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Abstract. A key subproblem in the construction of location-aware systems is the determination of the position of a mobile device. This
article describes the design, implementation and analysis of a system for determining position inside a building from measured RF signal
strengths of packets on an IEEE 802.11b wireless Ethernet network. Previous approaches to location-awareness with RF signals have
been severely hampered by non-Gaussian signals, noise, and complex correlations due to multi-path effects, interference and absorption.
The design of our system begins with the observation that determining position from complex, noisy and non-Gaussian signals is a well-
studied problem in the field of robotics. Using only off-the-shelf hardware, we achieve robust position estimation to within a meter in our
experimental context and after adequate training of our system. We can also coarsely determine our orientation and can track our position as
we move. Our results show that we can localize a stationary device to within 1.5 meters over 80% of the time and track a moving device to
within 1 meter over 50% of the time. Both localization and tracking run in real-time. By applying recent advances in probabilistic inference
of position and sensor fusion from noisy signals, we show that the RF emissions from base stations as measured by off-the-shelf wireless

Ethernet cards are sufficiently rich in information to permit a mobile device to reliably track its location.
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1. Introduction

There has been great progress in wireless communications
over the last decade, causing the available mobile tools and
the emerging mobile applications to become more sophisti-
cated. At the same time, wireless networking is becoming
a critical component of networking infrastructure. Wireless
technology enables mobility which, in turn, creates a need
for location-aware applications. The recent interest in loca-
tion sensing for network applications and the growing need
for large-scale commercial deployment of such systems has
brought network researchers up against a fundamental and
well-studied problem in the field of robotics: determina-
tion of physical position using uncertain sensors, or localiza-
tion.

Robot localization is the process of maintaining an ongo-
ing estimate of a robot’s location with respect to its environ-
ment, given a representation of this environment and some
sensing ability within the environment. Localization has been
described as “the most fundamental problem to providing a
mobile robot with autonomous capabilities” [9]. We can treat
the wireless device like a mobile robot for purposes of local-
ization. If there is no a priori estimate of the robot’s location,
the problem is referred to as global localization, a particularly
challenging case of localization. This is the type of problem
we are discussing: the device has no information on where it
is before it starts communicating with the network.

* An earlier version of this article was published as A.M. Ladd, K.E. Bekris,
A. Rudys, G. Marceau, L.E. Kavraki and D.S. Wallach, Robotics-based
location sensing using wireless Ethernet, at the 8th ACM International
Conference on Mobile Computing and Networking (MOBICOM) (Sep-
tember 2002, Atlanta, GA).
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Many mobile devices and many buildings, both commer-
cial and residential, are already equipped with off-the-shelf
IEEE 802.11b wireless Ethernet, a popular and inexpensive
technology. Furthermore, most wireless Ethernet devices al-
ready measure signal strength of received packets as part of
their standard operation and the signal strength varies notice-
ably as the distance and obstacles between wireless nodes
change. If a reliable localization system could be developed
using only this technology, then localization services can be
provided using these existing platforms. Similarly, in robotics
applications, wireless Ethernet localization can be combined
with other sensors to improve the robustness of location esti-
mates.

The development of efficient and accurate location-support
systems for indoor environments, which would also have the
potential of being widely available, is a challenging task. The
limitations usually stem from the harsh nature of the signal
and the sensors with which one has to work. Indoor envi-
ronments affect the propagation of wave signals in non-trivial
ways, causing severe multi-path effects, dead-spots, noise and
interference [6]. These effects make it infeasible to construct
a simple and accurate model of the signal’s propagation in the
space. A location support system has to overcome the high
uncertainty due to the behavior of the indoor wireless chan-
nels but at the same time it should keep the cost and the com-
plexity of large-scale deployment as small as possible. The
remainder of this section discusses various motivations and
applications for localization and introduces our approach.

1.1. Motivation
Location-awareness. In the wireless world many desir-

able applications require location-awareness. For example,
government initiatives require that cellular phone providers
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should develop a way to locate any phone that makes an emer-
gency call [14]. Location-awareness is also a prerequisite
for many applications which require context-awareness. The
context of an application refers to the information that is part
of the application’s operating environment, and typically in-
cludes information such as location, activity of people, and
the state of other devices [22].

In outdoor settings, GPS [35] has been used in many
commercial applications, as in the case of locating automo-
biles. Despite the widespread availability of GPS technology,
though, most GPS devices cannot reliably receive GPS sig-
nals indoors. While some devices can receive GPS signals
indoors, these devices are limited to providing only coarse-
grained location information [49].

An indoor system must use different sensors, such as in-
frared (IR), sonar, vision, or radio (RF), to accurately infer po-
sition of a mobile device. Location-aware applications based
on these sensors could enable users to discover resources in
their physical proximity, such as active maps of their sur-
roundings and adaptive interfaces to the user’s location [22].
Specific applications of such a system vary from tracking a
guard’s position in a penitentiary institution [8] to hospitals,
where equipment and people must be efficiently located [52].
These applications can also be useful in large office environ-
ments, where the loss of valuable equipment such as laptop
computers has become a serious problem and locating re-
sources such as printers takes time and disrupts other activ-
ities.

Wireless security. We are also interested in the utility of a
location support system over an existing wireless network for
security applications. A principal difference between wired
networks and wireless networks is that physical security is no
longer sufficient to ensure the security of the network. In ad-
dition, in a wireless network, the location of an intruder is
considerably more difficult to determine versus a traditional
wired network where cables can be traced to their source.
However, a mobile device which is transmitting on a wireless
Ethernet network is leaking its position. This information can
be used to locate an intruder who makes no deliberate effort to
decorrelate her signal from her position. Although an intruder
could possibly hide by using expensive directional antennas,
off-the-shelf hardware is less conspicuous and more readily-
available.

