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Introduction

Phosphorus (P) is amongst the most vital essential macronu-
trients necessary for promoting the growth and well-being 
of plants along with nutrient cycling in soil systems (Maha-
rajan et al. 2018; Billah et al. 2019; Wang et al. 2022a). On 
an average, the P level in soil is nearly 0.05% (w/w), out 
of which merely 0.1% is available to be taken up by plants 
(Zhu et al. 2011; Iftikhar et al. 2024). It comprises 0.2–0.8% 
of the total plant biomass and ranks second among the most 
limiting factors, after nitrogen (Tak et al. 2012; Sharma et 
al. 2013). Phosphorus is present in several biomolecules, 
such as nucleic acids, ATP, enzymes, coenzymes, phospho-
proteins, nucleotides, and phospholipids (Malhotra et al. 
2018; Timofeeva et al. 2022; Feng et al. 2024). It performs 
imperative functions in almost all essential plant metabolic 
processes, such as cell division and enlargement, photosyn-
thesis, respiration, carbohydrate metabolism, energy produc-
tion, storage and transfer reactions, redox-homeostasis, and 
signalling, growth of root and stem, development of flower 
and seed, crop ripening, nitrogen fixation in leguminous 
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Abstract
Phosphorus (P), an essential macronutrient for various plant processes, is generally a limiting soil component for crop 
growth and yields. Organic and inorganic types of P are copious in soils, but their phyto-availability is limited as it is 
present largely in insoluble forms. Although phosphate fertilizers are applied in P-deficit soils, their undue use nega-
tively impacts soil quality and the environment. Moreover, many P fertilizers are lost because of adsorption and fixation 
mechanisms, further reducing fertilizer efficiencies. The application of phosphate-solubilizing microorganisms (PSMs) 
is an environmentally friendly, low-budget, and biologically efficient method for sustainable agriculture without causing 
environmental hazards. These beneficial microorganisms are widely distributed in the rhizosphere and can hydrolyze inor-
ganic and organic insoluble P substances to soluble P forms which are directly assimilated by plants. The present review 
summarizes and discusses our existing understanding related to various forms and sources of P in soils, the importance 
and P utilization by plants and microbes,, the diversification of PSMs along with mixed consortia of diverse PSMs includ-
ing endophytic PSMs, the mechanism of P solubilization, and lastly constraints being faced in terms of production and 
adoption of PSMs on large scale have also been discussed.
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plants, and tolerance to plant diseases (Malhotra et al. 2018; 
Nesme et al. 2018; Elhaissoufi et al. 2020; Siedliska et al. 
2021), ultimately contributing to increased yields.

Plant roots take up P as orthophosphates (HPO4
2– or 

H2PO4
−), but these ions are present in the soil at the micro-

molar level (Timofeeva et al. 2022). Due to soils being gen-
erally P deficient, inorganic P fertilizers are required as P 
deficiency can cause significant reductions in plant growth 
and (up to 15%) yield (Elhaissoufi et al. 2022). Generally, 
worldwide food production inevitably relies on chemical 
fertilizers (conventionally N and P fertilizers) to boost crop 
outputs. Consequently, P addition continues to be one of the 
vital agricultural practices for achieving plant nutritional 
requirements (Bindraban et al. 2020). Soils having a small 
amount of total P can be treated with P fertilizers; never-
theless they are not capable of holding the supplemented P. 
Phosphate anions present in inorganic fertilizers are highly 
reactive and immediately get fixed owing to associations 
with Ca2+, Fe3+, and Al3+ ions in the soil (Kumar et al. 2018; 
Ma et al. 2021; Timofeeva et al. 2022). Therefore, the for-
mation of insoluble complexes of analogous phosphate salts 
results in low P uptake by plants (10–25%) from chemical 
phosphate fertilizers (Schnug and Haneklaus 2016; Weeks 
and Hettiarachchi 2019; Dong et al. 2023). Hence, effective 
P transfer for plant uptake continues to be challenging and 
raises concerns about global food security.

