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Abstract The sensor network localization problem is one of
determining the Euclidean positions of all sensors in a net-
work given knowledge of the Euclidean positions of some,
and knowledge of a number of inter-sensor distances. This
paper identifies graphical properties which can ensure unique
localizability, and further sets of properties which can ensure
not only unique localizability but also provide guarantees on
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the associated computational complexity, which can even be
linear in the number of sensors on occasions. Sensor net-
works with minimal connectedness properties in which sen-
sor transmit powers can be increased to increase the sensing
radius lend themselves to the acquiring of the needed graph-
ical properties. Results are presented for networks in both
two and three dimensions.

Keywords Localization . Sensor networks . Global
rigidity . Graph theory

1 Introduction

An important problem in the area of sensor networks is that
of sensor network localization. Broadly speaking, a planar
or possibly three-dimensional array of sensors exists, and a
collection of inter-sensor distances are known. Additionally,
the Euclidean coordinates of a small number of sensors (bea-
con or anchor sensors) are known. The localization problem
is then one of determining the Euclidean coordinates of all
the sensors.

1.1 Fitting this paper in the taxonomy of sensor network
localization

For background papers dealing with various aspects of sen-
sor network localization, see e.g. [1–8]. To grasp the con-
text in which the results of this paper are applicable, we
shall give a brief taxonomy of methods of sensor network
localization. One classification derives from the fact that
different quantities may be sensed in order to perform local-
ization. Methods that in some way determine a distance may
use received signal strength (but then require a ‘path loss
exponent’ to convert power to distance), one- or two-way
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propagation time, or time-difference-of-arrival, and below
these are commented upon further. Methods based on de-
termining angles (Angle Of Arrival or AOA) are also well
known. See [9–12] for examples of such methods and the
recent interesting paper [13] which sets out to define a fun-
damental framework for localizability and localization using
angle data. Within the framework of methods using distance,
the broadest difference is between those methods which use
neighbor type information, i.e. information for each sensor
about the number of other sensors within a particular dis-
tance of that sensor, as opposed to actual distance values to
those neighbors (albeit noisy values). Examples of methods
using neighbor type information can be found in [14–18].
Prominent within these schemes is Multidimensional Scal-
ing (MDS), concerning which it is relevant to include the
following quote from [18]: “MDS can provide a very good
starting point for local optimisation. MDS is good at finding
the right topology of the network, but not the precise loca-
tions of nodes, because MDS uses shortest path distances to
approximate the distance between nodes more than 1 hop
away and the approximation may not be accurate.”

It is naturally of interest to make comparisons among the
various methods for localization. However, this is difficult,
if not generally impossible, in part because the data sets
to which each method can be applied are different in kind,
making fair comparisons hard to achieve.

This paper is concerned with localization in networks
where actual distance information is available. Among a
number of the key questions that can be asked are the fol-
lowing:

(a) How much distance data needs to be collected to localize
a network, at least if the data is free of noise?

(b) What is the computational complexity of localization?
(c) Can localization be carried out sequentially, sensor by

sensor, or in some kind of distributed fashion, or are
central calculations required?

(d) What is the effect of noise (i.e. errors in distance mea-
surements) in the various algorithms that might be ad-
vanced?

(Of course, a number of these questions apply to other
methods, and it is relevant to note for MDS that it is a cen-
tralized algorithm in its raw form, though recent work has
attempted to break away from this restriction [18].) Semidef-
inite programming [19, 20] and stochastic annealing [21, 22]
underpin two further classes of centralized algorithms.

The key messages of this paper are that graph theory
provides tight answers to (a) and (b); and that by collecting
more data, but nevertheless an amount of data that scales
linearly with the number of sensors, a helpful answer to (c)
can be provided. While little can at this stage be said about
(d), we note two recent works that tie together noise with
sequential localization based on trilateration [23, 24] and a

further work using trilateration ideas to improve an estimate
of path loss exponent in the received signal strength approach
to distance determination, see [25].

What is primarily being advanced in this paper are the-
oretical underpinnings for the applicability of a number of
methods already advanced by others. However, we do present
some simulation data later in the paper that illustrates these
theoretical underpinnings, and note that further simulation
data relevant to a number of the ideas in this paper can
be found in [26, 35]. Before clarifying in more detail the
contribution of this paper, we offer a number of remarks
concerning the localization problem based on distance mea-
surements. The problem can be split up into an existence or
solvability problem and an algorithmic problem. The exis-
tence problem is: what are the properties of a sensor network
which ensure unique solvability of the localization problem?
The algorithmic problem is: how can one go about solving
the localization problem, and what is the computational com-
plexity involved in a solution? A more refined question of an
algorithmic character is: how can one deal with the presence
of errors in the inter-sensor measurements, and how do such
errors translate into errors in the algorithm’s output of sensor
coordinates?

1.2 The role of graph theory

Many of these problems can be studied in the framework of
graph theory, and we will cast the ideas of this paper using
this perspective. Let the set of sensor nodes be S, let distances
di j between certain pairs of nodes si , s j be given, and suppose
the coordinates pi of certain nodes (the anchor nodes) si are
known. The localization problem is one of finding a map
p : S→Rd (where d is 2 or 3) which assigns coordinates
pi ∈ Rd to each node si such that ‖p(i) − p( j)‖ = di j holds
for all pairs i, j for which di j is given, and the assignment
is consistent with any node coordinate assignments provided
in the problem statement.

We can associate a graph G = (V, E) with a sensor net-
work by associating a vertex of the graph with each sensor
(the vertex set is V ), and an edge of the graph with each
sensor pair for which the inter-sensor distance is known (the
edge set is E). Let |V | denote the number of vertices and |E |
the number of edges. A d-dimensional framework (G, p) is
a graph G = (V, E) together with a map p : V →Rd . The
framework is a realization if it results in ‖p(i) − p( j)‖ = di j

for all pairs i, j where i j ∈ E . [One can form a mental pic-
ture of such a framework as a physical structure of bars
and joints, with the bar lengths equal to the prescribed
distances]. Two frameworks (G, p) and (G, q) are equiv-
alent if ‖p(i) − p( j)‖ = ‖q(i) − q( j)‖ holds for all pairs
i, j with i j ∈ E . The two frameworks (G, p) and (G, q)
are congruent if ‖p(i) − p( j)‖ = ‖q(i) − q( j)‖ holds for
all pairs i, j with i, j ∈ V . This is the same as saying
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that (G, q) can be obtained from (G, p) by an isome-
try of R

d , i.e. a combination of translations, rotations and
reflection.

A framework (G, p) is rigid if there exists a sufficiently
small positive ε such that if (G, q) is equivalent to (G, p) and
‖p(i) − q(i)‖ < ε for all i ∈ V then (G, q) is congruent to
(G, p). Intuitively, a rigid framework cannot flex. We remark
that there exist rigid frameworks (G, p) and (G, q) which are
equivalent but not congruent, see [27]. A framework (G, p)
is globally rigid if every framework which is equivalent to
(G, p) is congruent to (G, p). Obviously, if G is a complete
graph then the framework (G, p) is necessarily globally rigid.