Mobile robotics. Many mobile robot platforms make exten-
sive use of wireless networking to communicate with off-line
computing resources, other robots, and various user-interface
devices. Since the advent of inexpensive wireless network-
ing, many mobile robots have been equipped with 802.11b
wireless Ethernet. In many applications, a sensor from which
position can be inferred directly without the computational
overhead of image processing or the material expense of laser
range-finders is of great use. Many robotics applications
would benefit from being able to use wireless Ethernet for
both sensing and communication. For example, exploration,
map-building and navigation with low-cost wheeled robots
could be readily achieved using wireless Ethernet and sonar.
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1.2. Our approach

In this article, we describe a system that achieves robust in-
door localization using only RF signal strength as measured
by an IEEE 802.11b wireless Ethernet card communicating
with standard base stations. Since the required equipment
for a wireless Ethernet network is usually already present in
the workspace serving communication purposes, this reduces
the cost of providing localization services in an indoor envi-
ronment. This also reduces the complexity for the user of a
mobile device who wishes to take advantage of this localiza-
tion service. To achieve our goal, we have adapted the most
successful available approaches from robotics-based localiza-
tion, notably the explicit manipulation of noise distributions
and the modeling of position as a probability distribution.

Our method for localizing a mobile station is divided in
two phases. Initially, there is a training phase, where a sensor
map of the environment is built by sampling the space and
gathering data at various predefined checkpoints of the indoor
environment. Later, the operator of a mobile computer walks
in the same workspace and the system locates and tracks the
operator’s position. Our system currently assumes that the
environment remains consistent from training to localization.
In particular, we assume that people are minimally present
when we attempt to localize, since people absorb signal.

Section 2 presents the algorithms and methodology for our
localization system. The results of our experiments are re-
ported in section 3 and a discussion of our work is presented
in section 4. In section 5, we discuss related work in the fields
of location-aware computing and robot localization.

2. Methodology

In this section, we discuss our methodology for determining
a user’s location using wireless network signal strength. We
begin by discussing the platform and environment we con-
sidered. We then discuss RF signal propagation and describe
some problems with devising a signal attenuation model for
wireless Ethernet. Finally, we discuss our algorithms for de-
termining the user’s location.

2.1. Experimental setup

Hardware. Our experiments were conducted by a human
operator carrying a Hewlett Packard OmniBook 6000 laptop
with a PCMCIA LinkSys wireless Ethernet card. This partic-
ular card uses the Intersil Prism2 chipset. We modified the
standard Linux kernel driver for this card to support a number
of new functionalities, including the scanning and recording
of hardware MAC addresses and signal strengths of packets
and the automatic scanning of base stations.

We needed a constant source of signal from all base sta-
tions for optimum results. Unfortunately, this meant we could
not simply be a passive observer. While we could put the net-
work interface adapter into promiscuous mode and listen to
all packets being transmitted by base stations, this can only
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guarantee a stream of packets from one base station: the one
with which the card is currently associated. While base sta-
tions do send out beacon packets several times a second, the
hardware drivers we used did not give us access to this signal.

Instead, we were forced to use the base station probe facil-
ity of 802.11 [27]. Client nodes can broadcast a probe request
packet on a wireless network. Base stations that receive such
a request respond with a probe response packet. The client
then collects these packets and, judging by the strengths of
the incoming signals, can determine the closest base station
to which to connect. We analyze these signal strengths to de-
termine our location relative to the base stations.

A given base station can appear anywhere between zero
and four times in the packets the firmware returned to us. For
each packet, we get an eight-bit reading representing the sig-
nal strength. This value is computed by the network card, and
we have no way of determining or affecting how it is calcu-
lated. Unless the sender is very close to the receiver, signals
in the top half of this range rarely occur. Certain other sig-
nal strengths simply never occur. The lowest order bit tends
to be very noisy. When compared to other sensors, such as
sonar, this signal is very thin: at most 5 usable bits of signal
per packet.

Building geometry. 'We operated on the third floor of Dun-
can Hall at Rice University, in the four hallways shown in
figure 1. The two longer hallways (hallways 1 and 2) mea-
sure 32.5 meters, and the two shorter hallways (hallways 3
and 4) measure 17 meters. Hallway 1 has a base station near
one end, and hallway 2 has a base station really close to the
middle. Hallways 3 and 4 are notable in that they are open
above and either partially (in the case of hallway 4) or totally
(in the case of hallway 3) open on the sides.
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There were nine base stations distributed on this floor.
Those within the area described by the map in figure 1 are
marked with circles. The base stations were Apple AirPort
base stations and were mounted between two and three me-
ters off the ground. We made no changes to the locations of
base station in our building, and had no input in their original
placement; the base stations were laid out to service a pro-
duction wireless network. We had a fairly precise map of the
building that we had processed to mark off free space and ob-
stacles. The pixel resolution was roughly six centimeters in
this map.

2.2. RF signal propagation in wireless Ethernet

The IEEE 802.11b High-Rate standard uses radio frequencies
in the 2.4 GHz band, which is attractive as it is license-free
in most places around the world. The available adapters are
based on spread spectrum radio technology, where the infor-
mation signal is spread over several frequencies [10], so in-
terference on a single frequency does not block the signal.

The main problem with this sensor is that an accurate pre-
diction of the signal’s strength in every position of the envi-
ronment is a very complex and difficult task because the sig-
nal propagates in many unpredictable ways [37]. The received
signal is further corrupted by unwanted random effects such
as noise, interference from other sources and interference be-
tween channels.

As waves propagate through an environment, the environ-
ment scatters the waves in a variety of different ways. Reflec-
tion, absorption, and diffraction occur when the waves en-
counter opaque obstacles; refraction occurs when the waves
encounter translucent obstacles. Scattered waves can either
decrease or increase the signal strength at the reception point.

Figure 1. Map of the region of the Duncan Hall where we conducted our tests. Base stations are indicated by solid black circles on the map. Note that
additional base stations outside of this region (including on other floors) were used in our experiments.
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Figure 2. Samples of signal strength taken at the same positions facing opposite directions. The signal strength values indicated are the raw values returned

by the network interface.

Changes in atmospheric conditions like air temperature can
also affect the propagation of waves and the resulting signal
strengths. Unfortunately, 2.4 GHz is absorbed by water, and
consequently people will also absorb signal since human bod-
ies are almost 70% water.

Interference occurs when another radio frequency source
generates a signal at the same frequency that is of comparable
or higher strength than the transmitted signal, as measured by
the recipient. The interfering device does not need to be a ra-
dio based transmission device [10]. In the 2.4 GHz frequency
band, microwave ovens, Bluetooth devices, 2.4 GHz cordless
phones and welding equipment can be sources of interference.

