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Abstract
Antimicrobial peptides (AMPs) are small peptides existing in nature as an important part of the innate immune system in 
various organisms. Notably, the AMPs exhibit inhibitory effects against a wide spectrum of pathogens, showcasing potential 
applications in different fields such as food, agriculture, medicine. This review explores the application of AMPs in the food 
industry, emphasizing their crucial role in enhancing the safety and shelf life of food and how they offer a viable substitute for 
chemical preservatives with their biocompatible and natural attributes. It provides an overview of the recent advancements, 
ranging from conventional approaches of using natural AMPs derived from bacteria or other sources to the biocomputational 
design and usage of synthetic AMPs for food preservation. Recent innovations such as structural modifications of AMPs to 
improve safety and suitability as food preservatives have been discussed. Furthermore, the active packaging and creative 
fabrication strategies such as nano-formulation, biopolymeric peptides and casting films, for optimizing the efficacy and 
stability of these peptides in food systems are summarized. The overall focus is on the spectrum of applications, with special 
attention to potential challenges in the usage of AMPs in the food industry and strategies for their mitigation.
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Introduction

Outbreaks of foodborne diseases listed on FDA website 
reveal a dangerous trend. A total of 24 outbreaks are men-
tioned in 2023 resulting in illness or hospitalization (https://​
www.​fda.​gov/​food/​outbr​eaks-​foodb​orne-​illne​ss/​inves​tigat​
ions-​foodb​orne-​illne​ss-​outbr​eaks). Some food microbes 
such as strains of Listeria monocytogenes, Salmonella, 
Escherichia coli are pathogenic and responsible for severe 
diseases; nevertheless, there are other microbes including 
but not limited to Brochothrix thermosphacta, Carnobacte-
rium spp., Lactobacillus spp., Lactococcus spp., that may not 

cause illnesses, yet food spoilage caused by these microbes 
can be economically devastating. The actual amount of eco-
nomic loss caused by food spoilage is unknown, although 
it is believed that 25% of food produced worldwide is lost 
owing to spoilage microbes (Bondi et al. 2014). Reducing 
food spoilage and FBDs is the main goal of using food pres-
ervation techniques, such as thermal or non-thermal treat-
ments, food additives, and improved packaging. Artificial 
preservatives like sorbates, nitrites, and benzoates inhibit 
microbial activity, antioxidants like formaldehyde, butylated 
hydroxytoluene, and butylated hydroxyanisole are used to 
stop food from oxidizing. However, a growing number of 
individuals are looking for minimally processed foods free 
of artificial substances because they are worried about the 
safety of chemical preservatives.

Antimicrobial peptides (AMPs) are a diverse class of 
molecules that all living things produce and are consid-
ered a part of innate immunity. These are sometimes also 
referred to as peptide antibiotics (Zasloff 2002). They are 
peptides that range in size from 7 to 100 amino acids. A lot 
of research interest has been generated by AMPs' capac-
ity to fight bacteria that are resistant to drugs. Additionally, 
some AMPs have immune-modulatory qualities that support 
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pathogen clearance in an indirect manner. They have found 
a role in diverse fields such as healthcare, agriculture, and 
the food industry. These peptides are classified based on 
their diverse sources, amino acid composition, activity, and 
structural attributes (Huan et al. 2020). Sources of AMPs 
encompass animals, plants, microorganisms, and recently 
synthetic AMPs. AMPs grouped on the basis of their amino 
acid composition include peptides rich in either proline, 
glycine, histidine, or tryptophan, while their activity can be 
characterized as either broad-spectrum or specific to cer-
tain pathogens. Structural classifications include α-helical, 
β-sheet, loop, and extended peptides. Mechanisms of action 
of AMPs include killing microbes by disrupting the cell 
membrane, inhibiting the production of proteins and nucleic 
acids, or binding to specific targets inside the cell, ultimately 
leading to cell death (Yonezawa et al. 1992; Graf et al. 2017; 
Boix-Lemonche et al. 2020).

Researchers are currently investigating the potential of 
AMPs to inhibit the growth of microbes, for extending 
the shelf life of various food products, and prevention of 
FBDs (Zhang et al. 2021; Baindara and Mandal 2022; Jha 
and Singh 2023). Nevertheless, there are still a number of 
technical obstacles that need to be addressed before AMPs 
may be used in food preservation. These include issues 
with large-scale synthesis, toxicity, haemolytic activity, 
stability, immunogenicity, and other possible drawbacks. 
Recent research investigations have focused on a number 
of solutions intended to alleviate the aforementioned limi-
tations. These comprise rational design and modification 

of AMPs, biocomputational and bioinformatics analysis 
based in silico designing and active packaging systems 
(Agyei et al. 2018; Aguilera-Puga et al. 2023; Jordan et al. 
2024).

