
Wireless Networks 11, 81–97, 2005
 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

TCP/IP Performance over 3G Wireless Links with Rate and
Delay Variation

MUN CHOON CHAN ∗
Department of Computer Science, National University of Singapore, 3 Science Drive 2, Singapore 117543

RAMACHANDRAN RAMJEE
Bell Labs, Lucent Technologies, 101 Crawfords Corner Road, Room 4G-526, Holmdel, NJ 07733, USA

Abstract. Wireless link losses result in poor TCP throughput since losses are perceived as congestion by TCP, resulting in source throttling.
In order to mitigate this effect, 3G wireless link designers have augmented their system with extensive local retransmission mechanisms. In
addition, in order to increase throughput, intelligent channel state based scheduling have also been introduced. While these mechanisms have
reduced the impact of losses on TCP throughput and improved the channel utilization, these gains have come at the expense of increased
delay and rate variability. In this paper, we comprehensively evaluate the impact of variable rate and variable delay on long-lived TCP
performance. We propose a model to explain and predict TCP’s throughput over a link with variable rate and/or delay. We also propose a
network-based solution called Ack Regulator that mitigates the effect of variable rate and/or delay without significantly increasing the round
trip time, while improving TCP performance by up to 100%.

Keywords: TCP, 3G wireless, link delay and rate variation, throughput model, ack regulator

1. Introduction

Third generation wide-area wireless networks are currently
being deployed in the United States in the form of 3G1X tech-
nology [29] with speeds up to 144 Kbps. Data-only enhance-
ments to 3G1X have already been standardized in the 3G1X-
EVDO standard (also called High Data Rate or HDR) with
speeds up to 2 Mbps [6] and is currently under going field
trials. UMTS [32] is the third generation wireless technol-
ogy in Europe and Asia with deployments planned this year.
As these 3G networks provide pervasive Internet access, good
performance of TCP over these wireless links will be critical
for end user satisfaction.

While the performance of TCP has been studied exten-
sively over wireless links [3,4,20,26], most attention has been
paid to the impact of wireless channel losses on TCP. Losses
are perceived as congestion by TCP, resulting in source throt-
tling and very low net throughput.

In order to mitigate the effects of losses, 3G wireless link
designers have augmented their system with extensive local
retransmission mechanisms. For example, link layer retrans-
mission protocols such as RLP and RLC are used in 3G1X
[30] and UMTS [28], respectively. These mechanisms ensure
in-order packet delivery and loss probability of less than 1%
on the wireless link using link layer retransmission, thereby
mitigating the adverse impact of loss on TCP. However, while
these mechanisms mitigate losses, the use of link layer re-
transmission and in-order delivery result in substantial packet
delay variation when there are packet losses. As we shall see

∗ Corresponding author.
E-mail: chanme@comp.nus.edu.sg

in section 3, ping latencies vary between 179 ms to over 1 sec-
ond in a 3G1X system.

In addition, in order to increase throughput, intelligent
channel state based scheduling have also been introduced.
Channel state based scheduling [7] refers to scheduling tech-
niques which take the quality of wireless channel into ac-
count while scheduling data packets of different users at the
base station. The intuition behind this approach is that since
the channel quality varies asynchronously with time due to
fading, it is preferable to give priority to a user with better
channel quality at each scheduling epoch. While strict pri-
ority could lead to starvation of users with inferior channel
quality, a scheduling algorithm such as proportional fair [6]
can provide long-term fairness among different users. How-
ever, while channel-state based scheduling improves overall
throughput, it also increases rate variability.

Thus, while the impact of losses on TCP throughput have
been significantly reduced by local link layer mechanisms
and higher raw throughput achieved by channel-state based
scheduling mechanisms, these gains have come at the expense
of increased delay and rate variability. These rate and delay
variations cause the bandwidth-delay product of the wireless
channel to vary significantly, resulting in frequent buffer over-
flow loss and smaller average TCP congestion window sizes.
In addition, this variability also translates to bursty ack ar-
rivals (also called ack compression) at the TCP source which
gives rise to multiple packet loss events, resulting in further
back-off and timeouts. The combination of smaller average
window sizes and frequent/multiple packet drops result in sig-
nificant degradation of TCP throughput.

In this paper, we make three main contributions. First, we
comprehensively evaluate the impact of variable rate and vari-



82 CHAN AND RAMJEE

able delay on long-lived TCP performance. Second, we pro-
pose a model to explain and predict TCP’s throughput over
a link with variable rate and/or delay. Third, we propose a
network-based solution called Ack Regulator that mitigates
the effect of variable rate and/or delay without significantly
increasing the round trip time, thereby improving TCP per-
formance.

The remaining sections axe organized as follows. In sec-
tion 2, we discuss related work. In section 3, we present the
motivation for our work using traces from a 3G1X system.
In section 4, we describe a model for computing the through-
put of a long-lived TCP flow over links with variable rate and
variable delay. We then present a simple network-based so-
lution, called Ack Regulator, to mitigate the effect of variable
rate/delay in section 5. In section 6, we present extensive
simulation results that compare TCP performance with and
without Ack Regulator, highlighting the performance gains
using the Ack Regulator when TCP is subjected to variable
rate and delay. Finally, in section 7, we present our conclu-
sions.

2. Related work

In this section, we review prior work on improving TCP per-
formance over wireless networks. Related work on the mod-
eling of TCP performance is presented in section 4.

A lot of prior work has focused on avoiding the case of a
TCP source misinterpreting packet losses in the wireless link
as congestion signals. In [4], a snoop agent is introduced in-
side the network to perform duplicate ack suppression and
local retransmissions on the wireless link to enhance TCP per-
formance. In [3], the TCP connection is split into two sepa-
rate connections, one over the fixed network and the second
over the wireless link. The second connection can recover
from losses quickly, resulting in better throughput. More re-
cent work on applying a split-TCP approach to GPRS can
be found in [10]. They measure the channel characteristics
of an operational GPRS network and show that substantial
delay variations are observed in such a network. The pro-
posed solution, call ATCP, aggregates all TCP flows to a mo-
bile into a single TCP flow, eliminates slow start (assume no
congestion loss in the Radio Access Network) and uses a sep-
arate flow control and error detection and recovery scheme
that takes into account the channel characteristics. Link-layer
enhancements for reducing wireless link losses including re-
transmission and forward error correction have been proposed
in [26]. Link layer retransmission is now part of both the
CDMA2000 and UMTS standards [29,32]. In order to handle
disconnections (a case of long-lived loss), M-TCP has been
proposed [8]. The idea is to send the last ack with a zero-sized
receiver window so that the sender can be in persist mode dur-
ing the disconnection. Link failures are also common in Ad
Hoc networks and techniques to improve TCP performance in
the presence of link failures have been proposed in [14]. Note
that none of these approaches address specifically the impact
of delay and rate variation on TCP, which is the focus of this
paper.

Several generic TCP enhancements with special applica-
bility to wireless links are detailed in [15,18]. These include
enabling the Time Stamp option, use of large window size and
window scale option, disabling Van Jacobson header com-
pression, and the use of Selective Acknowledgments (Sack).
Large window size and window scaling are necessary because
of the large delay of wireless link while Sack could help TCP
recover from multiple losses without the expensive timeout
recovery mechanism.

Another issue with large delay variation in wireless links
is spurious timeouts where TCP unnecessarily retransmits a
packet (and lowers its congestion window to a minimum) af-
ter a timeout, when the packet is merely delayed. In [18],
the authors refer to rate variability due to periodic allocation
and de-allocation of high-speed channels in 3G networks as
Bandwidth Oscillation. Bandwidth Oscillation can also lead
to spurious timeouts in TCP because as the rate changes from
high to low, the rtt value increases and a low Retransmission
Timeout (RTO) value causes a spurious retransmission and
unnecessarily forces TCP into slow start. A similar problem
is also described in [13] where the author analyzed the behav-
ior of TCP over a Wideband CDMA (UMTS) channel which
exhibits variable delay and rate. In [20], the authors conduct
experiments of TCP over GSM circuit channels and show that
spurious timeouts axe extremely rare. However, 3G wireless
links can have larger variations than GSM due to processing
delays and rate variations due to channel state based schedul-
ing. Given the increased variability on 3G packet channels,
the use of TCP time stamp option for finer tracking of TCP
round trip times and possibly the use of Eifel retransmission
timer [21] instead of the conventional TCP timer can help
avoid spurious timeouts.

As mentioned earlier, the effect of delay and rate variabil-
ity is ack compression and this results in increased burstiness
at the source. Ack compression can also be caused by bidirec-
tional flows over regular wired networks or single flow over
networks with large asymmetry. This phenomenon has been
studied and several techniques have been proposed to tackle
the burstiness of ack compression. In order to tackle bursti-
ness, the authors in [24] propose several schemes that with-
holds acks such that there is no packet loss at the bottleneck
router, resulting in full throughput. However, the round trip
time is unbounded and can be very large. In [31], the au-
thors implement an ack pacing technique at the bottleneck
router to reduce burstiness and ensure fairness among dif-
ferent flows. In the case of asymmetric channels, solutions
proposed [5] include ack congestion control and ack filter-
ing (dropping of acks), reducing source burstiness by sender
adaptation and giving priority to acks when scheduling in-
side the network. However, the magnitude of asymmetry
in 3G networks is not large enough and can be tolerated by
TCP without ack congestion control or ack filtering accord-
ing to [15].