Due to reflection, refraction, diffraction, and absorption of
radio waves by structures and people inside a building, the
transmitted signal often reaches the receiver by more than
one path, resulting in a phenomenon known as multi-path fad-
ing [24]. The signal components arriving from indirect paths
and the direct path, if this exists, combine and produce a dis-
torted version of the transmitted signal.

These difficulties are particularly acute when operating
indoors. Since there is rarely a line of sight between the
transmitter and the receiver, the received signal is a sum of
components that are often caused by some combination of the
previously described phenomena.

The received signal varies with respect to time and espe-
cially with respect to the relative position of the receiver and
the transmitter. However, signal profiles corresponding to
spatial coupled locations are expected to be similar as the var-
ious external variables remain approximately the same over
short distances [24]. The local average of the signal varies
slowly with the displacement. These slow fluctuations de-
pend mostly on environmental characteristics and are known
as long-term fading.

While much effort has been made to model radio signal
propagation and attenuation in indoor environments [21,23,
37], no single consistent model is available. During our ini-
tial experiments we took numerous measurements at various
positions in our environment. Our objective was to try to see

if the variables in the system could be captured with a sim-
ple theoretical model to minimize the training phase. We ob-
served a number of interesting properties of RF signals in our
environment.

Orientation matters. The authors of RADAR established a
correlation between orientation and measured signal strength
[2,3]. We also observed this. The laptop and the operator
affect the signal in a measurable way. It is interesting to
note that the presence of the operator affects signal strength
and gives the omnidirectional signals some weakly directional
properties. Typically the mean signal strength varies less than
the statistical distribution of signal strengths. In figure 2, we
give an example of two distributions sampled at the same
points while facing in opposite directions.

Noise distribution non-Gaussian. The noise distributions at
a fixed position were very heterogeneous as we varied the
pose and base station that we sampled. In figure 3, we show
two typical examples of the signal strength from two differ-
ent base stations measured simultaneously at the same phys-
ical position. Several hundred samples were taken in about
45 seconds for these particular histograms. Notice that the
first-order properties of these distributions differ greatly from
each other. In general, we observed that distributions were
asymmetric and had multiple modes. There was usually a
dominant mode which often differed from the mean. We
concluded that distributions were essentially non-Gaussian.
Since the noise behavior is an extremely complex physi-
cal phenomenon and explicit histograms are fairly compact,
we decided that it would be better to work directly with
these distributions rather than reduce the data to average val-
ues.

We found it useful to postprocess the sampled distribu-
tions by applying a small window smoothing convolution,
adding a very small uniform baseline distribution and then
normalizing. This is done to try to artificially compen-
sate for sampling errors and allow for a small probability
of unexpected measurements in the Bayesian inference cal-
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Table 1

Table of variables and expressions used to explain our Bayesian inference engine and the meanings of these variables.
Symbol Meaning
n Number of states
m Number of possible observations
N Number of distinct base stations that are ever encountered
i,o Indexes into the state space
Jj Index into the observation space
B Index into the set of base stations
b4 A probability vector over the states
i Entry in the probability vector for state i That is, 7; is the probability that the current state is i
' Next probability vector. Generally, 7’ = f(r) for some function f
7/ Entry in the probability vector 7’ for state i
N The set of all states, S = {s1, ..., Sn}
N The ith state, s; = (x;, y;, 6;)
Xi The x-coordinate of state i
Vi The y-coordinate of state i
0; The facing direction (angle) of state i
o The set of all possible observations, O = {01, ..., 0}
0; The jth possible observation, 0 = (k, fi, ..., fn, (b1, A1), ..., (b, Ag))
k Number of individual signal strength measurements in the current observation
P Index into the set of measurements in the current observation
b Number of measurements in the current observation corresponding to base station
bp Base station corresponding to measurement p
Ap Signal strength corresponding to measurement p
Pr(ojls;) The probability of seeing observation o; while in state s;
Pr(fglsi) The probability of an observation taken at state s; containing fg measurements of base station 8

Pr(Aplbp,s;) The probability of an observation taken at state s; containing a measurement of base station b, with signal strength A,

culations that follow. These corrections produced minor
but noticeable improvements in the precision of the calcula-
tions.

2.3. A Bayesian inference algorithm

Possibly the most powerful family of global localization
algorithms to date is based on Bayesian inference, includ-
ing Markov localization [17,28] and Monte Carlo localiza-
tion [15,48]. Many examples of Bayesian approaches to
localization exist in the robotics literature [46]. These algo-
rithms estimate posterior distributions over robot poses which
are approximated by piecewise constant functions instead of

Gaussians, enabling them to represent highly multi-modal
distributions. In this way, they can be applied in the case of
sensors that have non-Gaussian noise distributions, such as
our signal strength sensor. We use a Bayesian algorithm to
implement localization using wireless Ethernet.

We model the world as a finite space S = {s1, ..., s} of
states with a finite observation space O = {o1, ..., 0n}. The
sensor model is some learned or predicted model of the condi-
tional probabilities of seeing some observation o; at state s;,
in other words Pr(oj|s;). A state vector m is a probability
vector (distribution) over the various states. An explanation
of the meanings of these and all the other variables used in
this section can be found in table 1.
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Position is represented as a probability distribution over
the states. The inference calculation starts with a prior esti-
mate of our state 7. After making an observation o;, we can
calculate the individual conditional probabilities 7/ for each
state s; where 1 < i < n using Bayes’ rule,

2= i Pr(ojlsi) )
b Y a1 (e Pr(oflse))
We then combine these individual /s into a new estimate of
our state, 7’. We can now select a representative point from
the resulting distribution: our position estimation.

This is a simple principle on which probabilistic inference
schemes are built. To implement our system, however, we
need to make several design decisions. We first choose ap-
propriate state and observation spaces. This involves decid-
ing on a sampling granularity for both spaces. We then learn
the conditional probability distributions for plugging into the
formula above.

2.3.1. Our model

Our initial experiments and literature search indicated that a
priori models of RF signal propagation would be difficult to
set up without some on-site training. After verifying that sim-
ple assumptions such as fitting analytic curves and surfaces
to the means and Gaussians or other simple distributions to
the variances provide poor fits to sampled data, we opted for
the simpler, more robust scheme of sampling the conditional
probabilities directly. The reasoning for this is discussed fur-
ther in section 2.1.

