ate node because of the intermittent network, which

enables packets to wait until the next hop is available.

3.1 Energy model

As in usual network communications, each node can be in

one of the three working states: listening, send and receive

data. We assume the system communication is in contin-

uous time period called frames, which can be divided into

time slots. DRSS helps to choose the relay and schedule for

current transmissions. If no events occur on the current

node, it will turn into sleep state to save energy.

The energy consumption of DTN nodes include energy

consumed for transmitting Et, receiving Er and listening El.

Here, we omit the energy consumption of sleep state. The

energy consumption can be calculated as Formula (1),

where ee is the energy consumed by transceivers per sec-

ond, and ea is the energy consumed in the transmitter RF

amplifier per second; ep is the energy consumed for pro-

cessing in the receivers, and el is the energy consumed for

listing to the radio environment. el equals to ee. Those

parameters are determined by the design characteristics of

transceivers. R is the transmission range. n is the power

index of the channel path loss. Tt is the time for sending

data. Tr is the time for receiving. Tl is the listening time. T

is the time length of a cycle.

Et ¼ ðee þ eaRnÞTt

Er ¼ ðee þ epÞTr

El ¼ elTl ¼ elðT � Tt � TrÞ
ð1Þ

3.2 Rate and buffer

We assume that communication time is divided into con-

tinuous equal frames, which can be then divided into

continuous equal slots. Each node has the same frame

structure and chooses transmit rate according to channel

congestion and energy efficiency. The maximum rate of

node u with its possible next hop can be determined from

Formula (2). In the formula, C is the channel capacity. W is

the bandwidth and P is transmission power; h is the

channel gain, and N0 is the noise power spectrum density;

and F is the gap to ergodic channel capacity.

ratetðuÞ ¼
Tc

T
C ¼ Tc

T
W log2 1þ Ph

N0WF

� �
ð2Þ

In which, T is the time of a frame. Tc is the opportunistic

contacting time of the pair (u, v) in a frame, which is

related with contacting topology changes and rate

constraints. It is obvious that Tc/T is proportional to the

schedule slot numbers.

The sending and receiving rate of node u with the pos-

sible communication downside and upside node in a frame

can be formulated as shown in Formula (3).

rateðuÞ ¼ ratetðuÞ þ raterðuÞ ¼
Tt þ Tr

T
C ð3Þ

In which, rate(u) is the total rate for node u. ratet(u) is

the sending rate of node u. rater(u) is the receiving rate of

node u. Tt is the transmission time in a frame, and Tr is the

receiving time in a frame. (Tt ? Tr)/T is the active fraction

of slot allocation on current node for sending and receiving

data on the current downside and upside communication

link. For each node in a frame, there are some slots

allocated for sending data and the others for receiving data

according to communication scenarios, except for idle slots

if no communications occur. There is: Tt ? Tr = Tc. In

each frame, we use kt and kr to represent the slot allocated

fraction for sending and receiving data respectively.

Considering a half-duplex network interface card for

node-to-node communications, there is:

ktðuÞ þ krðuÞ� 1 ð4Þ

Considering the congestion constraints, for slot s, it

should satisfy Formula (5), where u’ is in the interference

node set I(u) of node u:

ktðuÞ þ
X

u02IðuÞ
k0tðu0Þ � 1 ð5Þ

In protocol interference model, transmission methods

are utilized to evaluate the interference impact. A node

receiving from a neighbor should be spatially separated

from any other transmitter by at least a distance D, i.e., an

interference range. If distance between u and u0 is less than

D, then the two nodes interfere with the transmission.