Note that, in our case, ack compression occurs because
of link variation and not due to asymmetry or bidirectional
flows. Thus, we require a solution that specifically adapts
to link variation. Moreover, the node at the edge of the 3G



TCP/IP PERFORMANCE OVER 3G WIRELESS LINKS WITH RATE AND DELAY VARIATION 83

Figure 1. 3G network architecture.

wireless access network is very likely to be the bottleneck
router (given rates of 144 Kbps to 2 Mbps on the wireless
link) and is the element that is exposed to varying delays and
service rates. Thus, this node is the ideal place to regulate the
acks in order to improve TCP performance. This is discussed
in more detail in the next section.

3. Motivation

A simplified architecture of a 3G wireless network is shown
in figure 1. The base stations are connected to a node called
the Radio Network Controller (RNC). The RNC performs
CDMA specific functions such as soft handoffs, encryption,
power control, etc. It also performs link layer retransmission
using RLP (RLC) in 3G1X (UMTS) system. In the 3G1X
system, the RNC is connected to a PDSN using a GRE tun-
nel (one form of IP in IP tunnel) and the PDSN terminates
PPP with the mobile device. If Mobile IP service is enabled,
the PDSN also acts as a Foreign Agent and connects to a
Home Agent. In the UMTS system, the RNC is connected to
a SGSN using a GTP tunnel (another form of IP in IP tunnel);
the SGSN is connected to a GGSN, again through a GTP tun-
nel. Note that the tunneling between the various nodes allows
for these nodes to be connected directly or through IP/ATM
networks.

In this architecture, the RNC receives a PPP/IP packet
through the GRE/GTP tunnel from the PDSN/SGSN. The
RNC fragments this packet into a number of radio frames
and then performs transmission and local retransmission of
these radio frames using the RLP (RLC) protocol. The base
station (BS) receives the radio frames from the RNC and then
schedules the transmission of the radio frames on the wireless
link using a scheduling algorithm that takes the wireless chan-
nel state into account. The mobile device receives the radio
frames and if it discovers loss of radio frames, it requests lo-
cal retransmission using the RLP (RLC) protocol. Note that,
in order to implement RLP (RLC), the RNC needs to keep a
per-user queue of radio frames. The RNC can typically scale
up to tens of base stations and thousands of active users.

In order to illustrate the variability seen in a 3G system,
we obtained some traces from a 3G1X system. The system
consisted of an integrated BS/RNC, a server connected to the
RNC using a 10 Mbps Ethernet and a mobile device con-
nected to the BS using a 3G1X link with 144 Kbps downlink
in infinite burst mode and 8 Kbps uplink. The infinite burst

Figure 2. CDF of ping latencies.

mode implies that the rate is fixed and so the system only had
delay variability.

Figure 2 plots the cumulative distribution function (cdf) of
ping latencies from a set of 1000 pings from the server to the
mobile device (with no observed loss). While about 75% of
the latency values are below 200 ms, the latency values go all
the way to over 1 s with about 3% of the values higher than
500 ms.

In the second experiment, a TCP source at the server us-
ing Sack with timestamp option transferred a 2 MB file to the
mobile device. The MTU was 1500 bytes with user data size
of 1448 bytes. The buffer at the RNC was larger than the TCP
window size,1 and thus, the transfer resulted in no TCP packet
loss and a maximal throughput of about 135 Kb/s. The trans-
mission time at the bottleneck link is 1.448 · 8/135 = 86 ms.
If the wireless link delay were constant, the TCP acks arriv-
ing at the source would be evenly spaced with a duration of
172 ms because of the delayed ack feature of TCP (every 2
packets are acked rather than every packet). Figure 3(a) plots
the cdf of TCP ack inter-arrival time (time between two con-
secutive acks) at the server. As can be seen, there is significant
ack compression with over 10% of the acks arriving within
50 ms of the previous ack. Note that the ack packet size is
52 bytes (40 + timestamp) and ack transmission time on the
uplink is 52 · 8/8 = 52 ms; an interack spacing of less then
52 ms is a result of uplink delay variation.

Note that the delay variability and the resulting ack com-
pression did not cause any throughput degradation in our sys-
tem. This was due to the fact that the buffering in the system
was greater than the TCP window size resulting in no buffer
overflow loss. Figure 3(b) depicts the TCP round trip time
(rtt) values over time. Since the buffer at the RNC is able
to accommodate the whole TCP window, the rtt increases to
over 3 s representing a case of over 30 packets in the buffer at
the RNC (30 · 0.086 = 2.5 s). Given an average ping latency
of 215 ms and a transmission time of 86 ms for a 1500 byte
packet, the bandwidth delay product of the link is approxi-
mately (0.215+0.86) ·135 = 5 KB or about 3 packets. Thus,
the system had a buffer of over 10 times the bandwidth delay
product. Given that we had only one TCP flow in the system,

1 We did not have control over the buffer size at the RNC in our system.



84 CHAN AND RAMJEE

(a) TCP ack inter-arrival.

(b) TCP rtt.

Figure 3. 3G link delay variability.

a buffer of over 64 KB is not a problem. But, if every TCP
flow is allocated a buffer of 64 KB, the buffer requirements
at the RNC would be very expensive, since the RNC supports
thousands of active users.

Even discounting the cost of large buffers, the inflated rtt
value due to the excessive buffering has several negative con-
sequences as identified in [20]. First, an inflated rtt implies a
large retransmission timeout value (rto). In the case of mul-
tiple packet losses (either on the wireless link or in a router
elsewhere in the network), a timeout-based recovery would
cause excessive delay, especially if exponential backoff gets
invoked. Second, if the timestamp option is not used, the rtt
sampling rate is reduced and this can cause spurious timeouts.
Third, there is a higher probability that the data in the queue
becomes obsolete (for, e.g., due to user aborting the transmis-
sion), but the queue will still have to be drained resulting in
wasted bandwidth.

Thus, while excessive buffering at the RNC can absorb the
variability of the wireless links without causing TCP through-
put degradation, it has significant negative side effects, mak-
ing it an undesirable solution.

4. Model

In this section, we model the performance of a single long-
lived TCP flow over a network with a single bottleneck server

that exhibits rate variation based on a given general distri-
bution and a single wireless link attached to the bottleneck
server that exhibits delay variation based on another given
distribution.

We use a general distribution of rate and delay values for
the discussion in this section since we would like to capture
the inherent variation in rate and delay that is a characteristic
of the 3G wireless data environment. Given that the wireless
standards are constantly evolving, the actual rate and delay
distribution will vary from one standard or implementation
to another and is outside the scope of this paper. Later, in
section 6, we will evaluate TCP performance over a specific
wireless link, the 3G1X-EVDO (HDR) system, using simula-
tion.

We would like to model TCP performance in the case of
variable rate and delay for two reasons. One, we would like
to understand the dynamics so that we can design an appropri-
ate mechanism to improve TCP performance. Two, we would
like to have a more accurate model that specifically takes the
burstiness caused by ack compression due to rate/delay vari-
ability into account.

TCP performance modeling has been extensively studied
in the literature [1,2,9,19,22,23]. Most of these models as-
sume constant delay and service rate at the bottleneck router
and calculate TCP throughput in terms of packet loss prob-
ability and round trip time. In [23], the authors model TCP
performance assuming deterministic time between congestion
events [1]. In [22], the authors improve the throughput pre-
diction of [23] assuming exponential time between conges-
tion events (loss indications as Poisson). In our case, ack
compressions and link variation causes bursty losses and the
deterministic or Poisson loss models are not likely to be as
accurate. In [9], the authors model an UMTS wireless net-
work by extending the model from [23] and inflating the rtt
value to account for the average additional delay incurred on
the wireless link. However, we believe this will not result
in an accurate model because (1) the rtt value in [23] is al-
ready an end-to-end measured value and (2) the loss process
is much more bursty than the deterministic loss assumption
in [23]. In [2], the authors observe that mean values are not
sufficient to predict the throughput when routers have vary-
ing bandwidth and show that increasing variance for the same
mean service rate decreases TCP throughput. However, the
approach is numerical, and provides little intuition in the case
of delay variance.

Our approach starts with the model in [19] which de-
scribes how TCP functions in an “ideal” environment with
constant round trip time, constant service rate and suffers loss
only through buffer overflow. A brief summary of the result
from [19] is presented here before we proceed to our model,
which can be seen as an extension. We chose to extend the
model in [19] since it makes no assumption about the nature
of loss event process (which is highly bursty in our case) and
explicitly accounts for link delay and service rate (which are
variable in our case). For simplicity, we will only discuss the
analysis of TCP Reno. TCP Sack can be analyzed similarly.
We also assume that the sender is not limited by the maxi-



TCP/IP PERFORMANCE OVER 3G WIRELESS LINKS WITH RATE AND DELAY VARIATION 85

(a) Constant delay.