We begin by defining our state space. We choose a set of
points on the map, each tuple (x, y, ) a location and orienta-
tion on the floor of Duncan Hall where our experiments took
place. There is no indication that adding an additional para-
meter for three-dimensional localization would be any harder,
although we did no experiments to verify this. Our state space
S consists of a set of n points

SZ{SI Z(xl,))l,el)’--wsnZ(xn,))n’en)}~ (2)

Each observation in our observation space consists of the
measurements that occurred in a single scan from our base
station scanner. Each base station scan returns a set of k base
station signal strength measurements. Each base station can
appear in the scan up to four times. We represent each obser-
vation as a vector

o=k fi,.... fn. (b1, 2D, ..., (b, M), (3)

where k is the total number of base station signal strength
measurements, N is the total number of unique base stations
represented, fg is the frequency count for the Sth base station,
b, represents the base station in the pth measurement and A,
is the signal strength of that measurement. An explanation of
the meanings of these and all the other variables used in this
section can be found in table 1.

In the training phase, at each point s;, we take a number of
observations. For each base station we build two histograms
for that point. The first is the distribution of frequency counts
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over the sampled observations. The second is a distribution
of observed signal strengths. These histograms encode two
conditional probabilities. Pr(fg|s;) is the probability that the
frequency count for the Bth base station is fg when we are at
state s;. Pr(A,|by, s;) is the probability that a measurement
appears for base station b, with signal strength A, at state s;.
By multiplying these conditional probabilities we obtain the
conditional probability of receiving a particular observation.
For each observation o0}, as defined in equation (3), we com-
pute

N k
Pr(ojlsi) = (Hpr(fﬂ|5i))<l_[Pr()\pwp,Si))- “4)

B=1 p=1

Once training is complete, we move on to localization. The
exact calculation proceeds as follows: before each observa-
tion we choose our prior state distribution 7 as the uniform
distribution. This is a common Bayesian assumption: we as-
sume we are lost, so every position is equally likely. This
provides a conservative estimate of our location; any attempt
to bias this initial estimate may inhibit accurate localization
right from the start. When we make the observation, we sim-
ply use Bayes’ rule as defined in equation (1) to compute 7/,
the probability distribution over the states. Then it is simply a
matter of choosing appropriate candidate locations.

After trying several possible schemes, we decided to solve
a global localization problem for each observation rather than
keep a running estimate because each observation usually
contains enough information to get a good guess of our po-
sition. The resulting stream of guesses can be combined in a
post-processing step to create a more refined estimate of po-
sition. One such mechanism is described in section 2.4.

Although one observation is typically enough information
to decide on one’s position, errors in the training phase can
lead to inaccuracy during localization. Significant causes
of such error are subsampling and time-dependent phenom-
ena. Subsampling can create a posteriori model of the noise
as measured at that point. Certain measurements that occur
rarely may never occur in the subsample. When the measure-
ment occurs online, the hypothesis can be rejected entirely
based on a conditional probability of zero for that position.
We describe heuristics compensating for this difficulty in sec-
tion 4.

2.3.2. Naive averaging

To improve this estimate, we apply a simple post-processing
technique. For each 1 < i < n, where n is the number of
states,

m = (i +up) (] 4 u2), 3)

7 is the prior distribution on position, 7’ is the probability
distribution computed with Bayesian inference, as describes
in section 2.3, " is the revised distribution, and u;, u, are
small constants introduced to prevent the distribution from
equaling zero. The resulting distribution 7" needs to be nor-
malized after this calculation.
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Table 2
Table of variables and expressions used to explain our HMM sensor fusion mechanism and the meanings of these variables.
Symbol Meaning
n Number of states
m Number of possible observations
S The set of all states, S = {s1, ..., Sn}
o The set of all possible observations, O = {01, ..., o }. Each observation o represents a position estimate made by our Bayesian inference engine
4 A probability distribution over the state space, S. As above, 7’ represents the “next” distribution, which is to say, 7’ = f () for some function f
A A conditional probability function A : S x O — [0, 1]. A is defined as A(s, 0) = Pr(o|s), the probability of observing o while in state s
A A transition probability matrix. A represents the possibility that a random state change has occurred “hidden” from the observer

2.4. Sensor fusion

Sensor fusion is another important concept in robot localiza-
tion. A broad definition of sensor fusion is the combination
of multiple independent observations to obtain a more robust
and precise estimate of the measured variables. This can be
implemented in terms of integrating sensor readings over time
or in the synthesis of measurements from multiple sensors.
We use this technique to refine our initial location estimate.
We implemented a filter which takes the output of the infer-
ence engine as a stream of timed observations and tries to
stabilize the distribution by noting that a person carrying a
laptop typically does not move very quickly. It also takes into
account some probability of error on the part of the inference
engine.

We model a moving operator trying to track her position
as a hidden Markov model (HMM) [38,41]. We use a more
finely discretized state space than the Bayesian inference en-
gine and try to interpolate the operator’s position out of the
stream of measurements coming from the inference engine.
We chose this finer discretization after observing that a naive
averaging of the inference engine’s output, described in sec-
tion 2.3.2, produced results with twice the precision we ex-
pected for points where we had not taken any training sam-
ples.

For our purposes, an HMM is a set of states S =
{s1,...,s,}, a set of observations O = {0y, ..., 0}, a con-
ditional probability function A : § x O — [0, 1], and a transi-
tion probability matrix A. Each state and each observation is a
point (x, y, 6). An observation represents a position estimate
made by our Bayesian inference engine. That is, the set of ob-
servations for the HMM is the same as the set of states for the
Bayesian inference engine. An explanation of the meanings
of these and all the other variables used in this section can be
found in table 2.

The transition probability matrix semantics describe how
the system being modeled evolves with time. In this case, it
describes how a person travels through the state space. If  is
a probability distribution over S, then 7’ = A is the prob-
ability distribution after some discrete time step. The idea is
that the random state change occurs “hidden” from the ob-
server. We generate the transitional probability matrix A us-
ing a relatively simple heuristic, that people do not travel too
fast or change directions too frequently.

The observation function A has semantics identical to ob-
servation in the Bayesian inference of position. A(s,0) =
Pr(o|s), the probability of observing o while at s. The con-
ditional probability function A is also defined using a rela-
tively simple heuristic; smaller distances from an observation
to a given state lead to higher probabilities of making that
observation at that state. As each observation arrives, A is
used to update the probability of being in a given state in S,
and then A is used to transition states. If A accurately models
the behavior of the inference engine and A accurately models
the behavior of a person transitioning from state to state, the
sensor fusion will have superior results to Bayesian inference
alone.