Each node has a buffer to store and carry the packets

that have not been transmitted. The node keeps the storage

and bandwidth maximally utilized, dropping only when

necessary. The buffer has limited maximal size and con-

tains packets with its available space, i.e., node u has the

available buffer size as buf(u). Let occ(u, s) be the number

of bytes stored at node u at slot s under current routing

strategies. For all u, s, there is:

occðu; sÞ� buf ðuÞ ð6Þ

3.3 Delay and packet mode

A delay bound T_max is given to limit the maximal

delivery time for data packets. For each node u of the route

path with the hth hop in the network, the distance of itself

from the destination dst can be measured by the Euclid

distance as: d = ||u - dst||. Note that dst can be a destined

vehicle node or an access point.

164 Wireless Netw (2013) 19:161–173

123



So an approximate average delivery velocity value�vacan

be calculated as Formula (7):

�va ¼ jvaj ¼
d~

slack
¼ jju� dstjj

T max�
Ph

i¼1 Ti

ð7Þ

In which, slack is the time left for routing that is equal to

the remaining part of delay bound minus cumulative time

on each hop for the packet. The velocity vector va is with

the same direction as the direction of current node toward

destination, i.e., the direction of d~.

For the (h ? 1)th hop, the velocity vector denoted as v is

with direction that should satisfy Formula (8). In which, va

is the average velocity that is needed achieve delay bound

according to Formula (7). And h is the angle of current

velocity v with the node-destination pair direction d~. So, Dv

is the vector difference of the velocity on the (h ? 1)th hop

and the required average velocity for delay bound. If Dv is

less than zero, it cannot guarantee to achieve the real-time

delivery toward the destination.

Dv ¼ v
*

cos h� v
*

a� 0 ð8Þ

Figure 1 shows an illustration, in which va is the required

average velocity for real-time delivery. And v1, v2 is the

velocity on the possible next hop of node u that satisfies the

above Formula (8), when geographic routing is from s to d.

The node u is assigned with a routing indicator I(u, u0) for

the next hop u0 with the data packet, which is defined as the

cosine value of the angle of current velocity with the node-

destination pair direction, i.e., cos h. A bigger I(u, u0) value

indicates a higher delivery priority of the relay.

According to the mobility of vehicles, we can find three

basic relay patterns in vehicular DTNs as: straight way,

intersection toward destination and intersection against

destination. We use: straightway, intersec-2-des, and

intersec-against-des to represent the three patterns. If a

node carries the packet and its next hop is at the same

direction with it toward the destination, then we find out

the packet is delivered through vehicles on a straight way

that does not change the driving direction either. In this

case, we have: cos h = 1. If we have cos h B 0, it implies

the next hop is against from the direction of current node

and its destination pair, i.e., intersec-against-des pattern. If

we have cos h[ 0 and cos h\ 1, it implies the next hop is

toward the direction of current node and the destination

pair, i.e., intersec-2-des mode. Formula (9) gives the defi-

nition of the three relay patterns.

3.4 Routing models

In geographic routing, only node moving toward the pre-

ferred direction within the delivery delay bound is probably

selected as a relay. But for geographic routing problems in

vehicular DTNs, the optimal node may be not connected to

the destination, so the routing decision only based on

velocity policy may make packets be routed toward the

wrong direction that often leads to higher energy con-

sumption. As shown in Fig. 1, if packet on u is forwarded

in horizontal direction, the packet will not be successfully

delivered because horizontal relay node is not connected

toward the destination.

Though the connectivity related traffic pattern can be

learned by Q-learning, it needs more time and waster

energy to do this. To solve the problem, we combine two

routing modes: probabilistic forwarding and replication

together in vehicular DTNs to try to speed up the learning

process. Which mode to choose depends on the packet

pattern learned from the network environment. If the cur-

rent packet is in ‘‘intersec-against-des’’ pattern, then the

packet will not be delivered to the next hop. The node just

carry the packet and wait for the other contact. Otherwise,

if the packet pattern is ‘‘straightway’’, the node will for-

ward the packet to its possible next hop. If the packet

pattern is ‘‘intersec-2-des’’, the replication method is used

to replicate the packet and deliver to all the next hop. The

node will replicate and send the packet according to routing

indicator, i.e., replicate the packet and deliver it to the next

hop with I 2(0,1).