AMPs derived from variety of sources 
as preservatives in different food types

In response to customer demands for safer and more nat-
ural food preservation techniques, AMPs present a pos-
sible substitute for conventional chemical preservatives. 
In addition to antimicrobial activity, AMPs have dem-
onstrated antioxidant activity, which is of interest to the 
food industry (Lima et al. 2019). Some of the AMPs have 
the potential of being used as food additives and are clas-
sified as ‘Generally Regarded as Safe’ (GRAS) such as 
natural variants of Nisin (Nisin-A, Z, F, Q, U, U2, H, P) 
which are among the most important FDA approved AMPs 
as food preservative (Field et al. 2023). There are many 
similar approved/GRAS AMPs which include but not lim-
ited to Natamycin (Meena et al. 2021), Enterocin AS-48 
(Dijksteel et al. 2021), Lactoferricin (Singh et al. 2023), 
ε-Polylysine and Pediocin PA-1 (Luz et al. 2018; Santos 
et al. 2018). Several AMPs have been evaluated for their 
potential to inhibit microbes in a number of food matrices, 
some of which are summarized as follows or in Table 1.

Table 1   Details of various AMPs evaluated against microbes in different foods

S.N Name of the AMP Source Mechanism of action Target microbes Food References

11SGP and RBAH Pea and Red kidney 
bean

Antibacterial and 
antioxidant

Bacterial and fungal 
species

Buffalo meat El-Saadony et al. 
(2021)

Glycinin basic
peptide

Soybean Suppression of spore 
germination

Aspergillus niger and
Penicillium spp.

Wet noodles Hou et al. (2017)

Iturin V Lactobacillus sp. M31 Disintegration of cell 
wall

Vibrio species Fish Singh et al. (2021)

EAFP1 Eucommia ulmoides Interfere with elonga-
tion of fungal cell 
wall

Pathogenic fungal 
species

Tomato, Wheat Huang et al. (2002)

ABP Momordica charan-
tia L

Destroying the cell 
membrane of 
bacteria

Staphylococcus 
aureus,

Escherichia coli

Minced meat
products

Jabeen and Khanum 
(2017)

Enterocin AS-48 Enterococcus faecalis 
A-48–32

Endospore structure 
disarray

Alicyclobacillus aci-
doterrestris

Fruit juices Grande et al. (2005)

Mytimacin-4 Mytilus galloprovin-
cialis

Attack intracellular 
structures

Pork spoilage bacteria Pork Dong et al. (2024)

Melittin Apis mellifera Membrane disruption S. aureus, E. coli,
Listeria monocy-

togenes

Beef Rouhi et al. (2024)

Tilapia
Piscidin 4

Nile tilapia Increase membrane 
permeability

Candida albicans, 
Rhizopus oryzae

Tomato, Fruit juices Hazam et al. (2024)
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Milk and dairy products

Milk and its products are a vital source of nutrition, but 
they are susceptible to spoilage by microorganisms, lead-
ing to economic losses. Natural bio-preservatives, such as 
AMPs, offer a promising solution to preserve milk and its 
products without compromising their nutritional quality or 
safety (Mohanty et al. 2016). A novel AMP named LCWAP 
designed by screening amino acid sequences from the whey 
acidic protein (WAP) of large yellow croaker (Larimichthys 
crocea) exhibited a minimal inhibitory concentration (MIC) 
of 15.6 μg/mL against Staphylococcus aureus in milk and 
inhibited biofilm formation up to 94.3%, without showing 
cytotoxic effects on normal human hepatocytes (Yang et al. 
2020). Similarly, a peptide Cerein 8A was found to reduce 
Listeria monocytogenes in milk by 3 log cycles over 14 days 
at 4 °C and decreased viable counts by 2 log cycles on con-
taminated cheese surfaces over 30 days (Bizani et al. 2008). 
Another study reported liposome-encapsulated Nisin and 
BLS P34 for preserving Minas frescal cheese by control-
ling L. monocytogenes in which these AMPs showed 88.9 
and 100% entrapment efficiency in liposomes, respectively. 
These treatments significantly reduced the bacterial counts 
compared to the control during 21 days of storage of cheese 
at 7 °C (Malheiros et al. 2012).

