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Abstract Cognitive networks are designed based on the

concept of dynamic and intelligent network management,

characterizing the feature of self-sensing, self-configura-

tion, self-learning, self-consciousness etc. In this paper,

focusing on the spectrum sharing and competition, we

propose a novel OODA (Orient-Observe-Decide-Act)

based behavior modeling methodology to illustrate spec-

trum access problem in the heterogenous cognitive network

which consists of multiple primary networks (PN, i.e.

licensed networks) and multiple secondary networks (SN,

i.e. unlicensed networks). Two different utility functions

are designed for primary users and secondary users

respectively based on marketing mechanism to formulate

the decide module mathematically. Also, we adopt

expectation and learning process in the utility design which

considers the variance of channels, transmission forecast-

ing, afore trading histories and etc. A double auction based

spectrum trading scheme is established and implemented in

two scenarios assorted from the supply-and-demand rela-

tionship i.e. LPMS (Less PNs and More SNs) and MPLS

(More PNs and Less SNs). After the discussion of the

Bayesian Nash Equilibrium, numerical results with four

bidding strategies of SNs are presented to reinforce the

effectiveness of the proposed utility evaluation based

decision modules under two scenarios. Besides, we prove

that the proposed behavior model based spectrum access

method maintains frequency efficiency comparable with

traditional centralized cognitive access approaches and

reduces the network deployment cost.

Keywords Cognitive network � Spectrum sharing �
OODA � Utility Function � Double auction

1 Introduction

Cognitive network is a network with a cognitive process

that can perceive current network conditions, and then

plan, decide, and act on those conditions. The network can

learn from the adaptations and use them to make future

decisions, while taking into account end-to-end goals [1].

Until now, cognitive network has been mostly studied from

the spectrum and radio perspective. More accurately, this is

referred to cognitive radio network, which allows the agile

and efficient utilization of the radio spectrum by offering

distributed terminals or radio cells the ability of radio

sensing, self-adaptation, and dynamic spectrum sharing

[2, 3].

Recently, cognitive networks are seen by many actors of

the wireless industry as a core technical evolution towards

exploitation of the full potential of next generation systems

which are underway to revolutionize wireless communi-

cations just as the Internet revolution did in its domain. The

cognitive radio is an essential methodology to deal with

the current inflexible spectrum division and unbalanced

Y. Teng (&) � Y. Wei � L. Wang � Y. Zhang

Beijing University of Posts and Telecommunications,

Beijing, China

e-mail: lilytengtt@gmail.com

Y. Wei

e-mail: weiyifei@bupt.edu.cn

L. Wang

e-mail: liwang@bupt.edu.cn

Y. Zhang

e-mail: yongzhang@bupt.edu.cn

F. R. Yu

Department of Systems and Computer Engineering,

Carleton University, Ottawa, ON, Canada

e-mail: richard_yu@carleton.ca

123

Wireless Netw

DOI 10.1007/s11276-012-0443-2



spectrum utilization; meanwhile, it facilitates the interop-

erability or convergence of different wireless communica-

tion networks [4] which provides a fundamental guarantee

for the future wireless cognitive network and self-orga-

nized network (SON) with the sensing and adaptation

features [5]. By carefully sensing the lincensed user’s

presence and adapting their own transmission parameters

to guarantee a certain performance quality for them, these

cognitive devices could dramatically improve spectral

efficiency [6] and improve the network performance

achieving the individual and end-to-end network goals [7–

9]. Meanwhile, much interest has arisen in applying the

‘cognition’ concept from other fields, such as machine

learning, evolution theories from the natural systems,

mathematics and economics, that mimic the behavior of the

communication networks of today.

Generally, there are two major problems in the wireless

cognitive network: one is the coexistence of multi-hetero-

geneous networks which enables users in the cognitive

networks to get diverse QoS experience and maintain

seamless communication; the other is the dynamic spec-

trum access for the multi-radio environment which pro-

vides a flexible way to deal with the relatively

underutilized situation. The former has been well studied in

[10], herein, we target to tackle the second issue, and in

what follows, we will explore the solution of dynamic

spectrum management (DSM) between primary network

(PN, i.e. licensed network) and secondary networks (SN,

i.e. unlicensed network) both in theory and practice by a

mathematical behavior modeling approach.

There are challenges for tackling the DSM in the

wireless cognitive network: first, a cognitive radio trans-

mitter must adapt to disturbance of the environment posi-

tively or passively, in particular the time-varying nature of

channel characteristics, dynamic variant applications or

services and etc.; second, different network entities (no

matter in licensed or unlicensed networks)’ action or per-

formance mutually is impacted by each other, i.e. the

transmission strategy of a user impacts and is impacted by

the competitors simultaneously; third, due to information

decentralized and heterogeneous nature of the multiuser

interaction in the wireless resource market, it becomes

even more difficult to analyze the interaction of them.

To cope with these challenges, we are motivated to

study the behavior property of individuals and sum up with

a certain behavior model for dynamic spectrum manage-

ment theoretically and instantiatedly. Due to the intelligent

features, we attempt to mathematically capture the behav-

ior in strategic situations, in which an individual’s success

in making choices depends on the choices of others.

Especially, in a heterogeneous cognitive network, the

spectrum management among multiple wireless networks

with different standard should deal with the cooperative

and competitive relationship among them. Therefore, it is

more natural to study the intelligent behaviors and inter-

actions of network (cooperative, selfish, or malicious) for

dynamic spectrum sharing from the perspective of game

theory. We try to explain the behavior of users in the

cognitive network by market behavior such as supply,

demand, and price mechanism (e.g., general equilibrium

theory), or to characterize the equilibrium outcomes of

given games (e.g., auction theory). Meanwhile, applying

game theory could effectively guarantee the fairness and

rationality for the spectrum management among network

operators.

Focusing on the spectrum competition problem in the

heterogeneous networks, we propose a specific double

auction based spectrum trading (DAST) sceme. In order to

further improve the assignment stability and general per-

formance of the cognitive system, we aim to discuss how to

adapt, predict, learn, and to determine how secondary

networks compete for the time-varying resources, as well

as to explore how they select the associated transmission

opportunity, given the dynamic environment.

1.1 Related work

Attentions for cognitive network have arisen from industry

and standard organizations since 2008. European End-to-

End Reconfigurability (E2R) Research and End-to-End

Efficiency (E3) target to optimize the use of the radio

resources and spectrum, following cognitive radio and

cognitive network paradigms [11]. E3 has developed

dynamic spectrum management functionality, exploiting

cognition techniques, so as to optimally assign spectrum in

the context of cognitive infrastructures.

Consequently, future wireless deployments will be

conceived on a fully cognitive system basis. In particular,

ongoing standardization on IMT-Advanced related radio

and cognitive systems are targeted, with contributions

enabling the convergence towards a future harmonized and

interoperable wireless landscape. In the framework of a

highly dynamic, heterogeneous wireless system, the

objective is to propose spectrum and radio resource

selection schemes which are efficient in terms of channel

disturbance, subscriber ranking, QoS requirement, etc.

