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Abstract In this paper we analyze connectivity issues in

one-dimensional ad hoc networks. Starting with a determin-

istic channel model, we show how an equivalent G I |D|∞
queueing model may be used to address network connec-

tivity. In this way, we obtain exact results for the coverage

probability, the node isolation probability and the connectiv-

ity distance for various node placement statistics. We then

show how a G I |G|∞ model may be used to study broad-

cast percolation problems in ad hoc networks with general

node placement in the presence of fading channels. In par-

ticular, we obtain explicit results for the case of nodes dis-

tributed according to a Poisson distribution operating in a

fading/ shadowing environment. In the latter case, heavy traf-

fic theorems are applied to derive the critical transmission

power for connectivity and broadcast percolation distance

in highly dense networks. The impact of signal processing

schemes able to exploit the diversity provided by small-

scale fading by means of multiple antennas is considered.

The analysis is then extended to the case of unreliable ad

hoc networks, with an in-depth discussion of asymptotic

results.
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1. Introduction

The growing interest in the field of self-organizing wireless

networks, often referred to as ad hoc, has led to a consider-

able amount of literature dealing with the characterization of

the limiting performance of such networks, in terms of both

connectivity [1–4] and capacity [5–10], two intimately re-

lated issues [11]. In this paper, we focus on one-dimensional

ad hoc networks, in which nodes are randomly deployed over

an infinite line, and present novel results on connectivity and

coverage. These results are obtained by means of an equiv-

alent infinite-server queueing model. One-dimensional net-

works are interesting since, on the one hand, they represent a

meaningful model for some applications (e.g., car networks),

while, on the other one, their analysis may provide insight

into more complex two-dimensional networks. Further, the

results we get in the one-dimensional case may be used to

obtain bounds on the connectivity of networks in higher di-

mensions, although the resulting bounds are known not to be

tight [2, 12].

In the literature, results for the connectivity of one-

dimensional networks are presented in [2, 3, 12, 13]. In all

these papers, the nodes are assumed to be distributed accord-

ing to either a uniform or a Poisson distribution on an infinite

line. In this paper, we remove this assumption, and obtain re-

sults for the case of general inter-node distance. Further, in all

the aforementioned papers the authors consider a (simplistic)

deterministic model for radio propagation. In this work, we

show how we can enhance the model, in order to account
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for the presence of shadowing and/or fading phenomena on

the network connectivity. Note that, in a two-dimensional

framework, some results on the impact of channel random-

ness are known [14–16]. On the other hand, to the best of

authors knowledge, no in-depth analysis of connectivity with

node placement distributions other than uniform or Poisson

has been presented so far. Further, note that, according to

the results in [2, 17], we expect our analysis to hold with a

good degree of approximation also for the case of mobile ad

hoc networks in the presence of a random waypoint mobility

model.

The relationship between coverage problems and infinite-

server queues is an old and well-established one [18]. In the

paper, we show how this link can be usefully exploited and,

in particular, how, using some results on the busy period

distribution of G I |G|∞ queues, extensions to previously

published results on the connectivity properties of ad hoc

networks may be found.

In the presence of a deterministic model for radio prop-

agation, we obtain closed-form results for the connectivity

distance in networks with general node placement statistics,

and analyze the performance obtained with different distri-

butions of the inter-node distance. We also provide an ana-

lytical characterization of other performance metrics, such

as the coverage probability and the node isolation probabil-

ity. A comparison between various node placement statistics

is carried out, and some remarks on the limiting behavior in

very dense networks are presented. These results are obtained

using results from the theory of G I |D|∞ queues.

By using a more general G I |G|∞ framework, we can

easily account for various channel impairments (e.g., shad-

owing, fading). When we account for random channels, the

notion of connectivity fades, due to the different propaga-

tion conditions that may be encountered in the forward and

backward directions. In this case, we focus on the problem

of broadcast percolation, where propagation of one message

in the forward direction is studied. In this case, closed-form

results may be obtained for the case of nodes distributed

accorded to a Poisson point process. We focus on this dis-

tribution in order to keep the tractation simple and to gain

insight into the impact of channel randomness on the con-

nectivity properties of the resulting network. The effect of

lognormal shadowing and Rayleigh fading is analyzed and

discussed.

Heavy traffic limits are used to characterize the asymp-

totic behavior in very dense networks; results for the critical

transmission power for both connectivity and broadcast per-

colation are provided. In particular, the critical transmission

range in the M |D|∞ model turns out to be the same found

with a different approach in [1].

The analysis is also extended to the case of multiple anten-

nas, where the diversity provided by the radio channel is ex-

ploited to enhance the system performance. The performance

of two classical signal processing techniques, best path selec-
tion and maximal ratio combining, is analyzed in the pres-

ence of Rayleigh fading. It is shown that, even with two

antennas, the use of such algorithms leads to a performance

improvement with respect to a deterministic channel model,

thus showing how the diversity provided by fading may be

exploited to improve network connectivity. Finally, we study

the impact of node failures on connectivity performance. A

general discussion of how to incorporate this issue into the

general framework is provided, and an in-depth asymptotic

analysis is presented. In particular, for the M |D|∞ case, re-

sults equivalent to those presented in [19] for grid networks

are found.

The paper is organized as follows: Section 2 presents

connectivity results for a deterministic channel model. In

Section 3 the broadcast percolation problem in the presence

of channel randomness is addressed. Section 4 presents re-

sults on network connectivity in the presence of unreliable

devices. Section 5 concludes the paper with a brief summary

of the results and some open issues.