3. Results

In this section we describe several experiments which try to
objectively measure the precision and reliability of our sys-
tem. We first present the results for static localization. We
then describe the results for user tracking using sensor fusion.

Our system was trained by taking samples at various points
in the world, as discussed in section 2.3.1. The amount of
data taken at each point is varied adaptively according to a
simple heuristic which measures the rate of convergence to
a stable distribution. Once the sampled distribution at each
visible base station had converged beyond a threshold, we
halt the process. This allowed us to adaptively determine how
much sampling is necessary as a function of variation in the
signal. In our case, usual sampling times ranged from ten
seconds to about a minute.

3.1. Static localization in a hallway

This subsection describes experiments executed in hallway 1
of our test area (see figure 1), which was sampled in two
different orientations at every 1.5 meters. The purpose of
this was to test the precision of the Bayesian inference local-
izer. Timed tests occurred at various positions and at both
orientations in the hallway and bulk statistics were calcu-
lated.

The training data was taken by two different operators,
with each operator training the localizer in one of the two di-
rections. All experiments were executed by a third operator.
The purpose of this was to demonstrate a degree of operator-
independence.
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Figure 4. Bulk cumulative error distribution for 1307 packets over 22 poses
in hallway 1 in our test area (see figure 1, the building map) localized using
the position of maximum probability as calculated by direct application of
Bayes’ rule.
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Figure 5. Bulk cumulative error distribution for 1465 packets over 22 poses
in hallway 1 in our test area (see figure 1, the building map) localized using
the position of maximum probability as calculated by merging distributions
over a one second window.

Basic Bayesian inference. Using the algorithm described in
section 2.3, we measured a total of 1307 packets over both ori-
entations on 11 different positions. The positions were spread
every 3 meters to be exhaustive. The algorithm reported po-
sitions back discretized to 1.5 meters. In figure 4, we show
the cumulative probability of obtaining error less than a given
distance. We have observed that error is at most 1.5 meters
with probability 0.77.

Simple averaging improves results. In the second experi-
ment, we post-processed the probability distributions com-
puted by Bayesian inference as described in section 2.3.2.
This simple calculation improved our results significantly and
is usable as a tracker. Our results are summarized in figure 5.
The measured error was at most 1.5 meters with probability

LADD ET AL.

0.83. This is an 8% improvement over the raw filter. As a
tracker, we observed that it lagged behind the actual position
and we attempted to improve our results by using more so-
phisticated methods described in section 2.4.

Operator bias. The above experiments were run with one
person operating the laptop to generate training data and a
different person operating the laptop to localize based on that
training data. Our experiments indicate that operator bias in-
troduced in training does not cause localization results to be-
come unstable.

3.2. Experiments with tracking

We attempted to improve these results by implementing a
more sophisticated sensor fusion based on a hidden Markov
model (HMM), as described in section 2.4. We then walked
round-trips of the four hallways in our test area, shown on
the map in figure 1, tracking our current position and record-
ing the output of both the static localization as described in
section 3.1 and the sensor fusion. The results are shown in
figures 6-9.

For hallways 1 and 2, sensor fusion increased by 44% and
40%, respectively, the probability of error less than one meter.
The traces show that while static localization is good at track-
ing, sensor fusion improves the results by effectively ignoring
outliers. See figures 6 and 7 for the results on these hallways.

The results for hallway 4 were somewhat more disappoint-
ing. The probability of error less that one meter was increased
by a scant 8%. Sensor fusion loosely tracked actual move-
ment, but the signal from the static localizer was too noisy to
allow for the level of accuracy achieved on hallways 1 and 2.
We attribute this noise to the fact that the hallway is open
above, and there are no base stations installed along the hall-
way. See figure 8 for the results on this hallway.

The worst result was on hallway 3, which is entirely open
above, and overlooks a three-story atrium. The probability
of error less than one meter actually went down by 10% as
a result of sensor fusion. As seen in figure 9, the static lo-
calizer for the most part tended to choose either an endpoint
or one of two particular points in the middle of the hallway.
This was caused in part by the fact that this hallway is ex-
posed to a large open area, diluting the signal. In addition,
no base stations are installed close to or in line with the hall-
way. The result is that the signal strength from base stations
does not vary much from one point on the hallway to an-
other.

Note that the conditional probability function and tran-
sition probability matrix we used to initialize the hidden
Markov model were generated based on Gaussian distribu-
tions. While these were good fits for hallways 1 and 2, they
failed to model the noisiness of the static localizer on hall-
ways 3 and 4. A conditional probability function trained to
the actual points would likely provide better results.
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Figure 6. Tracking a round-trip walk of hallway 1 in our test area (see figure 1, the building map). Measured error for the track, shown on the right graph, is
at most one meter with probability 0.64, an improvement of 45% over static localization. This improvement is illustrated in the actual tracking performance,

shown in the left graph.
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Figure 7. Tracking a round-trip walk of hallway 2 in our test area (see figure 1, the building map). Measured error for the track, shown on the right graph, is
at most one meter with probability 0.7, an improvement of 40% over static localization. This improvement is illustrated in the actual tracking performance,

shown in the left graph.
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Figure 8. Tracking a round-trip walk of hallway 4 in our test area (see figure 1, the building map). While sensor fusion provided some improvement, it was
not significant. As shown in the left graph, when static localization was significantly off, so was sensor fusion, but when static localization appears to track

actual movement, sensor fusion is surprisingly accurate despite the noise.
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Figure 9. Tracking a round-trip walk of hallway 3 in our test area (see figure 1, the building map). Sensor fusion did not provide a significant improvement in
error, and at times increased error, as shown in the right graph. However, as shown in the left graph, the raw data was already extremely noisy in this case.

4. Discussion

The probabilistic robotics-based location-support method
with RF-signals that has been described in this article effi-
ciently reports and tracks the two dimensional position and
orientation of a mobile wireless device in an indoor environ-
ment. While this is not the first application of probabilis-
tic techniques to the field of location-aware computing, it
is one of the first application of such techniques for wire-
less computing in an indoor environment with commodity
hardware. This and the rigorous application of state-of-the-
art techniques borrowed from robot localization are the main
contributions of this article. Our work provides a strong indi-
cation that localization can be achieved with widely available
and inexpensive 802.11b wireless Ethernet hardware. This
section will discuss some advantages and disadvantages of
our techniques.