Given the graph and distance set of a globally rigid frame-
work, there is not enough information to position the frame-
work absolutely in R

d . To do this requires the absolute posi-
tion of at least three vertices (d = 2) or four vertices (d = 3),
and in fact they must be generically positioned. In R

2 for ex-
ample, knowledge of the absolute position of three vertices
would not be sufficient if they were collinear, as the abso-
lute position of all other vertices would only be determined
up to reflection about the line passing through the collinear
vertices.

The existence/solvability problem for sensor networks
can be thought of as follows. Suppose a framework is con-
structed which is a realization, i.e. the edge lengths cor-
responding to the collection of inter-sensor distances. The
framework may or may not be rigid; and even if it is rigid,
there may be a second and differently shaped framework
which is a realization (constructable with the same vertex,
edge and length assignments). If up to congruence there
is a unique rigid realizing framework consistent with the
lengths, i.e. the framework is globally rigid, then the sensor
network can be thought of as like a rigid entity of known
structure, and one then only needs to know the Euclidean
position of several sensors in it to locate the whole frame-
work in two or three dimensional space as the case may be,
see [6]. So the existence/solvability problem is describing
how one can decide if a prescribed framework is globally
rigid. Consider a rigid framework (G, p) in R

d . It is said
to be generic if the set containing the coordinates of all its
points is algebraically independent over the rationals. It is
known that rigidity of frameworks in R

d is a generic prop-
erty. In other words, provided p is generic, the graph G
alone determines the rigidity of the framework, and so we
can speak of rigidity of a graph. Note that there may be a
thin set of vertex positions (in general defined by one or more
equalities which are polynomial in the vertex positions and
have rational coefficients) such that rigidity does not hold on
this set. We remark that there is a test for rigidity involving
the rank of a matrix with entries formed from the coordinates
of the vertices, and in two dimensions there is a combina-
torial (essentially graph theoretic) necessary and sufficient
condition for rigidity, termed Laman’s theorem [28]. Al-

though the matrix rank condition generalizes to three dimen-
sions, no necessary and sufficient combinatorial condition
is available for three dimensions; the obvious generaliza-
tion of the Laman conditions are only necessary in three
dimensions, but not sufficient [29, 30]. What of the global
rigidity property? In two dimensions, there is an elegant nec-
essary and sufficient condition for generic global rigidity of
a framework (i.e. global rigidity of a generic framework),
and it is of a graph theoretic nature: either the associated
graph is the complete graph on three vertices or it must have
two properties which we unpack immediately below, viz. it
must be 3-connected and it must be generically redundantly
rigid [27, 31]. The definition of 3-connectedness is standard:
between any two vertices of the graph, there must exist at
least three paths which have no edge or vertex in common
(apart from the end vertices), or equivalently, it is not possi-
ble to find two vertices whose removal (together with the re-
moval of the edges incident on them) would render the graph
unconnected. A graph is termed generically redundantly
rigid if with the removal of any edge, it remains generi-
cally rigid. In two dimensions, there is a variant of Laman’s
theorem for checking generic redundant rigidity.

In three-dimensional space, it is necessary that a graph be
4-connected and generically redundantly rigid for the graph
to be generically globally rigid. However, these conditions
are known to be insufficient [32, 33]. No necessary and suffi-
cient conditions for generic global rigidity are known, and it
is not clear that such conditions have to exist, in contrast to the
two dimensional case. That is, there may be examples of three
dimensional graphs for which specification of a set of lengths
confined to certain intervals for each length always guaran-
tees global rigidity, while specification of the lengths for
the same sensor pairs but confined to other intervals for each
length results in lack of global rigidity. On the other hand, it is
clear that there do exist graphs which are generically globally
rigid in R

3, for example, any complete graph with 4 or more
vertices.

The computational complexity of the algorithmic local-
ization problem has been dealt with in the literature. The
general answer is that the computational complexity of lo-
calization is NP-hard and probably exponential in the number
of vertices [34]; this continues to be true for an important
subclass of sensor network graphs, those which are unit disk
graphs (which capture the common practical constraint that
two vertices have an edge joining them in the graphical rep-
resentation of the sensor network if and only if the sensors
are closer than a pre-specified constant distance, r say, often
termed the sensing radius [35]).

Not surprisingly however, exceptions to the general com-
putational complexity conclusion can be found by impos-
ing more conditions on the underlying graph. In particular,
one might expect that with more data, i.e. more inter-
sensor distances being specified than the minimum number
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required to secure generic global rigidity of the under-
lying graph, there might be an opportunity to cut com-
putational costs. Indeed this is so. There is an impor-
tant class of graphs in two dimensions, called trilateration
graphs and defined in detail in a later section, in which
the computational complexity of localization is polyno-
mial, and on occasions linear, in the number of vertices
[6]. (The linear result applies if a so-called seed of the trilat-
eration graph is known; if it is unknown, it takes in general
polynomial time to find.) Now while many graph theory
results available for two dimensions do not generalize, or
do not generalize straightforwardly, to three dimensions, the
trilateration conclusion is a happy exception: a generaliza-
tion, which we can term quadrilateration, allows a three-
dimensional sensor network with the quadrilateration prop-
erty to be localized in polynomial (or linear, given a seed)
time.

We come now to the key contribution of this paper. It is
to explain how to systematically construct generically glob-
ally rigid, trilateration and quadrilateration graphs from
graphs without these properties. When we say ‘construct’,
we imply ‘by adding extra edges in the graph’. However
what is also important is how the addition of extra edges can
be implemented in the underlying sensor network. Roughly
speaking, it involves sensors determining distances not just to
their immediate neighbors, but also to their two-hop, three-
hop and even four-hop distant neighbours. This may be a
natural thing to do in a sensor network: for a network for
which the underlying graphical model is a unit disk graph,
it corresponds to upping the sensing radius (presumably by
adjusting transmit powers) for each sensor. In the case of
determining distances to two-hop neighbours, doubling of
the sensing radius will suffice. Indeed, an advantage of this
construction-based approach is that during deployment, sen-
sors can first perform simple topology control (using for ex-
ample measurement power control) to construct a topology
with simple connectivity-based properties. Topology control
for connectivity is well studied (e.g., [23, 40, 42–44]). Then
using our construction-based operation (e.g. power control),
the network constructs a localizable topology. Note the im-
portant property that upward adjustment of the sensing ra-
dius may only be required for a localization step, which may
only need to be performed once, or at least occasionally. For
handling of data collected by the sensor network (apart from
that used in localization), a lower degree of connectivity may
well suffice.