2. A G I|D|∞ model for connectivity in
one-dimensional ad hoc networks

Let us consider a one-dimensional network, where nodes are

randomly placed along a semi-infinite line. Let us denote by

Xn the position of the n-th node, with X0 = 0. Further, we

denote by Yn = Xn+1 − Xn the distance between two succes-

sive nodes. We assume that {Yn}n∈N is a sequence of indepen-

dent identically distributed (iid) random variables, so that, in

the following, we drop the index n. We start by considering

the simplest model for signal propagation, where only path

loss is present, so that power decays with distance as d−α ,

where α ≥ 2. Further, we assume that “good long” codes are

used, so that the probability of a successful packet reception,

as a function of the signal-to-noise ratio (SNR), approaches

a step function, whose threshold is denoted by �. Further,

we assume that an additive Gaussian noise of power Pnoise

is present at the receiver. Denoting by Ptx the transmission

power, we find that two nodes may communicate with each

other if their distance is less than or equal to the communi-

cation range R =
(

Ptx
� Pnoise

) 1
α

. In such a situation it is a well

known result that, for any finite R, the resulting network will

be disconnected P-almost surely [3]. Furthermore, the net-

work will be P-almost surely divided into an infinite number

of finite clusters, which will be referred to in the follow-

ing as “spatial clusters”. In order to characterize the cluster

statistics, let us consider an equivalent G I |D|∞ model, with

inter-arrival times distributed as Y and deterministic service

time R, as depicted in Fig. 1. Then, a spatial cluster in the

ad hoc network corresponds to a busy period in the queueing
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Fig. 1 Ad hoc networks with deterministic transmission range and equivalent G I |D|∞ queueing model

model. Accordingly, the length of the connected component

corresponds to the busy period duration, and the number of

nodes in a cluster corresponds to the number of customers

served during a busy period. In the sequel of the paper, we

will use the ad hoc network terminology.

2.1. Cluster size and connectivity distance

Let FY (a) and fY (a) be the cumulative distribution function

(cdf) and the probability density function (pdf) of the inter-

node distance Y , respectively. Further, let λ be the average

node density, λ = 1
E[Y ]

. We denote by Bn and Nn the duration

of the n-th connected component and the number of devices

therein; both are iid.

We define as connectivity distance the size of the first

connected component. Since X0 = 0, this corresponds to the

distance within which devices are able to communicate with

the node located at the origin.

The Laplace-Stieltjes transform (LST) of the connectivity

distance is given by [20]:

B(s) = e−s R (1 − FY (R))

1 − ∫ R
0

e−st fY (t)dt
. (1)

While in general this expression may not be inverted di-

rectly, and one has to resort to numerical methods [21], the

moments of any order may easily be computed by differ-

entiation. For example, the average connectivity distance is

given by:

E[B] = −∂B(s)

∂s

∣∣∣
s=0

= R +
∫ R

0
t fY (t)dt

1 − FY (R)
(2)

Accordingly, the probability generating function (pgf) of

the number N of devices forming a spatial cluster is given

by [20]:

N (z) = z
1 − FY (R)

1 − zFY (R)
. (3)

Inverting, we find the probability mass function (pmf) of

the random variable N , which is geometrically distributed:

P[N = k] = (1 − FY (R)) · FY (R)(k−1), k = 1, 2, . . . (4)

The average number of connected devices is given by:

E[N ] = 1

1 − FY (R)
. (5)

The probability that at least k devices are connected, may

be obtained as:

pR(k) = P[N ≥ k] =
∞∑

t=k

P[N = t] = FY (R)(k−1). (6)

Some results, for the case of exponential distribution, are

reported in Fig. 2, where the probability that the k-th node

is connected to the first one is depicted for k ranging from

10 to 100 as a function of the average number of nodes in

range, λR.

The problem of connectivity in finite ad hoc networks was

treated for the first time in [12], where the authors focus on a

network with n nodes placed according to a Poisson process.

We work in a slightly different framework, considering the

probability of being able to connect to a device located at

distance d from the origin. This may be obtained considering

the distribution of the connectivity distance:

pC (d) = P[B > d] = 1 − FB(d).

In general, to obtain the complementary cumulative dis-

tribution function (ccdf) of the connectivity distance, one
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Fig. 2 k-th node connection probability (k = 10, 20, . . . , 100 from the
left to the right) vs. λR, Poisson distribution of nodes

should perform the inversion of the pdf LST given in (1) or,

directly, of the ccdf LST B̂(s) = 1−B(s)
s . One case of practical

interest, where direct inversion of the LST is possible, is that

of nodes distributed according to a Poisson distribution, with

average density λ. In this case the pdf LST is given by:

B(s) = (s + λ)e−(s+λ)R

s + λe−(s+λ)R
, (7)

whose inversion leads to [22, 23]:

fB(t) = e−λRδ(t − R) + 1(t − R) · λe−λR
� t

b �−1∑
k=0

(−λe−λR)k

× [t − R(k + 1)]k − e−λR · max{0, [t − R(k + 2)]k}
k!

,

(8)

where δ(·) is the Dirac delta function and 1(·) represents

the unit step function. Then, evaluation of pC (d) may be

performed integrating (8), leading to the formula obtained in

[3] solving a differential equation with appropriate boundary

conditions.

In Fig. 3 we plotted (on a logarithmic scale) the probability

that a node placed at a distance d from the origin is connected

for various values of the node density λ, with R = 1 m. Note

that, for the values of λ considered, a small variation of the

node density leads to a great variation in the probability that

a node at distance d is connected. In order to get more insight

into such phenomena, we showed in Fig. 4 the probability of

being connected at distances d = 10, 50, 100 m vs. the node

density λ for the case R = 1. For the parameters considered,

which define a medium density network, the curves show

a gentle behavior, suggesting the absence of criticality phe-

nomena. In Fig. 5 we plotted the probability of connection
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Fig. 3 Probability of connection for a node placed at d for different
values of λ, R = 1 m, Poisson distribution of nodes

at a distance d = 1 m vs. the communication range R for

various values of λ. From the curves it is apparent that a

phase transition, i.e. an abrupt change from a very low con-

nection probability to a very high value of such parameter,

takes place for the case of very large node density. Such crit-

ical connectivity phenomena [1,12,13,24] do not arise in the

presence of a low-to-medium value of the node density λ.

2.2. Coverage and isolation probability

In sensor networks, an important performance metric is the

coverage probability, which reflects the probability that a

point of the network is “covered” by at least one sensor.