(b) Variable delay.

Figure 4. TCP congestion window evolution over time.

mum receiver window; simple modifications can be made to
the analysis for handling this case.

Figure 4(a) shows how the TCP congestion window varies
in a constant rate and delay setting. The initial phase where
TCP tries to probe for available bandwidth is the Slow Start
phase. After slow start, TCP goes to Congestion avoidance
phase. In the case of long-lived TCP flow, one can focus only
on the congestion avoidance phase. Let µ be the constant ser-
vice rate, τ the constant propagation delay, T the minimum
round trip time τ + 1/µ and B the buffer size. The conges-
tion window follows a regular saw-tooth pattern, going from
W0 to Wmax, where W0 = Wmax/2 and Wmax = µτ + B + 1.
Due to the regularity of each of the saw-tooth, consider one
such saw-tooth. Within a single saw-tooth, the congestion
avoidance phase is divided into two epochs. In the first
epoch, say epoch A, the congestion window increases from
W0 to µT , in time tA with number of packets sent nA. In
the second epoch, say epoch B, the congestion window in-
creases from µT to Wmax, in time tB with number of packets
sent nB . TCP throughput (ignoring slow start) is simply given
by (nA + nB)/(tA + tB) where

tA = T (µT − W0), (1)

nA = W0tA + t2
A/(2T )

T
, (2)

tB = W 2
max − (µT )2

2µ
, (3)

nB = µtB. (4)

This model, while very accurate for constant µ and T ,
breaks down when the constant propagation and service rate
assumptions are not valid. Figure 4(b) shows how the con-
gestion window becomes much more irregular when there is
substantial variation in the wireless link delay. This is be-
cause the delay variation and ack compression result in mul-
tiple packet losses.

There are three main differences in the TCP congestion
window behavior under variable rate/delay from the tradi-
tional saw-tooth behavior. First, while the traditional saw-
tooth behavior always results in one packet loss due to buffer
overflow, we have possibilities for multiple packet losses
due to link variation. To account for this, we augment our
model with parameters p1, p2, p3 representing respectively
the conditional probability of a single packet loss, double
packet loss, and three or more packet losses. Note that,
p1+p2+p3 = 1 by this definition. Second, while the loss in
the traditional saw-tooth model always occurs when window
size reaches Wmax = µτ +B + 1, in our model losses can oc-
cur at different values of window size, since µ and τ are now
both variables instead of constants. We capture this by a para-

meter Wf =
√∑N

i=1 W 2
maxi

/N , that is the square root of the
second moment of the Wmax values of each cycle. The reason
we do this instead of obtaining a simple mean of Wmax values
is because throughput is related to Wf quadratically (since it
is the area under the curve in the congestion window graph).
Third, due to the fact that we have multiple packet losses in
our model, we need to consider timeouts and slow starts in our
throughput calculation. We represent the timeout duration by
the T0 parameter which represents the average timeout value,
similar to the timeout parameter in [23].

We now model the highly variable congestion window be-
havior of a TCP source under rate/delay variation. We first
use Wf instead of Wmax. We approximate τ (the propagation
delay) by τ̂ , the average link delay in the presence of delay
variability. We replace µ (the service rate) by µ̂, the average
service rate in the presence of rate variability. Thus, T be-
comes T̂ = τ̂ +1/µ̂. Now consider three different congestion
window patterns: with probability p1, single loss followed
by congestion avoidance, with probability p2, double loss
followed by congestion avoidance, and with probability p3,
triple loss and timeout followed by slow start and congestion
avoidance.2

First, consider the single loss event in the congestion
avoidance phase. This is the classic saw-tooth pattern with
two epochs as identified in [19]. Lets call these A1 and B1
epochs. In epoch A1, window size grows from W01 to µ̂T̂ in
time, tA1, with number of packets transmitted, nA1. In epoch
B1, window size grows from µ̂T̂ to Wf in time, tB1, with

2 We assume that three or more packet losses result in a timeout; this is al-
most always true if the source is TCP Reno.



86 CHAN AND RAMJEE

number of packets transmitted, nB1. Thus, with probability
p1, nA1 +nB1 packets are transmitted in time tA1 + tB1 where

W01 = (int)Wf

2
, (5)

tA1 = T̂
(
µ̂T̂ − W01

)
, (6)

nA1 = (W01tA1 + t2
A1/(2T̂ )

T̂
, (7)

tB1 = W 2
j − (µ̂T̂ )2

2µ̂
, (8)

nB1 = µ̂tB1. (9)

Next, consider the two loss event. An example of this event
is shown in figure 5(a). The trace is obtained using ns-2 sim-
ulation described in section 6. In this case, after the first fast
retransmit (around 130 s), the source receives another set of
duplicate acks to trigger the second fast retransmit (around
131 s). This fixes the two losses and the congestion window
starts growing from W02. The second retransmit is triggered
by the new set of duplicate acks in response to the first re-
transmission. Thus, the duration between the first and second
fast retransmit is the time required for the first retransmission
to reach the receiver (with a full buffer) plus the time for the

(a) Two packet loss.

(b) Three packet loss.

Figure 5. Congestion window with multiple losses.

duplicate ack to return to the sender. In other words, this du-
ration can be approximated by the average link delay with
a full buffer, T̂ + B/µ̂ = tR . We have three epochs now,
epoch tR (time 130–131 s) with one retransmission and zero
new packet, epoch A2 (131–137 s) with window size grow-
ing from W02 to µ̂T̂ in time, tA2, with number of packets
transmitted, nA2, and epoch B1 (137–143 s) as before. Thus,
with probability p2, nA2+nB1 packets are transmitted in time
tR + tA2 + tB1 where

W02 = (int)W01

2
, (10)

tR = T̂ + B

µ̂
, (11)

tA2 = T̂
(
µ̂T̂ − W02

)
, (12)

nA2 = W02tA2 + t2
A2/(2T̂ )

T̂
. (13)

Finally, consider the three loss event. An example of this
event is shown in figure 5(b). In this case, after the first fast
retransmit, we receive another set of duplicate acks to trigger
the second fast retransmit. This does not fix the three losses
and TCP times out. Thus, we now have five epochs: first is the
retransmission epoch (100–101 s) with time tR and zero new
packet, second is the timeout epoch (101–103 s) with time
T0 and zero new packet, third is the slow start epoch (103–
106 s) where the window grows exponentially up to previous
ssthresh value of W03 in time tss (equation (15)) with number
of packets transmitted nss (equation (16)),3 fourth is epoch
A3 (106–111 s) where the window size grows from W03 to
µ̂T̂ in time tA3 (equation (17)) with number of packets trans-
mitted nA3 (equation (18)), and fifth is epoch B1 (111–118 s)
as before. Thus, with probability p3, nss +nA3 +nB1 packets
are transmitted in time tR + T0 + tss + tA2 + tB1 where

W03 = (int)W02

2
, (14)

tss = T̂ log2(W03), (15)

nss = W03

T̂
, (16)

tA3 = T̂
(
µ̂T̂ − W03

)
, (17)

nA3 = W03tA3 + t2
A3/(2T̂ )

T̂
. (18)

Given that the different types of packet loss events are in-
dependent and using p1 + p2 + p3 = 1, the average TCP
throughput can now be approximated by a weighted combi-
nation of the three types of loss events to be

p3(nss + nA3) + p2nA2 + p1nA1 + nB1

p3(tR + T0 + tss + tA3) + p2(tR + tA2) + p1tA1 + tB1
.

(19)
If any of t∗, are less than 0, those respective epochs do not
occur and we can use the above equation while setting the
respective n∗, t∗ to zero. In this paper, we infer parameters

3 Using analysis similar to [19] and assuming adequate buffer so that there is
no loss in slow start.



TCP/IP PERFORMANCE OVER 3G WIRELESS LINKS WITH RATE AND DELAY VARIATION 87

Table 1
Simulation and model parameters.

Item Rate (Kb/s) Delay (ms) pkts TD TO T0 rtt p1 p2 Wf T̂ µ̂

1 200 400 89713 401 1 1.76 616.2 0.998 0.000 22.00 440 25.0
2 200 380+e(20) 83426 498 1 1.71 579.3 0.639 0.357 21.38 442 25.0
3 200 350+e(50) 78827 489 12 1.79 595.8 0.599 0.367 21.24 461 25.0
4 200 300+e(100) 58348 496 114 1.92 606.0 0.339 0.279 18.95 517 25.0
5 u(200, 20) 400 82180 504 1 1.75 578.1 0.535 0.460 21.61 400 24.74
6 u(200, 50) 400 74840 517 29 1.80 579.9 0.510 0.403 20.52 400 23.34
7 u(200, 75) 400 62674 516 81 1.86 585.9 0.398 0.348 19.05 400 20.93
8 u(200, 50) 350+e(50) 70489 507 43 1.81 595.7 0.496 0.377 20.15 459 23.34
9 u(200, 75) 300+e(100) 53357 497 93 2.03 635.7 0.404 0.298 17.78 511 20.93

Table 2
Simulation and model throughput values.