However, the radio perspective of cognitive network is

dated back to Mitola’s initial definition of cognitive radio

(CR) [12] in 1999. After that, the study of cognitive radio

comes to a halt on the software defined radio literarily for

years. Until 2005, Haykin [13] gives a fresh definition of

CR and presents a novel view of intelligence, which brings

fresh discussion to dynamic spectrum management. In the

last four years, most of the work in this area of cognitive

radio emphasized on the technical aspect of spectrum

sensing [14–16] and protocols of dynamic spectrum
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sharing [17, 18] presents recent developments and open

research issues in spectrum management of CR networks

and discusses challenges. Furthermore, the marketing the-

ory brings a novel approach of spectrum sharing from

aspect of economics [19–22]. They refer the dynamic

spectrum sharing as a spectrum trading process of buying

and selling radio resource in the cognitive network envi-

ronment, where game theory and pricing mechanism

function well. In [23], the authors propose a spectrum

selection game where the secondary users (i.e. SU, users in

the SN) composed the strategy space to compete for the

Spectrum OPportunities (SOP) by choosing the minimal

experienced cost function. In addition, the authors of [24]

formulate a non-cooperative game for the secondary users

by obtaining the differentiated pricing function for differ-

ent strategies. After comparing with the static game, they

propose a dynamic game by adjusting the strategies based

on the observations of their previous strategies to obtain

Nash equilibrium as the solution to the spectrum allocation

for secondary users. Also, there has been a considerable

body of literature that details the spectrum sharing via

auction mechanism for cognitive radio investigated in [25–

27].

Summarily, although some excellent research of DSM in

the wireless cognitive network via pricing or auction

mechanism has been done as introduced, there are obvious

problems: first, no matter in the pricing function [28, 24] or

cost function [23], the authors only consider the requested/

allocated spectrum size or bandwidth and holding time

without distinguishing different spectrum from the physical

features which reduces the measurement granularity of the

utilities; second, only an oligopoly market competition for

such networks with one primary user (PU, i.e. users in the

PN) and multiple secondary users is considered, and some

are simply single-sided spectrum auction methods without

considering that the PNs participated in the auctions are

selfish, only maximizing the revenue unilaterally [27].

Besides, most of the game theory or pricing mechanisms

are static or dynamic with the environment passively

without forecasting the future behavior or reward. Specif-

ically, properties in the secondary network are overlooked

and the SNs can’t make any decision on spectrum selec-

tion, thus, it weakens in the cognitive abilities. Also, a

complete process of how to present the biddings and how

to implement the double auction has never been studied.

1.2 Contributions of the work

In this paper, we aim to present a behavior model to give

illustration on how the cognitive function performs in the

cognitive network. We present an explicit OODA circle

based on the specific actions in the multi-radio spectrum

trade.

For the cognitive spectrum competition, the contribu-

tions of the work are summarized as follows:

1. In the described cognitive network with multiple PNs

and multiple SNs, we analyze a behavior model from

the perspective of OODA cognitive circle perspective.

2. Considering the varying channel and trading history,

we formulate two different utility based decide mod-

ules for the PNs and SNs according to their separate

situations and individual purposes, including the traffic

expection and adaptive learning parameters.

3. We propose a double auction based spectrum trading

(DAST) model for spectrum management in the

cognitive network under two different scenarios

assorted from the supply-and-demand relationship

between PNs and SNs which expands the practicality

of the proposed scheme. Also, we discuss and test the

Bayesian Nash equilibrium of the proposed double

auction game.

4. In the secondary networks, we discuss four different

bidding strategies through community negotiation to

further the heterogenous network application.

5. We present the reciprocal model practice from the

system level and prove that the proposed schemes

serve effectively for the spectrum competition in the

cognitive network.

1.3 Organization of this paper

The remaining sections of the paper are organized as fol-

lows. Section 2 presents a cognitive architecture. Given a

particular OODA based behavior model related with the

spectrum competition, Sect. 3 is devoted to formulate the

utility functions for the primary and secondary networks

respectively, exploring the specifications and behavior

motivations of them. Section 4 discusses the interaction

between the two utility functions in the LPMS and MPLS

scenarios. In Sect. 5, we discuss the existance and location

of equilibrium of the proposed double auction games.

Then, Sect. 6 examines the reciprocal negotiation within

one secondary network under four cases, and Sect. 7 pre-

sents the simulation results. Finally, Sect. 8 concludes the

paper and highlights the research issues that the proposed

DAST functions in the dynamic spectrum allocation of

heterogeneous cognitive network.

2 Behavior modeling in the cognitive networks

2.1 Primary and secondary networks

Consider a cognitive network with I primary networks (PN)

and several heterogeneous secondary networks (SN)
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around in Fig. 1, where each PN is assigned with licensed

bands uniformly. Assume a PN-controller takes charge of

spectrum management in the cognitive network, which not

only allocates resource for PUs, but also maintains dealings

with SNs on the current vacant bands. SNs compete for the

spectrum access opportunities as a union in the open,

unlicensed band, and then allocate for ruled SUs in certain

strategies. We assume that users within the SNs are homo

parochius [29], i.e. they value insiders’ (SUs in the same

SN) welfare more than that of users outside, evaluate

insiders personal qualities higher than those of outsiders

(SUs in the other SNs), and partially suppress personal

goals in favor of the goals of the group of insiders. How-

ever, the relationship of each SN with PN is more similar to

the homo reciprocal society [29], where they interact

strategically with a propensity to cooperate with each

other. Therefore, SNs pursue the access opportunities at a

cost while PN can snatch the revenue by leasing the vacant

spectrum to SNs, such that both of them will benefit from

the win-win cooperation.

Specifically, we indicate I PNs and K SNs with the sets

SPN ¼ fp1; p2; . . .; pIg and SSN ¼ fSN1; SN2; . . .; SNKg
respectively. Moreover, there are Nk; k 2 f1; 2; . . .;Kg
users in the kth SN, indicated by the set SNk ¼
fsk

j g; j 2 f1; 2; . . .;Nkg, i.e. the jth user in the kth SN. In the

cognitive network, the total system bandwidth B is divided

into Tc OFDM subchannels. We authorize PN pi; i 2
f1; 2; . . .; Ig with ui OFDM subchannels indicated by a

channel index vector Api
¼ fan

pi
g; an

pi
2 f0; 1g; n 2 f1; 2;

. . .uig, where api
n = 1 indicates that the nth subchannel is

allocated to pi and vice versa. Denote Ask
j
¼ fbn

sk
j
g; bn

sk
j
2

f0; 1g; n 2 f1; 2; . . .vjg as the subchannels access for SU sj
k,

where bn
sk

j
¼ 1 indicates that the nth subchannel is released to

pi and vice versa. Define gn
pi
; gn

sk
j

as the channel gain for pi and

sj
k on the nth subchannel. In this model, users can obtain gn

pi

and gn
sk

j

by the channel estimation or cluster-based sensing

[30, 31]. pn
pi

is the power of pi on the nth subchannel and the

channel noise is assumed to be independently and identically

distributed (i.i.d) zero-mean complex additive white

Gaussian random variables with variance r2 on all the links.

Note that each entity in the cognitive network has a

corresponding cognitive function by executing a cognitive

process respectively. There are five essential modules in

the OODA (Orient-Observe-Decide-Act) [32] circle as

illustrated in the top right corner of Fig. 1, also called as a

cognitive circle, of which the decide module is the prin-

cipal of them; Meanwhile, the learn module is the delicate

part that presents an open, updating, and adaptive orien-

tation within the circle. The explicit introduction of the

related OODA circle is defined as below.