There are, actually, other alternatives to sensor radius ad-
justment, however that is achieved. First, if a sensor can
determine the angle between two of its neighbours in addi-
tion to the distances to those neighbours, then the cosine law
allows determination of the distance between those neigh-
bours. Any pair of neighbours of a given sensor are either
neighbours of each other or at a two-hop distance from each

other, and so all direct distances between two-hop neigh-
bours can be determined given applicability of the cosine
law idea. Second, especially if the network is a random
network, i.e. one where sensors are positioned in accord
with some prescribed distribution, often uniform or Pois-
son, doubling of the sensor radius can be replaced by using
4 times as many sensors with the same sensor radius as
before.

Two further points should be noted. First, in order that a
sensor sense and be sensed by its two-hop distant neighbors, a
doubling of the sensing radius may be excessively great. Sup-
pose a particular sensor j has n j neighbors. Let every sensor
pass to its neighbors the list of its own neighbors. Each sen-
sor in this way can learn the list of its two-hop neighbors. If
sensors increase their powers synchronously, they only need
to do so until the correct set of two-hop neighbors are seen.
Second, in order to communicate with two-hop neighbors,
the communication may not need to be as frequent as that
with the immediate neighbors (and thus a saving of power
can be achieved). In fact, it might only be required once. The
point of communicating with two-hop neighbors is often
to eliminate a binary ambiguity (known as flip ambiguity).
Once this is eliminated, even for a moving sensor network,
it may be enough to remain within range only of the original
neighbors.

1.3 Structure of the paper

Sections 2 and 3 deal with the construction of globally rigid
graphs in two and three dimensions respectively, Section 4
deals with the construction of trilateration graphs in two di-
mensions and quadrilateration graphs in three dimensions.
Section 5 presents evaluation results. Section 6 contains con-
cluding remarks. The result of Section 2 was announced
in [6] without proof. The three-dimensional results of Section
3, the results of Section 4, and the evaluations in Section 5
are new.

2 Generating globally rigid two-dimensional graphs

Before stating the main result of the section, we need to
introduce some notation. Let G = (V, E) be a graph. Then
the graph G2 is defined as (V, E ∪ E2) where (va, vb) ∈ E2

just when va �= vb and there exists vc with (va, vc) ∈ E and
(vb, vc) ∈ E . Thus G2 is obtained from G by adding edges
between the vertex pairs of G which are separated by pre-
cisely one intermediate vertex, i.e. by adding edges between
the two-hop vertex pairs of G. The concept of the power of
a graph can be found in the literature, e.g. [36], see page 74.
Second, we say that a graph is edge k-connected if between
any two vertices, there exist k paths with no two paths shar-
ing an edge in common (though two paths may have a vertex
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in common). Since k-connectedness requires the existence
of k paths between any two vertices with no edge or vertex
pairwise common, it is evident that k-connectedness implies
edge k-connectedness, but not the converse.

Now we have the main result of the section.

Theorem 2.1. Let G = (V, E) be an edge 2-connected
graph in R

2. Then G2 is generically globally rigid.

Note that if G is an abstraction of a sensor network, and
if an edge occurs in G just when the two corresponding
sensors are within a common sensing radius r of one an-
other, then a doubling of the sensing radius will produce a
new graph which has G2 as a proper (though not necessarily
strictly proper) subgraph. Consequently, the new graph will
be generically globally rigid, and the sensor network localiz-
able for generic sensor locations, given three or more anchor
nodes.

In Section 1, we outlined a simple procedure indicat-
ing how sensors might adjust their power levels in order to
replace G by G2. It turns out that the consequent localiza-
tion task is not especially complicated. The reader not inter-
ested in the proof of Theorem 2.1 should proceed straight to
Section 2.3 to read how localization can be performed.

2.1 The special case of a cycle

In order to prove this main result, we shall first establish
the result for a graph G which is precisely a cycle. Refer to
Fig. 1

Lemma 2.1. Let C be a cycle in R
2; then C2 is generically

globally rigid.

Proof: Suppose that C has vertices v1, v2, . . . , vk and edges
v1v2, v2v3, . . . , vk−1vk, vkv1. If k = 3 the result is trivial (as
the complete graph on three vertices is generically glob-
ally rigid). So assume k > 3. We shall show that C2 is 3-
connected and then generically redundantly rigid. As noted

Fig. 1 Doubling a cycle. The graph of the original cycle has edges
depicted by solid lines, and the additional lines of G2 are shown using
dashed lines. Each of these additional lines joins two vertices which are
a two-hop distance apart in the original graph

in the introduction, these properties are necessary and suffi-
cient to establish generic global rigidity.

Consider the existence of paths in C2 between v1

and v2m+1 for any m with 2m + 1 not exceeding k.
Three paths which have no common vertices other than
end vertices are: v1vkvk−1 . . . v2m+1, v1v3v5 . . . v2m+1 and
v1v2v4 . . . v2mv2m+1. Likewise if we consider paths be-
tween v1 and v2m , then the following paths have no com-
mon vertices other than end vertices: v1vkvk−1 . . . v2m ,
v1v3v5 . . . v2m−1v2m and v1v2v4 . . . v2m . This establishes the
3-connectedness of C2.

It remains to show that if we remove an edge from C2

then it remains rigid. Suppose an edge is removed which
is an edge of C , without loss of generality vkv1. Consider
the sequence of triangles, the edges of which are all in C2:
v1v2v3, v2v3v4, v3v4v5,. . . ,vk−2vk−1vk , and the correspond-
ing subgraphs spanned by the vertices and edges as each
triangle is added. A Henneberg sequence of vertex additions
results, with each member of the sequence differing from
the previous one by the addition of one vertex of degree 2.
By a standard result in rigid graphs the resulting graph is
generically rigid.

It is also a subgraph of C2 which contains all vertices
of C2 but does not contain the edge vkv1. Hence C2 \ vkv1

is generically rigid. If instead of the edge vkv1 the edge
vk−1v1 is removed, the same argument applies. Hence generic
redundant rigidity of C2 is established. �

While the above lemma establishes the generic global
rigidity property of C2, it contains no indication of any al-
gorithm by which C2 might be localized, or how a globally
rigid framework realizing C2 might be found. We shall in-
terrupt the flow of the proof of Theorem 2.1 to establish this,
in the process providing an alternative proof to Lemma 2.1.

