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Abstract The problem of data broadcasting over multi-

ple channels consists in partitioning data among channels,

depending on data popularities, and then cyclically trans-

mitting them over each channel so that the average wait-

ing time of the clients is minimized. Such a problem is

known to be polynomially time solvable for uniform length

data items, while it is computationally intractable for non-

uniform length data items. In this paper, two new heuris-

tics are proposed which exploit a novel characterization of

optimal solutions for the special case of two channels and

data items of uniform lengths. Sub-optimal solutions for the

most general case of an arbitrary number of channels and

data items of non-uniform lengths are provided. The first

heuristic, called Greedy+, combines the novel characteri-

zation with the known greedy approach, while the second

heuristic, called Dlinear, combines the same characteriza-

tion with the dynamic programming technique. Such heuris-

tics have been tested on benchmarks whose popularities are

characterized by Zipf distributions, as well as on a wider set

of benchmarks. The experimental tests reveal that Dlinear

finds optimal solutions almost always, requiring good run-

ning times. However, Greedy+ is faster and scales well when

changes occur on the input parameters, but provides solutions

which are close to the optimum.
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1 Introduction

Broadcasting is an efficient way of simultaneously dissemi-

nating data to a large number of clients. It is especially effec-

tive in an asymmetric wireless environment, where a server at

a base-station repeatedly transmits data items from a given

set over multiple wireless channels, while clients wait for

their desired item on the proper channel [1, 3, 15, 16].

As applications, consider data services broadcast by base-

stations of cellular networks or hot-spot areas, such as stock

quotes, weather info, traffic news, video clips, movie trail-

ers, sport scores, transport time tables [7]. In these applica-

tions, as the time spent for mobile clients passing through the

base-station coverage areas is very short, it is of paramount

importance to reduce the waiting time of the clients.

The client expected delay increases with the size of the set

of the data items to be transmitted by the server. Indeed, the

client has to wait for many unwanted data before receiving

his own data. In a multi-channel environment, an allocation

strategy has to be pursued so as to assign data items to chan-

nels. Moreover, each client can access either only a single

channel or any available channel at a time. In the former

case, if the client can access only one prefixed channel and

can potentially retrieve any available data, then all data items

must be replicated over all channels. Otherwise, data can be

partitioned among the channels, thus assigning each item to

only one channel. In this latter case, the efficiency can be

improved by adding an index that informs the client at which

time and on which channel the desired item will be trans-

mitted. In this way, the mobile client can save battery energy
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because, after reading the index info, it can sleep and wake

up on the proper channel just before the transmission of the

desired item.

Several variants for the problem of data allocation and

broadcast scheduling have been proposed in the literature,

which depend on the perspectives faced by the research com-

munities [2, 3, 5, 9–11, 13, 14, 16–18].

Specifically, the networking community faces a version of

the problem, known as the Broadcast Problem, whose goal is

to find an infinite schedule on a single channel [5, 10, 11, 16].

Such a problem was first introduced in the teletext systems

by [2, 3]. Although it is widely studied (e.g., it can be mod-

eled as a special case of the Maintenance Scheduling Prob-

lem and the Multi-Item Replenishment Problem [5, 10]), its

tractability is still under consideration. Therefore, the empha-

sis is on finding near optimal schedules for a single channel.

Almost all the proposed solutions follow the square root rule
(SRR) [3]. The aim of such a rule is to produce a broadcast

schedule where each data item appears with equally spaced

replicas, whose frequency is proportional to the square root

of its popularity and inversely proportional to the square root

of its length. The multi-channel schedule is obtained by dis-

tributing in a round robin fashion the schedule for a single

channel [16]. Since each item appears in multiple replicas

which, in practice, are not equally spaced, these solutions

make indexing techniques not effective. Briefly, the main re-

sults known in the literature for the Broadcast Problem can

be summarized as follows. For uniform lengths, namely all

items of the same length, it is still unknown whether the prob-

lem can be solved in polynomial time or not. For a constant

number of channels, the best algorithm proposed so far is the

Polynomial Time Approximation Scheme (PTAS) devised

in [11]. In contrast, for non-uniform lengths, the problem has

been shown to be strong NP-hard even for a single channel, a

3-approximation algorithm was devised for one channel, and

a heuristic has been proposed for multiple channels [10].

On the other hand, the database community seeks for a

periodic broadcast scheduling which should be easily in-

dexed [9]. For the single channel, the obvious schedule that

admits index is the flat one. It consists in selecting an order

among the data items, and then transmitting them once at a

time, in a round-robin fashion [1], producing an infinite pe-

riodic schedule. In a flat schedule indexing is trivial, since

each item will appear once, and exactly at the same rela-

tive time, within each period. Although indexing allows the

client to sleep and save battery energy, the client expected

delay is half of the schedule period and can become infeasi-

ble for a large period. To decrease the client expected delay,

still preserving indexing, flat schedules on multiple chan-

nels can be adopted [13, 14, 18]. However, in such a case

the allocation of data to channels becomes critical. For ex-

ample, allocating items in a balanced way simply scales the

expected delay by a factor equal to the number of channels.

To overcome this drawback, skewed allocations have been

proposed where items are partitioned according to their pop-

ularities so that the most requested items appear in a channel

with shorter period [13, 18]. Hence, the resulting problem is

slightly different from the Broadcast Problem since, in or-

der to minimize the client expected delay, it assumes skewed

allocation and flat scheduling. This variant of the problem

is easier than the Broadcast Problem. Indeed, the problem

has been shown to be polynomial time solvable for uniform

length data items [18], and it has been proved to be compu-

tationally intractable (NP-hard) for non-uniform length data

items [4].

The present paper expands the work started in [4, 18]

for the problem of data broadcasting over multiple channels,

with the objective of minimizing the average waiting time

of the clients, under the assumptions of skewed allocation to

channels and flat scheduling per channel. In [4, 18], several

algorithms have been proposed, all of which assume that a

sorting preprocessing step has been done on the data items.

In the uniform case, the fastest known algorithm producing

an optimal solution requires O(NK log N ) time [4], where

N is the number of items and K is the number of channels.

Such an optimal algorithm is based on dynamic program-

ming and solves NK problem instances, for 1 ≤ n ≤ N and

1 ≤ k ≤ K . In the non-uniform case, the problem can be

optimally solved in pseudo-polynomial time when K = 2,

by a reduction to a knapsack problem, and in exponential

time for arbitrary K [4]. In this latter case, a heuristic, called

Greedy, has been proposed in [18]. Fixed N , Greedy starts

with all data items assigned to one channel, and then proceeds

by splitting the items of one channel between two channels,

thus adding a new channel, until K channels are reached.