2.2 Behavior modeling analysis for spectrum

competition

Exploiting the ‘‘cognition’’ [13], an OODA cycle for

spectrum competition of cognitive network as depicted in

Fig. 2 can be interpreted as follows.

• Observe

The observe function is initialized to sense the radio envi-

ronment, such as channel condition and contextmeasurements.

To be specific, for the PN, it scans the current spectrum utili-

zation, requiring bidding signals from SNs around, hostile

selling signal from PN around, and so on; for the SN, it detects

the vacancy or occupation of the spectrum around, and their

corresponding strategies for further potential trade.

• Orient

The orient function is to analyze and parse the observed

messages, receive and interpret policy language, and eval-

uate this information to determine its importance for the

decision.

• Decide

The decide function is to present and compare the

potential choices within the decide region. It comes up with a

wise decision according to a knowledge-based decision

strategies, and makes out the parameters for delivering. In

this work, we set up two distinguishing utility based decision

making models for PNs and SNs to cope with their private

context situation.

• Act

The act function is to execute the tangible action com-

plying with the decided parameters. For the PNs, it is to

Fig. 1 Behavior model prototype in the cognitive network
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release the spectrum and sell a partial spectrum to the SNs

at a certain price; for the SNs, it would be to occupy this

spectrum and buy a partial spectrum from the PNs at a

certain price. Note that it is the only module that causes

effect to the outsider environment.

• Learn

Of the five modules, the learn function is a delicate

function that acts warily but works overwhelmingly. It

obtains new skills and evolves intelligently by discovering

spectrum usage norms and exception, remembering the

signatures of the variable radio context, and extracting

relevant aspects such as new features.

In this paper, we adopt learning into the decide module

for simplicity, and propose utility evaluations based decide

module for spectrum competition. Accordingly, the joint

consideration of these two modules requires that there are

dynamic parameters involved in the decide module, which

are adjustable based on some historical and expectation

factors. This will be discussed in the Sect. 3.6.

3 Formulating the utility for evaluations

In the cognitive network mentioned above, there are two

kinds of interests that should be paid attention to. First, the

service in PNs is has a priority to be guaranteed, each of

which will be assigned with licensed bands in case for any

possible transmission. Second, the interests of the SNs are

to be satisfied as best-effort as possible. In the manuscript,

we consult the spectrum trading model to settle the

dynamic spectrum management where PNs sell the free

bands but SNs buy. The objective of spectrum trading is to

maximize the revenue of PNs while maximizing the sat-

isfaction of SNs. As we all know, some evaluation mech-

anism have to be erected to ensure the exchange process in

the spectrum market. Hereby, we formulate two different

utilities for PNs and SNs according to their practical situ-

ations and community purposes in cognitive network. In a

distributed architecture the cognitive radio entities will

observe and make decisions independently [33]. Accord-

ingly, we assume that entities in the cognitive networks are

selfish but rational; each of them will establish a trustable

reputation by reporting the true payoff or cost. The two

utilities designed for decision of PNs and SNs will be

depicted after addressing the network challenges.

3.1 Utility function

Generally, the concept of utility function is used to quan-

tify satisfaction of entities, e.g., networks or participators.

Depending on the speciality of spectrum competition in the

cognitive networks, a spectrum supply and demand model

subsists in terms of market mechanism. In the game the-

oretical methodology, a game is formulated to capture the

selfish and cooperative behavior of the players. Consider-

ing that users in these networks experience different con-

ditions, different spectrum availability as well as different

transmission expectation, we establish two separate utility

functions with respect to their deviating behavior. Different

types of utility functions (e.g., a logarithmic or sigmoid

function of transmission rate) can be used to evaluate

performance and how nodes choose their utility function

can significantly impact network behavior. To further

complicate matters, how utility functions impact network

behavior varies from situation to situation, and changes

over time [15].

When designing the utility functions for the cognitive

spectrum competition, there are three major motivations

for attention. First, the function used to be designed con-

cave so that it is able to represent the saturation of user

satisfaction as the transmission rate increases. Second,

from the economical point of view, there are two kinds of

Learn

Act

Orient

Decide

Observe

radio environment, e.g., channel 
condition&context measurements

vacancy or occupation of the current 
spectrum

buying requirement from SN around

selling signal from PN around

receive, parse and interpret 
policy language

evaluate this information for
decision

sell a partial spectrum to the secondary 
user at a certain price

Release these spectrum

buy a partial spectrum from the primary 
user at a certain price

occupy these spectrum

Joint Conderation

Utility based decision 
making model for PNs

Utility based decision 
making model for SNs

Fig. 2 OODA Cycle Interpretation for Spectrum Competition in Cognitive networks
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momentum in the spectrum trading, that is the revenue or

benefit part (i.e. the PNs get revenue by releasing the

spectrum while the SNs benefiting from the transmission

evaluation), and cost or payoff part (i.e. the cost for the

PNs to release the spectrum while the SNs pay for the

leasing), besides, the payoff is attorned from the SNs to the

PNs fully or partially according to the business mechanism.

If we assume that there is no discount between them, the

payoff of SNs is equal to the revenue of PNs. Third, the

utility function should be dynamic and adjustable; there-

fore we can update parameters flexibly with respect to the

variability caused by node mobility, various channels,

elastic traffic and etc.

In what follows, we will focus on coping with these

issues for PNs and SNs discriminatively. We first probe

challenges of different entities in the spectrum trading

process, and formulate utility functions to capture them.

Assume that PNs have access to perfect, completely up-to-

data information about each SNs’ bidding price, but have

no ear for other PNs’ payoffs. Meanwhile, users within the

same SN share transmission information with each other

disinterestedly, but knowing nothing of other SNs’ due to

the spectrum competition.

3.2 Challenges for PNs

For the licensed PNs, there are challenges to consider.

• Under the macroeconomic control of i-NodeB. A PN

competes with other PNs for the spectrum allocation

under the dominion of a cell i-NodeB according to his

own usage of the resource and leverage the income.

• Market competition from other PNs. PNs scramble for

the revenue by competing for business opportunity with

potential clients. It means that the PN has to set up a

proper selling strategy (i.e. the quantity, selling price

and etc.) to get the profit maximization. For example, if

he set the higher price than other competitors, SNs

might deviate from buying and result in a customer

disturbance. Otherwise, if he sold at a price lower than

the intrinsic cost, he might be at a disadvantage in the

exchange.

• Delicate supply and demand relationship. Moreover,

there exists a delicate supply and demand relationship

between the sellers (i.e. PNs) and buyers (i.e. SNs). The

sellers won’t trade in the business unless he gets the

transmission appeal. Once the trading-off collides with

his own usage, he intends to break the cooperation

immediately. However, SNs won’t have any intention

to deal with such trading fraud. Therefore, the PNs

might establish the individual reputation by a second

thought when drawing back his release, when personal

transmission requirement occurs.

• Countermeasures to the collusion among the SNs.