Item Simulator goodput Model 1 [23] (accuracy) Model 2 [22] (accuracy) Model 3 (equation (19)) (accuracy)

1 199.8 228.5 (0.86) 201.9 (0.99) 199.8 (1.0)
2 185.4 208.0 (0.88) 186.0 (1.0) 186.0 (1.0)
3 175.1 195.5 (0.88) 177.2 (0.99) 180.9 (0.97)
4 129.4 145.3 (0.88) 153.7 (0.81) 137.0 (0.94)
5 182.5 205.2 (0.88) 184.6 (0.99) 181.3 (0.99)
6 166.2 186.0 (0.88) 174.6 (0.95) 165.2 (0.99)
7 139.2 158.4 (0.86) 163.4 (0.83) 137.2 (0.99)
8 156.5 174.6 (0.88) 166.5 (0.94) 160.2 (0.97)
9 118.4 134.0 (0.87) 142.6 (0.80) 125.0 (0.94)

such as loss probability, round trip time, and timeout dura-
tions from traces.

Table 1 lists the various parameters used by the different
models for simulations with rate and delay variability. We use
a packet size of 1000 bytes, a buffer of 10 which represents
the product of the average bandwidth times average delay and
we ensure that the source is not window limited. TD and TO
denote the number of loss events that are of the triple dupli-
cate and timeout type respectively and these values are used
by models in [23] and [22]. The simulation is run for 3600
seconds. We simulate delay and rate variability with exponen-
tial and uniform distributions respectively (u(a, b) in the ta-
ble represents uniform distribution with mean a and standard
deviation b while e(a) represents an exponential distribution
with mean a). The details of the simulation are presented in
section 6.

Table 2 compares the throughput of simulation of different
distributions for rate and delay variability at the server and
the throughput predicted by the exact equation of the model
in [23], the Poisson model in [22] and by equation (19). The
accuracy of the prediction, defined as 1 minus the ratio of
the difference between the model and simulation throughput
value over the simulation throughput value, is listed in the
parenthesis. As the last column shows, the match between
our model and simulation is extremely accurate when the de-
lay/rate variation is small and the match is still well over 90%
even when the variation is large. The Poisson loss model used
in [22] performs very well when the variability is low but, un-
derstandably, does not predict well when variability increases.
The deterministic loss model seems to consistently overesti-
mate the throughput.

From table 1, one can clearly see the impact of delay and
rate variability. As the variability increases, the probability of
double loss, p2, and three or more losses, p3 = 1 −p2 −p1,
start increasing while the goodput of the TCP flow starts de-
creasing. For example, comparing case 1 to case 4, p1 de-
creases from 0.998 to 0.339 while p3 increases. Increases
in p2 and p3 come about because when the product T̂ µ̂

decreases, a pipe that used to accommodate more packets
suddenly becomes smaller causing additional packet losses.
Given that nA1/tA1 > nA2/(tR + tA2) > (nss + nA3)/(tR +
T0 + tss + tA3), any solution that improves TCP performance
must reduce the occurrence of multiple packet losses, p2 and
p3. We present a solution that tries to achieve this in the next
section.

5. Ack Regulator

In this section, we present our network-based solution for im-
proving TCP performance in the presence of varying band-
width and delay. The solution is designed for improving
the performance of TCP flows towards the mobile host (for
downloading-type applications) since links like HDR are de-
signed for such applications. The solution is implemented
at the wireless edge, specifically at the RNC, at the layer
just above RLP/RLC. Note that, in order to implement the
standard-based RLP/RLC, the RNC already needs to main-
tain a per-user queue. Our solution requires a per-TCP-flow
queue, which should not result in significant additional over-
head given the low bandwidth nature of the wireless envi-
ronment. We also assume that the data and ack packets go
through the same RNC; this is true in the case of 3G networks



88 CHAN AND RAMJEE

where the TCP flow is anchored at the RNC because of the
presence of soft handoff and RLP.

We desire a solution that is simple to implement and re-
mains robust across different implementations of TCP. To this
end, we focus only on the congestion avoidance phase of TCP
and aim to achieve the classic saw-tooth congestion window
behavior even in the presence of varying rates and delays by
controlling the buffer overflow process in the bottleneck link.
We also assume for this discussion that every packet is ac-
knowledged (the discussion can be easily modified to account
for delayed acks where single ack packets acknowledge mul-
tiple data packets).

Our solution is called the Ack Regulator since it regulates
the flow of acks back to the TCP source. The intuition be-
hind the regulation algorithm is to avoid any buffer overflow
loss until the congestion window at the TCP source reaches a
pre-determined threshold and beyond that, allow only a single
buffer overflow loss. This ensures that the TCP source oper-
ates mainly in the congestion avoidance phase with conges-
tion window exhibiting the classic saw-tooth behavior. Be-
fore we present our solution, we describe two variables that
will add in the presentation of our solution.

ConservativeMode: mode of operation during which each
time an ack is sent back towards the TCP source, there is
buffer space for at least two data packets from the source.

Note that if TCP operates in the congestion avoidance
phase, there would be no buffer overflow loss as long as the al-
gorithm operates in conservative mode. This follows from the
fact that, during congestion avoidance phase, TCP increases
its window size by at most one on reception of an ack. This
implies that on reception of an ack, TCP source sends either
one packet (no window increase) or two packets (window in-
crease). Therefore, if there is space for at least two packets in
the buffer at the time of an ack being sent back, there can be
no packet loss.

AckReleaseCount: the sum of total number of acks sent
back towards the source and the total number of data pack-
ets from the source in transit towards the RNC due to pre-
vious acks released, assuming TCP source window is con-
stant.

AckReleaseCount represents the number of packets that
can be expected to arrive in the buffer at the RNC assuming
that the source window size remains constant. Thus, buffer
space equal to AckReleaseCount must be reserved whenever
a new ack is sent back to the source if buffer overflow is to be
avoided.

Figure 6 shows the data and ack flow and the queue vari-
ables involved in the Ack Regulator algorithm, which is pre-
sented in figure 7. We assume for now that the AckRelease-
Count and ConservativeModevariables are as defined earlier.
We later discuss how these variables are updated. The Ack
Regulator algorithm runs on every transmission of a data
packet (deque) and every arrival of an ack packet (enque). The
instantaneous buffer availability in the data queue is main-
tained by the BufferAvail variable (line 2). BufferAvail is then

Figure 6. Ack Regulator implementation.

On Enque of Ack/Deque of data packet:
1. AcksSent = 0;
2. BufferAvail = QueueLim − QueueLength;
3. BufferAvail = AckReleaseCount + ConservativeMode;
4. if (BufferAvail � 1)
5. if (AckSeqNoLast − AckSeqNoFirst < BufferAvail)
5.1 AcksSent+ = AckSeqNoLast − AckSeqNoFirst;
5.2 AckSeqNoFirst = AckSeqNoLast;

else
5.3 AckSeqNoFirst+ = BufferAvail;
5.4 AcksSent+ = BufferAvail;
5.5 Send acks up to AckSeqNoFirst;

Figure 7. Ack Regulator processing at the RNC.

reduced by the AckReleaseCount and the ConservativeMode
variables (line 3).

Depending on the value of the ConservativeMode variable
(1 or 0), the algorithm operates in two modes, a conservative
mode or a non-conservative, respectively. In the conservative
mode, an extra buffer space is reserved in the data queue to
ensure that there is no loss even if TCP congestion window
is increased by 1, while, in the non-conservative mode, a sin-
gle packet loss occurs if TCP increases its congestion window
by 1. Now, after taking AckReleaseCount and Conservative-
Mode variables into account, if there is at least one buffer
space available (line 4) and, if the number of acks present in
the ack queue AckSeqNoLast − AckSeqNoFirst is lesser than
BufferAvail, all those acks are sent to the source (lines 5.1,
5.2); otherwise only BufferAvail number of acks are sent to
the source (lines 5.3, 5.4).

Note that the actual transmission of acks (line 5.5) is not
presented here. The transmission of AcksSent acks can be
performed one ack at a time or acks can be bunched together
due to the cumulative nature of TCP acks. However, care
must be taken to preserve the duplicate acks since the TCP
source relies on the number of duplicate acks to adjust its con-
gestion window. Also, whenever three or more duplicate acks
are sent back, it is important that one extra buffer space be
reserved to account for the fast retransmission algorithm. Ad-
ditional buffer reservations of two packets to account for the



TCP/IP PERFORMANCE OVER 3G WIRELESS LINKS WITH RATE AND DELAY VARIATION 89

1. Initialize ConservativeMode = 1; α = 2
2. On Enque of ack packet:

if (DataSeqNoLast − AckSeqNoFirst > α∗QueueLim)
ConservativeMode = 0;

3. On Enque and Drop of data packet:
Conservative Mode = 1;

4. On Enque/Deque of data packet:
if (((DataSeqNoLast − AckSeqNoFirst) < α∗QueueLim/2)

OR (DataQueueLength == 0))
ConservativeMode = 1;

Figure 8. ConservativeMode updates.