In practice, Greedy is very fast, scales with the number of

channels, and provides fair sub-optimal solutions for the K
instances of the problem, where N is fixed and 1 ≤ k ≤ K .

This paper presents two new heuristics which provide sub-

optimal solutions for the data broadcasting problem with

non-uniform data item lengths and an arbitrary number of

channels. As with Greedy, both heuristics assume that the

items are sorted by decreasing popularities per length unit.

As opposed to Greedy, they pretend that a characterization of

the optimal solution of the problem for K = 2 and uniform

lengths holds also for the general case of arbitrary K and non-

uniform lengths. The first heuristic, called Greedy+, follows

the same strategy as Greedy. To solve K instances with N
fixed and 1 ≤ k ≤ K , it requires O(NK) time in the worst

case, The second heuristic, called Dlinear, follows the dy-

namic programming relation proposed in [18] and requires an

O(NK) time for solving all the NK instances, for 1 ≤ n ≤ N
and 1 ≤ k ≤ K . The proposed heuristics are experimentally

tested on some benchmarks, whose popularities are charac-

terized by Zipf and Stairs distributions. The Zipf distribu-

tion has been shown to characterize the popularity of one
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element among a set of similar data, like a web page in a web

site [6], while the Stairs distribution is employed because it

models bad instances for the proposed heuristics. The exper-

imental tests reveal that the quality of the solution provided

by Dlinear is much better than that produced by the other

heuristics. Indeed, Dlinear finds optimal solutions almost al-

ways, requiring reasonable running times. Although Greedy

remains the fastest heuristic, it gives the worst sub-optimal

solutions. Both the running times and the quality of the solu-

tions of Greedy+ are intermediate between those of Dlinear

and Greedy. As Greedy, Greedy+ scales well with respect to

all parameters changes.

The rest of this paper is so organized. Section 2 gives no-

tations, definitions and the problem statement. In particular,

Section 2.1 proves the novel characterization of the opti-

mal solution, for the special case with K = 2 and uniform

lengths, that motivates the new heuristics. Section 3 presents

the O(NK) time Greedy+ and Dlinear heuristics. Moreover,

it is also shown that the Greedy+ algorithm, when restricted

to uniform length data, can be implemented so as to take

O(K log N ) time in the worst case. Section 4 reports the

experimental tests of the heuristics, performed on randomly

generated instances. Conclusions are offered in Section 5. Fi-

nally, the Appendix shows that the worst case time complex-

ity of the original Greedy algorithm given in [18] is O(NK),

even for uniform length data, while its average time com-

plexity is O(N log K ).

2 Preliminaries

Consider a set of K identical channels, and a set D =
{d1, d2, . . . , dN } of N data items. Each item di is character-

ized by a popularity pi and a length zi , with 1 ≤ i ≤ N . The

popularity pi represents how frequently item di is requested

by the clients, and it does not vary along the time. Populari-

ties can be either arbitrary positive integers, or real numbers

normalized in the range (0, 1] such that
∑N

i=1 pi = 1. The

length zi is an integer number, counting how many time units

(or, ticks) are required to transmit item di on any channel.

When all data lengths are the same, i.e. zi = z for 1 ≤ i ≤ N ,

the lengths are called uniform and are assumed to be unit, i.e.

z = 1. When the data lengths are not the same, the lengths

are said non-uniform.

The items have to be partitioned into K groups

G1, . . . , G K . Group G j collects the data items assigned to

channel j , with 1 ≤ j ≤ K . The cardinality of G j is de-

noted by N j , the sum of its item lengths is denoted by Z j ,

i.e. Z j = ∑
di ∈G j

zi , and the sum of its popularities is de-

noted by Pj , i.e. Pj = ∑
di ∈G j

pi . Note that since the items

in G j are cyclically broadcast according to a flat schedule,

Z j is the schedule period on channel j . Clearly, in the uni-

form case Z j = N j , for 1 ≤ j ≤ K . If item di is assigned to

channel j , and assuming that clients can start to listen at any

instant of time with the same probability, the client expected
delay for receiving item di is half of the period, namely

Z j

2
.

Assuming, as in [18], that indexing allows clients to know

in advance the content of the channels, the average expected
delay (AED) over all channels is

AED = 1

2

K∑
j=1

Z j Pj (1)

Given K channels, a set D of N items, where each data

item di comes along with its popularity pi and its integer

length zi , the data broadcasting problem consists in parti-

tioning D into K groups G1, . . . , G K , so as to minimize

the objective function AED given in Eq. (1). In the special

case of equal lengths, the corresponding objective function

is derived replacing Z j with N j in Eq. (1).

Some known results, proposed in [4, 18], that will be used

in the next sections, are now briefly recalled.

Lemma 1 ([18]). Let Gh and G j be two groups in an optimal
solution for a problem instance with uniform lengths. Let di

and dk be items with di ∈ Gh and dk ∈ G j . If Nh < N j , then
pi ≥ pk. Similarly, if pi > pk, then Nh ≤ N j .

In other words, the most popular items are allocated to

less loaded channels so that they appear more frequently.

As a consequence, if the items are sorted by non-increasing

popularities, then the group sizes are non-decreasing.

Corollary 1 ([18]). Let d1, d2, . . . , dN be N uniform length
items with pi ≥ pk whenever i < k. Then, there exists
an optimal solution for partitioning them into K groups
G1, . . . , G K , where each group is made of consecutive el-
ements.

By the above corollary, in the uniform case the items are

assumed to be sorted by non-increasing popularities, and any

solution S will be compactly represented by a segmentation,

that is a (K − 1)-tuple (B1, B2, . . . , BK−1), where B j is the

index, called border, of the rightmost item belonging to group

G j and B1 < B2 < · · · < BK−1. Notice that the cardinality

of G j , i.e. the number N j of items in the group, is N j = B j −
B j−1, where B0 = 0 and BK = N are assumed. From now

on, a segmentation S = (B1, B2, . . . , BK−1) for the uniform

case is called feasible if N1 ≤ N2 ≤ · · · ≤ NK . Indeed, by

Lemma 1, an optimal solution will be sought only among

feasible solutions.

For any n ≤ N and k ≤ K , let optn,k denote the cost of an

optimal solution for items d1, . . . dn and k channels (groups).

Let Ci,h be the cost of assigning consecutive items di , . . . , dh
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to one group, i.e. Ci,h = 1
2
(h − i + 1)

∑h
q=i pq . The follow-

ing result holds.