Let us assume that sensors have a range of R
2

and denote

by pcov the probability of the network being covered. Since

the arrival process is stationary, a translation of R
2

does not
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Fig. 4 Probability of connection at d vs. λ, R = 1 m, Poisson distri-
bution of nodes
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Fig. 5 Probability of connection at d = 1 m vs. R for various node
densities, Poisson distribution of nodes

change pcov; then we may apply our G I |D|∞ model with

service time equal to R. In the evolution of the system, it is

easy to recognize the presence of renewal points, which cor-

respond to the beginning of a busy period. Since the system

is stationary ergodic, the probability that a point is covered

corresponds to the fraction of the busy cycle, whose length

is denoted by C , during which the system is busy. Hence,

pcov = E[B]
E[C]

. Then, applying results from [20], we get:

pcov = E[B]

E[C]
= λR − λ

∫ R

0

(R − a) fY (a)da. (9)

Another parameter of interest is the probability pI that a

given device is isolated:

pI = P[N = 1] = 1 − FY (R). (10)

Comparing (10) with (5), we note that pI = 1
E[N ]

. Again,

from (6) and (10), it is apparent that we may write pR(k) =
(1 − pI )(k−1).

It is worth remarking that there is an interesting relation-

ship linking pI and pcov . Indeed, the node isolation probabil-

ity may be thought as the complement of the probability of

the event A = {being covered} restricted to the point process

{Xn}. In this view, it is clear that we can think of pI as the

Palm probability [25] of the complement of A associated to

the point process {Xn}. This relationship does not depend on

the communication range statistics and holds for a general

G|G|∞ model. Thus, we can link the two quantities through

the following Palm inversion formula [25]:

pcov = P[A] = λ

∫ +∞

0

dt P0 [Y1 > t, θt ∈ A] , (11)

where P0 denotes the Palm probability associated to {Xn}.
Specifying (11) to the G I |D|∞ case and denoting by χ{·}

the indicator function of a given event, we get:

pcov = λ

∫ +∞

0

dt P[Y > t]χ{t ≤ R} = λ

∫ R

0

dt [1 − FY (t)]

= λR −
∫ R

0

dt
∫ t

0

da fY (a) = λR −
∫ R

0

da
∫ R

a
dt fY (a)

= λR −
∫ R

0

da(R − a) fY (a), (12)

thus retrieving (9). Note that in the derivation above we ex-

ploited the fact that, in a renewal process, the distribution of

the sequence {Xn} is the same under P and P0 [25].

Further, by means of Slivnyak’s theorem [25], we can

state that, if {Xn} forms a Poisson point process, then pcov =
1 − pI , regardless of the communication range statistics.

The probability pI may be taken as a meaningful metric

for comparing node placement distributions. As an example,

in Fig. 6 we plotted pI vs. the mean distance between ad-

jacent nodes for four different node placement statistics for

R = 1 m. We compared the following distributions for the

distance between neighboring nodes: uniform, exponential,

normal (with the natural scaling σ 2 = λ2) and Pareto (with

a shape factor β = 1.5). For very low node density, less than

0.5 m−1, the four curves are close together; in any case such

a case is of low interest for application purposes, since the

nodes are isolated with high probability. In the presence of a

medium node density, corresponding to λ ranging from 0.5 to

2.5, we note the very good performance attained by the Pareto

distribution, which overcomes the exponential one. A sharp

transition is presented by the uniform distribution, which an-

nihilates the node isolation probability for λ > 2 m−1. The
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Fig. 6 Node isolation probability vs. average node density, R = 1 m
for various node placement statistics
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normal distribution (which corresponds to the case of nodes

placed one after the other, the distance being deterministic in

principle but affected by a Gaussian placement error), on the

other hand, behaves poorly in the medium density regime,

while showing very good performance in a very dense net-

work. In order to better understand the performance in very

dense networks, let us consider the following heuristic. In a

very dense network, i.e. when λR 	 1, the probability that

a node is isolated is vanishing. From (10), this corresponds

to a situation where the cdf of the random variable Y is close

to 1. In some sense, we are actually looking at the tail of the

distribution of the inter–node distance. Then, the heavier

the tail of such distribution, the worse the performance in

the presence of a very large node density.

In some envisioned applications (e.g. mobile military net-

works or highway networks), ad hoc networks are expected

to be constituted by a massively large number of devices,

so that the study of their limiting behavior in presence of

very high node density is of interest. Scaling the mean dis-

tance between nearby nodes as 1
λ

and taking λ → +∞, we

are interested in finding a scaling of R(λ) which ensures that

the node isolation probability decays sufficiently fast (in our

case, as 1
λ

). This enables us to compare different node distri-

bution statistics in very dense networks.

For the exponential distribution, we have pI = e−λR(λ), so

that:

R(λ)exp = ln λ

λ
. (13)

For the Pareto distribution, with shape parameter β, the

node isolation probability is given by pI =
(

β−1
βλR(λ)

)β

. Thus,

R(λ)Par = λ
1
β

λ
. (14)

For the Gaussian distribution, we have, for the natural scal-

ing of the variance σ 2 = σ 2
0 λ−2, that the node isolation prob-

ability is given by pI = Q
(

λR(λ)−1
σ0

)
. Since Q(z) ∼ e− z2

2 for

z → +∞, we have:

R(λ)norm =
√

ln λ

λ
. (15)

For the uniform distribution, pI = 2−λR(λ)
2

, and thus:

R(λ)uni f = 2(λ − 1)

λ2
∼ 1

λ
. (16)

As it might be expected, the distribution with no tail (uni-

form) outperforms all the others, whose performance con-

firms the heuristics discussed above on the impact of the tail

of the distribution on the connectivity performance.

2.3. Heavy traffic analysis for dense networks

Let us consider the limiting behavior of an M |D|∞ network

under heavy traffic; this corresponds to a network with a very

high density of nodes. For such a system, the busy period,

appropriately scaled, converges to an exponential distribution

[23]:

Theorem 1. As λ → +∞,

FB(aE[B]) → 1 − e−a, a > 0. (17)

Since the average busy period length is given by E[B] =
eλR−1

λ
, we have that a node at distance d is connected with

probability

pC (d) = P[B > d] = e− d
E[B] = e− dλ

eλR −1 . (18)

Thus, we may focus on the behavior of the function

f (λ) = dλ
eλR−1

. If f (λ) → 0, then the network is asymptoti-

cally connected 1 at any finite distance d. Now, let us assume

that the transmission range scales with λ as [1, 13]:

R(λ) = ln λ + c(λ)

λ
. (19)

Then, f (λ) = 0dλ
ec(λ)λ−1

. Taking the limit for λ → +∞, we

get:

lim
λ→+∞

f (λ) = d

ec
, (20)

where c = lim
λ→+∞

c(λ). Thus, for any given d, a necessary

and sufficient condition for asymptotic connectivity is that

c = +∞. Hence, we get an analogous of the result of Gupta

and Kumar [1]:

Theorem 2. Given a one-dimensional ad hoc network, with
nodes placed according to a Poisson point process of in-
tensity λ and having a deterministic transmission range
R(λ) = ln λ + c(λ)

λ
, asymptotic connectivity at any finite dis-

tance d is ensured as λ → +∞ iff lim
λ→+∞

c(λ) = +∞.