1. Initialize AckReleaseCount = 0;
2. On Enque of Ack/Deque of data packet:

(after processing in figure 7)
AckReleaseCount+ = AcksSent;

3. On Enque of data packet:
if (AckReleaseCount > 0)

AckReleaseCount−;
4. On Deque of data packet:

if (DataQueueLength == 0)
AckReleaseCount = 0;

Figure 9. AckReleaseCount updates.

Limited Transmit algorithm [15] can also be provided for, if
necessary.

We now present the algorithm (figure 8) for updating the
ConservativeMode variable which controls the switching of
the Ack Regulator algorithm between the conservative and
the non-conservative modes. The algorithm starts in conserv-
ative mode (line 1). Whenever a targeted TCP window size is
reached (in this case, 2∗QueueLim), the algorithm is switched
into non-conservative mode (line 2). TCP Window Size is
approximated here by the difference between the largest se-
quence number in the data queue and the sequence number
in the ack queue. This is a reasonable approximation in our
case since the wireless link is likely the bottleneck and most
(if not all) of the queuing is done at the RNC. When operat-
ing in the non-conservative mode, no additional buffer space
is reserved. This implies that there will be single loss the next
time the TCP source increases it window size. At the detec-
tion of the packet loss, the algorithm again switches back to
the conservative mode (line 3). This ensures that losses are
of the single loss variety as long as the estimate of AckRe-
leaseCount is conservative. Line 4 in the algorithm results
in a switch back into conservative mode whenever the data
queue length goes to zero or whenever the TCP window size
is halved. This handles the case when TCP reacts to losses
elsewhere in the network and the Ack Regulator can go back
to being conservative. Note that, if the TCP source is ECN
capable, instead of switching to non-conservative mode, the
Ack Regulator can simply mark the ECN bit to signal the
source to reduce its congestion window, resulting in no packet
loss.

We finally present the algorithm for updating the AckRe-
leaseCount variable in figure 9. Since AckReleaseCount es-
timates the expected number of data packets that are arriving

and reserves buffer space for them, it is important to get an ac-
curate estimate. An overestimate of AckReleaseCount would
result in unnecessary reservation of buffers that will not be oc-
cupied, while an underestimate of AckReleaseCount can lead
to buffer overflow loss(es) even in conservative mode due to
inadequate reservation.

With the knowledge of the exact version of the TCP source
and the round trip time from the RNC to the source, it is possi-
ble to compute an exact estimate of AckReleaseCount. How-
ever, since we would like to be agnostic to TCP version as
far as possible and also be robust against varying round trip
times on the wired network, our algorithm tries to maintain
a conservative estimate of AckReleaseCount. Whenever we
send acks back to the source, we update AckReleaseCount by
that many acks (line 2). Likewise, whenever a data packet ar-
rives into the RNC from the source, we decrement the variable
while ensuring that it does not go below zero (line 3).

While maintaining a non-negative AckReleaseCount in
this manner avoids underestimation, it also can result in un-
bounded growth of AckReleaseCount leading to significant
overestimation as errors accumulate. For example, we in-
crease AckReleaseCount whenever we send acks back to the
source; however, if TCP is reducing its window size due to
loss, we cannot expect any data packets in response to the
acks being released. Thus, over time, AckReleaseCount can
grow in an unbounded manner. In order to avoid this scenario,
we reset AckReleaseCount to zero (line 4) whenever the data
queue is empty. Thus, while this reset operation is necessary
for synchronizing the real and estimated AckReleaseCount
after a loss, it is not a conservative mechanism in general
since a AckReleaseCount of zero implies that no buffer space
is currently reserved for any incoming data packets that are
unaccounted for. However, by doing the reset only when the
data queue is empty, we significantly reduce the chance of
the unaccounted data packets causing a buffer overflow loss.
We discuss the impact of this estimation algorithm of AckRe-
leaseCount in section 6.6.

Finally, we assume that there is enough buffer space for the
ack packets in the RNC. The maximum number of ack pack-
ets is the maximum window size achieved by the TCP flow
(α∗QueueLim in our algorithm). Ack packets do not have to
be buffered as is, since storing the sequence numbers is suffi-
cient (however, care should be taken to preserve duplicate ack
sequence numbers as is). Thus, memory requirement for ack
storage is very minimal.

6. Simulation results

In this section, we present detailed simulation results com-
paring the performance of TCP Reno and TCP Sack, in the
presence and absence of the Ack Regulator. First, we study
the effect of variable bandwidth and variable delay using dif-
ferent distributions on the throughput of a single long-lived
TCP flow. Next, we present a model for 3G1X-EVDO (HDR)
system (which exhibits both variable rate and variable delay),
and evaluate the performance of a single TCP flow in the HDR



90 CHAN AND RAMJEE

Figure 10. Simulation topology.

environment. Then, we present the performance of multiple
TCP flows sharing a single HDR wireless link. Finally, we
briefly discuss the impact of different parameters affecting the
behavior of Ack Regulator.

All simulations are performed using ns-2. A number of
changes are made to ns-2 before the target system can be sim-
ulated. In order to simulate variable bandwidth and delay, a
new delay object VarLinkDelay is added. VarLinkDelay in-
herits from the LinkDelay object. The initialization of Var-
LinkDelay object allows the user to specify a specific distri-
bution (e.g., uniform, exponential, normal, lognormal, etc.)
plus the desired mean and standard deviation. The recv()
methods computes the packet transmission time (a function
of the current bandwidth) and propagation time (a function
of the current delay). In order to ensure that packets are de-
livered in order, packet arrival time is computed as the maxi-
mum of the scheduled time and the arrival time of the previous
packet. Ack Regulator is implemented based on the DropTail
object. The modified DropTail object accepts parameters that
makes it implements Ack Regulator functions if the parame-
ter ar_enable_ is turned on.

The simulation topology used is shown in figure 10.
Si, i = 1..n, corresponds to the set of TCP source nodes
sending packets to a set of the TCP sink nodes Mi , i = 1..n.
Each set of Si , Mi nodes form a TCP pair. The RNC is con-
nected to the Mi nodes through a V (virtual) node for simu-
lation purposes. L, the bandwidth between Si and the RNC,
is set to 100 Mb/s and D is set to 1 ms except in cases where
D is explicitly varied. The forward wireless channel is simu-
lated as having rate FR and delay FD, and the reverse wireless
channel has rate RR and delay RD.

Each simulation run lasts for 3600 s (1 h) unless otherwise
specified and all simulations use packet size of 1 Kb. TCP
maximum window size is set to 500 Kb. Using such a large
window size ensures that TCP is never window limited in all
experiments except in cases where the window size is explic-
itly varied.

6.1. Variable delay

In this section, the effect of delay variation is illustrated by
varying FD, the forward link delay. Without modification, the
use of a random link delay in the simulation will result in out-
of-order packets since packet transmitted later with lower de-
lay can overtake packets transmitted earlier with higher delay.
However, since delay variability in our model is caused by

(a) Delay variability.

(b) Different buffer size.

Figure 11. Throughput with variable delay e(x) + 400 − x.

factors that will not result in packet reordering (e.g., process-
ing time variation) and RLP delivers packet in sequence, the
simulation code is modified such that packets cannot reach
the next hop until the packet transmitted earlier has arrived.
This modification applies to all simulations with variable link
delay.

Figure 11(a) shows throughput for a single TCP flow
(n = 1) for FR = 200 Kb/s and RR = 64 Kb/s. FD has an
exponential distribution with a mean that varies from 20 ms
to 100 ms, and RD = 400 ms – mean(FD) so that average
FD + RD is maintained at 400 ms. The buffer size on the
bottleneck link for each run is set to 10, the product of the
mean throughput of (200 Kb/s or 25 pkt/s) and mean link de-
lay (0.4 s). This product will be referred to as the bandwidth-
delay product (BDP) in later sections. Additional delay dis-
tributions like uniform, normal, lognormal, and Poisson were
also experimented with. Since the results are similar, only
plots for an exponential delay distribution are shown.

As expected, when the delay variation increases, through-
put decreases for both TCP Reno and TCP Sack. By increas-
ing the delay variance from 20 to 100, throughput of TCP
Reno decreases by 30% and TCP Sack decreases by 19%. On
the other hand, TCP Reno and TCP Sack flows which are Ack
Regulated are much more robust and its throughput decreases



TCP/IP PERFORMANCE OVER 3G WIRELESS LINKS WITH RATE AND DELAY VARIATION 91

Table 3
Parameters from simulation for variance = 100.

Item Rate (Kb/s) TD TO p1 p2 p3 Wf

Reno 129 496 114 0.34 0.3 0.38 19
Reno+AR 184 302 8 0.98 0.0 0.02 24
Sack 160 434 4 0.99 0.0 0.01 19
Sack+AR 184 302 8 0.97 0.0 0.03 24

by only 8%. Relatively to one another, Ack Regulator per-
forms up to 43% better than TCP Reno and 19% better than
TCP Sack. Another interesting result is that Ack Regulator
delivers the same throughput irrespective of whether the TCP
source is Reno or Sack. This is understandable given the fact
that the Ack Regulator tries to ensure that only single buffer
overflow loss occurs and in this regime, Reno and Sack are
known to behave similarly. This property of Ack Regulator is
extremely useful since for a flow to use TCP Sack, both the
sender and receiver needs to be upgraded. Given that there
are still significant number of web servers that have not yet
been upgraded to TCP Sack [25], deployment of Ack Regu-
lator would ensure excellent performance irrespective of the
TCP version running.