Fruits and vegetables

AMPs have shown promise in inhibiting the growth of 
spoilage microorganisms and extending the shelf life of 
fruits and vegetables without the use of synthetic addi-
tives. Overall, the focus of research is shifting towards pre-
serving fruits and vegetables in ways that are both effec-
tive and environmentally friendly. Arulrajah et al. (2021) 
studied antifungal peptides from kenaf seeds to extend 
the shelf life of tomato puree. Mixture of these peptides 
when applied to tomato puree significantly reduced fungal 
counts and delayed growth of Aspergillus niger and Fusar-
ium sp. up to 14 and 23 days at 25 °C and 4 °C respec-
tively. Shwaiki et al. (2020) examined Snakin-1, a peptide 
extracted from potato tubers, against Zygosaccharomyces 
bailii, a yeast responsible for spoilage in different bever-
ages such as Fanta Orange (Coca-Cola, Ireland) (pH 3.1), 
SuperValu (Chilled 169 Cranberry Juice) (pH 2.7) and 
apple juice (CYPRINA) (pH 3.5), and observed a complete 
inhibition of Z. bailii in all juices at 200 µg/mL. A cationic 
antimicrobial peptide PAF56 inhibited spore formation, 
disrupted cell membranes, and was non-toxic to human red 
blood cells when it was evaluated in preservation of citrus 
fruits by targeting Penicillium digitatum, Penicillium itali-
cum, and Geotrichum candidum, demonstrating its poten-
tial as an effective agent for postharvest citrus disease con-
trol (Wang et al. 2021). The antimicrobial peptide CB-M 

was studied by Yang et al. (2023) against Botrytis cinerea, 
a fungus causing Gray mold disease in cherry tomatoes, 
tomatoes, and grapes fruits. Results showed a strong dose 
dependent inhibitory effect on spore survival and mycelial 
growth of B. cinerea thus reducing the disease.

Meat, fish or sea food

Meat and fish are prized for their nutritional value and 
taste, but they are highly perishable due to microbial 
contamination and altered sensory properties because of 
lipid oxidation. Dang et al. (2020) found Musca domes-
tica derived AMPs to increase membrane permeability and 
inhibition of bacterial growth in chilled pork at concentra-
tions 0.4 to 0.8 mg/ml with negligible hemolytic activity 
against human erythrocytes. Nie et al. (2021) designed 
chimeric lysins by fusing Salmonella phage lysin with the 
peptide LeuA-P, which could effectively reduce the micro-
bial counts in contaminated chilled chicken and extend its 
shelf life by seven days. Similar studies have reported the 
use of AMPs to minimize lipid oxidation and reduce the 
bacterial count in meat or meat products (Przybylski et al. 
2016; Jabeen and Khanum 2017). AMPs have also been 
found to play a crucial role in preserving fish or sea food 
by inhibiting microbial growth (Shabir et al. 2018; Ning 
et al. 2019). Sm-A1, a peptide derived from turbot viscera, 
was successfully loaded into poly vinyl alcohol-chitosan 
hydrogel which could effectively protect the salmon mus-
cle from the microbiological contamination and texture 
deterioration (Bi et al. 2020). Peng et al. (2018) investi-
gated the effect of Nisin along with 1% chitosan as pre-
servatives on the quality of Jumbo squid and reported a 
reduction in both microbial growth and nutritional loss.

Cereal crops and their products

AMPs have been found to be effective in protection of 
various cereal crops or their products. Unclean conditions 
in storage godowns make food grain unfit for human con-
sumption due to microbial deterioration. AMPs LR14 were 
studied for the prevention of wheat grain spoilage under 
storage which prevented fungal growth even after a pro-
longed storage for more than 2 years (Gupta and Srivastava 
2014). Furthermore, transgenic technology has been used 
for heterogenous expression of AMPs in crops like rice 
and maize which provides them with resistance against 
phytopathogens (Noonan et al. 2017; Tang et al. 2023). 
Additionally, studies have reported the efficacy of AMPs 
in improving shelf life of cereal derived food products 
such as cakes and noodles (Xiao and Niu 2015; Luz et al. 
2018; Lu et al. 2022).
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Challenges of the AMPs applications

The application of AMPs in general, and particularly for 
food preservation, has many challenges. These include 
high production costs, possible toxicity for eukaryotic 
cells, a lack of stability, antigenicity and development of 
resistance, that need to be addressed. The final fate of the 
AMPs, including their absorption, distribution, metabo-
lism, excretion, and toxicity (ADMET), are other aspects 
to be looked into for efficient therapeutic efficiency (Okella 
et al. 2022).

The major challenge that synthetic AMPs face in their 
application in food preservation is the expensive cost of 
synthesis, which impedes the large-scale production and 
usage of these peptides. The poor stability of AMPs is 
another major challenge due to their susceptibility to the 
action of proteases or other environmental factors such as 
temperature and pH. AMPs stability has also been associ-
ated with geometrical features such as ovality, lipophilic-
ity, radius of gyration, and polar surface area. The ther-
mostability of AMPs is very important in food production 
since thermal treatments are generally used during food 
processing (Al-sahlany et al. 2020).