Theorem 1 ([18]). Let d1, d2, . . . , dN be N uniform length
items, sorted by non-increasing popularities. Hence,

optn,k =
{

C1,n if k = 1

min1≤�≤n−1{opt�,k−1 + C�+1,n} if k > 1
(2)

Theorem 1 suggests an O(N 2 K ) time dynamic program-

ming algorithm to solve the problem in the uniform case.

Indeed, consider the K × N matrix M with Mk,n = optn,k .

The entries of M are computed row by row applying Re-

currence 2. In order to actually construct an optimal parti-

tion, a second matrix F is employed which stores in Fk,n the

value of � which minimizes the right-hand-side of Eq. (2).

Hence, the optimal solution for N and K is given by S =
(B1, B2, . . . , BK−1) where, starting from BK = N , the value

of Bk is equal to Fk+1,Bk+1
, for k = K − 1, . . . , 1. A useful

property of the optimal solution is that the values stored in

each row of matrix F are non-decreasing, as stated in the

following Lemma:

Lemma 2 ([4]). Let d1, d2, . . . , dN be N uniform length
items, sorted by non-increasing popularities. For any n ≤ N
and k ≤ K , Fk,n−1 ≤ Fk,n.

In words, Lemma 2 implies that, given the items sorted by

non-increasing popularities, if one builds an optimal solution

for N items from an optimal solution for N − 1 items, then

the border BK−1 can only move to the right.

2.1 Two channels and uniform lengths

This subsection exploits the structure of the optimal solution

in the special case where the item lengths are uniform and

there are only two channels. The problem is thus to find a par-

tition S into G1 and G2 such that AEDS = 1
2
(N1 P1 + N2 P2)

is minimized. Clearly, N = N1 + N2, and by Lemma 1,

N1 ≤ N2 holds for any optimal solution. Moreover, any fea-

sible solution S can be denoted by the single border B1, which

coincides with N1.

Lemma 3. Consider N uniform length items, sorted by non-
increasing popularities, and K = 2 channels. Let S = (N1)

be a feasible solution such that P1 ≤ P2. If the solution S′ =
(N1 + 1) is feasible, then AEDS′ ≤ AEDS.

Proof: Since S′ is feasible, then N1 + 1 ≤ N2 − 1. The new

solution S′ differs from S because item dN1+1 is moved from

G2 to G1. Therefore, AEDS′ = 1
2
((N1 + 1)(P1 + pN1+1)

+ (N2 − 1)(P2 − pN2−1)) = 1
2
(N1 P1+ N2 P2+ (N1 − N2+

2)pN1+1 + (P1 − P2)).

Since AEDS = 1
2
(N1 P1 + N2 P2), N1 − N2 + 2 ≤ 0, and

P1 − P2 ≤ 0, it follows that AEDS′ ≤ AEDS . �

While Lemma 1 gives the upper bound N1 ≤ � N
2
� on the

cardinality of group G1, Lemma 3 provides a lower bound b
on N1. Indeed, Recurrence 2 for K = 2 can be rewritten as

follows:

optN ,2 = min
b≤�≤� N

2
�
{C1,� + C�+1,N } (3)

where

b = max
1≤s≤� N

2
�

{
s :

s∑
h=1

ph ≤
N∑

h=s+1

ph

}
.

The following lemma improves on the upper bound of N1

given by Lemma 1, and shows that the values of the feasible

solutions assumed in the right-hand side of Eq. (3) form a

unimodal sequence, namely there is a particular index � such

that the values on its left are in non-increasing order, while

those on its right are in increasing order.

Lemma 4. Consider N uniform length items, sorted by non-
increasing popularities, and K = 2 channels. Let S = (N1)

be a feasible solution such that P1 > P2. Consider the solu-
tions S′ = (N1 + 1) and S′′ = (N1 + 2). If AEDS′ > AEDS,
then AEDS′′ > AEDS′ .

Proof: By definition, AEDS = 1
2
(N1 P1 + N2 P2) and

AEDS′ = 1
2
((N1 + 1)(P1 + pN1+1)+(N2 − 1)(P2 − pN1+1))

= AEDS + 1
2
((P1 − P2) + pN1+1(N1 − N2 + 2)).

Since AEDS′ > AEDS , it follows that (P1 − P2) >

pN1+1(N2 − N1 − 2).

Moreover, AEDS′′ = 1
2
(N1 + 2)(P1 + pN1+1 + pN1+2)+

1
2
(N2 − 2)(P2 − pN1+1 − pN1+2), and thus AEDS′′ − AEDS′

= 1
2
(P1 − P2) + 1

2
pN1+2(N1 − N2 + 2) + (pN1+1+ pN1+2).

Since pN1+1 ≥ pN1+2, one has (P1 − P2) > pN1+2(N2 −
N1 − 2).

Finally, AEDS′′ > AEDS′ holds because 1
2
(P1 − P2) +

1
2

pN1+2(N1 − N2 + 2) + (pN1+1 + pN1+2) > 1
2
(P1 − P2)

+ 1
2

pN1+2(N1 − N2 + 2) > 0. �

Let f (�)=C1,�+C�+1,N = �
2

∑�
h=1 ph + N−�

2

∑N
h=�+1 ph .

Then, the border m that minimizes Eq. (3), that is the optimal

solution of the problem, is given by:

optN ,2 = f (m) (4)
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Fig. 1 The binary search on a unimodal sequence

where

m = min
b≤�≤� N

2
�
{� : f (�) < f (� + 1)} .

Due to the unimodal property of the sequence of values

f (b), f (b + 1), . . . , f (� N
2
�), the search of m can be done in

O(log N ) time by a suitable modified binary search [8], as

shown in Fig. 1.

3 New heuristics

The purpose of the new heuristics to be presented in this

section is to quickly find good sub-optimal solutions for the

most general case of non-uniform data lengths and an arbi-

trary number of channels. Such a goal is achieved by pre-

tending that the optimal solution characterization, proved in

Section 2.1 for the special case of two channels and uni-

form lengths, holds also in the general case of more than two

channels and non-uniform lengths.

As with all the previously known heuristics, the new

heuristics also assume that the items are sorted by non-

increasing
pi

zi
ratios. This can be done in O(N log N ) time by

a sorting preprocessing step. Moreover, since the lengths are

non-uniform, the cost of assigning the items from di to d j to

a single channel becomes Ci, j = 1
2
(
∑ j

h=i ph)(
∑ j

h=i zh). Let-

ting Pi, j = ∑ j
h=i ph and Zi, j = ∑ j

h=i zh , one notes that all

the P1,n and Z1,n , for 1 ≤ n ≤ N , can be computed in O(N )

time by two prefix sum computations, performed as a prepro-

cessing step. Hence, a single Ci, j can be computed on the fly

in constant time as Ci, j = 1
2
(P1, j − P1,i−1)(Z1, j − Z1,i−1).