u

v

v1

v2

1

2

des

src

Fig. 1 An example for geographic routing

relay pattern ¼
straightway if Iðu; u0Þ ¼ cos h ¼ 1

intersec� 2� des if Iðu; u0Þ ¼ cos h 2 ð0; 1Þ
intersec� against � des if Iðu; u0Þ ¼ cos h 2 ½�1; 0�

8<
: ð9Þ
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3.5 Problem definition

The problem objective of DRSS is to minimize the total

routing and rate allocation cost on the route path, i.e., to

minimize the cost denoted as Ř for each node u of the

cumulative h hops on the route path according to the

routing and rate allocation strategy set P, which is shown

as in Formula (10).

• Objective:

�RðPÞ ¼
Xh

1

�RðuÞ ð10Þ

An optimal routing and rate allocation strategy set

P : {(relay1(u),rate1(u))���(relayh(u),rateh(u))} between

routing pair of source node src and the destination dst

with maximal delay bound T_max should be subject to the

following constraints.

• Schedule constraints: The corresponding rate on the

path route should satisfy the interference constraint in

Formulas (4) and (5).

• Buffer constraints: The relay node on the path should

satisfy the buffer requirement in Formula (6).

• Delay constraints: The relay node on the path should

satisfy the delay requirement in Formula (8).

4 DRSS design

4.1 Network control for green opportunistic

communications

The urban vehicular network traffic changes are related

with time, zone, vehicle types and some other factors.

Vehicles follow a kind of certain mobility pattern that can

be a combination of the road map, the traffic light, the

speed limit and traffic distribution. We try to learn from

these traffic patterns and make it to assist data delivery in

vehicular DTNs. We design a directional routing named

DRSS that can help to relay, carry and forward the packets

by selecting the optimal routes within the ‘‘preferred’’ areas

that enable good performance toward the destination. An

intelligent network control based on reinforcement learning

is used to predict the knowledge of the network environ-

ment. The probabilistic routing strategies are updated

according to reword/cost from the current network envi-

ronment. We know that directional routing problem in

vehicular DTNs complicates because of mobility. Rein-

forcement learning based network control framework can

help to learn and predict the network traffic pattern

according to history experiences. The probabilistic routing

strategies converge toward an optimal route from the

reinforce learning process.

Figure 2 shows the network control framework by using

reinforcement learning. To deal with the varied opportu-

nistic connectivity in the network environment, the data

communications should be based on the prediction of future

contacts by taking advantages history of network topology

and traffic distribution. During the intelligent learning

procedure, the vehicle adapts the strategies according to its

reward or cost with different actions without known mod-

eling of network environment. With reinforcement learning,

the vehicle can update its strategy by predict the network

environment and converge to an optimal strategy.

According to the above framework, we adopt Q-learning

approach to circumvent the routing and scheduling problem

we defined in Sect. 3.5. Q-learning is used for learning and

decision under dynamic and unknown environment model.

The DTN network system has random connection events

because of mobility. The Q-learning based routing scheme

observe the transmission activity of its nearby nodes and

gather the information of network traffic and topology as

well as route resource utilization, which enables the node to

build the knowledge of nearby routing environment. Then,

the knowledge is used by the vehicle node to decide which

relay direction and schedule to choose so that the desired

performance can be achieved. Provided that the learned

information is efficient, it guides routing and schedule

strategies to make efficient use of network resources by

routing packets toward the optimal direction.

The objective of DRSS is to learn from the environment

states (dynamic connection events) to decide the actions so

as to maximize the reward (i.e., minimize the cost function)

[32]. The DTN network control system is formulated by a

tuple hS;A; �R; �Ti, where S is the discrete state space. A is

the discrete action space that is dependent on strategies

taken. �R: S 9 A ? R is the cost function, which implies

the quality of a state-action combination of the network

system. �T : S 9 A ? DS is the state transition function,

where DS is the probability distribution over state space S.