Suppose C has vertices v1, v2, . . . , vk and edges
v1v2, v2v3, . . . , vkv1. Then C2 has edges v1v2, v1v3,
v2v3, v2v4, . . . , vk−1vk, vk−1v1, vkv1 and vkv2. Consider the
realization of a framework F corresponding to C2, where we
fix the coordinates of v1, v2 and v3 so that v1 = (0, 0), v2 =
(a, 0) and v3 = (b, c) for some a, c > 0. Knowledge of the
lengths of v2v4 and v3v4 establishes the position of v4 with
a binary ambiguity. For each of these possible locations for
v4, knowledge of the lengths v3v5 and v4v5 will establish
the position of v5 with a binary ambiguity, making four
possibilities in all. Successively, we obtain the positions of
v6, v7, . . . , vk with 23, 24, . . . , 2k−3 ambiguities. However,
vk is also connected to v1 and v2. Knowledge of the asso-
ciated lengths resolves the ambiguity in the position of vk .
(In fact, knowledge of the length between vk and v1 alone
will be sufficient; further, there is yet another edge, viz. that
joining vk−1 to v1, the use of which would resolve all ambigu-
ities save that associated with vk). Resolving the ambiguity
in vk then sequentially allows resolution of the ambiguity in
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V2

V3

V7

V1

V4

V5
V6

Fig. 2 Intermediate step of localization process. The solid lines depict
those edge lengths which have been used in an attempt to localize
all vertices. However, until the length of the line joining v7 to v1 is
used, there remains a multiplicity of positions, finite in number for v7

and some earlier vertices. This multiplicity is eliminated and unique
positions (up to congruence) are found. It is not necessary to use the
lengths of the dashed lines

vk−1, vk−2, . . . , v4, and in this way the unique realization of
the framework (up to congruence) is established.

The idea is depicted in Fig. 2.
As noted above, this constructive procedure provides an

alternative proof of Lemma 2.1. A further proof again has
been suggested in a communication of Cheung and Whiteley
[38], based on iterating a Henneberg edge-splitting construc-
tion starting with the complete graph on four vertices. Such
a procedure establishes that when C contains n vertices,
then C2 less the edges v1vn and v2vn is globally rigid, for
n = 5, 6, . . ..

2.2 Generic edge 2-connected graphs

We return now to the proof of Theorem 2.1. A further two
Lemmas will be used to prove the main result. The second
especially is intuitively obvious, and no proof will be given
here.

Lemma 2.2. Let H0 be a generically globally rigid graph in
R

2 with at least three vertices, and let a further graph H1 be
defined by adjoining one vertex to the vertex set of H0, and
three edges, each connecting the new vertex to three different
vertices of H0. Then H1 is generically globally rigid.

Proof: Let a be the additional vertex adjoined to H0. Let F0

be a generic framework realizing the graph H0. Consider the
realization of a framework F1 corresponding to the graph
H1, where the vertices other than a are located as in the
framework F0 The one vertex of F1 for which coordinates
have to be determined is the vertex a. Consider any two
of the three edges incident on a; knowledge of each length
positions a on the circumference of each of two circles, and
thus generically there are two possible points for a to lie

at, relative to F0. Knowledge of the length of the third edge
linking a to F0 then eliminates the ambiguity. Thus the global
rigidity of F0 implies the same property for F1. Hence H1 is
generically globally rigid. �

Lemma 2.3. Let H1 = (V1, E1) and H2 = (V2, E2) be two
generically globally rigid graphs in R

2 with at least three
vertices in common. Then H1 ∪ H2 = (V1 ∪ V2, E1 ∪ E2) is
generically globally rigid.

Note that the qualification implied by the word generi-
cally in the preceding two lemmas is mild overkill. Whereas
genericity demands of a set of vertices that their coordinates
do not satisfy a polynomial equation involving rational coef-
ficients, all that is actually required in the hypotheses of the
lemmas is that the points be in general position, i.e. that there
are no three vertices on a line (a property which is implied by
genericity). If the three vertices in a realization of the graph
H0 of Lemma 2.2 happen to be collinear for example, then
the realization of the graph H1 will not be globally rigid, no
matter where the extra vertex is located.

Proof of Theorem 2.1: Because G is edge 2-connected, it
necessarily contains at least one cycle. If G contains just one
cycle we are done. Therefore, suppose that G contains more
than one cycle and that one cycle is C1 = v1v2 . . . vk . If the
vertex set of C1 is identical with that of G it is clear we are
done by Lemma 2.1. Suppose then it is not identical; because
G is connected, every vertex in G \ C1 is joined by a path to
C1 and therefore there is a vertex of G \ C1 that is connected
by a single edge to a vertex of C1. Call this vertex vL , and
without loss of generality let the edge be v1vL .

Now consider the graph G1 = (V1, E1) with vertex set
that of C1 together with vL and with edge set that of C1

together with v1vL . Then G2
1 has as its edge set the edges

of C2 and three more edges, viz v1vL ,v2vL and vkvL . By
Lemma 2.2, and identifying C2 with H0, we see that G2

1 is
generically globally rigid. See Fig. 3.

Now because G is edge 2-connected, there is necessarily
a second path other than the single edge v1vL linking the two
vertices v1 and vL , i.e. there is a cycle, call it C2, containing

V2

VL

VK

V1

Fig. 3 The graphs G1 and G2
1 of Theorem 2.1; the latter is generically

globally rigid by Lemma 2.2 and the generic global rigidity of C2
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(V,E): the input 2-connected graph
: the set of already localized sensor nodes

identify a cycle C = v1v2...

...

vk from G
v1 ← (0, 0); v2 ← (a, 0); v3 ← (b, c)
localize the sensor nodes in C
L ← {nodes in C}
while (L does not contain all nodes)

construct graph Gm(V,Em) from G with node set V and edge set Em:
Em = {(u, v) : ∃v ∈ L ∧ (u, v ) ∈ E}∪ {(u1,u2) ∈ E : u1,u2 L}

identify a cycle C = vv1 vk in Gm starting from v
localize nodes v1 to vk
L ← L ∪ {v1, . . . ,vk}

compute sensor true positions using a transformation based on anchor positions

Fig. 4 An algorithm to localize
G2 when G is 2 edge-connected

these two vertices as successors. The cycle clearly cannot
contain both v2 and vk as a successor of v1. Without loss of
generality, suppose it does not contain v2 as a successor of
v1. Consider the graph G2 = (V2, E2) with vertex set that of
C2 together with v2 and with edge set that of C2 together
with v1v2. Then arguing as in the previous paragraph, we
have that G2

2 is generically globally rigid. This graph also
contains the three vertices v1, v2, vL together with the three
edges joining them. The graph G2

1 has the same property;
since both are globally rigid, the graph formed from the
union of the vertex sets and the edge sets of G2

1 and G2
2

is generically globally rigid, by Lemma 2.3. This graph is
obviously a subgraph of (G1 ∪ G2)2 with the same vertex
set. Accordingly, (G1 ∪ G2)2 must then be globally rigid.