Figure 11(b) shows how throughput varies with buffer size
with the same set of parameters except for FD, which is now
fixed with a mean of 50 ms (exponentially distributed). Even
with a very small buffer of 5 packets (0.5 BDP), Ack Reg-
ulator is able to maintain a throughput of over 80% of the
maximum throughput of 200 Kb/s. Thus, Ack Regulator de-
livers robust throughput performance across different buffer
sizes. This property is very important in a varying rate and
delay environment of a wireless system, since it is difficult
to size the system with an optimal buffer size, given that the
BDP also varies with time. For a buffer of 4 packets, the im-
provement over TCP Reno and Sack is about 50% and 24%,
respectively. As buffer size increases, the throughput differ-
ence decreases. With buffer size close to 20 packets (2 BDP),
TCP Sack performs close to Ack Regulated flows, while im-
provement over TCP Reno is about 4%.

Finally, in table 3, we list parameter values from the sim-
ulation for delay variance of 100. First, consider Reno and
Reno with Ack Regulator (first two rows). It is clear that Ack
Regulator is able to significantly reduce the conditional prob-
ability of multiple losses p2 and p3 as well as absolute num-
ber of loss events (TD and TO) resulting in substantial gains
over Reno. Next, consider Sack and Sack with Ack Regulator
(last two rows). In this case, we can see that Sack is very ef-
fective in eliminating most of the timeout occurrences. How-
ever, Ack Regulator is still able to reduce the absolute number
of loss events by allowing the congestion window to grow to
higher values (24 vs. 19), resulting in throughput gains.

6.2. Variable bandwidth

In this section, we vary the link bandwidth, FR. Figure 12(a)
shows throughput for a single TCP flow. FR is uniformly
distributed with a mean of 200 Kb/s and the variance is var-
ied from 20 to 75. FD = 200 ms, RR = 64 Kb/s and

(a) Delay variability.

(b) Different buffer size.

Figure 12. Throughput with variable bandwidth u(200, x).

RD = 200 ms. The buffer size on the bottleneck link for each
run is 10. Again, we have experimented with other band-
width distributions, but, due to lack of space, only uniform
distribution is shown. Note that, with variable rate, the max-
imum throughput achievable is different from the mean rate.
For uniform distribution, a simple closed form formula for the
throughput is simply

1∫ b

a
1/x dx

= 1

ln b − ln a

where b is the maximum rate and a is the minimum rate.
When the rate variance increases, throughput of TCP Reno

decreases as expected. Compared to TCP Reno, Ack Regu-
lator improves the throughput by up to 15%. However, TCP
Sack performs very well and has almost the same throughput
as Ack Regulated flows. Based on the calculations for max-
imum throughput discussed before, it can be shown that all
flows except Reno achieve maximum throughput. This shows
that if rate variation is not large enough, TCP Sack is able to
handle the variability. However, for very large rate variations
(e.g., rate with lognormal distribution and a large variance),
the performance of TCP Sack is worse than when Ack Regu-
lator is present.



92 CHAN AND RAMJEE

(a) Throughput vs. buffer size.

(b) rtt vs. buffer size.

Figure 13. Throughput and rtt for u(200, 50), 350 + e(50).

Figure 12(b) shows how the throughput varies with buffer
size. Note that with a lower throughput, bandwidth delay
product is smaller than 10 packets. Again, Ack Regulated
TCP flows perform particularly well when the buffer size is
small. With buffer size of 5, the improvement over TCP Sack
is 40%.

6.3. Variable delay and bandwidth

In this section, we vary both the bandwidth and delay of the
wireless link. FR is uniformly distributed with a mean of
200 Kb/s and variance of 50, DR is exponentially distributed
with a mean of 50 ms, RR = 64 Kb/s and RD = 350 ms. The
maximum achievable throughput is 186.7 Kb/s. The BDP is
therefore about 9 packets.

Figure 13(a) shows the throughput for a single TCP flow
with the buffer size ranging from 7 to 20. The combina-
tion of variable rate and delay has a large negative impact on
the performance of TCP Reno and it is only able to achieve
70–80% of the bandwidth of Ack Regulated flows when the
buffer size is 6 packets. Even with a buffer size of 18 pack-
ets, the throughput difference is more than 5%. Throughput
of TCP Sack is about 5–10% lower than Ack Regulator, until
the buffer size reaches 18 packets (about 2 BDP).

Table 4
HDR data rates for a one user system.

Rate (Kb/s) Probability Rate (Kb/s) Probability

38.4 0.012 614.4 0.069
76.8 0.002 921.6 0.066

102.6 0.008 1228.8 0.234
153.6 0.005 1843.2 0.185
204.8 0.015 2457.6 0.358
307.2 0.045

One of the cost of using the Ack Regulator is the increase
in average round trip time (rtt). The average rtt values for all
4 types of flows are shown in figure 13(b) for different buffer
sizes. TCP Reno has the lowest rtt followed by TCP Sack
and the rate of rtt increase with buffer size is comparable.
With Ack Regulator, rtt increase is comparable with unreg-
ulated flows for buffer size less than 9 (1 BDP). For larger
buffer sizes, since Ack Regulator uses α = 2 times buffer
size to regulate the acks in conservative mode, rtt increases
faster with buffer size than regular TCP, where only the data
packet buffer size contributes to rtt. For example, with buffer
size of 9, Ack Regulated flows have a rtt 15% larger and with
buffer size of 18, the rtt is 48% larger compared to TCP Sack.
This effect can be controlled by varying the α parameter of
the Ack Regulator.

6.4. Simulation with High Data Rate

High Data Rate (HDR) [6] is a Qualcomm proposed CDMA
air interface standard (3G1x-EVDO) for supporting high
speed asymmetrical data services. One of the main ideas be-
hind HDR is the use of channel-state based scheduling which
transmits packets to the user with the best signal-to-noise ra-
tio. The actual rate available to the selected user depends on
the current signal-to-noise ratio experienced by the user. The
higher the ratio, the higher the rate available to the user. In
addition, in order to provide some form of fairness, a Pro-
portional Fair scheduler is used which provides long-term
fairness to flows from different users. We use Qualcomm’s
Proportional Fair scheduler [6] in our simulation with an aver-
aging window of 1000 time slots, where each slot is 1.67 ms.
While the HDR system results in higher raw throughput, the
rate and delay variation seen is substantial.

In this section, we model a simplified HDR environment in
ns-2 using a new queue object HDR, focusing on the layer 3
scheduling and packet fragmentation. The implementation of
the HDR object is based on PacketSFQ, which allows per-
flow queuing. The fading model for the wireless link used
is based on Jake’s Rayleigh fading channel model [17] with
a base 4 dB signal-to-noise ratio.4 The channel model gives
us the instantaneous signal-to-noise ratio. Using table 2 in [6]
which lists the rate achievable for a given signal-to-noise ratio
assuming a frame error rate of less than 1%, the achievable
bandwidth distribution (with one user) for our simulation is
shown in table 4.

4 The simulations in [11] used a slightly different HDR model and a base
value of 0 dB.



TCP/IP PERFORMANCE OVER 3G WIRELESS LINKS WITH RATE AND DELAY VARIATION 93

(a) Throughput.

(b) rtt.

Figure 14. Throughput/rtt with HDR, single flow.

The simulation settings are as follows. FR is a variable
that has a bandwidth distribution of table 4, due to the vari-
ations of the fading conditions of the channel. Based on the
guidelines from [27], FD is modeled as having a uniform dis-
tribution with mean 75 ms and variance 30 and RD is modeled
as having a uniform distribution with mean 125 ms and vari-
ance 15. These are conservative estimates. We expect delay
variations in actual systems to be higher (for example, note
the ping latencies from our experiment in section 3). The
uplink in a HDR system is circuit-based and RR is set to be
64 Kb/s which ensures that there is no bandwidth constraint
in the reverse link for returning Acks.

Figure 14(a) shows how throughput for a single TCP flow
varies with buffer size. Assuming an average bandwidth of
600 Kb/s and a link delay of 200 ms, BDP is 15 packets.

Again, the performance of TCP Reno flows that are Ack
Regulated is significantly better than plain TCP Reno over the
range of buffer size experimented, with improvements from
16% to 103%. TCP Sack flows also performs worse than Ack
Regulated flows up to buffer size of 20. The improvement of
Ack Regulator over TCP Sack ranges from 3% to 57%.

As mentioned earlier, one of the costs of using the Ack
Regulator is increase in average rtt. The average rtt for all
4 types of flows are shown in figure 14(b) with buffer size

(a) Reno.