From now on, in order to simplify the presentation, Ci, j is

defined to be 0 whenever i > j .

Since all the heuristics assume the two above preprocess-

ing steps, their time complexity will not be included in the

complexity analysis of the heuristics.

3.1 The Greedy+ algorithm

The Greedy+ heuristic is a refinement of the Greedy heuris-

tic presented in [17]. Recall that the Greedy heuristic works

for a fixed number N of data items. It initially assigns all

the N items to a single group. Then, for K − 1 times, one of

the groups is split in two groups, that will be assigned to two

different channels. To find which group to split along with its

actual split point, all the possible points of all groups are con-

sidered as split point candidates, and the one that decreases

AED the most is selected. An efficient implementation takes

advantage from the fact that, between two subsequent splits,

it is sufficient to recompute the costs for the split point can-

didates of the last group that has been actually split.

In summary, Greedy+ consists of two phases. In the first

phase it behaves as Greedy, except for the way the split point

is determined. In the second phase, the solution provided by

the first phase is refined by working on pairs of consecutive

channels.

Specifically, in the first phase, Greedy+ uses an approach

similar to that of Eq. (4) to determine the split point. This

is because splitting one channel is the same as solving the

data broadcast problem for two channels. In details, assume

that the channel to be split contains the items from di to d j ,

with 1 ≤ i < j ≤ N , and let costi, j,2 denote the cost of a

feasible solution for assigning such items to two channels.

Then, the split point is given by the value of m that satisfies

the following relation:

costi, j,2 = Ci,m + Cm+1, j (5)

where

m = min
i≤�≤ j−1

{� : Ci,� + C�+1, j < Ci,�+1 + C�+2, j }.

Note that, since the item lengths are not uniform, the se-

quence of values Ci,� + C�+1, j , for i ≤ � ≤ j − 1, is not uni-

modal. However, Greedy+ behaves as such a sequence were

unimodal. Hence, instead of trying all the possible values

of � between i and j , as done by Greedy, Greedy+ per-

forms a left-to-right scan starting from i and stopping as

soon the AED increases. In this way, a sub-optimal solution

S = (B1, B2, . . . .BK−1) is found.

The second phase is performed only when K ≥ 3 and con-

sists in refining the solution S by recomputing its borders.

It consists in a sequence of odd steps, followed by a se-

quence of even steps. During the t-th odd step, 1 ≤ t ≤ � K
2
�,

the two-channel subproblem including the items assigned to

groups G2t−1 and G2t is solved. Specifically, Eq. (5) is ap-

plied choosing i = B2t−2 + 1 and j = B2t , thus recomputing

the border B2t−1 of S. Similarly, during the t-th even step,

1 ≤ t ≤ � K−1
2

�, the two-channel subproblem including the

items assigned to groups G2t and G2t+1 is solved by applying

Eq. (5) with i = B2t−1 + 1 and j = B2t+1, thus recomputing

the border B2t of S.
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Fig. 2 The Greedy+ heuristic

The pseudo-code of the Greedy+ procedure is depicted in

Fig. 2. The first phase of Greedy+ is based on the Greedy pro-

cedure, which makes use of a heap data structure. Consider a

group built so far containing items from di to d j . For such a

group, the heap H stores the following four data: the index i
of its leftmost item, the index j of its rightmost item, its best

split point m, and its AED gain � = Ci, j − (Ci,m + Cm+1, j )

achieved if the group is split in two groups at m. H stores

in its root the group with the largest AED gain �. Initially,

the data of the single group containing all the items from d1

to dN are inserted in H . At invocation k of Greedy, the kth

group to be split is found by executing a DeleteMaxHeap
operation on H , which returns the information stored in the

root (namely, i, j, m, �), and consequently updates H . The

split point m is assigned to the kth border Bk . The Split pro-

cedure is then invoked once for each of the two new groups

containing the items from di to dm and from dm+1 to d j ,

respectively. Split receives as input the indices of the left-

most and rightmost items of the group, and returns the best

split point along with its AED gain. Split iteratively deter-

mines the best split point according to Relation 5 (see Fig. 2).

The information of the two new groups is then added to H

Fig. 3 The Split procedure for uniform lengths

by means of the InsertHeap operation. Finally, the borders

B1, . . . , Bk−1 are sorted to match the segmentation require-

ment B1 < B2 < · · · < BK−1.

As regard to the time complexity, since H contains at

most K items, DeleteMaxHeap and InsertHeap both require

O(log K ) time. The final sorting step, executed once, takes

O(K log K ) time. Since Split runs in O(N ) time, and Greedy

is invoked K times, the time complexity of the first phase of

Greedy+ is O(NK). The second phase of Greedy+ requires

O(N ) time since each item is considered as a candidate split

point at most in a single Split invocation among all the odd

steps, and in a single Split invocation among the even steps.

Therefore, the overall time required in the worst case by the

Greedy+ heuristic is O(NK), the same as the original Greedy

heuristic proposed in [18] (see the Appendix).

In the special case of uniform data lengths, by Lemma 4,

the Split procedure merely calls the BinSearch procedure

on a unimodal sequence, as shown in Fig. 3. Since the Bin-

Search procedure, and hence also the Split procedure, takes

O(log N ) time, it is easy to see that the worst case time com-

plexity of Greedy+ becomes O(K log N ), improving over

the O(NK) time of the original Greedy algorithm [18].

Note that Greedy+ scales well when changes occur on

the number of channels, on the number of items, on item

popularities, as well as on item lengths. Indeed, adding or

removing a channel simply requires doing a new split or

removing the last introduced split, respectively. Adding a

new item first requires to insert such an item in the sorted

item sequence. Assume the new item is added to group G j ,

then the border of the two-channel subproblem including

items of G j and G j+1 is recomputed by applying Eq. (5).

Similarly, deleting an item that belongs to group G j requires

to solve again the two-channel subproblem including items

of G j and G j+1. Finally, a change in the popularity/length

of an item is equivalent to first removing that item and then

adding the same properly modified item.