Vehicles

Strategies

Network Environment

action

reward/cost

update control

Fig. 2 The intelligent network control framework
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In DRSS, the actions include sets of selected relay and

rate strategies denoted as: p(relay(u), rate(u)). In which,

relay(u) is the optimal relay and rate(u) is the assigned

transmission slots for the outgoing link according to the

chosen relay. Once an action (i.e., a strategy) is taken, the

network system produces a new performance signal of cost

according to it. With the update cost �R, DRSS scheme

evaluates the effectiveness of the action and then utilizes it

for the further decisions. This is achieved by Q-learning

procedure with update cost of actions.

The Q-learning procedure is achieved by updating the

Q-value. The Q-learning approach converges to an optimal

strategy as long as the state-action pairs are continually

updated. When the transmission slots assigned for the

outgoing link connected to the relay node start at time slot

s and ends at time slot s ? k. In which, k is the number of

time slots assigned for transmission schedule. The Q-value

for state-strategy pair is updated as shown in Formula (11).

Q0 is the updated Q-value of taking action a in state s and

then following the optimal policy thereafter. For current

state s is with time s, and the next transmission state is s0

with time s ? k. For each step, the selected optimal

strategy is to minimize the expected cost. This is achieved

through an iterative search method, i.e., to find a minimal

Q(s0, a) with a optimal strategy. In this formula, a is the

learning rate among the range of (0,1). b is the discount

factor among the range of (0,1) too. We use a constant

learning factor, and the learning procedure can track the

dynamic network situations.

Q0ðs; aÞ ¼ ð1� aÞQðs; aÞ þ að �Rs þ b min
a

Qðs0; aÞÞ ð11Þ

4.2 Cost function

The DRSS scheme aims to provide green energy–efficient

routing and rate allocation. The cost function is achieved

by the average amount of energy consumption per bit on

the current route path from the 1st to hth hops, which

embodies the tradeoff among energy efficiency, connection

duration and communication efficiency. The Formula (12)

shows the cost function. Tc is the slots of opportunistic

contacting time in a frame, which includes transmission

and receiving time slots for outgoing and incoming com-

munications on current node u.

�RðpathÞ ¼
Xh

1

�RðuÞ ¼
Xh

1

E

rateðuÞ � Tc
¼
Xh

1

Et þEr þEl

rateðuÞ � Tc

¼
Xh

1

ðee þ eaRnÞkt þ ðeeþ epÞkr þ elð1� kt � krÞ
ðkt þ krÞC � ðkt þ krÞ

ð12Þ

Considering the flow constraints and buffer constraints, we

formally express the cost function as shown in Formula (13).

�RðuÞ ¼
ðeeþeaRnÞktþðeeþepÞkrþelð1�kt�krÞ

ðktþkrÞC�ðktþkrÞ if satisfies ð4Þ�ð8Þ
1 otherwise

�

ð13Þ

For one-commodity routing situation, if node u 62 {src,

dst} on the route path, then the traffic data bits sent out

equal to the received data bits, i.e., kt = kr. The received

traffic rate depends on the traffic rate sent out of the last

hop on the route. So, the DRSS scheme is mainly

responsible for selecting relay node and allocating

transmission slots. For on-line routing, the available slots

of current node u can be calculated as the total slots in a

frame minus the slots used for communications and slots

that may collide with it (among 2-hop communication

range). This information will be known by periodic

neighbor messages and roadside infrastructure broadcast.

4.3 Nash Q-learning approach

For on-line multi-commodity scenarios, DRSS utilizes

extended Q-learning approach for multi-agent decision

making. In this case, each agent is selfish for routing desire.