Another major problem with applications of AMPs is 
their possible toxicity to the host cells. Due to hydrophobic 
structure with positive charges, AMPs have both advantage 
of broad-spectrum bioactivity and problem of potential 
biotoxicity (Wei and Zhang 2022). Although the nonspe-
cific mechanism of action of AMPs is a major advantage 
in terms of broad-spectrum activity encompassing a wide 
range of microorganisms, there may be chances of uptake 
of these AMPs by off-target cells instead or in addition 
to the target cells. It may result in undesired effects on 
eukaryotic cells, leading to toxicity or hemolytic activ-
ity. Natural AMPs with cationic charges can interact with 
negative ions on the surface of the cell membrane, and 
then form oligomers to destroy cells (Spaller et al. 2013). 
These potential toxicities may be reduced by change in 
amino acid composition of peptides or by attachment 
with biomaterials (Wei and Zhang 2022). In addition, 
certain microbiota that are part of the digestive system 
may uptake these AMPs and develop resistance against 
the peptides, resulting in a risk of dissemination of the 
resistance through horizontal gene transfer to pathogens 
(Crits-Christoph et al. 2022; Tajer et al. 2024).

Further, there are many elements in foods such as pro-
teases and peptidases that can react with or interact with 
AMPs, thereby reducing their bioactivity (Udenigwe and 
Fogliano 2017). Also, reactions can occur between amino 
groups on peptides with carbonyl groups on reducing sug-
ars present in foods, resulting in inactive form of peptides 
(Lund and Ray 2017). The need for studies on the behavior 

of AMPs within complex food systems is imperative since 
the effect of some food processing parameters on AMP 
activity, such as temperature and pH, is often studied 
separately.

Improved design or modification of AMPs

There are many strategies for rationally designing AMPs for 
improved efficiency against microbes, reduced toxicity, and 
increased stability (Rai et al. 2016; Giacometti and Buretić-
Tomljanović 2017; Agyei et al. 2018). Important concerns 
in applications of AMPs and designing strategies to mitigate 
these concerns are shown as Fig. 1.

The effective functioning of AMPs requires adherence to 
appropriate design principles. It involves creating the AMP 
units, or AMP moiety, to be available for the best possible 
performance. Even the size and aggregation of the newly 
created peptides affect the functional characteristics of the 
AMPs. In order to achieve the interaction of the proper 
domain, the hydrophilic and hydrophobic regions of a com-
posite AMP assembly should be oriented appropriately, e.g., 
the systematic evolution of ligands by exponential enrich-
ment (SELEX) forms. Certain peptides may operate better 
even when combined with single-stranded oligonucleotide 
versions of nucleic acids (Lee et al. 2022). The biological 
activity of AMPs has been demonstrated to be enhanced 
via hybridization, which involves covalently joining two or 
more peptide segments to reap the benefits of each fragment 
(Tian et al. 2019).

The multiple hurdle concept is another approach wherein 
combinations of natural antimicrobials with nonthermal 
processing technologies such as ultrasound, pulsed-electric 
field, high pressure, and ozone treatment have shown poten-
tial synergistic effects. Applying these nonthermal tech-
niques may cause bacterial cell membranes to deteriorate or 
make them more vulnerable to AMPs, which would increase 
the lethality of these peptides (Molinos et al. 2008).

Various strategies like cyclization, capping, lipidation, 
glycosylation, dimerization/multimerization, dendrimeriza-
tion, phosphorylation, acetylation have been explored for 
increasing the stability of the AMPs (Rounds and Straus 
2020; Bitencourt et al. 2023; Kumari et al. 2023; Mironov 
et al. 2024). Cyclization (Liu et al. 2017) and peptide sta-
pling (Selvarajan et al. 2023) have been employed to enhance 
the stability of the AMPs against proteolytic degradation. 
Another way to improve AMP stability against proteases is 
to cap the AMPs. Attaching an acyl group or hydrophobic 
end modification are some of the N- or C-terminal capping 
methods to improve the stability of AMPs (Zhong et al. 
2019). Dimerization or multimerization is obtained by incor-
porating the peptide side chains or peptide branches in the 
α- or ε-amino groups of certain amino acids (Santos-Filho 
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et al. 2021). Using this strategy, more peptide monomers are 
grouped, which eventually boosts the stability of the whole 
unit by providing protection against proteolytic degradation 
due to steric hindrance (Bitencourt et al. 2023).