(b) Reno w/AR.

Figure 15. TCP window evolution without and with AR.

varying from 5 to 50. The effect is similar to the rtt variation
with buffer size seen in section 6.3.

An interesting way to illustrate the benefits of Ack Regu-
lator is to look at figure 15, which shows how the TCP con-
gestion window for a single TCP Reno flow without and with
Ack Regulator. From the two figures, it can be observed that
Ack Regulator changes TCP window evolution to be closer
to the classic saw-tooth behavior. The higher throughput
achieved by Ack Regulator can be explained as follows. First,
the number of multiple packet drops that result in sharp de-
crease in window size is substantially reduced. This effect
is more important for TCP Reno than TCP Sack. Next, the
average TCP window size is higher and the number of loss
events is reduced. By allowing TCP to operate at a higher
average window and with less backoff, throughput increases.
This improvement applies to both TCP Reno and Sack.

6.5. Multiple TCP flows

In this simulation, the number of flows (n) sharing the bottle-
neck link is increased to 4 and 8. Per-flow buffering is pro-
vided for each TCP flow. For 4 flows, using mean rate of
300 Kb/s, 1 KB packet and rtt of 0.2 s, BDP is 8 packets per



94 CHAN AND RAMJEE

(a) 4 TCP flows.

(b) 8 TCP flows.

Figure 16. Throughput with HDR, multiple flows.

flow. For 8 flows, using mean rate of 140 Kb/s, 1 KB packet
and rtt of 0.2 s, BDP is 3.5 or 4 packets per flow.

As the number of TCP flows increases, the expected rate
and delay variation seen by individual flows also increases.
Thus, even though the total throughout of the system in-
creases with more users due to channel-state based schedul-
ing, the improvement is reduced by the channel variability.

Figure 16(a) shows the throughput for 4 TCP flows. The
improvement of Ack Regulator over TCP Sack increases
compared to the single TCP case. For example, the gain is
about 30% with per-flow buffer size of 8 (BDP). For Reno
the gain is even greater. With per-flow buffer size of 8, the
improvement is 87%. Similar result can also be observed for
the case of 8 TCP flows as shown in figure 16(b). For both
TCP Reno and Sack, the gain is about 36% and 19%, respec-
tively, for per-flow buffer size of 4. From the figure, it can
seen that, for TCP Sack and Reno to achieve close to maxi-
mum throughput without Ack Regulator, at least three times
the buffer requirements of Ack Regulator is necessary (buffer
requirements for acks in the Ack Regulator is negligible com-
pared to the 1 KB packet buffer since only the sequence num-
ber needs to be stored for the acks). This not only increases
the cost of the RNC, which needs to support thousands of ac-

tive flows, it also has the undesirable side-effects of large rtt’s
that was noted in section 3.

With multiple TCP flows, the issue of throughput fair-
ness naturally arises. One way to quantify how bandwidth
is shared among flows is to use the fairness index described
in [16]. This index is computed as the ratio of the square of
the total throughput to n times the square of the individual
flow throughput. If all flows get the same allocation, then the
fairness index is 1. As the differences in allocation increases,
fairness decreases. A scheme which allocates bandwidth to
only a few selected users has a fairness index near 0.

For the case of 4 TCP flows, TCP Reno has larger fairness
indexes than TCP Sack; adding Ack Regulator reduces the
fairness index slightly. All fairness indexes lie between 0.971
to 1.000. The results are similar for the case of 8 TCP flows
except that the fairness indexes are lower. The values range
from 0.928 to 0.998. Increasing the number of TCP flows
reduces the fairness among TCP flows, even in the presence
of the proportional fair scheduler. One way to increase fair-
ness is to reduce the number of slots in the averaging window
of the proportional fair scheduler but this may also result in
reduced overall throughput.

6.6. Parameters affecting the performance of Ack Regulator

In this section, we investigate the impact of a number of pa-
rameters that govern the operation of the Ack Regulator. The
simulation setting of the HDR link in section 6.4 is used pa-
rameters that govern the operation of the Ack Regulator. The
simulation setting of the HDR link in section 6.4 is used and
only TCP Reno is simulated.

6.6.1. Effect of α

Recall that the parameter α is used to control when the Ack
Regulator enters or leaves conservative mode. In conservative
mode, buffer space is reserved so that the chance of packet
loss is minimal and Ack Regulator goes into non-conservative
mode when the window size is greater than α times buffer
size. Increasing α means that loss is delayed until the window
size is much larger, thereby increasing bandwidth. However,
a larger α also implies that the rtt will be larger, as there are
more ack packets in the queue. The increase in rtt will not
reduce throughput significantly unless the sender is window
limited. Thus, a larger α usually trades rtt for bandwidth and
vice versa.

Figures 17(a), (b) shows the TCP throughput and rtt of
flows with different values of α. It is clear that as α is in-
creased from 1 to 4, rtt increases because more acks are held
back for larger α.

However, the throughput results are different. When α in-
creases from 1 to 2, throughput increases for the same buffer
size. When α � 3, throughput decreases for larger buffer
sizes (>15). The decrease in throughput is caused by the ac-
cumulation of sufficiently large amount of duplicate acks that
are sent to the TCP sender. In fast recovery mode, the sender’s
usable congestion window is given by cwnd + ndup, where
cwnd is the sender’s congestion window and ndup the num-



TCP/IP PERFORMANCE OVER 3G WIRELESS LINKS WITH RATE AND DELAY VARIATION 95

(a) Throughput.

(b) Delay.

Figure 17. TCP throughput and delay with different α.

ber of duplicate acks [12]. Since the Ack Regulator forwards
additional duplicate acks without reserving buffer, if the sum
of the current window size and the total number of duplicate
acks received by the TCP sender exceeds the sender’s previ-
ous window size, the sender sends new packet for each ad-
ditional duplicate ack received. These new packets may be
dropped at the RNC causing multiple packet losses. As a re-
sult, without adding a mechanism in the Ack Regulator to
handle excessive number of duplicate acks, α should be kept
small (< 3) in order to avoid accumulating too many dupli-
cate acks.

One way around this tradeoff between rtt and bandwidth is
to make α dependent on the buffer size so that when the buffer
is small, a larger α is used (resulting in higher throughput)
and when the buffer is large, a smaller α is used (resulting
in same throughput but smaller rtt). Maintaining a target of
α times buffer size to be around two times BDP seems to be
a good region of operation. We are currently investigating
such an adaptive algorithm that estimates the variable BDP
and chooses α accordingly.

Figure 18. HDR throughput vs. maximum TCP window size.

6.6.2. Effect of maximum congestion window size
In all the previous experiments, the maximum congestion
window size was set to 500 KB. This value was never reached,
resulting in no impact on the results. In this section, the maxi-
mum congestion window size is varied and the impact of win-
dow limitation is studied. The buffer size is set to one BDP
(15 KB).

Figure 18 shows how TCP throughput is affected by max-
imum congestion window size for the various TCP flows. For
window size less than 15 KB, all flows have similar perfor-
mance because TCP is window limited and has a throughput
of window size over rtt (and incurs no buffer overflow loss).
As the window size limit is increased beyond this value, TCP
throughputs for Reno and Sack start dropping since now the
congestion window exhibits the classic saw-tooth behavior.
For Reno, the throughput drops significantly due to the pos-
sibility of multiple packet drops. Throughput of TCP Sack
also drops but to a smaller degree because of its ability to
handle multiple losses. The throughput of Ack Regulated
flows continue to increase with increasing congestion win-
dow size since Ack Regulator is able to handle the delay and
bandwidth variation. Beyond window size of 40, through-
put stabilizes and is limited by the average delay and chan-
nel rate. For TCP Reno and Sack flows, throughput also
stabilizes beyond congestion window size of 20. This is be-
cause due to packet loss and timeout, larger congestion win-
dow sizes are seldom attained even though the values are al-
lowed.

6.7. Summary of results and discussion

In this section, we first summarize the results from the sim-
ulation experiments and then briefly touch upon other is-
sues.

We first started with experiments using a wireless link with
variable delay. We showed that Ack Regulator delivers per-
formance up to 43% better than TCP Reno and 19% better
than TCP Sack when the buffer size was set to one BDP.
We then examined the impact of a wireless link with variable
rate. We saw that when the rate variance increases, through-



96 CHAN AND RAMJEE

put of TCP Reno decreases as expected. Compared to TCP
Reno, Ack Regulator improves the throughput by up to 15%.
However, TCP Sack performs very well and has almost the
same throughput as Ack Regulated flows as long variable de-
lay and variable rate. We found that this combination had a
large negative impact on the performance of both TCP Reno
and Sack (up to 22% and 10% improvement, respectively, for
Ack Regulated flows). We then considered a specific wireless
link standard called HDR which exhibits both variable delay
and variable rate. The gains of Ack Regulator over normal
TCP flows were even greater in this case, with Ack Regula-
tor improving TCP Reno performance by 16–103% and TCP
Sack by 3–57%. We then evaluated the impact of multiple
TCP flows sharing the HDR link. The gains of Ack Regula-
tor were as expected (with 30–87% improvements) when the
buffer size is set to one BDP.