3.2 The Dlinear algorithm

The Dlinear heuristic follows a dynamic programming ap-

proach similar to that provided by Recurrence 2. It solves all

the NK instances, for 1 ≤ n ≤ N and 1 ≤ k ≤ K , with the

objective of obtaining an O(NK) worst case time complex-

ity. Fixed k, Dlinear computes a solution for n items from the

previously computed solution for n − 1 items, exploiting the

characteristics of the optimal solutions for the uniform case.
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For any n ≤ N and k ≤ K , let Mk,n denote the cost of

a feasible solution for items d1, . . . dn and k channels, and

let Fk,n be the index of the last element assigned to channel

k − 1 in such a solution. Dlinear selects the feasible solutions

that satisfy the following Recurrence:

Mk,n =
{

C1,n if k = 1

Mk−1,m + Cm+1,n if k > 1
(6)

where

m = min
Fk,n−1≤�≤n−1

{� : Mk−1,�+C�+1,n < Mk−1,�+1+C�+2,n}.

In practice, Dlinear pretends to adapt Recurrence 4, that

holds for the uniform data lengths, also to the case of non-

uniform data lengths. In particular, the choice of the lower

bound Fk,n−1 in the formula of m is suggested by Lemma 2

which says that the border of channel k − 1 can only move

right when a new item with the smallest popularity is added.

Moreover, m is determined as in Eq. (4) pretending that the

sequence Mk−1,� + C�+1,n , obtained for Fk,n−1 ≤ � ≤ n − 1,

be unimodal. Therefore, the solution provided by Dlinear is

a sub-optimal one.

The pseudo-code for the Dlinear heuristic is shown in

Fig. 4. Note that in Loop 1 the leftmost k − 1 entries in

row k of both M and F are meaningless, since at least one

element has to be assigned to each channel. The value of m
in Recurrence 6 that gives Mk,n is computed iteratively in

Loop 3 and stored in Fk,n .

As regard to the time complexity, Loop 3 is performed at

most O(n − Fk,n−1) times. However, such a loop is stopped

as soon as incr becomes true and hence Fk,n = m. Therefore,

computing Mk,n actually requires O(Fk,n − Fk,n−1) time.

Hence, computing Mk,n for k + 1 ≤ n ≤ N in Loop 2 takes∑N
n=k+1 O(Fk,n − Fk,n−1) = O(Fk,N − Fk,k) = O(N ) time.

Fig. 4 The Dlinear heuristic

Since Loop 1 is performed O(K ) times, the overall time

complexity of the Dlinear algorithm is O(NK).

4 Experimental tests

In this section, experimental results, performed on imple-

mentations of both the Greedy+ and Dlinear heuristics, are

discussed for the data broadcasting problem with K channels

and non-uniform lengths. In addition, the implementation of

Greedy, as detailed in [17], is used for comparison purposes.

The algorithms are written in C and the experiments are run

on an AMD Athlon XP 2500+, 1.84 GHz, with 1 GB RAM.

The heuristics are first tested on some non-uniform length

instances generated as follows. Given the number N of items

and a real number 0 ≤ θ ≤ 1, the item popularities are gener-

ated according to a Zipf distribution whose skew is θ , namely:

pi = (1/ i)θ∑N
i=1(1/ i)θ

1 ≤ i ≤ N

In the above formula, θ = 0 stands for a uniform dis-

tribution with pi = 1
N , while θ = 1 implies a high skew,

namely the range of pi values becomes larger. The item

lengths zi are integers generated according to a uniform

distribution in the range 1 ≤ zi ≤ z, as in [16]. The items

are sorted by non-increasing
pi

zi
ratios, as suggested in [16].

The parameters N , K , z, and θ vary, respectively, in the

ranges: 500 ≤ N ≤ 2500, 10 ≤ K ≤ 500, 3 ≤ z ≤ 10, and

0.5 ≤ θ ≤ 1.

Since the optimal solutions can be found in a reasonable

time only for small values of N and z, a lower bound on AED

is used for large values of N and z. The lower bound for a

non-uniform instance is obtained by transforming it into a

uniform instance as follows. Each item di of popularity pi

and length zi is decomposed in zi items of popularity
pi

zi
and

length 1. Since more freedom has been introduced, it is clear

that the optimal AED for the so transformed problem is a

lower bound on the AED of the original problem. Since the

transformed problem has uniform lengths, its optimal AED

is obtained by running the Dichotomic algorithm presented

in [4].

The simulation results are exhibited in Tables 1–4. The

tables report the running time, the client AED, and the per-

centage of error, which is computed as(
AEDheuristic − AEDlowerbound

AEDlowerbound

)
100

The running times reported in the tables do not include the

time for sorting, which is the same for all the algorithms. It is

worth noting that the algorithm running times are measured in

microseconds, while the client AEDs are measured in ticks.
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Table 1 Experimental results on Zipf distributions, when

K = 20, θ = 0.8, and z = 3

N /K /θ /z Algorithm AED % Error Time

500/20/0.8/3 Greedy 18.72 7.1 102

Greedy + 17.58 0.6 3514

Dlinear 17.47 2106

Lower bound 17.47

1500/20/0.8/3 Greedy 53.85 7.9 283

Greedy + 51.71 3.6 21240

Dlinear 49.90 6519

Lower bound 49.90

1750/20/0.8/3 Greedy 62.64 7.9 326

Greedy + 58.92 1.5 31137

Dlinear 58.04 7488

Lower bound 58.04

2000/20/0.8/3 Greedy 71.24 7.9 373

Greedy + 66.93 1.4 38570

Dlinear 65.98 8602

Lower bound 65.98

2250/20/0.8/3 Greedy 79.70 7.8 457

Greedy + 75.06 1.6 45170

Dlinear 73.87 9749

Lower bound 73.87

2500/20/0.8/3 Greedy 88.40 7.8 474

Greedy + 82.51 0.7 62376

Dlinear 81.93 10920

Lower bound 81.93

How long a tick lasts depends on several factors, such as

the page size, the system available bandwidth, the broadcast

technology, and the client devices. A tick is sufficiently long

to allow both the server transmission and the client download.

By observing the tables, one notes that Greedy+ and Dlin-

ear always outperform Greedy in terms of solution quality

(that is, AED). In particular, Greedy + at least halves the

error of Greedy, producing solutions whose errors is at most

5.7%. Moreover, Dlinear reaches the optimum almost in all

cases, and its maximum error is as high as 1.8% only in one

instance.