There are worldwide concerns regarding energy and 
expenditure in mining phosphate minerals and their trans-
portation from production sites to cultivated crop fields. 
Mining rock phosphate and distributing P fertilizers on the 
land is neither ecological-friendly, cost-effective nor sus-
tainable as it possesses certain constraints, for example, (i) 
release of fluorine as a highly explosive and lethal hydro-
gen fluoride gas, (ii) dumping of gypsum and (iii) accre-
tion of heavy metals such as cadmium (Cd) in soil and 
crop plants because of recurring utilization of P fertilizers 
(Sharma et al. 2013). Undoubtedly, additions of synthetic 
P fertilizers to farming lands have increased the crop yield 
but simultaneously long-term utilization of P fertilizers has 
resulted in negative influences on the environment, such as 
carbon footprint, water pollution, eutrophication, and deple-
tion of soil fertility (Bhattacharyya et al. 2015; Liu et al. 
2018; Kalayu 2019; Cheng et al. 2023). Pollution caused 
by P fertilizers has gained intense attention of researchers 
globally. Thus, it is of great interest to explore manage-
ment approaches that can increase P fertilization efficiency, 
improve crop output, and decrease environmental contami-
nation (Heathwaite et al. 2005; Sharpley et al. 2007). Until 
now, numerous strategies have been exploited to decrease 
the detrimental effects of chemical P fertilizers on soil eco-
systems, for example, lessening P fertilizer supplementa-
tion, upgrading planting methods, proper intercropping, 

and utilizing eco-friendly fertilizers (Wu et al. 2015). One 
of the most promising approaches in this direction is the 
addition of phosphate-solubilizing microorganisms (PSMs) 
possessing various P sources exploiting capabilities. PSMs 
have distinct mechanisms that facilitate the solubilization 
of immobile inorganic P, such as acidification owing to the 
secretion of H+, inorganic acids, and organic acids, produc-
tion of siderophores and exopolysaccharides (Sharma et al. 
2013; Jiang et al. 2020; Elhaissoufi et al. 2022). Enzymes 
such as C–P lyases, phosphatases, and phytases assist in 
solubilizing organic phosphate (Chawngthu et al. 2020; 
Bargaz et al. 2021). Potential PSMs have been developed 
as biofertilizers and added in agricultural fields to promote 
plant growth and health (Wang et al. 2023).Interestingly, 
their phosphate solubilization behaviour has gained enor-
mous applications, especially in phytoremediation. For 
this reason, PSMs should be used in farming practices to 
reduce the price and use of chemical P fertilizers, ultimately 
lessening the load on farmers, boosting crop yield, and 
accomplishing sustainable agricultural goals. The present 
review focuses on various forms of P in soils along with 
their sources, importance of P for the growth of microbes 
and plants, effect of P deficiency on plants, diverse microbes 
(including mixed consortia) implicated in P solubilization, 
various mechanisms employed by them to solubilize insolu-
ble phosphate,, ultimately leading to sustainable agriculture. 
In addition, a comparison of sources of chemical phosphate 
and phosphate released by PSMs and various constraints 
being faced in terms of bulk production of PSMs and their 
adoption by farmers has also been highlighted.

Forms and sources of phosphate in soils

Although P transfers in a cyclic manner in soil, water, 
sediments, rocks, and organisms, it does not exhibit quick 
cycles compared to carbon, nitrogen, and sulfur (Ananth-
araman et al. 2016). In time, rainfall and weathering trigger 
rocks to liberate phosphate ions and other minerals which 
is thendistributed in water and soils. Although most soils 
contain significant concentrations of P, a large fraction is 
combined with soil components (over 80% of P is static) 
and is not readily available for plant absorption (Xu et al. 
2020; Tian et al. 2021; Barrow 2022). In soil, not all P is the 
same. P is present in diverse forms in soil, mostly inorganic 
P (Pi) and organic P (Po) (Bünemann et al. 2015; Pang et al. 
2024), with quantities of Pi and Po changing with the age-
ing of soils (Cross and Schlesinger 1995). Soil Pi generally 
occurs as relatively insoluble and steady forms of primary 
(variscite, apatite, and strengite) and secondary (alumin-
ium, calcium and iron phosphates) P minerals (Pierzynski 
and Hettiarachchi 2018; Hao et al. 2020a) which cannot be 
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absorbed by plants. On the other hand, soluble Pi mainly 
exists as hydrogen phosphate and dihydrogen phosphate 
ions (HPO42

− and H2PO4
−) (Hao et al. 2020a; Kour et al. 

2021). Pi exists in high levels and represents 35–70% of the 
total P content of the soil (Jones and Oburger 2011; Lambers 
and Plaxton 2015). Pi occurs in diverse forms and amounts 
in soil, which can be leached into streams, accumulated P 
in ocean deposits, or absorbed by plants or soil microbes in 
the secondary Po cycle (Mathew et al. 2020).P has very low 
solubility, poor mobility in soil solution and less capacity to 
form insoluble salts with different mineral elements. Thus, 
mineral P, plant-available (soil solution) P and sorbed P, and 
are the major pools of Pi form.