In general, we showed that Ack Regulator delivers the
same high throughput irrespective of whether the TCP flow
is Reno or Sack. We further showed that Ack Regulator de-
livers robust throughput performance across different buffer
sizes with the performance improvement of Ack Regulator
increasing as buffer size is reduced.

We only considered TCP flows towards the mobile host
(for downloading-type applications) since links like HDR are
designed for such applications. In the case of TCP flows in
the other direction (from the mobile host), Ack Regulator can
be implemented, if necessary, at the mobile host to optimize
the use of buffer on the wireless interface card.

Finally, Ack Regulator cannot be used if the flow uses end-
to-end IPSEC. This is also true for all performance enhancing
proxies. However, we believe that proxies for performance
improvement are critical in current wireless networks. In or-
der to allow for these proxies without compromising security,
a split security model can be adopted where the RNC, under
the control of the network provider, becomes a trusted ele-
ment. In this model, a VPN approach to security (say, using
IPSEC) is used on the wireline network between the RNC and
the correspondent host and 3G authentication and link-layer
encryption mechanisms are used between the RNC and mo-
bile host. This allows the RNC to support proxies such as the
Ack Regulator to improve performance without compromis-
ing security.

7. Conclusion

In this paper, we comprehensively evaluated the impact of
variable rate and variable delay on TCP performance. We first
proposed a model to explain and predict TCP’s throughput
over a link with variable rate and delay. Our model was able to
accurately (better than 90%) predict throughput of TCP flows
even in the case of large delay and rate variation. Based on
our TCP model, we proposed a network based solution called
Ack Regulator to mitigate the effect of rate and delay variabil-
ity. The performance of Ack Regulator was evaluated exten-
sively using both general models for rate and delay variability
as well as a simplified model of a 3rd Generation high speed

wireless data air interface. Ack Regulator was able to im-
prove the performance of TCP Reno and TCP Sack by up to
100% without significantly increasingly the round trip time.
We also showed that Ack Regulator delivers the same high
throughput irrespective of whether the TCP source is Reno
or Sack. Furthermore, Ack Regulator also delivered robust
throughput performance across different buffer sizes. Given
the difficulties in knowing in advance the achievable through-
put and delay (and hence the correct BDP value), a scheme,
like Ack Regulator, which works well for both large and small
buffers is essential. In summary, Ack Regulator is an effec-
tive network-based solution that significantly improves TCP
performance over wireless links with variable rate and de-
lay.

References

[1] E. Altman, K. Avrachenkov and C. Barakat, A stochastic model of
TCP/IP with stationary random loss, in: Proceedings of SIGCOMM
2000 (2000) pp. 231–242.

[2] F. Baccelli and D. Hong, TCP is max-plus linear, in: Proceedings of
SIGCOMM 2000 (2000) pp. 219–230.

[3] A. Bakre and B.R. Badrinath, Handoff and system support for indi-
rect TCP/IP, in: Proceedings of 2nd Usenix Symposium on Mobile and
Location-Independent Computing (April 1995) pp. 11–24.

[4] H. Balakrishnan et al., Improving TCP/IP performance over wireless
networks, in: Proceedings of ACM Mobicom (November 1995) pp. 2–
11.

[5] H. Balakrishnan, V.N. Padmanabhan and R.H. Katz, The effects of
asymmetry on TCP performance, in: Proceedings ACM/IEEE Mobi-
com (September 1997) pp. 77–89.

[6] P. Bender et al., A bandwidth efficient high speed wireless data ser-
vice for nomadic users, IEEE Communications Magazine (July 2000)
pp. 70–77.

[7] P. Bhagwat et al., Enhancing throughput over wireless LANs using
channel state dependent packet scheduling, in: Proceedings IEEE IN-
FOCOM’96 (1996) pp. 1133–1140.

[8] K. Brown and S. Singh, M-TCP: TCP for mobile cellular networks,
ACM Computer Communications Review 27(5) (1997) 19–43.

[9] A. Canton and T. Chahed, End-to-end reliability in UMTS: TCP over
ARQ, in: Proceedings of Globecomm (2001) pp. 3473–3477.

[10] R. Chakravorty et al., Flow aggregation for enhanced TCP over wide-
area wireless, in: Proceedings of INFOCOM (2003) pp. 1754–1764.

[11] M. Chan and R. Ramjee, TCP/IP performance over 3G wireless links
with rate and delay variation, in: Proceedings of ACM Mobicom (2002)
pp. 71–82.

[12] K. Fall and S. Floyd, Simulation-based comparisons of Tahoe, Reno
and SACK TCP, ACM Computer Communication Review 26(3) (1996)
5–21.

[13] P.M. Garrosa, Interactions between TCP and channel type switching in
WCDMA, Master of Science Thesis, Chalmers University, Polytechni-
cal University of Madrid (January 2002).

[14] G. Holland and N.H. Vaidya, Analysis of TCP performance over mobile
ad hoc networks, in: Proceedings of ACM Mobicom’99 (1999) pp. 219–
230.

[15] H. Inamura et al., TCP over 2.5G and 3G wireless networks, draft-ietf-
pilc-2.5g3g-07 (August 2002).

[16] R. Jain, The Art of Computer Systems Performance Analysis (Wiley,
1991).

[17] W.C. Jakes (ed.), Microwave Mobile Communications (Wiley, 1974).
[18] F. Khafizov and M. Yavuz, TCP over CDMA2000 networks, Internet

Draft, draft-khafizov-pilc-cdma2000-00.txt



TCP/IP PERFORMANCE OVER 3G WIRELESS LINKS WITH RATE AND DELAY VARIATION 97

[19] T.V. Lakshman and U. Madhow, The performance of networks with
high bandwidth-delay products and random loss, IEEE/ACM Transac-
tions on Networking (June 1997) pp. 336–350.

[20] R. Ludwig et al., Multi-layer tracing of TCP over a reliable wireless
link, in: Proceedings of ACM Sigmetrics (1999) pp. 144–154.

[21] R. Ludwig and R.H. Katz, The Eifel algorithm: Making TCP ro-
bust against spurious retransmissions, ACM Computer Communica-
tions Review 30(1) (2000) 30–36.

[22] V. Misra, W. Gong and D. Towsley, Stochastic differential equation
modeling and analysis of TCP windowsize behavior, in: Proceedings
of Performance’99 (1999).

[23] Modeling TCP throughput: a simple model and its empirical validation,
in: Proceedings of SIGCOMM 1998 (1998) pp. 303–314.

[24] P. Narvaez and K.-Y. Siu, New techniques for regulating TCP flow over
heterogeneous networks, in: Proceedings of LCN’98 (1998) pp. 42–51.

[25] J. Padhye and S. Floyd, On inferring TCP behavior, in: Proceedings of
SIGCOMM 2001 (2001) pp. 287–298.

[26] S. Paul et al., An asymmetric link-layer protocol for digital cellular
communications, in: Proceedings of INFOCOM 1995 (1995) pp. 1053–
1062.

[27] QUALCOMM, Delays in the HDR System (June 2000).
[28] Third Generation Partnership Project, RLC Protocol Specification (3G

TS 25.322:) (1999).
[29] TIA/EIA/cdma2000, Mobile Station – Base Station Compatibility

Standard for Dual-Mode Wideband Spread Spectrum Cellular Systems,
Washington, Telecommunication Industry Association (1999).

[30] TIA/EIA/IS-707-A-2.10, Data Service Options for Spread Spectrum
Systems: Radio Link Protocol Type 3 (January 2000).

[31] S. Karandikar et al., TCP rate control, ACM Computer Communication
Review (January 2000) pp. 44–58.

[32] 3G Partnership Project, Release 99.

Mun Choon Chan received the B.S. degree from Purdue University, West
Lafayette, IN, in 1990 and the M.S. and Ph.D. degrees from Columbia Uni-
versity, NY, in 1993 and 1997, respectively, all in electrical engineering.
From 1991 to 1997, he was a member of the COMET Research Group, work-
ing on ATM control and management. Since 1997, he has been a Member of
the Technical Staff at Bell Laboratories, Lucent Technologies, Holmdel, NJ.
His current research include wireless data networking and network manage-
ment. Dr. Chan has published over 20 technical papers and holds 3 patents.
He is a member of the ACM and IEEE, and served on the Technical Program
Committee of IEEE INFOCOM 2000–2003.
E-mail: munchoon@lucent.com

Ramachandran Ramjee received his B.Tech. in computer science and en-
gineering from the Indian Institute of Technology, Madras, and his M.S. and
Ph.D. in computer science from University of Massachusetts, Amherst. He
has been at Bell Labs, Lucent Technologies since 1996, where he is currently
a Distinguished Member of Technical Staff. His research interests include
protocols, architecture, and performance issues in wireless and high speed
networks. Dr. Ramjee is an associate editor of IEEE Transactions on Mobile
Computing and a technical editor of IEEE Wireless Communications Maga-
zine. He has published over 25 technical papers and holds 9 U.S. patents.
E-mail: ramjee@bell-labs.com