It is worth remarking that the condition for asymptotic

connectivity does not depend on the distance d, if the latter

is finite. This may be understood by the fact that asymptotic

connectivity, in a one-dimensional setting, corresponds to the

arising of an infinite component.

Similarly, we may get conditions on the communication

range in order to ensure that the node isolation probability

1 A network is said to be asymptotically connected if the connection
probability vanishes as the node density λ tends to infinity.
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goes to zero. As it may be easily expected, it turns out that

the conditions are different, the one for connectivity being

stronger, which shows that the widespread use of a sort of

equivalence in the asymptote for the two concepts may lead

to erroneous results.

Theorem 3. Given a one-dimensional ad hoc network, with
nodes placed according to a Poisson point process of in-
tensity λ and having a deterministic transmission range
R(λ) = ln λ + c(λ)

λ
, the absence of isolated nodes is asymp-

totically ensured as λ → +∞ iff 2 e−c(λ) = o(λ).

Proof: The probability of a node being isolated is given by

pI = e−λR(λ). Taking the limit, we get:

lim
λ→+∞

pI = lim
λ→+∞

e−c(λ)

λ
. (21)

�

Trivially, we may conclude that the absence of iso-

lated nodes is asymptotically ensured for any finite c =
lim

λ→+∞
c(λ). Note that the asymptote of pI can be readily

computed for any distribution. Even if the disappearance of

isolated nodes is only a loose necessary condition for net-

work connectivity, a tighter condition can be found for the

exponential case.

Proposition 1. Given that nodes are distributed according
to a Poisson point process, a necessary and sufficient con-
dition for asymptotic connectivity at any finite distance d is
that lim

λ→+∞
λpI = 0.

Proof: It suffices to substitute the expression for the expo-

nential distribution and compare with Theorem 2. �

It is worth remarking that, while all the above results

have been given in terms of “critical transmission range”,

they can be easily restated in terms of “critical transmis-

sion power”. Indeed, the scaling for Ptx is of the form

Ptx (λ) = � Pnoise
(

ln λ + c(λ)
λ

)α
. We will see in the following

that the same scaling law holds in the case of shadowing/

fading channels.

3. A G I|G|∞ model for broadcast percolation in
the presence of channel randomness

By applying much the same methods used in the previous sec-

tion we may get results for the broadcast percolation problem

in one-dimensional ad hoc networks [24], defined as follows.

2 With the usual notation, f (n) = o(g(n)) if lim
n→+∞

f (n)
g(n)

= 0.

Consider a message generated by a node at X0 = 0. The mes-

sage is intended to be received by all the devices on the right

of the source node (in this sense it is a broadcast message).

We want to know how many nodes we can reach before the

message stops propagating and how far (in terms of distance)

our broadcast message can go.

It is easy to see that, in the presence of a determinis-

tic channel model, broadcast percolation and connectivity

are the same problem. In the case of broadcast percolation,

we may extend the framework to take into account the ran-

domness inherently present in the radio channel, which, in

turn, translates into a statistical characterization of the trans-

mission range R. In this case, in general, no results can be

drawn from the analysis in terms of connectivity. Indeed,

since the transmission range is not deterministic any longer,

in principle nothing may be inferred in terms of the backward

direction.

In any case, we may get results for general transmission

range distribution and general node placement statistics, by

applying results on the busy periods of the G I |G|∞ queue

[20]. Note that, since we assume that a single message will

be present in the network at any time, no interference issues

arise in this framework3.

3.1. Characterizing the communication range statistics

in the presence of fading

The notion of “communication range”, which had an immedi-

ate physical interpretation in the case of a deterministic chan-

nel model, becomes in this framework only a random variable

whose distribution characterizes the capacity of any node to

percolate a broadcast message. Let us start with the case of

Rayleigh fading. We assume that the channel is characterized

by flat slow fading, with no line-of-sight (this clearly repre-

sents a pessimistic assumption). In Rayleigh fading channels,

the impact of the randomness due the Gaussian noise is usu-

ally negligible compared to the variation in SNR due to the

fading process. We assume that the fading is constant over

the transmission of a frame and subsequent fadings are iid

(block-fading channel). Hence, taking the fading power equal

to 1, the average SNR may be written as γ = Ptx
dα Pnoise

. The

pdf of the SNR is given by [26]:

fγ (a) = 1

γ
e− a

γ = Pnoisedα

Ptx
e− adα Pnoise

Ptx . (22)

3 From an implementation perspective, our assumptions may be used to
model either a system where transmitters are using orthogonal channels
(either in the time, frequency or code domain) or the traffic load in
the network is very low or an efficient collision resolution protocol is
adopted. It should thus be clear that our assumptions lead to optimistic
results with respect to some real-world situations.
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In our model, the transmitted message can be correctly

decoded if and only if the SNR γ is greater than a given

threshold �. The probability that the message is correctly

received at a distance d is given by:

P[γ (d) ≥ �] =
∫ ∞

�

fγ (a)da = e− �
γ = e− dα� Pnoise

Ptx .

The transmission range statistics may then be obtained:

FR(a) = P[R ≤ a] = 1 − P[R > a]

= 1 − P[γ (a) > �] = 1 − e− aα� Pnoise
Ptx . (23)

The average transmission range may be computed as [27]:

E[R] =
∫ +∞

0

[1 − FR(a)] da =
∫ +∞

0

e− aα� Pnoise
Ptx da

= �(α−1)

α

(
Ptx

� Pnoise

) 1
α

, (24)

where �(·) is the usual Gamma function.