Po consists of a large variety of compounds which are 
generally classified into four groups: organic polyphos-
phate, monoester phosphates, diesters phosphates and 
phosphonates (Huang et al. 2017). Organic polyphosphate 
includes compounds such as ADP and ATP, monoester 
phosphates occur mainly as inositol phosphates, phosphate 
diesters comprise nucleic acids (DNA and RNA), phospho-
lipids and teichoic acids and phosphonates possess carbon-
phosphorus bonds (C-PO3

2−), a bond that gives them great 
chemical stability (Huang et al. 2017; Ducousso-Détrez et 
al. 2022). Phytate (myo-inositol hexakisphosphate, IP6) 
exists in six phosphorylation states with 1 − 6 phosphate 
groups (i.e., mono, bis, tris, tetrakis, pentakis, and hexakis; 
IP1 − 6), is added to the soil through various means such 
as plant residues, monogastric animal manures and micro-
bial conversion from soil Pi (Gerke 2015a; Liu et al. 2022). 
The IP6 is found in soils in four isomeric forms i.e., myo, 
D-chiro, scyllo, and neo, but myo isomer (∼56 − 90% of 
IP6) dominates, with small amounts of other stereoisomers 
(20 − 50% of scyllo, 6 − 10% of D-chiro, and 1 − 5% of neo) 
(Turner et al. 2012). Phytate is synthesized in plant seeds 
where it acts as the primary storage form of phosphate (up to 
∼90 − 100%). In soils, it can account for up to 50–80% of Po 
and ∼80% of IP (Gerke 2015a), nevertheless, it is not eas-
ily accessible for plant absorption due to complexation with 
cations or adsorption on various soil organic components, 
with sorption capacity being ∼4 times that of orthophos-
phate in soils (Gerke 2015a; Liu et al. 2022). In acidic soils, 
phytate is bound to Fe/Al-oxides whereas alkaline soils con-
tain phytate bound to Ca/Mg minerals (Gerke et al. 2010). It 
is worth mentioning that complexation of phytate with Fe3+ 
is stronger than Ca2+, thus Fe-phytate is more stable than 
Ca phytate. Moreover, Ca-phytate can be transformed to Fe-
phytate in soils over time (House and Denison 2002). Many 
factors affect phytate stability in soils such as organic mat-
ter, clay type and content, pH, and metal oxides (Menezes-
Blackburn et al. 2013). Other phosphate esters, including 
DNA, RNA or sugar phosphates, react moderately with the 
soil solid phase, thus contributing less towards soil Po pool 

(Turner 2007). Moreoover, most organic P pools present in 
soils cannot be absorbed directly by plants. According to 
Barrow (2022), much of the Po has not yet been identified. 
Po matters (for example, polyphosphates, orthophosphate 
esters, and phosphonates) are mainly temporary compounds 
consisting of about 65% of the total P in most soils (Fabi-
anska et al. 2019). However, it can vary from 5% (occur-
ring in mineral soils) to 95% in organic soils (> 20–30% 
organic substances) (Margalef et al. 2017). In contrast to Pi, 
Po is leached more quickly due to weak associations with 
the soil constituents (Gebrim et al. 2010). Further, Po in the 
soil exists in a quick cycling pool (rapid Po) and a gradual 
cycling pool (sluggish Po), depending on the source (Dodd 
and Sharpley 2015). The quick pool comprises the stable 
Po obtained from the soil solution, immobilized within 
the microbial cell, and redelivers the gradual pool after 
cell mortality. Soluble orthophosphate ions in soils can be 
immobilized in microbial biomass to increase cell growth. It 
has been reported that most of the PSM-mediated P mineral-
ized from organic P is assimilated into the microbial cells 
as cellular P (Tao et al. 2008). At the same time, these soil 
microbes may promptly liberate Po into the gradual pool 
after cell breakdown, cell death, and predation by soil fauna 
(Müller and Bünemann 2014; Dodd and Sharpley 2015).