If the vertex set of this graph is a strictly proper subset of
the vertex set of G, then one must find a further vertex joined
by a single edge to C1 ∪ C2, and then argue as in the immedi-
ately preceding paragraph. This procedure is continued, until
the set of vertices of G1 ∪ G2 ∪ . . . ∪ Gr for some r is iden-
tical with the vertex set of G, and (G1 ∪ G2 ∪ . . . ∪ Gr )2 is
generically globally rigid and a subgraph of G2. This estab-
lishes that G2 is generically globally rigid. �

2.3 An algorithm to localize G2

We can describe fairly easily how localization occurs for
a sensor network with a graph which is of the form G2,
where the underlying graph G is 2 edge-connected. (If there
is a subgraph of the graph of the sensor network containing
all vertices and of the form G2, the result is equally true).
We identify a cycle C1 in G, with vertices v1, v2, . . . , vk

and edges v1v2, v2v3, . . . , vkv1. In the associated framework,
temporarily suppose that v1 is located at (0, 0), v2 at (a, 0) and
v3 at (b, c) for some a, c > 0. Following the procedure given
just above Fig. 2, which is used to illustrate the procedure,
the distances associated with the edges of C2 allow local-
ization of v4, v5, . . . , vk (retaining the temporary coordinate

basis). We locate a second cycle C2 of G intersecting C1

but with at least one distinct vertex. In the associated frame-
work, we localize the vertices of C1 ∪ C2 using the edges
of (C1 ∪ C2)2; this is straightforward and is described in the
theorem proof. The procedure is continued until all vertices
are localized. Using anchor positions, an isometry based on
translation, rotation and possible reflection of the initially
localized framework (the location of which depended on
making a temporary assumption about the positions of v1, v2

and v3) can be determined, which yields new and correct
localized values. Figure 4 formally specifies the algorithm.
Note that in order to improve algorithm efficiency, when we
search for a new cycle Gm intersecting previous cycles and
a first new vertex, call it v, in Gm , we try to identify a short
cycle. This can be achieved by modifying the standard depth-
first search algorithm [37]: at each node, before we take the
recursion, we first check if any of the neighbors of the node
is directly connected back to v. Also note that we can reduce
the complexity of the algorithm by using ear-decomposition
to identify the cycles at the beginning of the algorithm, but
this may be less effective compared with the algorithm in
Fig. 4.

In a preprint of Cheung and Whiteley [38], it is noted that
the 2-edge connected condition in the theorem statement
can tolerate a minor relaxation, and in the process establish
a necessary and sufficient condition for G2 to be globally
rigid: G must be connected, and such that if the removal of
any edge e disconnects G, then one of the two components is
a single vertex. The proof is a simple extension of that given
above.

3 Generating globally rigid three-dimensional graphs

While sensor networks in two dimensions appear much more
common than those in three dimensions, it is apparent that
there should be no inherent limitation of interest to two
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dimensions. In this section, we prove an extension of the
two dimensional result of the previous section. Again, our
starting point will be the properties of a cycle. However,
we cannot proceed by working with the three-dimensional
generalisations of 3-connectivity and redundant rigidity, and
we need an alternative procedure in R

3 to establish generic
global rigidity of a certain graph derived from a cycle. The
procedure will be like that mentioned in Section 2 after the
proof of Lemma 2.1, where we indicated how a realization
of C2 (for a two-dimensional cycle C) could be found.

We need to introduce some notation. Let G = (V, E) be
a graph in R

3. Then the graph G3 is defined as (V, E ∪
E2 ∪ E3) where (va, vb) ∈ E3 when there exists vc and vd

with (va, vc) ∈ E , (vc, vd ) ∈ E and (vd , vb) ∈ E . Thus G3

is obtained from G by adding edges between those vertex
pairs of G which are separated by precisely one or two
intermediate vertices, i.e. by adding edges between the two-
hop and three-hop vertex pairs of G.

The result we shall in fact prove is the following.

Theorem 3.1. Let G = (V, E) be an edge 2-connected
graph in R

3 . Then G3 is generically globally rigid.

When G is associated with a sensor network in which
every sensor has a common sensing radius r , a tripling of the
radius will induce a graph of which G3 is a (not necessarily
strictly proper) subgraph. (If vertices joined by a path with
three or more intermediate vertices correspond to sensors
closer than 3r , then G3 will be a strictly proper subgraph.)
Radius tripling provides a (potentially expensive) way of se-
curing the level of connectivity required to achieve sensor
network localization, always provided of course that one can
postulate an edge 2-connected graph to start with. [Inciden-
tally, based on the two-dimensional result, one might have
conjectured a result like that of the theorem, but with the
stronger hypothesis of edge 3-connectivity rather than edge
2-connectivity.]

3.1 The special case of a cycle

As for the two-dimensional case, we shall first consider a
graph which is exactly a cycle; then we shall build out to a
general graph. Accordingly, as the starting point for proving
the theorem, we shall prove:

Lemma 3.1. Let C be a cycle in R
3; then C3 is generically

globally rigid.

Proof: The case k = 4 is trivial, since then C3 is the com-
plete graph on 4 vertices. So suppose there are more than 4
vertices. For k = 5 it is easy to see that C3 is also a complete
graph. As such, it is globally rigid.

Suppose then that k > 5. Now v1, v2, v3 and v4 are vertices
of a complete tetrahedral subgraph of C3. Also, in C3 edges
join v5 to each of v2, v3 and v4–one can think of this as
a kind of Henneberg extension. Hence the subgraph of C3

defined by the vertices v1 through v5 and the edges joining
them in C3 is rigid; there are two possible non-congruent
frameworks corresponding to the specified distances, being
distinguished by the two partial reflections of the tetrahedron
defined by v2 through v5 relative to the tetrahedron defined
by v1 through v4. If k < 8, this ambiguity is however not
present since v1v5 is an edge whose length in the framework
determines which of the two possibilities applies.

Next, v6 is connected to v3, v4 and v5 in C3. (Again, one
might think of this as Henneberg extension.) Hence, dis-
counting for the moment the existence of any edges linking
v5 to v1 or v6 to v1 or v2, the subgraph of C3 defined by
the vertices v1 through v6 is rigid, with four possible non-
congruent frameworks corresponding to the distances; the
frameworks are distinguished by the two partial reflections
of the tetrahedron defined by v2 through v5 and a further two
partial reflections of the tetrahedron defined by v3 through
v6. In the event that k < 9, there will be present in C3 an edge
connecting v5 to v1 or v6 to v1 or v2, and then the ambiguity
will be resolved.

The argument continues in this way, considering the ad-
dition of v7, v8, etc., with each additional vertex and its
three connecting edges to earlier indexed vertices defining a
rigid subgraph of C3 with a number of binary ambiguities
of noncongruent frameworks defined by partial reflections.
The overall ambiguity associated with the aggregate of these
partial reflections will be resolved when, if m is the number
of vertices in the cycle C , the vertex vm−2 is introduced,
since it is also connected in C3 to v1. This means that C3 is
generically globally rigid, as claimed. �

3.2 General edge 2-connected graphs

To build out the result for a cycle to one applicable to more
general graphs than a cycle, we shall rely on the following
two Lemmas, which are intuitively obvious variants on two
lemmas in the previous section and for which no proof will
be given.