To create AMPs that are both highly active and less toxic, 
different approaches have been used, which include truncat-
ing the original peptides while preserving the active compo-
nent and site-directed alteration of the amino acid residues 
(Huan et al. 2020).

In silico analysis for AMP prediction 
and discovery

AMPs in their initial days of discovery were isolated from 
different natural sources, but now a days, synthetic AMPs 
are also in application. These molecules are well known 
for their diverse modes of action against pathogens, which 
reflects their potential in terms of therapeutic and food pre-
servative usage. However, a few limitations have also been 
identified with the applications of AMPs (Lombardi et al. 
2015; Zhao et al. 2016; Oshiro et al. 2019), as mentioned 
earlier. These limitations can be overcome through in silico 
analysis using a combination of bioinformatics or computa-
tional models with the aim of improving the performance, 
biocompatibility, and safety of AMPs. The classical meth-
ods, such as isolation and identification of AMPs, are very 
time-consuming and laborious. For the practical use of 

AMPs as food preservatives, it is important to reduce the 
experimental time spent identifying AMPs. A number of 
computational models have been developed for the effective 
design and discovery of AMPs through in silico analysis. 
These models have helped in the rapid and accurate pre-
diction of peptides that can be chemically synthesized and 
investigated for their suitability for use as food preserva-
tives. In general, these predictive computational models are 
broadly based on empirical methods and machine learning 
(ML) approaches (Porto et al. 2012).

The empirical methods used for AMP design are qualita-
tive in nature. These models are governed by rules or pat-
terns of antimicrobial activity. Practical issues may arise 
for empirical approaches because of their low accuracy and 
complex analysis. In contrast, the ML models have dem-
onstrated their usefulness in well-structured screening and 
prediction of AMP sequences. The models used on such 
platforms make final inferences using comprehensive train-
ing data (Jia et al. 2015). One popular machine learning 
approach for creating and optimizing AMPs is the quantita-
tive structure activity relationship, or QSAR model (Mitch-
ell 2014). This model uses physicochemical parameters and 
amino acid sequences to envisage the biological action of 
AMPs (Hilpert et al. 2008).

Interestingly, the combination of the predictive and 
generative machine learning (ML) models is opined to 
be best suited for the designing of AMPs (Aguilera-Puga 
et al. 2023). The ML platforms use various algorithms like 

Fig. 1   Important concerns in applications of AMPs and designing strategies to mitigate these concerns
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support vector machine (SVM), K-nearest neighbor (KNN), 
random forest (RF), and neural network (NN). The SVM 
algorithms consider factors like amino acid composition, 
physiochemical properties, and structural features of AMPs. 
These can also be used to forecast peptide membrane activ-
ity with high predictive value. The KNN algorithms rely on 
pattern recognition methods. Xiao et al. (2013) demonstrated 
the use of the fuzzy K-nearest neighbor (F-KNN) method 
and multi-label classifier which finally classify AMPs into 
different types based on activity. The RF algorithm-based 
methods predict AMPs using the distribution pattern of 
properties of peptides acquired from available AMPs and 
non-AMPs sequences (Lawrence et al. 2021), while the NN 
method can be used to identify the pattern in a sequence 
database and model the structure–activity relationship of 
AMPs (Wang et al. 2024).

In addition to the popular ML methods, de novo computa-
tional prediction platforms have helped generate a variety of 
peptide sequences with different amino acid compositions, 
interaction structures, and modes of action (Hiss et al. 2010). 
These platforms use information on amino acid frequency 

and position preferences which offers insights into the struc-
ture and amphipathicity of peptides (Porto et al. 2012).

An evolutionary/genetic algorithm-based approach has 
been utilized recently using fitness functions like activity 
descriptors and data gathered from databases to identify a 
variety of AMPs (Torres and de La Fuente-Nunez 2019). 
Using these algorithms in conjunction with other models 
like NNs and computational tools such as molecular dock-
ing, the output potential of AMP prediction can be further 
enhanced. Table 2 provides details on several models and 
tools for in silico investigation of AMPs.

Workflow for in silico analysis

Adoption of a prudent AMPs analytical workflow or pipeline 
is necessary for a thorough assessment of the antibacterial 
potential, physicochemical characteristics, and biocompat-
ibility of peptides in order to design and identify appropriate 
AMPs with a broad range of activity. A typical workflow 
for AMP development or in silico prediction may have four 
stages of analysis (Melo et al. 2021; Aguilera-Puga et al. 