4.1. Advantages

Accuracy. The accuracy of RF based localization is sub-
stantially improved in our experimental setup over the re-
ported resolution and accuracy of similar previous efforts.
RADAR [2,3] exhibited a median resolution in the range of
2-3 meters. Our results indicate that we can get a resolution
of less than 1.5 meters with an accuracy 83% given suitable
base station layout. At a coarse resolution, we are very reli-
able. This is because noise texture varies significantly over
relatively large distances, especially when there are interven-
ing obstacles. Inside a room, there are ambiguities in sensing
that lead to error. In all of our experiments, we never ob-
served coarse granularity errors except at corners and door-
ways where the operator is transitioning from one area to an-
other. Our sensor fusion can improve precision while tracking
a moving object by interpolating between sampled points and
taking advantage of spatial continuity assumptions to proba-
bilistically reject outliers.

Real-time results. Both the static localization and the track-
ing systems provide real-time results. This means our system
is useful in cases where timing is essential, such as providing
accurate directions, locating a malicious user, or activating lo-
cal resources. Some tracking systems [2] require a delay of
several seconds to generate a reading.

Orientation. Our method explicitly tries to solve for orien-
tation. This is necessary since as we and others [2,3] have
observed orientation is a factor in observed signal strength.
In fact, our experiments show that orientation can be coarsely
determined by signal strength variations which shows the cor-
relation is often highly non-trivial. By explicitly modeling
position and direction, we greatly improve static localization
and sensor fusion although orientation determination tended
to be much noisier than position. This allows us to overcome
difficulties that weakened the applicability of the results of
RADAR. However, the variations in signal due to orientation
are not sufficiently large to ever obtain more than a coarse
estimate of direction.

Cost and complexity. The advantage of using wireless Eth-
ernet RF signals for localization is that the sensor doubles as a
communication device. The infrastructure for such networks
already exists in many real-world environments and conse-
quently, for many mobile devices, this sort of localization can
be implemented as a software-only solution. This is an attrac-
tive option for a number of real-world applications.

Extensibility and scalability. The methods we use are very
general and experiments with a variety of robot localization
applications have proven the approach very adaptable. In par-
ticular, the framework can be used with other sensors. For
example, by using ultrasound sensors such as those used in
Cricket [39], we estimate that we could increase our precision
to the order of twenty centimeters. This increase in precision
is alluded to by the authors of Cricket as a point of future
work when they suggest employing Kalman filters [39,40].
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We believe that localization with wireless Ethernet signal
strengths scales well into much larger arenas than our experi-
mental test-bed with the caveat that the layout of base stations
should be non-pathological. Our evidence for this comes from
robot localization and the experimental observation that, at
room granularity, signal strength distributions differ greatly.

The particular algorithms we present do not scale if used
verbatim. The computational cost of localization in the algo-
rithms we present grows as a linear (Bayesian) or quadratic
(sensor fusion) function of the number of possible poses. The
vectors and matrices involved however are almost always very
sparse. The typical approach in larger cases is to proceed
by Monte Carlo (MC) integration of the conditional proba-
bility distributions [48]. The computational efficiency of MC
is validated by the successful implementation of these algo-
rithms for mobile robots with severely restricted computa-
tional power such as the Sony AIBO robot [36]. Finally, the
set of visible base stations can provide a coarse estimate of
location, reducing the search space.

4.2. Disadvantages

Environment dependence. Every localization system is ham-
pered by a dependence on the environment it is executed in.
In our case, we noticed that some of the areas we tested, no-
tably hallway 3, provided lower accuracy than other areas.
The placement of the base stations, the materials in the build-
ing, and the building’s geometry can affect the difficulty of lo-
calizing at a given point. A more worrisome challenge is the
variation induced by people absorbing RF signals and other
dynamic effects. When working with 2.4 GHz RF signals
both static and dynamic environmental conditions can be dif-
ficult to predict and have complex behaviors. We believe that
continued research on heuristics for coping with these prob-
lems either by judicious placement of base stations or by im-
provements in the localization algorithm can produce usable
results for many applications even in the face of such environ-
mental flux.

Training. The complexity of indoor RF signal propagation
is avoided by building a sensor map. The time spent training
these maps is a limitation of all localization approaches using
a sampling technique for generating maps. As it is, maps were
built by marking the workspace and taking measurements at
each point. Further automation might be necessary to facil-
itate deployment of an approach in this spirit. In mobile ro-
botics, map building and exploration for such localization ap-
proaches is an important area of research. By augmenting the
operator with some extra sensors, for example an accelerom-
eter and magnetic compass to use for dead reckoning, a walk
around the building could be used together with a mapping
algorithm [47] to automate training further.

Privacy and security. It has been claimed in previous works,
such as Cricket [39,40], that a location support system can be
implemented in such a way as to localize a user only if she is
willing to be localized. This assertion, though, breaks down
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if the mobile device is not passive, for example, if it is using
an active localization scheme or is using wireless network-
ing to communicate. This raises issues of anonymity, privacy,
and security. Third-party observers using conventional hard-
ware could conceivably determine the position of a mobile
device broadcasting on a wireless Ethernet network without
the device’s knowledge or permission. Likewise, a network
administrator could use the network to track users by having
the base stations monitor observed signal strengths.

4.3. Future work

This work can be extended in a number of different direc-
tions. Most directly, we could expand the experimental area,
possibly considering multiple floors and significant amounts
of area within rooms. There are also a number of algorithmic
aspects of mobile node location tracking that could be ex-
plored. Finally, we should apply recent results from robotics
research, such as adaptive Monte Carlo localization [19].