As regard to the running times, although all the three

heuristics have the same O(NK) time, Greedy is the fastest

in practice. Indeed, its worst case instance is built ad hoc

(see the Appendix) and never occurs in our experiments. Al-

though Greedy+ and Dlinear are slower than Greedy, their

running times are always less than one tenth of second. Their

highest running times occur in Table 2, where those of Dlin-

ear are directly proportional to K while those of Greedy+
are inversely proportional to K . This singular behavior of

Greedy+ might depend on the fact that, in the second phase

each Split execution stops its scan earlier when the cardi-

nality of each pair of channels decreases, and therefore the

number of channels K increases. It is worth to note that, due

to the dynamic programming approach, Dlinear solves all

Table 2 Experimental results on a Zipf distribution, when

N = 2500, θ = 0.8, and z = 3

N /K /θ /z Algorithm AED % Error Time

2500/10/0.8/3 Greedy 179.16 7.8 381

Greedy + 167.86 1.0 97356

Dlinear 166.14 4919

Lower bound 166.14

2500/40/0.8/3 Greedy 44.04 7.9 562

Greedy + 41.58 1.9 34147

Dlinear 40.79 22771

Lower bound 40.79

2500/80/0.8/3 Greedy 21.98 7.9 685

Greedy + 20.72 1.7 19179

Dlinear 20.37 46545

Lower bound 20.37

2500/100/0.8/3 Greedy 17.14 5.2 740

Greedy + 16.75 2.8 27452

Dlinear 16.29 57906

Lower bound 16.29

2500/200/0.8/3 Greedy 8.56 5.1 1009

Greedy + 8.37 2.8 12974

Dlinear 8.15 0.1 116265

Lower bound 8.14

2500/500/0.8/3 Greedy 3.4 4.2 2313

Greedy + 3.35 2.7 21430

Dlinear 3.32 1.8 273048

Lower bound 3.26

Table 3 Experimental results on Zipf distributions, when

N = 2500, K = 50, and z = 3

N /K /θ /z Algorithm AED % Error Time

2500/50/0.5/3 Greedy 47.74 9.7 595

Greedy + 46.02 5.7 23175

Dlinear 43.52 0.02 29075

Lower bound 43.51

2500/50/0.7/3 Greedy 39.59 6.8 600

Greedy + 38.47 3.8 23606

Dlinear 37.05 0.02 29132

Lower bound 37.04

2500/50/0.8/3 Greedy 34.33 5.2 603

Greedy + 33.49 2.6 24227

Dlinear 32.61 29121

Lower bound 32.61

2500/50/1/3 Greedy 23.10 3.2 609

Greedy + 22.53 0.6 27566

Dlinear 22.38 28693

Lower bound 22.38

the instances with 1 ≤ n ≤ N items and 1 ≤ k ≤ K chan-

nels, while Greedy and Greedy+ only solve the K instances

with n = N .

The previous experiments have shown that Greedy+ and

Dlinear behave well when the item popularities follow a

Springer



Wireless Netw (2008) 14:219–231 227

Table 4 Experimental results on a Zipf distribution, when

N = 500, K = 50, and θ = 0.8

N /K /θ /z Algorithm AED % Error Time

500/50/0.8/3 Greedy 7.34 5.3 147

Greedy + 7.19 3.1 2517

Dlinear 6.98 0.1 5423

Lower bound 6.97

500/50/0.8/5 Greedy 10.78 5.3 147

Greedy + 10.52 2.8 2938

Dlinear 10.25 0.1 5490

Lower bound 10.23

500/50/0.8/7 Greedy 14.50 4.9 146

Greedy + 14.16 2.4 3329

Dlinear 13.85 0.2 5499

Lower bound 13.82

500/50/0.8/10 Greedy 19.48 5.1 145

Greedy + 18.97 2.3 3899

Dlinear 18.58 0.2 5507

Lower bound 18.53

Zipf distribution. This suggests that, in most cases, the AED

achieved in correspondence of the leftmost value of � sat-

isfying Recurrences 5 and 6 is the optimal AED or is very

close to the optimal AED. In other words, the sequence of

values obtained by varying � is very often unimodal. In order

to look for sequences that do not satisfy unimodality, and

then to find critical instances for the above heuristics, a new

distribution of popularities, called Stairs, is introduced. In

such a distribution, there are few distinct, distant popularity

values, with each value appearing many times. That is, the

items to be broadcast are clustered by their popularities, with

larger clusters having smaller popularities.

Formally, the Stairs distribution is determined by four

parameters: the number N of items, the number s of dis-

tinct popularity values, the base value b, and the skew-

ness σ . Specifically, the s distinct popularity values are

{b, b2, . . . , bs}, and there are Nqs+1− j items with popular-

ity b j , where q1, . . . , qs are generated according to a Zipf

distribution with skew σ . Note that the popularities can

be normalized so that 0 ≤ pi ≤ 1 simply dividing each pi

by
∑N

i=1 pi = N
∑s

j=1 qs+1− j b j . For instance, if N = 12,

s = 3, b = 2, and σ = 0, one has q1 = q2 = q3 = 1
3
, and

pi =

⎧⎪⎨⎪⎩
8 if 1 ≤ i ≤ 4

4 if 5 ≤ i ≤ 8

2 if 9 ≤ i ≤ 12

which can be normalized dividing by 12
∑3

j=1
2 j

3
= 56.

Tables 5–7 report the results of the simulations for the

Stairs distribution with the parameters s = 4, 6, b = 2, 3,

and σ = 0.8, where the item popularities are not normal-

Table 5 Experimental results on Stairs distributions, when K = 20,

z = 3, s = 6, b = 2, and σ = 0.8

N /K /z/s/b/σ Algorithm AED % Error Time

500/20/3/6/2/0.8 Greedy 120165 7.8 101

Greedy + 114005 2.3 1403

Dlinear 111462 0.01 15590

Lower bound 111437

1500/20/3/6/2/0.8 Greedy 1062931 7.0 276

Greedy + 1040415 4.8 28070

Dlinear 992663 0.001 6282

Lower bound 992647

1750/20/3/6/2/0.8 Greedy 1449461 7.0 319

Greedy + 1418920 4.7 38080

Dlinear 1354459 0.005 7318

Lower bound 1354384.66

2000/20/3/6/2/0.8 Greedy 1888742 7.1 365

Greedy + 1848449 4.8 50280

Dlinear 1763132 0.0008 8392

Lower bound 1763116.33

2250/20/3/6/2/0.8 Greedy 2395045 7.2 410

Greedy + 2343224 4.8 61358

Dlinear 2234197 0.002 9773

Lower bound 2234142.83

2500/20/3/6/2/0.8 Greedy 2960463 7.4 459

Greedy + 2897751 5.1 76332

Dlinear 2756448 0.0009 10630

Lower bound 2756421.5

ized, while the remaining parameters N , K , and z vary in the

same ranges as before.