Table 2   Description of various tools and ML models available for in silico AMP design

S. N Name of the tool/Model Algorithm/Platform Link References

1 iAMPpred SVM algorithm http://​cabgr​id.​res.​in:​8080/​amppr​ed/ Meher et al. (2017)
2 iAMP-L2 fuzzy K-nearest neighbor (F-KNN) http://​www.​jci-​bioin​fo.​cn/​iAMP-​2L Xiao et al. (2013)
3 Mutator Amino acid substitution http://​split4.​pmfst.​hr/​mutat​or/ Kamech et al. (2012)
4 AntiBP2 SVM algorithm http://​crdd.​osdd.​net/​ragha​va/​antib​

p2/
Lata et al. (2009)

5 ClassAMP RF and SVM algorithms http://​www.​bicni​rrh.​res.​in/​class​
amp/

Joseph et al. (2012)

6 DBAASP RF algorithm https://​dbaasp.​org/​home Vishnepolsky et al. (2022)
7 Joker Linguistic model for de novo predic-

tion
https://​github.​com/​willi​amfp7/​Joker Porto et al. (2018)

8 CAMP SVM, RF and artificial neuronal 
network (ANN)

http://​www.​camp.​bicni​rrh.​res.​in/​
index.​php

Waghu and Indicula-Thomas (2020)

9 AMPscanner Hosts RF and multivariate adaptive 
regression splines (MARS) based 
classifier and ANN based AMP 
classifier

https://​www.​dvelt​ri.​com/​ascan/ Veltri et al. (2018)

10 AntiMPmod SVM webs.iiitd.edu.in/raghava/ant-
impmod/

Agrawal and Raghava (2018)

11 dbAMP RF http://​csb.​cse.​yzu.​edu.​tw/​dbAMP/​
predi​ct.​php

Jhong et al. (2019)

12 ampir SVM https://​github.​com/​legana/​ampir Fingerhut et al. (2020)
13 amPEPpy RF https://​github.​com/​tlawr​ence3/​

amPEP​py
Lawrence et al. (2021)

14 ADAM SVM, Hideen Markov Model 
(HMM)

http://​bioin​forma​tics.​cs.​ntou.​edu.​
tw/​ADAM

Lee et al. (2015)

15 IAMPE (KNN), SVM, RF http://​cbb1.​ut.​ac.​ir/ Kavousi et al. (2020)
16 CalcAMP Multi-layered Perceptron (MLP) https://​github.​com/​CDDLe​iden/​

CalcA​MP
Bournez et al. (2023)

17 DiffAMP ANN https://​github.​com/​wrab12/​diff-​amp Wang et al. (2024)

http://cabgrid.res.in:8080/amppred/
http://www.jci-bioinfo.cn/iAMP-2L
http://split4.pmfst.hr/mutator/
http://crdd.osdd.net/raghava/antibp2/
http://crdd.osdd.net/raghava/antibp2/
http://www.bicnirrh.res.in/classamp/
http://www.bicnirrh.res.in/classamp/
https://dbaasp.org/home
https://github.com/williamfp7/Joker
http://www.camp.bicnirrh.res.in/index.php
http://www.camp.bicnirrh.res.in/index.php
https://www.dveltri.com/ascan/
http://csb.cse.yzu.edu.tw/dbAMP/predict.php
http://csb.cse.yzu.edu.tw/dbAMP/predict.php
https://github.com/legana/ampir
https://github.com/tlawrence3/amPEPpy
https://github.com/tlawrence3/amPEPpy
http://bioinformatics.cs.ntou.edu.tw/ADAM
http://bioinformatics.cs.ntou.edu.tw/ADAM
http://cbb1.ut.ac.ir/
https://github.com/CDDLeiden/CalcAMP
https://github.com/CDDLeiden/CalcAMP
https://github.com/wrab12/diff-amp
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2023). Gathering experimental data on amino acid composi-
tion, structure, biological activity, and physiochemical char-
acteristics is the initial stage. In the second stage, the infor-
mation is converted to a digital format that supports ML so 
that it may be analyzed. The third step comprises the actual 
use of ML models with selection of algorithms having high 
accuracy and reliability. In the fourth phase, the best AMP 
candidate is identified, which can be validated for activity. 
Various in vitro biocompatibility analysis parameters like 
hemolysis prediction, water solubility prediction, toxicity 
prediction, peptide half-life prediction, and protease suscep-
tibility analysis can also be included (Melo et al. 2021). One 
of the important aspects of in silico analysis is antigenicity 
prediction, as designed AMPs should be free from antigenic-
ity. Various safety analysis databases and tools to design 
AMP are given in Table 3.