The network routing and allocation problem is modeled as

a stochastic non-cooperative game. Let hN;P; �Ri denote

the stochastic non-cooperative routing and scheduling

game, where N is the number of routing commodities in the

network. P is the strategy set, and �R is the cost set. The

objective of multi-commodity routing is to minimize the

overall cost. Different agents have their own objectives

which may contend among one another, so the overall cost

is dependent on the strategy selection of each agent. The

strategy of each agent is to select relays and transmission

rates (i.e., transmitting slots) on each route path hop. The

overall cost achieves minimized cost during the learning

process. According to this, the multi-agent Q-learning

approach is utilized to find out the optimized DRSS strat-

egy and achieve the minimized cost for all routes. Let P(pi)

be the probability for ith routing commodity to select a

specific strategy p at state s (i.e., the state with time s),

which achieves the game equilibrium. Gi is the set of all

possible strategies. The overall objective in the stochastic

non-cooperative routing and scheduling game can be

express as shown in Formula (14):

min
pi2
Q

i

E½ �RiðSÞ� for all i ð14Þ

where

E½ �RiðpÞ� ¼
X

i

PðpiÞ �RiðpÞ ð15Þ

In the stochastic non-cooperative game based network

system, each routing commodity finds a strategy with Nash

equilibrium to achieve objective in Formula (14).
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Let NashQi be agent i’s cost for state s when all agents

follow specified Nash equilibrium strategies. According to

[31], the Nash equilibrium NashQi is the agent i’s payoff

in state s for the selected equilibrium, which is with

equilibrium strategy p�1 � � � p�m
� �

for the stage game

(Q1(s)���Qm(s))computed from Formula (16). In the for-

mula, m is the number for players in the game, i.e., the

number of routing commodities in DRSS. In order to cal-

culate the Nash equilibrium, each agent i needs to know the

other agents’ Q-values. Then, each agent observes the other

agents’ immediate cost and action. Then the agent i can

update its Q-value according to other agents’ Q-values as

shown in Formula (17). In each time step at state s (with

time s), a player observes the cost �Ri of its current state s

and takes action a. An immediate cost for the next state s0

(with time s ? k) are learned and predicted in this way.

NashQiðs; aÞ ¼ p�1ðsÞ � � � p�mðsÞ � Qiðs; aÞ ð16Þ

Q0iðs; a1; . . .; amÞ ¼ ð1� aÞQiðs; a1; . . .; amÞ

þ aðR
_

i
þbNashQiðs0; a1; . . .; amÞÞ

ð17Þ

To minimize the network cost, the multi-agent

Q-learning approach has to explore all possible strategies

randomly and greedily, and then chooses the ‘‘good’’

strategy. The strategy exploration probability is updated as

shown in Formula (18). The learning policy satisfies the

GLIE (greedy in the limit with infinite exploration)

property and also based on routing indicator priority. The

relay is based on the priority of routing indicator I (defined

in Sect. 3.3), and the bigger indicator value means higher

priority. Therefore, for all the possible strategies, the

probability of choosing strategy p for the ith commodity in

state s0 is decided by the probability of choosing p in state

s, the Nash equilibrium strategy of state s, and routing

indicator.

The Nash Q-learning based centralized algorithm is

described in Algorithm 1. The algorithm is a half-distrib-

uted algorithm that needs global network information to

select equilibrium point. The routing and scheduling pro-

cess is executed distributed hop by hop, while the node

decides the next hop and transmission slots according to

the global game information. Line 1–6 is the algorithm

initialization. In line 4, |P| is the number of possible

strategies, which is bounded by the multiplication of

maximal degree of the network graph D and frame slot

number L, i.e., jPj ¼ D � L. Line 7–27 is the Nash

Q-learning procedure. Line 13–19 is the routing mode

selection, i.e., to use the ‘‘probabilistic forwarding’’ or

‘‘directional replication’’. In line 20, �R1 � � � �Rm denote the

cost for all players, and p1���pm denote the strategy taken by

the other players except ai. In line 21, slot time s is updated

as (s ? k) mod L in the next state, where L is the frame

length. Line 23 shows the Q-value update for each user in

the next state according to Formula (17).