Compensating for dynamic occlusion in robotics localiza-
tion is a studied problem but is also quite difficult. Many
approaches try to predict some variables describing dynamic
state. For example, a tour-guide museum robot needs to
model the motion of people in the museum to avoid colli-
sions [4]. Multi-robot, collaborative localization is another
branch of localization research [16]. Much of the work in
this area is relevant to collaborative localization in an ad hoc
wireless network. This is a fascinating problem which mixes
issues in protocol design and communication with uncertainty
and localization. Relative and differential techniques may be
of use in combating variations that occur due to environmen-
tal effects. For example, landmark based navigation operates
using only the angle of deflection to some feature of the en-
vironment [1]. This technique could be applied to mobile de-
vices using directional antennae to detect the angle of deflec-
tion to base stations. The pursuit-evasion problem in robotics
is the problem of capturing an active evader under various
sensing and environmental constraints. In location-aware se-
curity for wireless networks, studying how to intercept a mov-
ing intruder under various assumptions about sensing could
be an interesting and challenging application of this problem.

Another area of robotics where this work might be useful
is SLAM (Simultaneous Localization and Mapping) [7,33].
This technique involves using short range sensors to build a
small part of a map while global sensors are used to place
that small part in the larger context. Since wireless interfaces
are prevalent on mobile robots, signal strength would be an
attractive candidate for the global sensor.

5. Related work
5.1. Location aware computing

Many other systems have been built to support indoor local-
ization. These systems vary in many parameters, such as the
sensors, the cost, the required hardware, the infrastructure and
the resolution in time and space [25].
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The AT&T Cambridge Laboratory’s Active Badge location
system [50] and the more recent Active Bat system [51] are
two of the first systems in the field. Active Badge uses dif-
fuse IR technology while Active Bat uses an ultrasound time-
of-flight technique to provide accurate physical positioning.
Users and objects have to carry Active Bat tags, emitting an
ultrasonic pulse to a grid of ceiling-mounted receivers and
a simultaneous “reset” signal over a radio link. Each ceil-
ing sensor measures the time interval from reset to ultrasonic
pulse arrival and computes its distance from the Bat.

The Cricket Location Support System [39,40] also uses ul-
trasound emitters and embeds low-cost receivers in the object
being located. Cricket uses additional radio frequency sig-
nals to synchronize time measurements and to distinguish ul-
trasound signals that are a result of multi-path effects. The
main localization techniques that are employed in Cricket are
based on triangulation relative to the beacons. Cricket trades
accuracy for simpler hardware and infrastructure. It does not
require a grid of ceiling sensors with fixed locations as in the
Active Bat system but returns an estimation of the user’s po-
sition with a possible error of a four foot by four foot region,
while the Active Bat has an accuracy of nine centimeters.
Both of these systems provide excellent localization primi-
tives by employing specialized hardware.

Computer vision has also been used in location support
systems. Microsoft Research’s Easy Living uses stereo-vision
cameras to measure three-dimensional position in a home en-
vironment [29]. Camera-based approaches are expensive in
terms of hardware infrastructure due to the cost of the camera
and the computational overhead of image processing.

RF-based systems. The RADAR system [2,3] uses only
a wireless networking signal, employing nearest neighbor
heuristics and other pattern recognition techniques for local-
ization. The authors report localization accuracy of about 3
meters of their actual position with about fifty percent proba-
bility. They also discuss the problems of localizing in the face
of multiple floors and changing environmental conditions, as
well as tracking of moving users. While our work has similar
design goals to RADAR, we take a very different algorithmic
approach, using a probabilistic technique popular in many ro-
botics applications.

The PinPoint location system [52] is similar to RADAR,
but uses expensive, proprietary base station and tag hardware
to measure radio time of flight. PinPoint’s accuracy is roughly
1-3 meters. In the SpotOn system [26], special tags use radio
signal attenuation to estimate distance between tags. The aim
in SpotOn is to localize wireless devices relative to one an-
other, rather than to fixed base stations, allowing for ad-hoc
localization. Ad-hoc localization is also needed to provide
localization for sensor networks [12,43]. The probabilistic
framework we are proposing could also be applied in the case
of ad-hoc location sensing.

A number of systems have been built using probabilistic
techniques to determine location based on RF signal strength
for cellular telephone systems. Liu et al. [34] use Markov
modeling and Kalman filtering to predict when a mobile
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node will cross cell boundaries. Yamamoto et al. [53] use
Bayesian analysis to determine the absolute location of a mo-
bile node.

Since the paper was submitted and accepted a number
of new papers on wireless location-sensing have been pub-
lished. Roos et al. [42] implemented a similar system and
got similar localization results. They are also the first to
compare taking a Gaussian fit of signal strength to using
the full histogram of signal strength, although they came
to no definite conclusion on this. Nibble [5] is a system
that uses a Bayesian network to estimate a device’s location.
Tao et al. [45] explored variations in hardware and trans-
mission power, and addressed the symmetry of localizing a
laptop by measuring the signal intensity of packets trans-
mitted from a mobile device as received by a base station
versus packets transmitted by a base station and received
by the device. Clustering techniques have also been applied
to the problem of location determination [54]. Krumm and
Platt [30] introduced a number of techniques for simplify-
ing the process of training a location-sensing system, in-
cluding localizing based on topological regions (e.g., rooms)
rather than grid coordinates. Finally, Haeberlen et al. [20]
deployed within an entire office building a wireless location-
sensing system which required little training and could
tolerate variations in sensing hardware and changes in the en-
vironment.

RF signal attenuation. Much effort has been made to model
radio signal propagation in an indoor environment [21,37].
Different experiments in the literature have arrived at differ-
ent distributions. Although each result may be justifiable for a
certain set of conditions that govern a certain set of measure-
ments, a consistent model that would give a signal strength
distribution under a diversified set of conditions is unavail-
able. However, experiments with 12000 impulse response
profiles in two office buildings have shown good log-normal
fit [23]. A general empirical model [21] for indoor propaga-
tion of radio signals can be expressed as

d
PL(d) = PL(do) + 10nlog <d—) '
0

where PL(d) is the path loss in dB at distance d, PL(dp) is
the known path loss at the reference distance dy, n denotes
the exponent depending on the propagation environment and
X is the variable representing uncertainty of the model. We
note that decibels are a log-scale.

Based on this general formulation, many empirical models
have been derived in the field of indoor propagation modeling
in the wireless community. Parameter n is very sensitive to
the propagation environment, like the type of the construction
material and type of the interior [37], limiting the value of
these models.