Active food packaging and creative 
fabrication of AMPs

Food packaging is an important aspect of today’s food indus-
try, as it plays a major role in safeguarding the quality of 
products and the safety of consumers. In smart packaging, 
functionality beyond the standard function of serving as a 
physical barrier between the product and its surroundings 
is included. Various types of packaging on the basis of the 
engineered functionality of the package include ergonomic 
packaging, informative packaging, responsive packaging, 
and active packaging (Singh and Heldman 2001; Brockgre-
itens and Abbas 2016).

Active packaging is achieved by incorporating antimi-
crobial agents into the packaging material and ensuring a 
controlled release over an extended period to preserve the 
food quality. The mechanism of packaging of AMPs can be 
summed up by three interconnected sections, which include 

the incorporation system, which comprises the addition of 
AMPs into the packaging material; the release system, which 
ensures the diffusion of peptides from the surface of the 
package to the food; and the interaction and inhibition sys-
tem, involving the interaction and subsequently destruction 
of microbes present in the food (Sultana et al. 2021).

For the purpose of enhancing efficacy and stability in 
a range of applications, including food packaging, AMPs 
are manufactured or encapsulated in a variety of ways, as 
described as follows.

Nanoencapsulation

One of the most common methods used for the fabrication 
of AMPs for active packaging of food is nanoencapsulation. 
The two primary stages in nanoencapsulation are incorporat-
ing antibacterial agents into their appropriate carriers and 
reducing their size to the nanoscale. The stability of AMPs 
is generally improved by nanoencapsulation, which also 
offers controlled release, high adsorption, defense against 
environmental variables, and less unfavorable interactions 
with food ingredients. Additionally, it gives the loaded 
particles a larger surface area than the bigger particles for 
higher efficacy. The efficiency of AMPs has been improved 
by their integration into nanoparticles such as lactoferrin, 
chitosan, polycaprolactone, polyethylene oxide, liposomes, 
poly (lactic-co-glycolic acid) commonly known as PLGA 
and even extending to binary or ternary complexes of such 
nanoparticles in order to preserve the physiochemical prop-
erties of food items (Duarte and Picone 2022). There are a 
variety of nanoencapsulation systems, including nanofibers, 
liposomes, nanoemulsions.

Nanofibers can be synthesized using artificial or natural 
polymers. These possess a large surface area of contact, 
which makes it possible to load more than one molecule 
at once. They are produced by various methods, such as 

Table 3   List of AMP activity analysis tools

S. N Name Activity Link Reference

HemoPred Predicts hemolytic activity http://​codes.​bio/​hemop​red/ Win et al. (2017)
HemoPI/Hemolytik Predicts hemolytic and non-hemolytic 

peptides
https://​webs.​iiitd.​edu.​in/​ragha​va/​

hemopi/​index.​php
Chaudhary et al. (2016)

HAPPENN Hemolytic activity prediction https://​resea​rch.​timmo​ns.​eu/​happe​nn Timmons and Hewage (2020)
IgPred Predicts antigenicty of peptides https://​webs.​iiitd.​edu.​in/​ragha​va/​igpred/ Gupta et al. (2013a)
ToxinPred Predicts toxic and non-toxic peptides https://​webs.​iiitd.​edu.​in/​ragha​va/​toxin​

pred/
Gupta et al. (2013b)

Protscale Hydrophilicty and hydrophobicity 
prediction

https://​web.​expasy.​org/​prots​cale/ Gasteiger et al. (2005)

HLP Peptide half-life prediction in intestinal 
environment

http://​crdd.​osdd.​net/​ragha​va/​hlp/​pep_​
both.​htm

Sharma et al. (2014)

AMP-toxicity-predictor Predicts cytoxicity of peptides https://​github.​com/h-​khabb​az/​amp-​
toxic​ity-​predi​ctor

Khabbaz et al. (2021)

http://codes.bio/hemopred/
https://webs.iiitd.edu.in/raghava/hemopi/index.php
https://webs.iiitd.edu.in/raghava/hemopi/index.php
https://research.timmons.eu/happenn
https://webs.iiitd.edu.in/raghava/igpred/
https://webs.iiitd.edu.in/raghava/toxinpred/
https://webs.iiitd.edu.in/raghava/toxinpred/
https://web.expasy.org/protscale/
http://crdd.osdd.net/raghava/hlp/pep_both.htm
http://crdd.osdd.net/raghava/hlp/pep_both.htm
https://github.com/h-khabbaz/amp-toxicity-predictor
https://github.com/h-khabbaz/amp-toxicity-predictor
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electrospinning, self-assembly, laser spinning, and melt 
spinning, of which electrospinning is the most com-
mon. AMP-loaded nanoparticles, when electrospun into 
nanofibers such as polyethylene oxide, have demonstrated 
increased effectiveness against foodborne bacteria without 
producing any effect on sensory characteristics (Cui et al. 
2017). AMP-conjugated nanotubes or nanocomposites 
have also been studied with promising results (Hemmati 
et al. 2021).