However, PNs might risk cheating from the SN, who

intends to lease channels at a lower payoff. If

unlicensed within the SNs collude with each other,

the PN might accept arbitrary low bidding price from

the collusion rings [19]. Therefore, how to design an

efficient collusion-resistant utility to preserve the public

order as well as to share the spectrum dynamically

becomes an imminent and crucial task.

• Instant regulation of marketing strategy. Considering

the spectrum dynamics caused by wireless channel

variations, user mobility or varying wireless traffic, as

well as competitive PNs, heterogenous SNs, the PN

faces a susceptible and unstable situation in the

marketing environment. Hence, he has to adjust the

marketing strategy intelligently to ensure the success in

the market competition.

3.3 Utility design of decision making model

for the PNs

Based on the previous considerations, we are motivated to

define the utility function for the PNs. Normally, market

sellers used to calculate their net income by knocking off

cost from their appearing revenue. Specifically, we define

Rn
pi

as the revenue for pi on the nth subchannel by leasing

the licensed spectrum, and Cn
pi

is the intending cost by

leasing the spectrum correspondingly. If PN pi intends to

lease his channels to a SN SNk, the utility function of pi on

all the holding subbands can be written as follows in (1).

Upi
¼
Xui

n¼1

un
pi
¼
Xui

n¼1

an
pi
pn

pi
aSNk

pi;n
Rn

pi
� Cn

pi

� �
ð1Þ

In this function, Rn
pi

comes from the payoff of SNk for

the spectrum exchange. Cn
pi

is the self-evaluation of the

spectrum, herein, we mark it as an equivalent rate on the

nth channel in case for unexpected usage loss for not

vacating band immediately as in (2). Herein, pn
pi
2 f0; 1g

represents the Opportunity of Transmission (OoT) for pi,

i.e. pn
pi
¼ 0, indicates that pi takes up the current OoT on

the nth subchannel and pn
pi
¼ 1 indicates that the nth

subchannel is a vacant spectrum. Besides, aSNk
pi;n

is an

indicator denoting that a successful release of subchannel n

from pi to sj
k when aSNk

pi;n
¼ 1.

Cn
pi
¼ /n

pi
rn

pi
¼ /n

pi

B

Tc
log2 1þ

gn
pi

���
���
2

SNRn
pi

C

0
B@

1
CA ð2Þ

For reification, let /n
pi

mark the probability of next

transmission take-up, which is used to forecast the future
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usage and potential services. rn
pi

represents the pi’s average

rate on the nth subchannel. Therefore, /n
pi

rn
pi

is used to

evaluate the cost for releasing the channel. Denote SNRn
pi
¼

pn
pi
=r2 as the transmission signal-to-noise ratio (SNR), and

C ¼ �lnð5Bmin
i Þ=1:5 is the SNR gap related to a minimal

targeted bit-error-rate Bi
min.

In summary, the utility function of pi on all the holding

subbands can be written as follows in (3).

Upi
¼
Xui

n¼1

an
pi
pn

pi
aSNk

pi;n
Rn

pi
� /n

pi

B

Tc
log2 1þ

gn
pi

���
���
2

SNRn
pi

C

0
B@

0
B@

1
CA

ð3Þ

s.t.
XI

i¼1

ui� Ts ðC1Þ

XI

i¼1

Xui

n¼1

an
pi
� Ts ðC2Þ

From the above definition, we can see that there are two

parts included in the functions, the revenue from the SN

and potential loss written as the cost for spectrum trading.

Specifically, each PN wants to earn as much as possible by

leasing the unused channels, while minimizing the cost.

Therefore, he would like to obtain (3) maximization by

selecting a preferred buyer. Moreover, all the revenue and

cost information is private and the PNs will not reveal to

others due to the selfish natures. However, if the revenue

and cost mechanism is designed standardized, the utility

will be justified among the PNs. Therefore, we continue to

design a generalized forecasting factor and rational

bargaining mechanism in the following sections.

3.4 Challenges for SNs

For the unlicensed SN, the following challenges are also

need to be considered.

• Observe and detect the surrounding frequency tone and

channel status. As users in the SNs, they are unlicensed

for any fixed frequency bandwidth; therefore, they have

to make use of every bit of frequency or space to get the

transmission opportunities.

• Compete with SUs in other SNs as a coalition. SUs in

the same SN are likely to work as a union to scramble

for the local community welfare maximization.

• Choose from PNs to buy spectrum opportunities. Each

SN selects the vender according to an average preference

for the available channels (i.e., the size and status of

spectrum offered by PNs, the spectrum prices and etc.)

• Discuss and decide which user is due to the strived

transmission opportunity within one SN. Once they

selected the eligible PNs, SUs within the SN would

discuss with each other to decide who will take use of

this channel. Assume that SUs within the same SN are

harmonious, and they can negotiate on a fair and

rational basis. Therefore, they can arrange the oppor-

tunity to users according to the negotiated orders.

• Learn and gradually change the decision on spectrum

selection. Due to the secondary position in the spectrum

trading market, SNs have to adjust the payoff gradually

to obtain the access opportunity. Considering the

varying radio environment and trading history, they

are motivated to change decision by an observed

knowledge based learning method.

3.5 Utility design of decision making model

for the secondary networks

Similarly, we are motivated to define the utility function

for SNs after analyzing the above challenges. As each user

in the SNs has different preference for channels, it would

be better to define the utility for SNs from the secondary

user’s aspect, and then come up with a network preference

by interior negoriation. As the market buyers, they are to

obtain usage of goods as the benefit while paying for the

transaction. Specifically, let Bn
sk

j

be the benefit obtained if

SU sj
k successfully rents the nth subchannel from the PN pi,

and Pn
sk

j
denote the corresponding payoff for such renting.

The utility function of SU sj
k can be modelled as in (4).

Usk
j
¼
Xvj

n¼1

un
sk

j
¼
Xvj

n¼1

bn
sk

j
Bn

sk
j
� Pn

sk
j

� �
ð4Þ

For the SU, the most direct benefit is the potential

transmission ability, and thereby we represent the

transmission rate for it. Therefore, the benefit Bn
sk

j

can be

derived as (5),

Bn
sk

j
¼ aSNk

pi;n

B

Tc
log2 1þ

gn
sk

j

���
���
2

SNRn
sk

j

C

0

B@

1

CA ð5Þ

When designing the payoff, there are several things to

consider. First, the SUs would not like to pay much for the

spectrum, unless they desires seriously. Therefore, the

payoff Pn
sk

j

is directly proportional to the degree of

transmission urgency. We represent usk
j

as the number of

accumulative bits in all the waiting packets as in [34].

Second, the SUs prefer to choose channels in good

conditions; hence, the payoff is in direct proportion to

the propagation gain. Third, the payoff is inversely

proportional to a SNR logarithm which reflects some
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intrinsic transmitting ability. For instance, a SU will cut

down his payment if exhibiting a higher SNR, since a

higher SNR user has a less stringent requirement for the

transmission environment. The payoff Pn
sk

j
can be expressed

as (6),

Pn
sk

j
¼ ksk

j

usk
j

gn
sk

j

���
���
2

log2 1þ SNRn
sk

j

� � ð6Þ

Herein, ksk
j

is an adaptive factor which enables the SUs

to learn flexibly. It will be explicated in the next

subsection.

Summarily, the utility function of sj
k on all the potential

subbands can be written as follows.