5.2. Robot localization

Robot localization is a well-studied problem in robotics. Ro-
bot localization is the process of maintaining an ongoing
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estimate of a robot’s location with respect to its environ-
ment, given a representation of this environment and some
sensing ability within the environment. The importance of
this problem in the context of building reliable robot sys-
tems cannot be overstated; determining the pose (position
and orientation) of the robot from physical sensors is of-
ten referred to as “the most fundamental problem to provid-
ing a mobile robot with autonomous capabilities” [9]. In our
case, we can consider any wireless device as a mobile ro-
bot.

If there is no a priori estimate of the robot’s location, the
problem is referred to as global localization, which is a par-
ticularly challenging case of localization. This is the type of
problem we discussed. We have no information where the
wireless device is before it starts communicating with the net-
work’s base stations. Furthermore, there is the need to refine
the estimate of the device’s pose continuously. This task is
known as pose maintenance.

Sensor-based localization is based on the premise that we
use sensor data in conjunction with the representation of the
environment to produce a refined position estimate, such that
this estimate is more likely to predict the true positions. By
sensor, we mean any device which can measure attributes
of the environment in a way that can be correlated to po-
sition. Typical sensors that are deployed in robotics are IR
transmitters, ultrasound or laser proximity sensors and cam-
eras.

Sensor fusion is another important notion in robot local-
ization. A broad definition of sensor fusion is the combina-
tion of multiple independent observations to obtain a more
robust and precise estimate of the measured variables. This
can be implemented in terms of integrating sensor readings
over time or in the synthesis of measurements from multi-
ple sensors. Most of the recent work in robot localization has
been in improving and implementing sensor fusion for many
systems.

Much progress has been made in developing localiza-
tion techniques since the problem first appeared in the lit-
erature. Dead reckoning can be used for pose maintenance,
but requires some initial knowledge of location. Some of the
simplest methods for global localization include landmark-
based localization and triangulation. Probabilistic techniques,
such as Kalman filtering, and later, Bayesian analysis, were
developed to address flaws in these systems. Finally, for
when a grid-based map is inappropriate to the application
or environment, topological approaches have been devel-
oped.

Dead reckoning. Perhaps the simplest approach to the pose
maintenance task is to keep track of how far the robot moves
in each direction and then to sum these motions to produce a
net displacement that can be added to an initial position esti-
mate. Keeping track of how much one moves by observing
internal parameters without reference to the external world is
known as dead reckoning and is usually implemented with an
odometer. However, with each odometer reading, some error
is added to the absolute pose estimate. If only dead reckoning
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is used for position estimation, these errors are accumulated.
Long-term localization must make reference to the external
world for position correction. This involves the use of sen-
sory data for recalibrating a robot’s sense of its own location
with the environment. In some circumstances, such as the
case of a wireless device that a person is moving around in
space, we have no analogue of odometry.

Triangulation. Distance to known landmarks is frequently
used to determine pose as this can be computed with cam-
eras, laser range-finders, IR transmitters, sonar and other
commonly used sensors. A naive approach is to take three
distance measurements and triangulate position. This works
when the sensors are reliable and relatively noise-free but
leaves several problems unaddressed. When the sensors are
noisy, the calculations for triangulation become unstable for
many positions and landmark arrangements and lead to signif-
icant loss of precision. Typically, multiple measurements are
merged over time to try to compensate for this, however, some
care must be taken in choosing the method of merging or poor
results will be obtained [13]. In some cases where the sensors
are fairly reliable and have simple noise distributions, direct
triangulation or triangulation with differential windowing can
produce excellent results. Noisy sensors, however, compli-
cate triangulation adding uncertainty to the results. GPS [35]
is one of the best-known and most used triangulation-based
Sensors.

Kalman filter. In 1987, Smith and Cheeseman introduced
the use of Kalman filters to the problem of determining po-
sition [44]. Many systems in robot localization, since then,
have been based on Kalman filtering [11,18,32]. The ro-
bot’s pose estimation is maintained as a Gaussian distribution
in R? x S and sensor data from dead reckoning and land-
mark observations is fused to obtain a new position distribu-
tion. This method is provably optimal when all distributions
are Gaussian but typically fails when this assumption breaks
down. Extended Kalman filters address this problem by lin-
earizing the system. In practice, obtaining linearizations for
many sensing systems is difficult and errors can propagate
very quickly through the system.

Bayesian approaches. Possibly the most powerful family of
global localization algorithms to date is based on Bayesian in-
ference, in particular Markov localization [17,28] and Monte
Carlo localization [15,48]. These are generalizations of the
Kalman filter. These algorithms estimate posterior distribu-
tions over robot poses which are approximated by piecewise
constant functions instead of Gaussians, enabling them to rep-
resent highly multi-modal distributions. In this way, they can
be applied in the case of sensors that have non-Gaussian noise
distributions. The accuracy of the results, however, is limited
by the resolution of the approximation. Due to the very com-
plex nature of some sensors and usually also of the environ-
ment, many systems have difficulties modeling outliers and
other artifacts. These difficulties can be addressed by sam-
pling the distributions of the sensor signals in the target envi-
ronment and using this directly as a model, as in the case of
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the sensor map we built in the first phase of our method. By
explicitly integrating the conditional probability distributions,
we can obtain precise approximations of the robot’s positional
distribution. This approach is both computationally tractable
and effective [48]. Many excellent examples of this method
exist in the literature [46]. This is the approach we took in im-
plementing localization using wireless Ethernet, as described
in section 2. Recently, however, adaptive Monte Carlo local-
ization [19] promises to improve the accuracy and stability of
localization results.

Topological approaches. Typically the Bayesian approach
is applied in the case when we have a grid-based representa-
tion of the environment. Another alternative for modeling the
environment is with a topological map, represented as a gen-
eralized Voronoi graph [7]. Localization on the topological
map is based on the fact that the robot automatically identi-
fies nodes in the graph from geometric environmental infor-
mation [31].

6. Conclusions

In this article, we provide strong evidence that reliable local-
ization with wireless Ethernet can be achieved. In our ex-
periments, we can measure and track position robustly with
the first meter of error distributed within a standard deviation.
We used the Intersil Prism2 chipset for our wireless Ethernet
cards and Apple AirPort base stations, both readily available
and inexpensive hardware. The building we operated in had
fairly complicated geometry and the base stations were laid
out more than a year before we began our work. The meth-
ods we employed were general methods from robotics and
followed the Bayesian approach to localization. These meth-
ods were readily adaptable to the problem at hand and can be
applied to other location problems that might arise in mobile
computing.
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