Liposomes are spherical nanocarriers based on lipids 
that are frequently utilized in delivery systems due to 
their biocompatibility, stability, and ease of synthesis. 
Liposome-encapsulated AMPs are also widely used in 
the food industry. AMPs such as Nisin have shown higher 
antimicrobial activity when loaded into liposomes as com-
pared to when directly applied to the food (Malheiros et al. 
2012). Furthermore, liposomes have demonstrated stabi-
lization of the trapped materials against different envi-
ronments and chemical changes such as pH, temperature, 
enzymatic modifications. (Mozafari et al. 2008).

Nano-emulsions are also one of the lipid-based nanoen-
capsulation systems that have been employed in active 
food packaging. A variety of biopolymers are employed 
to create emulsions for the inclusion of AMPs (Imran et al. 
2012).

Biopolymeric AMPs

Another approach to using AMPs in food preservation is 
their integration into biopolymers for increased effective-
ness. Biopolymers can be synthesized in vitro in cell-free 
systems, e.g., dextran, or derived from nature, e.g., alginate 
or hyaluronic acid. Being biocompatible and biodegradable 
in nature, they can be used as edible films or for packag-
ing food materials (Baranwal et al. 2022). One of the most 
commonly used biopolymers is chitosan. Its antifungal, anti-
bacterial, and antioxidant qualities are widely recognized. It 
has shown a synergistic effect in combination with AMPs 
against the pathogens, along with other characteristics such 
as decreased moisture content and higher oxygen barrier 
effectiveness (Luo et  al. 2023). Many approaches have 
been used for the incorporation of AMPs into biopolymers. 
One of them involves mixing polymer with AMP using 
click chemistry and then embedding it into another poly-
mer (Chiloeches et al. 2023). It creates a robust packaging 
material that would prevent leaching out of the components. 
Combining biopolymer derivatives with antimicrobial pep-
tide dendrimers (AMPDs) is another strategy that targets 
both the inner and outer membranes of bacteria (Jordan et al. 
2024). Controlled release due to retention of the antimicro-
bial compounds in polymer matrices is also achieved by the 
use of nanofillers (Jamróz et al. 2019).

Casting films

The fabrication of antimicrobial films integrating AMPs 
using the casting approach has been documented (Meira 
et al. 2017). The use of nanofillers results in films being 
mechanically resistant, with enhanced thermal performance 
and good water-resistant qualities. AMP encapsulation has 
also been combined with techniques like biopolymer immo-
bilization to form biodegradable films that showed improved 
barrier properties against food-borne pathogens (Imran et al. 
2012). Jamróz et al. (2021) demonstrated the effectiveness 
of active double-layered furcellaran/gelatin hydrolysate films 
containing Ala-Tyr peptide for fish preservation.

Cold plasma technology

Cold plasma technology is a novel environmental-friendly 
approach for activating polymers that employs the use of 
naturally or laboratory-produced plasma, which contains 
a mixture of ions, photons, reactive species for synthesiz-
ing polymers or modifying their surface for conjugating 
AMPs (Jordá-Vilaplana et al. 2014). This technology has 
been used for the immobilization of biologically active func-
tional substances such as Nisin, Lysozyme, and Vanillin into 
the packaging material. Polymers used in food packaging, 
such as polyethylene terephthalate, effectively prevented the 
formation of biofilms when they were surface-plasma acti-
vated and subsequently conjugated to immobilized peptides 
(Agrillo et al. 2019).

Conclusion and future perspectives

Although antimicrobial peptides offer themselves as an ideal 
substitute to chemical additives for preventing food spoil-
age and foodborne infections, their application in this sec-
tor is not without limitations. Ideally AMPs to be used for 
food preservation should be chemically well designed for 
high effectiveness, nontoxic to native host cells and normal 
microbiota, stable and cost-effective. As a result, biocompat-
ibility testing is required prior to employing AMPs as food 
preservatives. Furthermore, a comprehensive approach is 
required to establish particular conditions that must replicate 
those present during food processing and storage to deter-
mine AMPs applicability, stability, safety, biocompatibility, 
and potential interactions with food components. Numerous 
online tools including those based on ML can be utilized to 
investigate the various properties required for an effective 
and safe AMP. These are quite fast and accurate, potentially 
saving time and money as compared to lengthy experimental 
studies for AMP discovery and prediction. With the addition 
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of new AMPs to the database, ML predictions are constantly 
improving, which will pave the way for the discovery of 
more effective and safe peptides in the future.
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