Usk
j
¼
Xvj

n¼1

bn
sk

j
aSNk

pi;n

 
B

Tc
log2 1þ

gn
sk

j

���
���
2

SNRn
sj

C

0

B@

1

CA

� ksk
j

usk
j

gn
sk

j

���
���
2

log2 1þ SNRn
sk

j

� �
! ð7Þ

s.t.
XI

i¼1

vj� Ts; ðC1Þ

XI

i¼1

Xvj

n¼1

bn
sk

j
� Ts ðC2Þ

Usually, users in the same SN works as a union to

compete with other candidates. Therefore, there is a

network bidding price i.e.,

Pn
SNk
¼ f Pn

sk
j

� �
ð8Þ

Meanwhile, network utility equals the eligible user’s

utility, i.e. (9), within which the f() function is bred

according to different strategies in Sect. 5.

Un
SNk
¼ f Un

sk
j

� �
ð9Þ

3.6 Expectation and learning

To achieve the cognitive learning process, there are build-in

expectation and learning parameters in the design of utility.

Since the PNs’ services vary in a stochastic manner (i.e. due

to flexible service type, discretionary packet arrival and

arbitrary departure), the spectrum supply and price charged

to the secondary user become random. Herein, we use a

parameter /pi
n to forecast transmission of users in PN pi in the

next slot; therefore, the PNs can vary the size of spectrum

opportunities to be sold to the SNs. The estimated forecasting

parameter can be obtained as follows.

/n
pi
¼ q

0

pi

1
0 ðt þ 1Þ
Bmax

pi

ð10Þ

Herein, 1’(t ? 1) is the estimated packets arrival

calculation for the next time slot. It can be obtained by

reinforcement learning theories, but in this work we model

the packet arrival following the Poisson distribution as in

[35] and [36]. Bpi
max is the maximal buffer size for user pi.

Besides, qpi
n is a parameter mapping the forecasting service

of pi, which can be furthered by service modelling.

Therefore, /pi
n reflects the transmission expectation

estimated in terms of the service types and arriving

packets, which conciliates the competition from other

PNs and tackles the supply and demand relationship in the

spectrum trading market adaptively.

As to the SUs, we present an adaptive learning param-

eter ksk
j

to enable the SUs to adjust the payoff according to

not only the self-requirement but also dynamic exchange in

the market. A higher value of ksk
j

means that the SU is

urgent to this OoT, and vice versa. Note that ksk
j

is used as

an intelligent parameter which is perceived and predicted

by the historical observed information and saved inter-

preting algorithm. This parameter can be obtained using

learning algorithm in artificial intelligence [37]; however,

it is not the focus of this paper. Note that, in this paper we

only adopt learning parameters in the utility design, and

discuss the effect of learing parameters in the simulation.

3.7 Interaction of the two utilities

Social decisions can be imposed by the central spectrum

management or negotiated in a decentralized manner of the

wireless users, e.g., using bargaining solutions to maintain

certain fairness rules. As a common case in the market, the

payoff will not be entirely transferred from SNs to PNs due

to the market mechanism. Thereby, we design a tax factor

between the Ppi
n and PSNk

n as follows.

Rn
pi
¼ fPn

SNk
ð11Þ

Herein, 0\f\1 is the bargain coefficient between PNs

and SNs. When f ¼ 1, it denotes that the payoff is totally

transferred from SUs to the renter, Otherwise, it means that

there is ð1� fÞ payoff taxed by the system or grabbed by

spectrum agency.

4 Double auction based decision making for spectrum

competition

Because the interaction of primary and secondary networks

is more like the business trading in economics, we are
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motivated to design a double auction [38] based spectrum

trading for the spectrum management in cognitive network.

Based on the previously defined utility function, it is fea-

sible to model the strategies of biddings for buyers and

asking prices for sellers as the valuations of buyers and

sellers.

In a double auction game, players are buyers and sellers

(i.e. primary network and secondary network respectively).

They have some valuations of the goods (spectrum &

transmission slot etc.) that are traded in an auction. Their

strategies are bids for buyers and asks for sellers which

depend on the valuations of players. Moreover, the payoffs

depend on the price of the transaction and the valuation of

a player.

In the traditional auction mechanism, the PN with the

lowest acquisition cost and the SN with the highest reward

payoff will be eligible to trade. However, in most cases,

one PN’s favorite purchaser will be reluctant to be in for

this game, thus resulting in a supply and demand dis-

agreement. Such dilemma lies in who is primary to take

initiative in the purchase. In order to tackle this contra-

diction, we discuss the spectrum management between the

PNs and SNs according to two different scenarios assorted

by the relationship of supply and demand: (1) when the

supply falls short of demand (i.e. less PNs while more

SNs); (2) when supply exceeds demand (i.e. more PNs

while less SNs). Note that in the cognitive networks, the

i-NodeB charges the network topology information and

balances the supply and demand dominant scenarios. In

what follows, we assume that the available channels from

the PNs are leased for usage of certain time period T. Also,

we assume that the cost of the PNs and reward payoffs of

the SNs remain unchanged over this period.

4.1 Less primary networks more secondary networks

(LPMS) scenarios

If there are more SNs while the PNs are relatively less, it

means a PN-dominating case, where the PN works as an

auctioneer. As depicted in Fig. 3, the spectrum access

period begins with broadcast of the OoT from PN. Then,

each SU calculate the payoff Pn
sk

j

and utility un
sk

j

according to

(6, 7) by sensing the conditions of the available channel.

After network negotiation within the same SN, each SN

comes up with a bidding strategy PSNk
n , and then SNs bid

for the available channels at the price vector P~SNk
;P~

n

SNk
¼

fPn
SNk
g: The payoff is transformed to the PNs taxed by (11).

Herein, PNs are to calculate their utility according to (3)

and feedback a channel assignment message to whom to

lease the current channel by the optimization of (12).

oðbn
sk

j
Þ ¼ argmaxsk

j
un

pi
ðgn

pi
; an

pi
; pn

pi
; aSNk

pi;n
Þ

s.t. un
sk

j
� ur

sk
j
; ðC1Þ

Xui

n¼1

an
pi
/n

pi
� Tc ðC2Þ

XJ

j¼1

aSNk
pi;n
� 1 ðC3Þ

ð12Þ

Note that although the PNs are dominant in the network,

the SNs have right to accept or refuse the channel

assignment by (12) according to their separate intelligent

and rational features. Assume that each SU has a reserved

utility ur
sk

j

as a bottom-line. Therefore, SN accepts the

channel assignment by PN only when the (12-C1) holds,

otherwise, he refuses such assignment. (12-C2) means that

the OoT is restricted by licensed subcarrier and (12-C3)

restricts that each subcarrier is delivered to one SN

exclusively. Thereafter, the PN has to choose the favorite

buyer from the rest candidates’ set until he receives an

accept message from the SNs untill the channel release. In

the rest of T period, the SN rents the channel for commu-

nication. A new period repeats when the SU sends back the

release signal, and suchlike. The explicit traffic flow of this

procedure is illustrated as in Fig. 3.

4.2 More primary networks less secondary networks

(MPLS) scenarios

If there are more PNs and less SNs coexisting, it means a

SN-dominating case, where SN works as an auctioneer.