Another important effect is the so-called shadowing [28],

which is usually described by means of a lognormal distri-

bution (i.e. the received signal power, in dB, is normally dis-

tributed around its mean, which is given by the path loss). In

particular, we will show that the performance enhancements

in the presence of lognormal shadowing, observed indepen-

dently by [29] and [14] for a two-dimensional network, hold

also in the one-dimensional case. The received power is log-

normally distributed; the communication range distribution

is given by:

FR(a) = 1 − P[R > a] = 1 − P[γ (a) > �]

= 1 −
∫ +∞

� Pnoise
Ptx

dx
1√

2πσ x
e
− 1

2

(
ln x−ln(a−α )

σ

)2

. (25)

Setting t = ln x
a−α

σ
, we get:

FR(a) = 1 −
∫ +∞

ln
� Pnoise

Ptx a−α

σ

dt√
2π

e− t2

2

= 1 − Q

⎛⎜⎜⎝ ln
� Pnoiseaα

Ptx

σ

⎞⎟⎟⎠ = �

⎛⎜⎜⎝ ln
� Pnoiseaα

Ptx

σ

⎞⎟⎟⎠ .

(26)

It is worth noting that a stochastic ordering among the dis-

tributions corresponding to various values of σ is possible4,

4 Given two random variables A and B, we say that A is stochastically
smaller than B, A  B if FA(x) ≥ FB (x) ∀x ≥ 0 [30].

and we can write:

Rσ1
 Rσ2

, σ1 ≤ σ2, (27)

so that we have a clear formalization of the beneficial impact

of lognormal shadowing5.

The mean communication range is in this case given by:

E[R] =
∫ +∞

0

da
∫ +∞

ln � Pnoise−ln Ptx −ln(a−α )

σ

dt√
2π

e− t2

2

=
∫ +∞

−∞
dt

∫ (
etσ Ptx

� Pnoise

) 1
α

0

da
1√
2π

e− t2

2

=
(

Ptx

� Pnoise

) 1
α
∫ +∞

−∞

dt√
2π

e− t2− 2tσ
α

2

=
(

Ptx

� Pnoise

) 1
α

e
σ2

2α2 . (28)

Next, the case of superimposed lognormal shadowing and

Rayleigh fading can be considered, leading to the following

characterization of the communication range statistics:

FR(a) = 1 − P[R > a] = 1 − P[γ (a) > �]

= 1 −
∫ +∞

−∞
dxe− � Pnoise

Ptx x
1√

2πσ x
e
− 1

2

(
ln x−ln(a−α )

σ

)2

= 1 − e− � Pnoise
Ptx

∫ +∞

−∞
dte−eσ t a−α e− t2

2√
2π

. (29)

The mean communication range may be computed pro-

ceeding as above and using some results from [27]. After

some algebra, we get:

E[R] =
(

Ptx

� Pnoise

) 1
α

e
σ2

2α2
�(α−1)

α
. (30)

Note that, since y�(y) ≤ 1 ∀y ≤ 1, Rayleigh fading has a

negative impact on the mean broadcast percolation distance.

3.2. A special case: M |G|∞

In order to gain more insight into the impact on network

connectivity of channel randomness, we focus on the sim-

plest case, assuming that the nodes are distributed along the

semi-infinite line according to a Poisson point process with

intensity λ. While this is clearly just one of the possible dis-

tributions, it enables us to get closed-form expression for

5 Note, however, that such results do not account for the very basic fact
that a channel, in reality, cannot amplify a signal, so that its real impact
on the network connectivity in a more realistic setting is not clear yet.
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the broadcast percolation distance statistics, thus allowing

an in-depth analysis of the impact of shadowing and fading

phenomena. The transmission range is assumed to be char-

acterized by means of (23), or, accordingly, to any given cdf

FR(a). Hence, from [20] the LST of the busy period of the

equivalent M |G|∞ queue is given by:

B(s) = 1 + s

λ
− 1

λP0(s)
, (31)

where P0(s) is the Laplace transform of the function:

P0(t) = e−λ
∫ t

0 P[R>a]da = e−λ
∫ t

0 [1−FR (a)]da, (32)

representing the probability that at time t the system is empty.

Differentiating (31), we may easily obtain the following ex-

pression for the average broadcast percolation distance:

E[B] = 1

λP0

− 1

λ
, (33)

where P0 = lim
t→+∞ P0(t) = e−λE[R]. The expression above

may then be rewritten as:

E[B] = eλE[R] − 1

λ
. (34)

Hence the average broadcast percolation distance depends

only on the average transmission range and not on its distri-

bution. Hence we can get a first comparison between the four

channel models (deterministic, Rayleigh fading, lognormal

shadowing, superimposed fading and shadowing) in terms of

the mean broadcast percolation distance.
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As an example, we plotted in Fig. 7 the average broad-

cast percolation distance vs. the node density for various

channel models. From the curves it is evident the positive

effect of lognormal shadowing, as well as the (small) neg-

ative effect of Rayleigh fading. Some more results are re-

ported in Fig. 8, where the superposition of lognormal shad-

owing and Rayleigh fading is considered. Notice that the

larger the node density, the larger the difference between

the curves corresponding to different values of the spread

factor σ .

Another possible approach to the study of the broadcast

percolation distance statistics is that of [22], obtaining the

following expression for the busy period cdf:

FB(a) = 1 −
∑∞

n=1 f ∗n(a)

λ
, (35)

where f ∗n(·) denotes the n-fold convolution of f (a) =
λe−aαβ P0(a). Hence, we may substitute in (35) and solve

numerically, in order to get the statistics of the distance a

broadcast message will travel. The analysis for the number

of hosts reached by the broadcast is extremely difficult (see

the note in the appendix of [22] for more details).