By observing the tables, one notes that both Greedy+
and Dlinear continue to outperform Greedy in terms of solu-

tions quality. On the average, the errors of all heuristics are

higher than those previously obtained for the Zipf distribu-

tions. However, Dlinear still continues to produce solutions

very close to the optimum and its error is no larger than 0.8%.

For the sake of completeness, experimental tests are also

performed on some uniform length benchmarks. In addition

to the heuristics, also the Dichotomic algorithm is run in

order to find the optimal solutions. In particular, Greedy+
is implemented by using the Split procedure, calling pro-

cedure BinSearch, shown in Fig. 3, while Greedy is im-

plemented by using its original Split procedure shown in

Fig. 5. Two sets of uniform length benchmarks are built,

where the popularities are generated according to Zipf and

Stairs distributions, respectively, N and K vary in the same

ranges as for the non-uniform case, and the length z is

fixed to 1. The results of the simulations are reported in

Tables 8–11.

By observing the tables, one notes that Dlinear always

finds the optimal solutions for Zipf distributions, while its

maximum error is 1.6% for Stairs distributions. In both cases,

Dlinear is about ten times faster than the optimal Dichotomic
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Table 6 Experimental results on a Stairs distribution, when

N = 2500, z = 3, s = 4, b = 3, and σ = 0.8

N /K /z/s/b/σ Algorithm AED % Error Time

2500/10/3/4/3/0.8 Greedy 9120504 9.1 380

Greedy + 8522413.5 1.9 126305

Dlinear 8358183 0.006 4800

Lower bound 8358126

2500/40/3/4/3/0.8 Greedy 2250825 8.3 599

Greedy + 2136352.5 2.8 38527

Dlinear 2076508.5 0.008 22313

Lower bound 2076340

2500/80/3/4/3/0.8 Greedy 1122418.5 8.2 678

Greedy + 1073631 3.5 21415

Dlinear 1037466 0.02 45853

Lower bound 1037175.5

2500/100/3/4/3/0.8 Greedy 914467.5 10.2 726

Greedy + 869887.5 4.8 18946

Dlinear 829735.5 0.004 58298

Lower bound 829696.5

2500/200/3/4/3/0.8 Greedy 454707 9.6 995

Greedy + 429176 3.4 16034

Dlinear 414792 0.01 114557

Lower bound 414712

2500/500/3/4/3/0.8 Greedy 170652 2.8 2332

Greedy + 168804 1.7 18090

Dlinear 167355 0.8 272210

Lower bound 165892.62

Table 7 Experimental results on a Stairs distribution, when N =
500, K = 50, s = 6, b = 2, and σ = 0.8

N /K /z/s/b/σ Algorithm AED % Error Time

500/50/3/6/2/0.8 Greedy 48943 9.9 141

Greedy + 45543 2.3 2832

Dlinear 44541 0.1 5347

Lower bound 44495.66

500/50/5/6/2/0.8 Greedy 71262 9.8 149

Greedy + 66654 2.7 3159

Dlinear 64973 0.1 5352

Lower bound 64855.66

500/50/8/6/2/0.8 Greedy 109899 9.8 142

Greedy + 102227 2.1 4227

Dlinear 100313 0.2 5423

Lower bound 100065

500/50/10/6/2/0.8 Greedy 129307 10.0 144

Greedy + 119734 1.9 4540

Dlinear 117755 0.2 5393

Lower bound 117489.55

algorithm. Due to the binary search used in the Split proce-

dure, Greedy+ becomes the fastest heuristic and produces

better sub-optimal solutions than Greedy.

In conclusion, although the difference in time to run

the algorithms might seem long, all the algorithms are ex-

tremely fast in practice, since the slowest algorithm does not

Table 8 Experimental results on Zipf distributions,

when K = 20, θ = 0.8, and z = 1

N /K /θ /z Algorithm AED % Error Time

500/20/0.8/1 Greedy 9.74 7.3 122

Greedy + 9.17 1.1 177

Dlinear 9.07 1948

Dichotomic 9.07 9009

1500/20/0.8/1 Greedy 27.91 7.5 341

Greedy + 26.70 2.8 228

Dlinear 25.95 5863

Dichotomic 25.95 30938

2000/20/0.8/1 Greedy 36.81 7.5 454

Greedy + 35.20 2.8 263

Dlinear 34.22 7890

Dichotomic 34.22 42238

2500/20/0.8/1 Greedy 45.65 7.5 564

Greedy + 43.62 2.8 279

Dlinear 42.43 9909

Dichotomic 42.43 55695

Table 9 Experimental results on a Zipf distribution, when

N = 2500, θ = 0.8, and z = 1

N /K /θ /z Algorithm AED % Error Time

2500/10/0.8/1 Greedy 92.44 7.5 441

Greedy + 86.85 1.0 170

Dlinear 85.98 4576

Dichotomic 85.98 26650

2500/40/0.8/1 Greedy 22.74 7.7 688

Greedy + 21.88 3.6 442

Dlinear 21.10 20689

Dichotomic 21.10 116305

2500/80/0.8/1 Greedy 11.35 7.7 832

Greedy + 10.79 2.4 670

Dlinear 10.53 42238

Dichotomic 10.53 238722

2500/100/0.8/1 Greedy 8.80 4.5 903

Greedy + 8.63 2.4 796

Dlinear 8.42 52982

Dichotomic 8.42 298216

2500/200/0.8/1 Greedy 4.40 4.2 1243

Greedy + 4.30 1.8 1390

Dlinear 4.22 105940

Dichotomic 4.22 602222

2500/500/0.8/1 Greedy 1.75 2.3 2624

Greedy + 1.74 1.7 3299

Dlinear 1.71 249843

Dichotomic 1.71 1511243

take more than one tenth of second. However, with such

a modest increment in the running time, the slowest al-

gorithm (i.e. Dlinear) provides a 5–10% better AED than

the fastest one (i.e. Greedy). This means that in a realis-

tic paging environment the client waits up to 10% ticks

less.
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Table 10 Experimental results on Stairs distributions, when

K = 20, z = 1, s = 4, b = 3, and σ = 0.8

N /K /z/s/b/σ Algorithm AED % Error Time

500/20/1/4/3/0.8 Greedy 92115 6.2 117

Greedy + 90879 4.8 139

Dlinear 88065 1.6 1919

Dichotomic 86658 8809

1500/20/1/4/3/0.8 Greedy 821439 6.2 338

Greedy + 802851 3.8 189

Dlinear 772788 5820

Dichotomic 772788 30567

2000/20/1/4/3/0.8 Greedy 1455828 6.2 434

Greedy + 1421523 3.7 206

Dlinear 1370361 7779

Dichotomic 1370361 41489

2500/20/1/4/3/0.8 Greedy 2277774 6.2 536

Greedy + 223261 3.7 206

Dlinear 2142918 9869

Dichotomic 2142918 55124

Fig. 5 The Split procedure used in the original Greedy heuristic

5 Conclusions

In this paper, the problem of broadcasting data with non-

uniform lengths over multiple channels, with the objective

of minimizing the average expected delay of the clients,

was considered under the assumptions of skewed alloca-

tion to multiple channels and flat scheduling per channel.