The initialization of the auction process is similar to the

LPMS, but for the decision is originated from the SN. Each

SN calculates the utility value according to (7) and decides

to whom he wants to send bidding message by the opti-

mization of (13).

oðaSNk
pi;n
Þ ¼ argmaxsk

j
un

sk
j
ðgn

sk
j
; bn

sk
j
Þ

s.t. un
pi
� ur

pi
; ðC1Þ

XJ

j¼1

bn
sk

j
� 1 ðC2Þ

ð13Þ

Correspondingly, each PN has a reserved utility

upi
r , according to which they work out the accept or

refuse message. If the private utility is higher than upi
r , i.e.

(13-C1) holds, he would like not to refuse the bidding until

he chooses the favorite from the candidate bidders by (13).

Then, he returns the accept message to sj
k, but refuses

messages for others, i.e. (13-C2) holds. In this way, it

ensures that each orthogonal subchannel is assigned to one

SN exclusively. The process from the accept message to
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Fig. 3 Procedure flow for

LPMS between PNs and SNs
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channel release is the same with LPMS. The explicit traffic

flow of this procedure is illustrated as in Fig. 4.

5 Bayesian nash equilibrium for the two double auction

games

Suppose that, in our spectrum trade model, the buyers and

sellers only have private information about their valuations,

thus forms a Bayesian Nash game with incomplete infor-

mation (asymmetric information) [39]. In what follows, we

are going to discuss the existence of the Bayesian Nash

Equilibrium and where they are.

5.1 Existence of the equilibrium

To guarantee that the equilibrium exists, it suffices the

plays’ preferences to be convex (although with enough

plays this assumption can be relaxed). In this paper, we

define the preference of pi and sj
k on different spectrum

channel as the utility evaluation function un
pi

and un
sk

j

.

Therefore, in the follows, we first discuss the convex

preference of un
pi

and un
sk

j

.

Lemma A preference relation upi
n and un

sk
j

on the trade set

- is convex if for any payoff preference x, y, z, If

un
pi
ðyÞ� un

pi
ðxÞ; un

pi
ðzÞ� un

sk
j

, for any h 2 ½0; 1�, there are h �
un

pi
ðyÞ þ ð1� hÞ � un

pi
ðzÞ� un

pi
ðxÞ holds.

Proof When un
pi
ðyÞ� un

pi
ðzÞ; h � un

pi
ðyÞ þ ð1� hÞ � un

pi
ðzÞ�

h � un
pi
ðzÞ þ ð1� hÞ � un

pi
ðzÞ ¼ un

pi
ðzÞ� un

pi
ðxÞ

When un
pi
ðyÞ� un

pi
ðzÞ; h � un

pi
ðyÞ þ ð1� hÞ � un

pi
ðzÞ� h �

un
pi
ðyÞ þ ð1� hÞ� un

pi
ðyÞ ¼ un

pi
ðyÞ� un

pi
ðxÞ:

Therefore, upi
n is a convex preference definition that

guarantees a general equilibrium exists since that players’

strategies are monotonically increasing with payoff.

Similarly with the proof of un
sk

j
.

5.2 Where is the equilibrium?

In the static Bayesian game, a strategy for the sellers is a

function upi
n that specifying the benefit value that the seller

will demand for each of the buyer’s valuations, likewise, a

strategy for the buyer is a function un
sk

j

specifying the cost

price that the buyer will offer for each of the seller’s

possible valuation.

In the LPMS scenario, the seller will expect a maximi-

zation of upi
n , conditional on the demand that payoff from

target buyer being higher than the cost, and the best payoff

from other competitive buyers. Thereafter, for each payoff,

the Bayesian Nash equilibrium occurs where (14) holds.

maxun
pi
¼ max

�
Rn

pi
� Cn

pi

� �
prfRn

pi
[ Cn

pi
gprf1Rn

pi

[ Pn
sk

j
un

sk
j

� �
g
� ð14Þ

where Ppi
n (upi

n ) is the inverse function of upi
n for the bidding

payoff.

In the MPLS scenario, the buyers’ strategies are the best

response to the auction game. They will prefer to trade with

the counterpart on conditional that the payoff being lower

than the expectation valuation and the best within all the

spectrum suppliers. Therefore, the strategy specifies the

Bayesian Nash equilibrium, if the payoff solves (15).

maxun
sk

j
¼max

�
Bn

sk
j
�Pn

sk
j

� �
pr
	

Bn
sk

j
[Pn

sk
j



pr
	

Bn
sk

j
�Pn

sk
j

� �

[ Bsk
j

un
sk

j

� �
�Psk

j
un

sk
j

� �� ���

ð15Þ

where Bsk
j
ðun

sk
j

Þ is the inverse function of un
sk

j

, and so does

Psk
j
ðun

sk
j

Þ.
In fact, there are many Bayesian Nash equilibria no matter

for LPMS and MPLS. Consider one equilibrium price xn, for

example, accordingly, the buyers’ baseline strategies is no

lower than the potential benefit, i.e., xn\Bn
sj

k , while for the

sellers, the baseline is at least higher than reserved cost price,

i.e., 1xn\Cn
pi

. Therefore, we can see trade occurs for the

space with grids in Fig. 6, where all the ðCn
pi
;Bn

sj
kÞ pairs

suffice the double auction game equilibrium.

6 Reciprocal negotiation in the secondary network

In the cognitive network, due to the self-interest character,

there is broad competition among PNs, SNs and between

Fig. 5 Reciprocal negotiation mechanism within the SN
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them. However, we assume a reciprocal negotiation mech-

anism within the SN. Secondary usrs in the same network

make a concerted effort to compete for spectrum access.

Hence, each SN generates a uniform bidding policy

Hfsk
j ;P

n
pi
g according to different community strategy. In this

section, we propose four bidding strategies depending on

users’ bidding policy. Each bidding strategy could be exe-

cuted by an actual head node in the SN, or a virtual head node

played by either of SUs. Fig. 5 depicts the reciprocal nego-

tiation architecture within the secondary network.

6.1 Maximal bidding case

In this case, the SN generates a bidding policy according to

the maximal function (14) during the stage of the auction

game. We expect that each SN announces a higher price for

bidding, thus it is fit for the bad channel condition or when

the primary networks are rigorous, under which condition

each SN is apt to bid at a higher price within his payment

ability. Hence, under this policy SNs present a network

bidding price Ppi
n from secondary user sj

k. Correspondingly,

the network utility equals the utility of users sj
k.

H sk
j ;P

n
pi

� �
¼ argmaxSNi

Pn
sk

j
gn

sk
j
; bn

sk
j

� �
ð16Þ

6.2 Minimal bidding case

In this case, the SN generates a bidding policy according to

the minimal function (15) during the stage of the auction

game. Each SN announces a minimal price for bidding,

thus it is fit for the good channel condition or the primary

networks are beneficent, under which condition each SN is

apt to bid at a lower price for renting. Hence

H sk
j ;P

n
pi

� �
¼ argminSNi

Pn
sk

j
gn

sk
j
; bn

sk
j

� �
ð17Þ

6.3 Average bidding case

In this case, the SN generates a bidding policy according to

the average function (16) during the stage of the auction

game. Each SN announces an average price, which is a

golden mean policy for bidding.