Lemma 3.2. Let H0 be a generically globally rigid graph in
R

3 with at least four vertices, and let a further graph H1 be
defined by adjoining one vertex to the vertex set of H0, and
four edges, each connecting the new vertex to four different
vertices of H0. Then H1 is generically globally rigid.

Lemma 3.3. Let H1 and H2 be two generically globally
rigid graphs in R

3 with at least four vertices in common.
Then H1 ∪ H2 is generically globally rigid.
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Once again, we note that the qualifier ‘generically’ in the
lemma hypotheses can be replaced by requiring that no four
points are in general position, i.e. coplanar. The result of
Lemma 3.1 on cycles will not be valid in a realization where
four successive vertices of C are coplanar. And likewise,
if in Lemma 3.2 the four vertices of H0 to which the new
vertex of H1 is connected are coplanar in a particular real-
ization, the associated realization of H1 cannot be globally
rigid.

Proof of Theorem 3.1: If G contains just one cycle we
are done. Therefore, suppose that G contains more than
one cycle and that one cycle is C1 = v1v2 . . . vk . If the ver-
tex set of C1 is identical with that of G it is clear we are
done by the first Lemma. If not, we can choose a vertex of
G\C that is connected by a single edge to a vertex of C1.
(Since G is connected, there must be such a vertex). Call
this vertex vL , and without loss of generality let the edge
be v1vL .

Now because G is edge 2-connected, there is necessarily
a second path other than the single edge v1vL linking the two
vertices v1 and vL , i.e. there is a cycle, call it C2, containing
these two vertices as successors. The cycle clearly cannot
contain both v2 and vk as the other successor node of v1.
Without loss of generality, suppose it does not contain v2.
Consider the graph G1 = (V1, E1) with vertex set that of
C1 together with vL and with edge set that of C1 together
with v1vL . Then G3

1 has as its edge set the edges of C3 and
five more edges, viz. v1vL , v2vL , v3vL , vk−1vL and vkvL .
By Lemma 3.2, and identifying C3 and H0, we see that
G3

1 is generically globally rigid. Consider also the graph
G2 = (V2, E2) with vertex set that of C2 together with v2

and vk if this vertex is not in C2, and with edge set that of C2

together with v1v2 and v1vk if vk is not in C2. Then arguing
much as in the previous paragraph, but appealing twice to
Lemma 3.2, we have that G3

2 is generically globally rigid.
The two graphs G3

1 and G3
2 are both globally generically rigid

and have a common set of at least four vertices, viz. vk , v1, v2

and vL . Hence the graph formed from the union of the vertex
sets and the edge sets of G3

1 and G3
2 is generically globally

rigid, by Lemma 3.3. This graph is obviously a subgraph
of (G1 ∪ G2)3 with the same vertex set. Accordingly, (G1 ∪
G2)3 must then be globally rigid.

If there are any vertices of G which are not vertices of
(G1 ∪ G2), then the above line of argument must be repeated,
by determining such a vertex which is connected by a single
edge to (G1 ∪ G2), then determining a cycle containing that
edge, and so on. As for the two dimensional case, the process
can obviously be repeated until the set of vertices of G1 ∪
G2 ∪ . . . ∪ Gr for some r is identical with the vertex set of
G, and (G1 ∪ G2 ∪ . . . ∪ Gr )3 is generically globally rigid
and a subgraph of G3. This establishes that G3 is generically
globally rigid. �

In [38] it is pointed out that a necessary and sufficient
condition for G3 to be generically globally rigid is that G is
connected, and if the removal of any 2-valent vertex v should
disconnect G, then one of the resulting two components is a
single vertex.

It is straightforward to extend the algorithm in Fig. 4 to
the three-dimensional case.

4 Generating two-dimensional trilateration
and three-dimensional quadrilateration graphs

4.1 Trilateration graphs

We begin by recalling the notion of a trilateration graph, [6].
While this is of principal relevance just in R

2, the definition
remains valid in R

3. Let G = (V, E) be a graph. Then G
is a trilateration graph if there are (a) three vertices, v1,v2

and v3 say, for which v1v2, v2v3 and v1v3 are all edges of
G and (b) an ordering (actually, a partial ordering suffices)
of the remaining vertices as v4, v5, v6,. . . such that any vi

is joined by (at least) three edges to three earlier vertices in
the sequence. The three vertices v1,v2 and v3 are known as a
seed of the trilateration graph. Given a graph that is somehow
known to be a trilateration graph, there can be more than one
seed and more than one vertex ordering consistent with the
trilateration property.

Trilateration graphs are important in R
2, because if a sen-

sor network has a trilateration graph, and at least three of the
sensors are anchor nodes, i.e. have known Euclidean coor-
dinates, then the whole network can be easily localized, as
we now argue. To see this, assume first that one knows the
seed and the ordering. Temporarily locate the seed vertices
consistently with the edge lengths by requiring one to be at
the origin, one to be on the positive x axis and the remaining
one in the positive y half-plane. Then evidently all vertices
can be localized relative to these vertices sequentially, in a
single sweep and in time O(|V |). Then knowledge of the
anchor node true positions will define a translation, rotation
and possible reflection of the initially determined position of
the whole graph to align the anchor nodes with their correct
positions, and new positions follow for the rest of the nodes
through application of the same translation, rotation and pos-
sible reflection. If one knows the seed but does not know the
ordering, the time is O(|V | + |E |). If one does not know the
seed, one must experiment with different choices of three
nodes as a trial seed from which trilateration-type local-
ization is attempted. There are (1/6)|V |(|V | − 1)(|V | − 2)
different choices of three nodes from |V |. So the complexity
of localization, requiring the identification of a seed fol-
lowed by the sequential localization of all the vertices, is at
worst quartic in the number of vertices, O(|E ||V |3 + |V |4)
in fact. [Actually, if an upper bound, c say, on the valency of
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every vertex is known, then the maximum number of seed-
ing triangles is of order c2|V |, and the complexity becomes
quadratic]. These remarks on complexity do not cover any
procedure which nodes might use to discover a sensor’s two-
hop neighbors or three-hop neighbors. This was described in
Section 1 for two-hop neighbors and the complexity is linear
in the number of nodes. It will remain linear for three-hop
neighbors too.

As will be seen in the main result of this section, there is a
simple way to order the vertices of a graph prior to exploiting
a trilateration property, and in particular to obtain a seed.

The steps involved in localization, assuming that an in-
crease of sensing radius can be achieved to reach three-hop
neighbors are: order the graph vertices as described below
(and this can be by propagation through the network, as
will be seen, and does not require central computation); in-
creasing the sensing radius (or equivalent measure) to secure
trilateration structure, with identified seed; localization of all
vertices, relative to the seed; use of anchor positions to ob-
tain absolute position information, differing from the relative
localization by a translation and rotation.

Before presenting the main result for R
2, we require the

following lemma.