As explained in [29], the time complexity and space

requirement of this learning algorithm is high when agent

number is big. For 2-player Nash Q-learning, it has expo-

nential worst-case time complexity. The space complexity

is also exponential in the number of users. In the network,

the game of routing resources occurs among the routing

commodities within the interference range during the

contacting time. The transmissions diverged from inter-

ference range will not affect one another. So, the routing

game process of the network system can be achieved by the

local game with local routing commodities, when there are

joint routes within the interference range from one another

during the contacting time.

An improved algorithm based on local games is illus-

trated in Algorithm 2. In Algorithm 2, we only consider the

local game that happens among the interference range to

reduce the complexity. So, each node makes distributed

routing and scheduling decisions according to local game

information. Of course, it still needs some global infor-

mation for network initialization process.

In line 21, j is the routing commodity with routes that

are within the interference range of i for current contacting

state by satisfies: ||route(i) - route(j)|| B D. D is the

interference range. The distance of the routes are defined as

the minimal distances of the relay nodes from the two

routes respectively. So, it only need to observe the cost and

action of contending commodity with current commodity i,

but not all the other commodity in the network. For general

DTN networks and their applications, the networks are

usually sparsely or loosely connected. The on-line routing

commodity number is often small within the interference

range, so the performance of local game based DRSS is

acceptable. From the above algorithms, DRSS selects

the contact strategies toward the energy–efficient and

Pðpi; s
0Þ ¼

Pðpi; sÞ þ Ið1� Pðpi; sÞÞ; if pi ¼ arg NashQ
p

iðs; aÞ
maxðI � Pðpi; sÞ; 0Þ if pi 6¼ arg NashQi

p
ðs; aÞ

8<
: ð18Þ
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interference-aware direction toward the destination within

the timeliness by optimal relay and feasible schedule.

According to Q-learning cost, DRSS converges to select

the relay node that is moving with velocity equal to or

higher than the expected average velocity towards the

destination direction with good connectivity and traffic

situations. Otherwise, the node carries the packets until it

finds a better node that can help to make data delivery.

5 Simulations

We make simulations by using ns2 simulator and evaluate

the performance. We simulate a vehicular ad hoc delay-

tolerant network with 50 vehicles travelling among the area

of 2,500 m 9 2,500 m. The vehicles travel with the speed

from 5 m/s to maximal 20 m/s around the test area. A fixed

static node is placed at the center of the area, which is used

to simulate a roadside access point in real vehicular net-

works. By default, all the vehicle nodes move in the net-

work according to the Random Waypoint mobility model.

In the simulations, the vehicles connect with each other by

a half-duplex wireless network interface card. The com-

munication range is 150 m, while the interference range is

set to 300 m. At the beginning of the simulation, the

routing request with CBR rate is periodically generated

from a source node that is randomly selected. The load is

40Bps generated on the source node. By default, each node

allocates a limited buffer with maximal 30 packets. One

slot is enough time for transmit or receive a packet. The

simulated roadside access point is chosen as the routing

destination. We initialize the parameter values: a = 0.1,

b = 0.9 and c = 0.5. The value of energy consump-

tion related parameter ee, ea, ep, and el is chosen based

on [33].

In this part, we simulate and evaluate the convergence of

Q-learning based DRSS, learning ability when traffic load

changes and energy efficiency, and then the performance of

data delivery delay. We make simulations when the routing

commodity number is 1, 2, and 4 respectively. In the

4-commodity situations, we evaluate the performance of

the local game based algorithm.