Plant remains, dead microorganisms, and animals along 
with Po fertilizers (for example, animal dung and dry straw) 
are the regular gradual Po sources that can quickly restore 
the soil orthophosphate levels via geochemical or biological 
degradation, ultimately proving to be beneficial for avail-
able-P supply to plants and improving soil quality (Sun et 
al. 2020; Bai et al. 2020). Therefore, management of the 
orthophosphate liberation from sources of the soil Po is a 
crucial soil P cycle that can raise the accessibility of soil 
Po for plant absorption and decrease the dependence on 
the application of chemical P fertilizers. Soil microorgan-
isms, particularly PSMs, can increase the soil Po cycle by 
decomposition and mineralization of Po. Through examin-
ing soil P levels and oxygen isotope proportions in P, Bi et 
al. (2018) proposed that soil microorganisms could boost 
the soil P cycle by increasing extracellular hydrolysis of 
Po substances and assisting in the turnover of available P 
(NaOH-Pi, H2O-Pi, and NaHCO3-Pi). These biogeochemi-
cal processes are chiefly regulated by phosphatase enzymes 
present in PSMs and soils (Sun et al. 2020). Hedley et al. 
(1982) developed a technique [improved by Tiessen and 
Moir (2006)] that distinguished inorganic and organic P into 
three forms, viz. stable P (SP), labile P (LP) and moderately 
labile P (MLP). SP is more or less inaccessible to the plant; 
LP form represents a rapid-cycling P pool that is available 
for short-term plant uptake; MLP fraction denotes a grad-
ual-cycling pool that can be easily transformed into LP form 
under particular chemical conditions (Audette et al. 2016). 
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substitutes and specific surface area enhance P solubility; 
thus, sedimentary RP sources are highly suitable for direct 
addition to soils. Manure has organic compounds containing 
P and soluble or inorganic phosphates. Only a small fraction 
of P in manure is accessible to crop plants during the input 
year (20–80% of P in soils) (Richardson 1994). The frac-
tion accessible to plants (i.e. 0.1% of the entire P) is tiny 
owing to complexation and minimum solubility (Mahidi et 
al. 2011). The P present in manure, not consumed in the pri-
mary year of addition (residual P), remains in the soil and is 
accessible to successive crops. Soluble P present in manure, 
when supplemented to the soil, is easily accessible to plants 
for uptake.In contrast, P should be made accessible to the 
plant through mineralization (i.e. degradation of organic 
substances by soil microbes), which causes some of the P 
present in manure to remain in soil for few years. Composts 
and manures are good quality sources of P, having excel-
lent plant availability. Although both are organically derived 
nutrient sources, the more significant part of P is inorganic, 
making up 75–90% of the entire P found in compost and 
manure (Eghball et al. 2002). In contrast to nitrogen, P is 
preserved during the composting process. Based on this 
process, the soluble P present in aged compost may be simi-
lar to that of the initial manure source (Adler and Sikora 
2003). Guano and bone meal are not normally mentioned 
as P sources; nevertheless, they can possess high P levels 
(varying from 1 to 9% and 7–12%, respectively). Besides 
being commonly used as a nitrogen fertilizer, guano can 
also be utilized as a P source. It is produced from repeated 
deposition of bat or bird droppings underneath resting sites. 
Bone meal is made by crushing raw animal bones and is 
amongst the most primitive P sources employed in agricul-
ture. It is frequently quoted as an organic P source but has 
several drawbacks such as high cost, less supply (Bekele 
and Hofner 1993), and limited research on its effectiveness. 
Besides these sources, soil organic P, which constitutes a 
large fraction of entire soil P, is derived chiefly from liv-
ing tissues where P comprises an essential part of organic 
substances, for example, nucleotides, phytins, phospholip-
ids, coenzymes, and phosphoproteins (Billah et al. 2019; 
Ducousso-Détrez et al. 2022). The extensive application 
of Po-comprising products, for example, fire extinguishers, 
plasticizers, pesticides, and antifoam agents has led to their 
common occurrence in the ecosystem as modern Po sources, 
consequently augmenting the quantities and varieties of Po 
fractions in soils (Hoffman et al. 2017; Fabianska et al. 
2019). Soil nutrient cycling processes are accountable for 
the re-allocation of initial Pi into Po fractions over 104–106 
years (Adams and Pate 1992). Conversely, Po is changed 
to Pi via the mineralization process.On the contrary, Pi 
immobilization is the opposite of mineralization. In immo-
bilization, soil microbes transform inorganic phosphate into 

With time, the minute level of steady P reacts biologically 
or chemically andturns into soluble and labile P. Majority of 
the stable P continues to exist in this form indefinitely.