Lemma 4.1. Let G = (V, E) be a connected graph with N
vertices. Then there exists an ordering v1, v2, . . . , vN of the
vertices of G such that for all p > 1, the subgraph of G in-
duced by the set {v1, v2, . . . , vp}, denoted G p, is connected.

Note that the above lemma is not restricted to R
2, R

3, etc.
[The proof is straightforward. Pick a vertex, and call it v1.
Pick a vertex connected to v1, call it v2. Then pick a vertex
connected to either of v1 or v2, etc. One can do this until
all vertices have been picked, because of the connectivity
condition on G.] Now with the above lemma in hand, we can
state the main result:

Theorem 4.1. Let G = (V, E) be a connected graph with N
vertices, and let v1, v2, . . . , vN be an ordering of the vertices
of G such that for all p > 1, the subgraph of G induced
by the set {v1, v2, . . . , vp}, denoted G p, is connected. Then
G3 is a trilateration graph, with the same vertex sequence
v1, v2, . . . , vN .

Note that the theorem, while valid in both R
2 and R

3, is
of principal relevance for R

2, because of the application to
localization: tripling the sensing radius of a sensor network
containing at least three anchor nodes in R

2 renders it local-
izable, with attractive computational complexity. Figure 5
illustrates a trilateration graph obtained by the technique of
Theorem 4.1.

The proof will be assisted by the following lemma:

V2

V3
V7

V1

V4

V5

V6

V8

Fig. 5 The subgraph shown using just solid lines is a connected graph
G. The addition of the long-dashed lines produces G2, and the further
addition of the short-dashed lines produces a trilateration graph G3,
with the vertex ordering inherited from G. From v4 on, each vertex is
connected to three earlier vertices

Lemma 4.2. Let G = (V, E) be a connected graph with N
vertices, and let v1, v2, . . . , vN be an ordering of the vertices
of G such that for all p > 1, the subgraph of G induced by
the set {v1, v2, . . . , vp}, denoted G p, is connected. Then in
G2, for all p > 2, vp is a neighbour of two distinct vertices
in the set {v1, v2, . . . , vp−1}.

Proof: Since G p is connected, vp is a neighbour in G p of
some vertex in the set v1, v2, . . . , vp−1, say vi . Also, if i > 1,
the same argument implies vi is a neighbour in Gi of some
vertex in v1, v2, . . . , vi−1; as Gi ⊂ G p, vi is also a neighbour
in G p of the same vertex in v1, v2, . . . , vi−1, call it v j . If
i = 1, then vi is connected to v2. Then in G2, vp is connected
to vi and v j , where 1 � i � p − 1, 1 � j � p − 1, i �= j .

�

With this lemma in hand, the proof of the theorem is
relatively straightforward. The main idea is to extend the
result of the lemma from G2 to G3.

Proof of Theorem 4.1: Since the subgraph of G induced
by the three vertices v1, v2 and v3 is connected, it is ob-
vious that in G3, three edges connect the three vertices.
To establish the trilateration property then, all we need
to prove is that in G3, for all p > 3, vp is a neighbour
of three distinct vertices in the set {v1, v2, . . . , vp−1}. Re-
gard vp as a vertex of G2

p. By the lemma immediately
above, it is a neighbour of two vertices, say vi and v j with
1 � i < j � p − 1. Consider now G j . Then j is a neighbour
in G j of some vk with 1 � k < j . We now consider several
cases.

Case 1: Suppose vk �= vi . Then vi , v j and vk are neighbours
of vp in G3

p.
Case 2: Suppose vk = vi is a neighbour of v j in G j . Three

subcases occur.
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Case 2a: If j = 2, then i = 1 and v3 is a neighbour of either
v1 or v2 in G3 ⊂ G p; then v1, v2 and v3 will be neighbours
of vp in G3

p.
Case 2b: If j > 2 and i > 1, then vi has a neighbour in

Gi ⊂ G j ⊂ G p, call it vk , with k < i ; it follows that vk , vi

and v j are neighbours of vp in G3
p.

Case 2c: If j > 2 and i = 1, then v2 is a neighbour of v1 = vi ,
and v1, v2 and v j are neighbours of vp in G3

p. �
The hypothesis for the theorem here is less demanding

than that for the theorem of Section 2. On the other
hand, seen from the viewpoint of adjusting a sensing
radius to achieve a particular type of connectivity, the
requirement here to assure the trilateration property is
to treble rather than double the sensing radius. For the
three-dimensional case, which we now treat, having a
trilateration property is not enough, and the requirement is
to quadruple the sensing radius, to assure a quadrilateration
property. Localization can then be achieved in linear
time.

4.2 Quadrilateration graphs

The quadrilateration property is a simple extension of the
trilateration property, and is principally useful in R

3. Let
G = (V, E) be a graph. Then G is a quadrilateration graph
if there are (a) four vertices, v1,v2, v3 and v4 say, for which
v1v2, v1v3, v1v4, v2v3, v2v4 and v3v4 are all edges of G
and (b) an ordering of the remaining vertices as v5, v6,
v7. . . such that any vi is joined by (at least) four edges
to four earlier vertices in the sequence. The four vertices
v1,v2, v3 and v4 are known as a seed of the quadrilateration
graph.

The key to the main result is the following lemma, gen-
eralizing both Lemma 4.2 above, and the key idea of the
theorem on trilateration graphs.

Lemma 4.3. Let G = (V, E) be a connected graph with N
vertices, and let v1, v2, . . . , vN be an ordering of the vertices
of G such that for all p > 1, the subgraph of G induced by
the set {v1, v2, . . . , vp}, denoted G p, is connected. Then in
G4, for all p > 4, vp is a neighbour of four distinct vertices
in the set {v1, v2, . . . , vp−1}.

Proof: Regarding vp as a vertex of G3
p, it is a neighbour of

vi , v j and vk for some 1 � i < j < k < p. By considering
a limited number of particular cases similarly to the proof of
Theorem 4.1, it follows that there exists a vertex vm , m < p,
m �= i, j, k such that in G p, vm is a neighbour of one of vi ,
v j or vk . Then vi , v j , vk and vm are neighbours of vp in
G4

p. �

The proof of the following theorem is now immediate
from this lemma:

Theorem 4.2. Let G = (V, E) be a connected graph with N
vertices, and let v1, v2, . . . , vN be an ordering of the vertices
of G such that for all p > 1, the subgraph of G induced by
the set {v1, v2, . . . , vp}, denoted G p, is connected. Then G4

is a quadrilateration graph, with the same vertex sequence
v1, v2, . . . , vN .

5 Evaluation of localization in random networks

We generate 100 instances of test networks each with N
nodes by uniformly distributing the nodes in an area of
760 × 787. We do not consider anchors, as we are interested
here is how many nodes we can localize.