H sk
j ;P

n
pi

� �
¼ aveSNi

Pn
sk

j
gn

sk
j
; bn

sk
j

� �
ð18Þ

6.4 Urgency dependent bidding case

In this case, the SN generates a bidding policy according to

the packet urgency function (17) during the stage of the

auction game. Each SN announces a fixed price for bidding

on each channel without consideration of the channel

variance or signal strength, thus it needs less computation

complexity and simple sensing process.

H sk
j ;P

n
pi

� �
¼ argmaxSNi

usk
j

gn
sk

j
; bn

sk
j

� �
ð19Þ

7 Simulation and performance evaluation

In what follows, we first initialize the network topology and

working mode. After analyzing the equilibrium space of

double auction game from the supply-and-demand rela-

tionship, we present the numerical results for the LPMS and

MPLS scenarios specially for four bidding cases. Both net-

work scenarios are examined from the three aspects: (1)

utility evaluation for PNs and SNs; (2) effect of the expec-

tation parameter /n
pi

; (3) effect of the learning parameter ksk
j
.

Finally, we provide a system performance comparison of our

proposed approach with the centralized schemes.

7.1 Initialization and parameter setting of the cognitive

network

To evaluate the performance of the proposed scheme, we

perform the PN as a multiuser OFDMA cellular network

with an i-NodeB located in the center, and each PN is

allocated with subcarriers with fixed spectrum band. Users

in SNs are assumed to be low mobility and randomly

located within the cell and allowed to access multiple

channels simultaneously. Assume the specturm occupation

stay stationary during one scheduling time Ts, Ts»T. Also

assume that PN exchange with the SNs through a dedicated

pilot channel; users within the same SN share the bidding

data and respective broadcasting massages with some

security insurance, but are not allowed to overhear

exchange information from other SNs. Other detail values

of the simulation parameters are shown in Table 1.
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Fig. 6 Trade space of the proposed double auction game
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7.2 Existence of bayesian nash equilibrium

We first test the existence of Bayesian Nash Equilibrium in

the two scenarios by analysing the bidding payoff rela-

tionship with the cost price of PN and benefit evaluation of

SN in Fig. 7. With the accumulation of packets, we can see

that the payoff grow linearly according to (6). Especially,

when usk
j

is small, the payoff is lower than the channel cost

of PN Cpi
n , therefore, he would be reluctant to release the

usage of channel. On the other hand, SN would only accept

the deal unless the payoff is lower than the potential benefit

Bn
sk

j

, therefore, the feasible equilibrium outcomes of pro-

posed DAST scheme drop between Cn
pi

and Bn
sk

j
. More

precisely, since tax is casted between the dealers as (11),

there should be Bn
sk

j

\xn\
Cn

pi

1 guaranteed.

Consider for LPMS scenario where PN works as the

auctioneer, he would like to choose the maximization of

ðxn � Cn
pi

1 Þ within the entire equilibrium region. While in

MPLS where SN works as the auctioneer, he would prefer

the maximization of ðBn
sk

j

� xnÞ. Therefore, different strat-

egies (as circled out) are eligible for the final results with

the variance of network scenario and packet arrival.

Table 1 System parameters
Parameter Value/ assumption

Total bandwidth 10 (MHz)

Total power constraint 10 (W)

Noise power spectral density -174 (dBm/Hz)

Bandwidth of subcarriers 15 (kHz)

Number of subcarriers 128

Modulation scheme BPSK, QPSK, 16QAM, 64QAM

Number of PNs 10

Number of SNs LPMS: 15 MPLS: 8

Number of SUs in each SN 4

/n
pi

default 0.01

ksk
j

default LPMS: 0.5 MPLS: 0.05

Tax factor f 0.8

Spectrum range (MHz) [900,910]

Small-scale fading model Six independent Rayleigh multipaths, exponential

power delay profile with

Decaying rate 2 and 10ls delay spead
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7.3 Performance results of LPMS

7.3.1 Utility evaluation

We consider a LPMS scenario under the default parame-

ters, and present the averaged utility value of PN and SN

with the variance of SNR in Figs. 8 and 9. We can see that

there is a universal descending trend for PNs but an

ascending trend for SNs for the four different bidding

cases. This is because that the effect of channel condition is

the minus part in the design of (3) but the plus part in (7).

Specially, when the channel goes into bad, the PN gets a

higher utility value, thus he is reluctant to release the

spectrum usage; In the SNs, users get higher utility eval-

uation once sensing preferred channels with better channel

condition, which means that they desires for this spectrum

access, and vice versa.

As to the four bidding strategies, we can see that the

utility of PN with the maximal bidding strategy (Up(Max_

bidding)) gets the highest value while the lowest for the

minimal case (Up(Min_bidding)). The average (Up(Ave_

bidding)) and packet urgent (Up(Urg_bidding)) strategies

maintain the in-between value but Up(Urg_bidding) fluc-

turates due to the arbitrary packets arrival. The bidding

strategies from the SN is a negotiated result for members

within the same network, and different bidding strategies

will affect the business in the spectrum auction market. On

the contrary, the higher biding price will result in a lower

utility for SUs, and thereby the four bidding cases take

reverse trend in Fig. 9.

7.3.2 Effect of expectation

Figure 10 shows the average utility of PNs and SNs with

the variance of /n
pi

. The parameter /n
pi

is to forecast

transmission of PN in the next slot with respect to the QoS

grade, burst packet arrival and etc. With /n
pi

growing, the

utility evaluation for PNs decreases which means that they
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are unlikely to sell the spectrum due to self-usage proba-

bility. Thanks to the adaptive mechanism of SU with ksk
j
,

SU has to add the payoff to get more transmission oppor-

tunity which results in the decrease of utility of SU.

Thereafter, Us values keep a roughly descending trend but

with less slope compared with Up values.

7.3.3 Effect of learning parameters

Also, we examine the learning parameter ksk
j

in (6). The

adaptive parameter is to enable the users in SN to adjust the

bidding price according to not only the self-willingness but

also dynamic exchange in the market. Accordingly, it

influences the utility evaluation of both PNs and SNs. From

Fig. 11, we can figure out that the utility of SN decreases

when the ksk
j

increases but the utility of PN takes an

ascending trend. The explanation of this is that a higher ksk
j

means that SN is willing to obtain this spectrum access,

thereby he pays more which leads to a reduced self-utility

evaluation but gained utility for PNs.

7.4 Performance results of MPLS

Generally, the performance of MPLS scenario is similar to

that of LPMS except the different decision-maker. In the

LPMS scenario, the PNs are primary to decide to whom to

release the spectrum usage, but in the MPLS, the SNs take

the decisive occasion to choose from whom to lease the

spectrum contrarily. We discuss the performance of MPLS

from the same three aspects similarly. Therefore, we do not

give the detailed analysis but only the presentation of

performance comparison with figures above.

7.4.1 Utility evaluation

Since the utilities of PNs and SNs in MPLS scenario take

the same trend under the four different bidding cases, we

do not give the performance results as figures but only

forms of percentage of variant cases as Tables 2 and 3

compared with that in LPMS scenario, from which we can

get a clear comparison of these two scenarios.