3.3. Heavy traffic analysis for dense networks

As done for the M |D|∞ case, we can apply heavy traffic

limits in order to study the behavior of broadcast percolation

in dense networks. Let us assume that nodes are placed upon

a semi-infinite line according to a Poisson point process of

intensity λ, and that the channel model gives rise to a random

transmission range with cdf FR(·). We recall the following

result from [23]:
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Theorem 4. If E[R2] is finite, then as λ → +∞,

FB(aE[B]) → 1 − e−a, a > 0. (36)

Note that the condition stated above is only sufficient; a

necessary and sufficient condition is reported in [23]. Let

us consider Rayleigh fading channels; then, by using results

from [27]:

E[R2] =
∫ +∞

0

αaα+1e− aα� Pnoise
Ptx da

= 2

α
�

(
2

α

) (
� Pnoise

Ptx

)− 2
α

< +∞. (37)

Similarly, some cumbersome algebra leads to the following

analysis for the case of lognormal shadowing:

E[R2] =
∫ +∞

0

2a [1 − FR(a)] da

=
∫ +∞

0

2aQ

(
ln

� Pnoiseaα

Ptx

σ

)
da

=
(

� Pnoise

Ptx

)− 2
α

e
( √

2σ
α

)2

< +∞. (38)

For the case of superimposed fading and shadowing, we

obtain:

E[R2] =
∫ +∞

0

2a [1 − FR(a)] da

= 2

α
�

(
2

α

) (
� Pnoise

Ptx

)− 2
α

e
( √

2σ
α

)2

< +∞. (39)

For all the channel models considered, we may thus apply

the proposition above, obtaining the following theorem:

Theorem 5. Consider a one-dimensional ad hoc network,
with nodes placed according to a Poisson process of intensity
λ, with a channel characterized by a path loss of the form

(
1
d

)α

and by Rayleigh fading/lognormal shadowing/superimposed
fading and shadowing. Assume that all nodes transmit at a
fixed power Ptx (λ) = ξ

[
ln λ + c(λ)

λ

]α
, where:

ξ = � Pnoise

(
α

�(α−1)

)α

Rayleigh fading;

ξ = � Pnoisee− σ2

2α lognormal shadowing;

ξ = � Pnoisee− σ2

2α

(
α

�(α−1)

)α

superimposed fading and

shadowing.

Then, a broadcast message generated by a node placed
at the origin percolates until distance d as λ → +∞ iff

lim
λ→+∞

c(λ) = +∞.

Proof: The proof follows along the lines of Theorem 2.

Indeed, it is sufficient to notice that the expression is ba-

sically the same, apart from the fact that here we have to

consider the average communication range. Then a neces-

sary and sufficient condition for asymptotic connectivity is

that, if E[R(λ)] = ln λ + c(λ)
λ

, lim
λ→+∞

c(λ) = +∞. Substituting

the expression of Ptx in (24), (28) and (30), respectively, we

get that E[R(λ)] = ln λ + c(λ)
λ

. The result then follows from

Theorem 4, (34) and (37). �

It is remarkable to note that the scaling law for Ptx is

insensitive to the presence of fading/shadowing (up to a mul-

tiplicative factor). This provides a precious guideline for net-

work designers, in that it shows that the fundamental scaling

law depends only on the path loss factor α and not on the

presence of shadowing/fading phenomena.

3.4. Improving broadcast percolation distance in the

presence of Rayleigh fading by using multiple antennas

In this section we aim at studying the impact on the broadcast

percolation distance of two schemes which take advantage

of the diversity provided by small-scale (Rayleigh) fading

by using multiple antennas. For the time being, the use of

multiple antennas for ad hoc networks does not represent a

viable choice, due to the increase in cost, complexity and

power consumption caused by the adoption of such solution.

Nonetheless, it is of theoretical interest to see if, by exploiting

the diversity provided by Rayleigh fading (which has been

shown in the previous subsections to have a negative effect

on the broadcast percolation distance statistics), we can ac-

tually outperform the performance attainable in the absence

of fading.

In order to keep the analysis simple, we focus on a channel

model where Rayleigh fading only is present; the analysis can

nonetheless be easily extended to account for the presence

of the underlying lognormal shadowing, leading to similar

results. For the same reason, we limit our analysis to the

case of nodes distributed according to a Poisson process, and

take as a performance metric the mean broadcast percolation

distance.

We assume that each node employs H antennas at the re-

ceiver, and consider two signal processing schemes, namely

best path selection (BPS) and maximal ratio combining

(MRC). Note that the same performance may be attained by

schemes which employ multiple antennas at the transmitter,

or at both the transmitter/receiver (e.g. the well-known Alam-

outi’s scheme [31]). However, the use of multiple antennas
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for the transmission of a signal requires an increase in the

transmission power (in reality also the signal processing re-

quired by the use of diversity schemes at the receiver in-

creases the power consumption of the devices).

In the case of BPS the signal with the best SNR among

the H received is decoded. It is not difficult to see that the

system can be studied by means of an equivalent M X |G|∞
model, where the equivalent burst size is equal to H . In this

case, the busy period LST is given by [20]:

B(s) = 1 + s

λ
− 1

λP0(s)
, (40)

where P0(s) is the LST of:

P0(t) = exp

{
−λ

∫ t

0

dx
[
1 − (FR(x))H

]}
. (41)

Taking t → +∞, we get:

P0 = exp

{
−λ

∫ +∞

0

dx

[
1 −

(
1 − e− aα� Pnoise

Ptx

)H
]}

= exp

{
λ

H∑
j=1

(
H

j

)
(−1) j

∫ +∞

0

dxe− aα� Pnoise j

Ptx

}

= exp

⎧⎪⎨⎪⎩λ

H∑
j=1

(
H

j

)
(−1) j

(
� Pnoise j

Ptx

)− 1
α

α
�(α−1)

⎫⎪⎬⎪⎭ , (42)

from which by means of (33) we get the mean broadcast

percolation distance.

In the case of maximal ratio combining (MRC), the sig-

nals from the various antennas are combined in such a way

to maximize the resulting SNR. In this case, the resulting

channel becomes an H -Nakagami fading channel [26]. In

H -Nakagami fading, the instantaneous signal-to-noise ratio

pdf is given by [26]:

fγ (a) =
(

H

γ

)H a(H−1)

�(H )
e−H a

γ ,

where �(·) is the usual Gamma function and γ = Ptx
dα Pnoise

is

the average SNR at distance d . Note that for H = 1 we obtain

the usual expression for Rayleigh fading. The probability that

the message is correctly received at distance d is given by:

P[γ (d)>�] =
∫ +∞

�

fγ (a)da =
�

(
H,

Hdα� Pnoise
Ptx

)
�(H )

, (43)

where �(·, ·) is the incomplete Gamma function [27]. Since

in our case H is an integer, the expression above simplifies

to:

P[γ (d) > �]

= e− Hdα� Pnoise
Ptx

H−1∑
i=0

(
Hdα� Pnoise

Ptx

)i

· 1

(i + 1)!
. (44)

Thus, the cdf of the transmission range is given by:

FR(a) = 1 − P[γ (a) > �]

= 1 − e− Haα� Pnoise
Ptx

H−1∑
i=0

(
Haα� Pnoise

Ptx

)i

· 1

(i + 1)!
.