For each instance of the test networks, we compute the
following performance metrics:

� r1: We raise the sensing radius of the network gradually
until the largest connected component of the network con-
tains all of the N nodes. We refer to this radius as r1.

� 3r1: One way to achieve G3, as required in Theorem 4.1,
when G is the connected network at radius r1, is to just
treble r1. We denote 3r1 = 3 ∗ r1.

� r3
1 : Another way to achieve G3 when G is the connected

network at radius r1 is to start with radius r1 at each node,
and then raise the sensing radius of each node individually
so that it connects to all of its neighbours’ neighbours’
neighours. We compute the average of the radii of all nodes
and denote it by r3

1 .
� r2: We raise the sensing radius of the network gradually

until the largest 2-connected component of the network
contains all of the N nodes. We refer to this radius as r2.
Note that at r2 we achieve node 2-connectivity, which im-
plies edge 2-connectivity and thus is a stronger condition
than required in Theorem 2.1.

� 2r2: One way to achieve G2 when G is the 2-connected
network at radius r2 is to just double r1. We denote 2r2 =
2 ∗ r2.

� r2
2 : Another way to achieve G2 is to start with radius r2 at

each node, and then raise the sensing radius of each node
individually so that it connects to all of its neighbours’
neighours. We compute the average of the radii of all nodes
and denote it by r2

2 .
� rG R : We raise the sensing radius of the network gradually

until the largest globally rigid component contains all N
nodes. We refer to this radius as rG R .

Figure 6 reports the results for the first 30 instances when
N = 100. We make the following observations. First, con-
trolling the sensing radii of the nodes individually to in-
crease connectivity, e.g., from G to G2 or G to G3, requires
lower radius compared with simply doubling or trebling the
network-wide sensing radius. This result is somehow intu-
itive and is verified by observing that 2r2 > r2

2 and 3r1 > r3
1
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Fig. 6 Sensing radii to achieve various connectivity and localization
objectives

for all test instances, as foreshadowed in the discussion at
the end of Section 1.2. It should be noted, however, that
connectivity control on individual nodes may have larger
overhead than the simpler operation of doubling or trebling
the network sensing radius. Second, it is clear that 2r2 is
higher than rG R . This is expected since the network at the
network-wide sensing radius 2r2 is globally rigid, and rG R

is the minimum network sensing radius to be globally rigid.
The average sensing radius r2

2 is also higher than rG R for all
instances of networks. Third, it is clear that 3r1 is higher than
rG R . This is again expected since the network at the network-
wide sensing radius 3r1 is a trilateration network which is
globally rigid, and rG R is the minimum network sensing ra-
dius to be globally rigid. Fourth, we observe that in general,
the sensing radius to achieve trilateration (i.e. 3r1 and r3

1 )
is higher than that to be localizable using the algorithm in
Fig. 4.

Figure 7 normalizes the sensing radii with respect to rG R .
We observe that to be localizable using the algorithm in
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localization objectives

 0

 20

 40

 60

 80

 100

 5  10  15  20  25  30

nu
m

. u
ni

qu
el

y 
lo

ca
li

za
bl

e

instance

r2
r1

Fig. 8 Numbers of uniquely localizable nodes at different radii
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Fig. 9 Numbers of uniquely localizable nodes that can be swept at
different radii

Fig. 4, the sensing radius is on average 1.48 times for r2
2

and 1.75 times for 2r2 of the global rigidity radius. To be
able to trilaterate, the sensing radius is on average 1.78 times
for r3

1 and 2.3 times for 3r1 of the global rigidity radius.
Although the sensing radii for these algorithms are higher
than the minimum global rigidity radius, as we will see be-
low, using the minimum radius may cause many nodes to
be uniquely localizable only in theory but not in known
algorithms.

To start, we first show the number of nodes that are
uniquely localizable at r1 and r2. The result is shown Fig. 8.
We observe that although there are instances in which a
large number of nodes are uniquely localizable at r2, there
are also instances in which a large number of nodes cannot
be uniquely localized even in theory. Even when a node can
be uniquely localizable in theory, it may not be localizable by
an efficient algorithm. Fig. 9 shows the number of uniquely
localizable nodes that can be localized by the algorithm in
Fig. 4. We observe that the algorithm can localize a large
number of nodes in most instances. However, even at rG R ,
there are instances (e.g., instance 6) in which many nodes
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Fig. 10 Numbers of uniquely localizable nodes that can be trilaterated
at different radii

are localizable in theory but not by the algorithm. We have
also conducted experiments with 200 nodes, and observed
instances in which even at rG R less than 5% of the nodes can
be localized by the algorithm in Fig. 4. This shows the im-
portance of topology control for easily localizable networks.
Figure 10 shows the number of nodes which can be local-
ized by trilateration. Again, we observe large variations in
different test cases. At radius rG R , although there are many
instances in which above 90% of the nodes can be localized
by trilateration, there are also many instances in which less
than 20% of the nodes can be trilaterated. This again shows
the importance of applying graph-theoretic techniques to
construct networks for easily localizable networks.

6 Conclusions

This paper has shown how, by an operation that can be
likened to increasing the sensing radius of the sensors in a
sensor network, the localization problem can be made solv-
able, and indeed solvable in linear time, if the network has
certain limited connectivity properties before any adjustment
of the sensing radius.

Certain variants on the ideas can easily be contemplated. It
is known for example that in R

2, six-connectivity of a graph
guarantees generic global rigidity, [31]. Whether or not such
a graph is a trilateration graph is not known to the authors, or
whether it could be made a trilateration graph by a simpler
maneuver than that contemplated in this paper is not known.
Again, it is possible to contemplate sensors with directional
properties. Suppose each sensor in a two-dimensional sensor
network is guaranteed to have one neighbour in every 120
degree sector (or 90 or 60 degree sector). Could one expect
the trilateration property?

One can also envisage that sensors are laid down by a
random process, as discussed for example in [6]. Consider

for example a graph obtained by laying down n sensors
in a unit area, independently and with uniform distribu-
tion. Suppose the sensing radius is r for all sensors. If
r > (1/

√
π + ε)

√
(logn/n) for arbitrary positive ε and all

n, so that r is allowed to depend on n, then as n → ∞
the graph is connected, see [39]. Thus with probability very
close to 1, and with a large value of n, trilateration will be
achieved when r is chosen to exceed the lower threshold
of 3(1/

√
π)

√
(logn/n). One could still contemplate graphs

however where the trilateration property ‘just’ failed; one
might suspect that such graphs could at least still be glob-
ally rigid, with parts of them in trilateration ‘islands’, linked
by a certain number of edges. If the number of islands is
small, one might conjecture that the computational com-
plexity of localizing such a globally rigid graph could be
exponential in the number of islands, but not the number of
vertices.

As noted in Section 1, from the graph theory point of
view, instead of increasing the sensing radius r to acquire
some graphical property, one can increase the areal density
of sensors; this is particularly apparent in the random case.
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