Since for non-uniform lengths the problem is computation-

ally intractable, new heuristics have been proposed, which

experimentally outperform the previously known heuristic

in terms of the solution quality. In particular, the experi-

mental tests have shown that the Dlinear heuristic finds op-

timal solutions almost always. In contrast, Greedy is the

fastest heuristic, but produces the worst solutions. Finally,

Greedy+ presents running times and sub-optimal solutions

which are both intermediate between those of Greedy and

Dlinear. In conclusion, the choice among the heuristics de-

pends on the goal to be pursued. If one is interested in find-

ing the best sub-optimal solutions, then Dlinear should be

adopted. Instead, if the running time is the main concern, then

Table 11 Experimental results on a Stairs distribution, when N =
2500, z = 1, s = 4, b = 3, and σ = 0.8

N /K /z/s/b/σ Algorithm AED % Error Time

2500/10/1/4/3/0.8 Greedy 4622598 7.0 426

Greedy + 4370205 1.2 156

Dlinear 4316529 4509

Dichotomic 4316529 25744

2500/40/1/4/3/0.8 Greedy 1137294 6.1 658

Greedy + 1122519 4.7 325

Dlinear 10780074 0.6 20689

Dichotomic 1071630 115273

2500/80/1/4/3/0.8 Greedy 567351 5.8 802

Greedy + 563565 5.1 585

Dlinear 539913 0.7 42446

Dichotomic 536019 236860

2500/100/1/4/3/0.8 Greedy 453681 5.7 855

Greedy + 439260 2.4 633

Dlinear 433611 1.1 53422

Dichotomic 428850 297864

2500/200/1/4/3/0.8 Greedy 226908 5.7 1151

Greedy + 221028 3.0 1090

Dlinear 215415 0.4 105903

Dichotomic 214497 601460

2500/500/1/4/3/0.8 Greedy 89070 3.4 2563

Greedy + 88416 2.6 2935

Dlinear 86436 0.3 252455

Dichotomic 86127 1515853

Greedy should be chosen, while if adaptability to parameter

changes is the priority, then either Greedy or Greedy+ should

be applied. In this scenario, Greedy+ represents a good

compromise since it is scalable and produces fairly good

solutions.

Appendix

This Appendix shows that the original Greedy algorithm pre-

sented in [17, 18] requires O(NK) time in the worst case,

instead of the claimed O(N log K ) time, even for uniform

length data items. However, it is shown that the O(N log K )

bound holds in the average case.

The Greedy algorithm described in [17] is the same as

the one given in Fig. 2 except for the Split procedure, which

instead scans all the positions between i and j to find the best

split point, as shown in Fig. 5.

In order to prove that the worst case time complexity of

Greedy is O(NK), consider N uniform length data items

whose popularities are defined as follows:

pi =
⎧⎨⎩ 1 if N − 3 ≤ i ≤ N

pi+1(N − 3) +
∑N

j=i+2
p j + 1 if 1 ≤ i ≤ N − 4

(7)
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Lemma 5. Consider N − i + 1 items, whose popularities
pi , pi+1, . . . , pN are generated by Eq. (7). Let opti,N ,2

be the AED of an optimal solution S for assigning items
di , di+1, . . . , dN to two channels. Then S = (i), that is di

is assigned to one channel, and all the remaining items
di+1, . . . , dN are assigned to the other channel.

Proof: By contradiction, assume that S is not an optimal

solution. Then, consider the solution S′ = (i + 1) obtained

from S by moving the border one position to the right.

The cost of S′ is given by Ci,i+1 + Ci+2,N = ∑i+1
j=i p j +

(N−i−1)

2

∑N
j=i+2 p j . Since the cost of S is Ci,i + Ci+1,N =

1
2

pi + (N−i)
2

∑N
j=i+1 p j , S′ is optimal if

i+1∑
j=i

p j + (N − i − 1)

2

N∑
j=i+2

p j <
1

2
pi + (N − i)

2

N∑
j=i+1

p j

This holds if and only if pi ≤ pi+1(N − 3) + ∑N
j=i+2 p j ,

which contradicts Eq. (7). Thus, S′ is not optimal. Moreover,

by Lemma 4, further moving the border to the right can only

increase the AED with respect to that of S′. Hence, S = (i)
is an optimal solution. �

Apply now the Greedy heuristic to the N data items

d1, . . . , dN whose popularities are generated by Eq. (7)

and to K channels, with 2 ≤ K ≤ N − 4. By Lemma 5,

every time Split is invoked, a new channel is added

containing a single item. Precisely, the K − 1 Split

invocations are: Split(1, N ), Split(2, N ), . . . , Split(K −
1, N ). Hence, Greedy takes

∑K−1
k=1 O(N − k) = O(KN)

time.

To show that the O(N log K ) bound holds in the average

case, consider the kth invocation of Greedy. In this moment,

the heap contains k elements, each specifying the indices ir

and jr of the leftmost and rightmost item of the r th group, re-

spectively. Clearly, such k elements correspond to a partition

of the N data items into k segments, that is, sorting the ele-

ments by their rightmost indices, one obtains the segmenta-

tion S = ( jr1
, . . . , jrk−1

) built so far. Note that irh = jrh−1
+ 1

for 2 ≤ h ≤ k, with ir1
= 1 and jrk = N . Once the r th el-

ement is extracted from the heap, the Split procedure per-

forms O( jr − ir ) comparisons (see Fig. 5). Assuming that

each element in the heap has the same probability 1
k to be

extracted, the average time taken by the kth invocation of

Greedy is

T (N , k) = O

(
k∑

h=1

jrh − irh

k

)
= O

(
N

k

)
.

Therefore, the overall average time required by Greedy is

K∑
k=1

T (N , k) = O

(
K∑

k=1

N

k

)
= O(N log K ).
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