(45)

The computation of the average transmission range re-

quires some algebra, leading to:

E[R] =
∫ +∞

0

[1 − FR(a)] da

=
H−1∑
i=0

(
H� Pnoise

Ptx

)− 1
α 1

α(i + 1)!
�

(
i + 1

α

)
. (46)

It is worth noticing that, for both BPS and MRC, stochastic

orderings with respect to the number of receiving antennas

may be obtained:

RH1
 RH2

H1 ≤ H2. (47)

In Fig. 9 we reported some results for the BPS algorithm,

with α = 3.5 and Ptx
� Pnoise

= 10. In such conditions, it may be

seen that with the use of two (or more) antennas, we may get

better results than those achievable in absence of Rayleigh

fading. Similar results are obtained for MRC, as reported
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in Fig. 10 for the same parameter values. Clearly, the more

complex MRC scheme outperforms BPS, so that MRC with

H = 2 antennas shows better performance than BPS with

H = 3 antennas.

4. Unreliable ad hoc networks

In largely deployed sensor networks, it is mandatory to take

into account for the possible unreliability of the devices. We

consider, as above, a one-dimensional network, where the

distance between successive devices is given by independent

random variables with a common distribution FY (·), and each

node is active with probability p(λ), where λ−1 = E[Y ]. We

aim thus at generalizing the results obtained in the previous

sections for the case of reliable nodes. In particular, we will

focus on the asymptotic behavior, in order to find scaling

laws for p(λ) and R(λ).

As a starting point, consider the interdistance between

two successive active nodes, which will be denoted by Ỹ .

In particular, under our assumptions, Ỹ = ∑K
i=1 Yi , where

K is a geometrically distributed random variable, hav-

ing pmf pK (a) = P[K = a] = p(λ) · (1 − p(λ))a−1, a =
1, 2, . . . .

A special case arises when Y is exponentially distributed

with mean λ−1. In that situation, we end up with a statistical

sampling of a Poisson process, which is still a Poisson pro-

cess. Hence, FỸ (a) = 1 − e−λp(λ)a . For this case, the general-

ization of the connectivity and broadcast percolation results

is trivial. In the more general case, we have the following

expression for the Laplace-Stjelties transform of fỸ (·):

Ỹ(s) = Y(s)p(λ)

1 − (1 − p(λ))Y(s)
. (48)

Then, numerical inversion may be performed to get the

pdf of Ỹ and the rest of the analysis follows accordingly.

It is thus evident that the analysis of the connectivity of

unreliable networks represents a straightforward generaliza-

tion of what done in the previous sections for reliable nodes.

However, some interesting phenomena do arise in the asymp-

tote. Let us consider nodes distributed according to a Poisson

point process of intensity λ, which are active with a given

probability p(λ). The reason for keeping p as a function of λ

comes from some possible engineering tradeoff between the

reliability of the devices and their number, in order to take

advantage of economies of scale. In any case, the resulting

process is still Poisson with intensity λp(λ). The problem

comes from the fact that, from a network designer point of

view, p(λ) cannot be assumed to be known a priori. As a

consequence, the transmission power (and consequently the

transmission range) has to be dimensioned relying only on

the knowledge of λ, a parameter that can be controlled in

the deployment phase. In this case, even for a fixed p(λ), a

different scaling law for R(λ) is necessary to provide asymp-

totic connectivity. The results of asymptotic analysis may be

successfully employed as guidelines for the dimensioning of

robust dense ad hoc networks.

As previously stated, we limit ourselves to the case

of nodes distributed according to a Poisson point process

of intensity λ, having deterministic communication range

R, and study scaling laws as the density λ → +∞. For

lim
λ→+∞

p(λ) = p > 0, the condition found for the connectiv-

ity in reliable networks is clearly only necessary. A stronger

condition for sufficiency is provided. The case p(λ) → 0

is also investigated, with particular attention for the case

p(λ) = λ−γ . The results we will find closely resemble

those obtained by Shakkottai et al. [19] for regular sensor

grids.

Theorem 6. For a general R(λ) with nonzero support, a nec-
essary and sufficient condition for asymptotic connectivity at
any finite distance d is:

lim
λ→+∞

λp(λ)e−λp(λ)R(λ) = 0. (49)

Proof: The probability of being connected at distance d is

given by:

pC (d) = e− dλp(λ)

eλp(λ)R(λ)−1 . (50)

Then, we may study the behavior of the function f (λ):

f (λ) = λp(λ)

eλp(λ)R(λ) − 1
. (51)
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A necessary and sufficient condition for asymptotic connec-

tivity is that lim
λ→+∞

f (λ) = 0. The statement follows straight-

forwardly. �

Now we consider a particular expression for R(λ) and a

finite non-zero p.

Theorem 7. If p = lim
λ→+∞

p(λ) satisfies 0 < p < 1 and

R(λ) = ln λ + c(λ)
λ

, the network is asymptotically connected at
distance d if c(λ) satisfies

c(λ) ≥ ζ ln λ, (52)

where ζ >
1 − p

p . Furthermore, the network is asymptotically
connected only if c = lim

λ→+∞
c(λ) = +∞.

Proof: We start with the proof of the sufficient condition.

From Theorem 6, considering the particular expression of

R(λ), we obtain:

lim
λ→+∞

p(λ)λ1−p(λ)e−p(λ)c(λ) = lim
λ→+∞

pλ1−pe−pc(λ)

≤ lim
λ→+∞

pλ1−pe−pζ ln λ = lim
λ→+∞

pλ1−p−pζ , (53)

which clearly converges to 0 for ζ >
1 − p

p .

The necessary condition is proven by reductio ad absur-
dum. Let us assume c < +∞. Then,

lim
λ→+∞

f (λ) = lim
λ→+∞

pλ1−pe−pc, (54)

which clearly diverges, and the network is not asymptotically

connected. �

Note that there is a big gap between the necessary and

sufficient condition.

As done in [19] let us consider a particular case of p(λ)

and a general R(λ).