Table 2 presents that the percentage of Up in MPLS

scenario compared with that in Fig. 8 (LPMS). We can see

Table 3 Percentage of the utilityevaluation for SNS in MPLS scenario compared with LPMS (UMPLS - ULPMS) / ULPMS

        SNR 
Up(%) 

Policy 

-10 -8 -6 -4 -2 0 2 4 6 8 10 averagely

Max_bidding  37.25 37.57 37.20 35.90 35.40 33.69 32.33 29.12 32.28 28.58 27.12 33.31 

Min_bidding 19.12 18.38 17.69 16.82 16.17 15.71 16.24 17.70 19.40 19.57 23.30 18.19 

Ave_bidding 19.81 19.91 17.63 16.85 20.00 19.58 19.57 20.47 20.91 18.77 20.76 19.48 

Urg_bidding 16.17 19.20 16.86 23.12 23.45 22.44 20.27 22.93 25.91 18.56 25.68 21.33 

Table 2 Percentage of the utilityevaluation for PNS in MPLS scenario compared with LPMS (ULPMS - UMPLS) / ULPMS

        SNR 
Up(%) 

Policy 

-10 -8 -6 -4 -2 0 2 4 6 8 10 averagely

Max_bidding  5.97 5.14 5.89 4.19 3.18 4.76 7.18 5.05 9.24 7.88 6.66 5.92 

Min_bidding 9.20 8.30 8.63 7.54 8.03 10.51 12.44 13.64 15.95 19.11 12.11 11.41 

Ave_bidding 3.41 2.76 3.63 2.29 5.15 3.18 6.18 3.62 8.49 6.40 9.56 4.97 

Urg_bidding 0.56 -2.63 -2.56 6.41 -9.41 -8.11 -2.04 -0.84 9.02 -4.69 -8.4 -2.06 
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that the utility of MPLS for PNs is much lower than that of

LPMS for each bidding cases except the Up(Urg_bidding)

case. This is because that in this scenario, the secondary

networks are primary to settle the decision and they desire

a lower payoff which cuts off the renevue of PNs. Mean-

while in LPMS, PNs have to satisfy constraint (C1) in (12)

at least. Therefore, the utility of PNs of MPLS is lower

bounded while higher bounded for that of Fig. 8. As to the

Up(Urg_bidding) case, some minus perscentage occors

since it depends much on the arbitrary packets arrival.

Table 3 presents that the percentage of Us in MPLS

scenario compared with that in Fig. 9 (LPMS). The utility

of MPLS for SUs is much higher for each bidding cases

than that in the LPMS scenario. According to what have

said above, in the MPLS, a lower payoff means SNs

income if the usage benefit stays the same. Meanwhile,

SNs are required to satisfy constraint (C1) in (13). There-

fore, the utility of SNs in MPLS is higher bounded while

lower bounded for that of Fig. 9.

7.4.2 Effect of expectation

In order to observe the effect of expectation parameter, we

focus on the variance of /pi
n in (1) to [0.01, 0.1] in Fig. 12.

We do not give much analysis on this since similar variant

results can be found in Fig. 10.

7.4.3 Effect of learning parameters

Similarly, we observe the influence of learning parameter

ksk
j

in the (7) restricting the variant space to [0.01, 0.1].

Compared with Fig. 11, we can see that Up and Us keep

accordant going trends, however, the utility of SN in Fig.

11 decreases in an up-convex trends but in Fig. 13 in a
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down-convex trend, and vise versa for the utility of PN.

These results are caused by the difference of the decision

maker and interaction procedures as depicted in Figs. 3 and

4.

7.5 Comparison with the traditional approaches

As the existing pricing based spectrum access methods are

different in the network scenario, and do not consider the

differentiation of physical channel, it becomes difficult to

compare our proposed method with them. Nevertheless, we

compare the frequency efficiency of the proposed auction

based spectrum access approach with the traditional CR

access methods, e.g. random access of SUs once sensing

spectrum hole (Random Access) [15], maximal channel

gain access of SUs by a dedicated centralized secondary

base station (SBS) (H-max Access); meanwhile, the normal

spectrum usage Without CR is also involved in the simu-

lation as a benchmark.

In Fig. 14 taking the 8dB SNR for illustration, the CR

access schemes are observed to produce a frequency effi-

ciency gain at least 65.69 % higher than the Without CR

method, among which the H-max Access achieves

219.04 % the highest performance gain. This is because

that H-max Access is the optimal throughput maximization

method. Besides, the proposed DAST scheme is much

higher than the Random Access but 7 % loss to the H-max

Access. However, the centralized H-max Access method

has many difficulties to implement. For one thing, it need

an SBS node to collect information and allocate resource

but our proposed scheme reduces the deployment of cog-

nitive network which requires no modification of existing

network; For another, the SBS is required to know all SNs’

utility functions or preferences, which is often the private

information of networks and is not a common knowledge;

Furthermore, in the heterogeneous SNs, it is impossible to

tackle the spectrum access centralizedly since no admin-

ister node exists. Therefore, H-max Access presents a

performance that will hardly be reached in the distributed

heterogeneous network while our proposed distributed

intelligent scheme not only achieves a comparative spec-

trum performance with the traditional centralized approa-

ches but are more feasible and rational.

As to the communication and control overhead, we

define the times of channel employment � to quantify

channel cost. In the DAST, there are three times handshake

between PNs and SNs according to Figs. 3 and 4, no matter

in ‘‘accept’’ or ‘‘refuse’’ situation. In each SN, users pro-

pose preference once and are informed with transmission

message (Y or N) once. Therefore,

�DAST ¼ I � K � 3þ
XK

k¼1

Nk � 2 ð20Þ

In H-max Access, since it is hardly possible to compose

a super-node to collect the vacancy of PNs and reuse them,

SNs have to exchange access requirement to PNs one by

one. However, collision will happen in such case, since one

SN’s favorite channels collide with other SNs, let ctimes be

the average collision times. Therefore,

�H�maxAccess ¼ I � K � ctimes þ
XK

k¼1

Nk � 2 ð21Þ

We can see that DAST counterbalances with H-max

Access when ctimes is small, but when SNs focus on few

PNs, the collision will spread but for avoidance measures.

On the other hand, DAST’s computation complexity is not

high for only maximal sequence.

8 Conclusion and further discussion

In this paper, we have presented The OODA circle based

cognitive behavior model to illustrate the spectrum com-

petition between PNs and SNs in the wireless cognitive

network. Considering the disturbance of cognitive condi-

tion, market environment of spectrum trading and etc., we

formulate two utility evaluation for the PNs and SNs

respectively, based on which we proposed a double auction

spectrum trading method (DAST) for LPMS and MPLS

scenarios. Different from the traditional spectrum sharing

approaches, the SNs are allowed to make decision simul-

taneously and independently and make bid decisions on the

resource by the self-interested consideration. The bilateral

interaction with introduced market trading provides a fairer

spectrum access opportunity building on a cognition

equipped network. Simulation results show the effective-

ness of the proposed spectrum trading methodology and
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reinforce performance advantages with different bidding

strategies in the cognitive environment.

The future work includes taking learning mechanism in

the decision model which forecasts the possibility and

employs the observed histories related with spectrum usage

and trading. Furthermore, how to make tradeoffs among

cognitive network simulation fidelity, reliability, and

complexity as well as incorporating the dynamic environ-

mental information is a challenging issue.
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