5.1 Convergence

Directional routing and scheduling scheme utilizes

Q-learning approach, so convergence is one of the main

concerns for performance evaluations. We study the con-

vergence speed of the cost function as simulation time

increases. The result is shown in Fig. 3. It shows the

average path cost from 20 to 1,000 s during the simula-

tions. We observe that the average path cost begins to

converge around 800 s for all the situations. When com-

paring multi-agent results with 1-agent situation, results of

multi-agent seem to incur a little more cost. This is because

Nash equilibrium strategy is chosen to provide optimal

routing cost for all the agents in the network, which may

not be the optimal strategy for each single agent.

Algorithm 1 Basic algorithm with Nash Q-learning
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5.2 Learning ability

The advantage of Q-learning approach based DRSS is the

ability to predict the unknown network environment and

then adapt the strategies toward it by learning from it. In

practical road scenarios for vehicular DTNs, the network

topology and traffic varies with time. We then simulate the

varied network topology and traffic by changing the

number of vehicles in a specific area.

In the first scenario: we add 20 more default vehicles

into the network area to increase the connections at 200 s

after the simulation begins, and then we remove them at

800 s. The corresponding results are shown in Fig. 4. We

observe that DRSS can track the change and adapt the

strategies toward the network environment. The average

path cost of routing situations with 20 more vehicles added

into the network is lower than the original situations. It

implies that the added vehicles help to increase the con-

tacting opportunity in the network without extra conges-

tions because of effective schedule control. At 800 s of the

simulations, we remove those newly added vehicles. This

incurs small fluctuations of the average path cost, because

each agent learns from the change of network scenario and

finds new strategy toward it.

In the second scenario: we double the source traffic rate

from 200 s of the simulations, and then change back to the

original traffic rate at 800 s. The corresponding results are

shown in Fig. 5. We observe that the average path cost

increases a little from 200 to 800 s, when compared with

the previous results. This is because that the increased load

incurs more possible congestions. According to DRSS, the

routing and rate allocation strategies will be adapted to

optimize the cost. More idle energy consumptions are

incurred in a long schedule for the increased traffic. The

results show there are many result fluctuations after 800 s,

because DRSS keeps learning and selecting new strategies

according to the varied network environment.

5.3 Delay-bounded delivery

Another concern of DRSS performance is the data delivery

ratio within the given delay bound. Figure 6 shows the

average real-time delivery ratio as delay bound increases

from 200 to 4,000 ms, which is based on the results of

800 s’ simulations. We observe that the data delivery ratio

increases as we relax the delay bound. The 1-agent

achieves better delivery when compared with 2-agent and

4-agent situations. More routing agents bring more possible

congestions in the networks and the need more schedule

time for transmission according to DRSS rate allocation.

5.4 Comparisons

We compare our DRSS with epidemic [11] and modified

Dijkstra algorithm [18]. Figure 7 shows the average energy

consumption per bit during the simulations. From the

results, we can see that DRSS has much better energy

efficiency when compared with the other two algorithms.

Algorithm 2 Improved algorithm with local game
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Epidemic algorithm uses the replication method to deliver

data packets, so the more energy is consumed. And this is

even worse when simulation goes on, because much rep-

licated routing occurs during the packet delivery. The

modified Dijkstra algorithm uses the forward method to

minimize the average delivery delay, but it does not con-

sider the energy consumption of packets and cannot adapt

toward the varied network environment. Actually, some-

times it leads to the wrong direction that is close to the

destination without connection and may consume more

energy.

6 Conclusion

We make research on an energy–efficient routing and

scheduling scheme in vehicle delay tolerant networks in

this paper. To predict the unknown network environment

such as traffic pattern in varied network situations, we
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utilize Nash Q-learning approach to try to find the opti-

mized routing strategies optimizing the overall network

efficiency. We present a novel DRSS to provide energy

efficient and delay-bounded data delivery by combining

forwarding and replication method. We make simulations

on vehicular DTN networks and make performance eval-

uations. The results show DRSS can effectively improve

the energy efficiency and data delivery ratio by learning

and predicting the network environment. Our further work

includes simulations on road networks with different net-

work deployment and more realistic mobility models.
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