Theorem 8. Let p(λ) be p(λ) = λ−γ , where 0 < γ < 1 .
Then a sufficient condition for asymptotic network connec-
tivity at distance d is given by:

p(λ)R(λ) ≥ ζ
ln λ

λ
, (55)

where the constant ζ satisfies ζ > 1 − γ .

Proof: From (51), applying (55) we have:

f (λ) ≤ λp(λ)

eζ ln λ − 1
= λp(λ)

λζ − 1
∼ λ1−ζ p(λ) = λ1−ζ−γ , (56)

which tends to 0 iff γ > 1 − ζ . �

Considering a particular expression for R(λ), the previous

result may be specified as follows:

Corollary 1. Let p(λ) be p(λ) = λ−γ , where 0 < γ < 1 and
R(λ) = ln λ + c(λ)

λ
. Then, a sufficient condition for asymptotic

connectivity is that

c(λ) ≥ (ζλγ − 1) ln λ, (57)

where ζ satisfies ζ > 1 − γ .

Proof: Under the condition (57), we clearly have:

p(λ)R(λ) = ln λ + c(λ)

λ1+γ
≥ ζλγ ln γ

λ1 + γ
= ζ ln γ

λ
, (58)

and Theorem 8 may be applied to conclude the proof. �

A necessary condition may also be given:

Proposition 2. Let p(λ) be p(λ) = λ−γ , where 0 < γ < 1

and R(λ) = ln λ + c(λ)
λ

. Then, a necessary condition for asymp-
totic connectivity is that c = lim

λ→+∞
c(λ) = +∞.

Proof: The proof follows by a reductio ad absurdum ar-

gument. Let us assume c < +∞ and consider the limiting

behavior of f (λ):

lim
λ→+∞

f (λ) = lim
λ→+∞

λ1−γ e−λ−γ [ln λ+c(λ)]

= lim
λ→+∞

λ1−γ e− ln λ
λγ e− c(λ)

λγ . (59)

Now, if c < +∞, we have

f (λ) ∼ λ1−γ , (60)

which diverges, and hence the network is not asymptotically

connected. �

While the results above were derived for a deterministic

channel model, similar scaling laws hold also for broadcast

percolation in fading channels. In particular, in the presence

of Rayleigh fading, lognormal shadowing or a combination

of the two and assuming that nodes are distributed according

to a Poisson point process, the following results hold.

Theorem 9. For a general Ptx (λ), a necessary and sufficient
condition for a broadcast message to asymptotically perco-
late to distance d is that:

lim
λ→+∞

λp(λ)e−λp(λ)[Ptx (λ)]
1
α = 0. (61)
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Theorem 10. If p = lim
λ→+∞

p(λ) satisfies 0 < p < 1 and

Ptx (λ) = (
ln λ + c(λ)

λ

)α
, a broadcast message asymptotically

percolates to distance d if c(λ) satisfies

c(λ) ≥ ζ ln λ, (62)

where ζ >
1−p

p . Furthermore, the network asymptotically
supports broadcast percolation only if c = lim

λ→+∞
c(λ) =

+∞.

Theorem 11. Let p(λ) be p(λ) = λ−γ , where 0 < γ < 1 .
Then a sufficient condition for a broadcast message to asymp-
totically percolate to distance d is given by:

p(λ) (Ptx (λ))
1
α ≥ ζ

ln λ

λ
, (63)

where the constant ζ satisfies ζ > 1 − γ .

Corollary 2. Let p(λ) be p(λ) = λ−γ , where 0 < γ < 1

and Ptx (λ) = (
ln λ + c(λ)

λ

)α
. Then, a sufficient condition for

a broadcast message to asymptotically percolate is that

c(λ) ≥ (ζλγ − 1) ln λ, (64)

where ζ satisfies ζ > 1 − γ .

Proposition 3. Let p(λ) be p(λ) = λ−γ , where 0 < γ < 1

and Ptx (λ) = (
ln λ + c(λ)

λ

)α
. Then, a necessary condition for

a broadcast message to asymptotically percolate is that c =
lim

λ→+∞
c(λ) = +∞.

5. Conclusions

In this paper we have presented some novel results, obtained

by means of queueing theoretical tools, on connectivity issues

in one-dimensional wireless ad hoc networks. For a determin-

istic channel model, we have analyzed the influence of the

nodes placement statistics on some metrics of interest, such

as the coverage probability, the node isolation probability, the

mean cluster size and the probability of the generic k-th node

to be connected, showing how heavy-tailed distributions may

degrade the performance in highly dense networks.

The similar problem of broadcast percolation has been ad-

dressed by means of an equivalent G I |G|∞ queueing sys-

tem. For this case, we have extended the framework to ac-

count for a random communication range, such as the one

induced by Rayleigh fading and lognormal shadowing. In the

presence of channel randomness, in general, no connectivity

results may be obtained. Nevertheless results can be inferred

under two different assumptions:

(i) the propagation in the backward and forward directions

is subject to independent fading/shadowing phenomena;

(ii) the fading/shadowing in the backward and forward di-

rections is the same.

Indeed, under assumption (i) it is easy to see that con-

nectivity results may be drawn by studying the broadcast

percolation distance in a network where the probability that

the range is greater than a is the square of the probability that

the one-direction range is greater than a. Under assumption

(ii), on the other hand, connectivity at distance d and capa-

bility of percolating a message until distance d coincide.

We have also addressed the possibility of exploiting the

diversity provided by Rayleigh fading in order to enhance

network connectivity. Results have been obtained, in terms of

stochastic orderings with respect to the number of antennas,

for two popular signal processing schemes, BPS and MRC. It

has been shown that, by using multiple antennas, it is possible

to overcome the performance achievable in the absence of

fading.

For the case of nodes distributed according to a Poisson

point process, we have showed how heavy traffic theorems for

the equivalent queueing model may be applied to derive scal-

ing laws for the transmission power in the ad hoc network, in

order to achieve asymptotic connectivity and broadcast per-

colation capability. Finally, the framework has been extended

to account for unreliable nodes, with a particular emphasis

on the asymptotic behavior of such networks, which shows a

noteworthy difference with respect to the fully reliable case.

Two research directions appear of major interest, namely

the evaluation of the impact of cooperation mechanisms

(in which multiple nodes simultaneously transmit the same

message in a coherent fashion) and the extension to a

more general stationary ergodic framework, along the lines

of [32].
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