Different P forms in the soil can be classified as insolu-
ble inorganic phosphates, organic phosphates, and soluble 
orthophosphates. Due to the great reactive nature of ortho-
phosphate ions with various soil components, they can be 
easily converted into insoluble organic and insoluble inor-
ganic fractions. Thus, its mobility is the least in most soils, 
making it inaccessible for plant uptake. Previous pieces of 
literature have reported that insoluble Pi can be converted 
into soluble form via low molecular mass organic acids, (for 
example, gluconic and citric acids) synthesized and liber-
ated by phosphorus solubilizing fungi (PSF) and bacteria 
(Ogbo 2010; Patel et al. 2011) and Po can be broken down 
with the help of extracellular enzymes (for instance phy-
tase and phosphatase) primarily produced and released by 
microorganisms (Tan et al. 2016; Neal et al. 2017).

In most environments, geochemical processes, compris-
ing adsorption/desorption, weathering, solid–phase conver-
sions, and precipitation/dissolution-ascertain the P forms 
(accessible or unaccessible to plants) along with its distribu-
tion in soils over long-term time scales (> 103 years) (Hou 
et al. 2018). Nevertheless, in the short-term (ranging from 
10 to 2 to 100 years), biological processes impact P distribu-
tion as majority of the available P for the plants comes from 
organic substances present in the soil, which in turn is min-
eralized and immobilized by soil microorganisms (Tambu-
rini et al. 2012). At the same time, geochemical processes’ 
role in regulating P availability in soils is somewhat well 
understood, however, little is known about the significance 
of biological processes in influencing soil P availability 
(Tamburini et al. 2012).

Phosphorus additions to the soil for farming reasons 
are mostly from supplementing inorganic chemical fertil-
izers and organic reserves, such as manure and compost. 
Manure and fertilizers are essential sources of nutrients 
for crop growth and yield. The P in most fertilizers occurs 
as an inorganic or soluble fraction that is readily available 
for plants. The nonstop addition of rock phosphate (RP) to 
soils as a source of P fertilizer has been carried out for more 
than 100 years. Rock phosphate is among the fundamental 
raw materials required for manufacturing chemical phos-
phatic fertilizers such as single diammonium phosphate, 
superphosphate and nitrophosphates. Rock phosphate 
exists in nature as apatites (containing minerals) deposits 
together with other minerals like silicates, quartz, carbon-
ates, sesquioxides and sulfates. In general, PR sources are 
categorized as igneous or sedimentary. Sedimentary PR 
possesses a greater replacement of carbonates and about 
20 times higher specific surface area than igneous rocks 
(Van Kauwenbergh and McClellan 2004). Higher carbonate 
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per gram (Kumar et al. 2013; Saini et al. 2015). Moreover, 
endophytic PSB in a single plant host are not restricted to 
a single species but comprise several genera and species 
(Mehta et al. 2015). Using morphological analysis and 16 S 
rRNA sequencing, Panda et al. (2016) discovered 42 PSB 
belonging to the genera Pseudomonas, Bacillus, Staphy-
lococcus, Micrococcus, Delftia, and Microbacterium in 
the rhizosphere of rice, maize, large cardamom and ginger 
raised in various areas of Sikkim (India). Depending upon 
16 S rRNA sequence and morphological examination from 
Chinese fir, Chen et al. (2021) screened seven endophytic 
PSB belonging to genera Burkholderia, Pseudomonas, 
Paraburkholderia, Ochrobactrum (HRP2, SSP2, JRP22) 
and Novosphingobium. Kumar et al. (2016a) screened sev-
eral strains of Pseudomonas sp., Bacillus sp., and Rhizobium 
leguminosarum from the rhizosphere and nodules of com-
mon bean. They demonstrated the inorganic phosphate solu-
bilizing capability of three plant growth-promoting bacteria 
(PGPB) strains (BPR7, RPN5, and PPR8), besides enhanc-
ing growth and productivity. Likewise, inoculation of PSB 
genera such as Pseudomonas, Klebsiella, Burkholderia, and 
Chryseobacterium was reported to regulate other microbial 
communities and aid in improving growth of Ulmus chen-
moui (Song et al. 2021). PSB endophytes Enterobacter sp. 
J49 or Serratia sp. S119 from peanut plants significantly 
promoted soybean and maize plant growth on a microcosm 
scale (Lucero et al. 2021), which indicated that PSB could 
be used in different plant species for improving phosphate 
use efficiency. Three endophytic isolates belonging to Pseu-
domonas fluorescens from the bioenergy crop Miscanthus 
giganteus showed moderate to high phosphate solubiliza-
tion capacities (~ 400–1300 mg L− 1) (Oteino et al. 2015). 
Aneurinibacillus sp. and Lysinibacillus sp. isolated from 
banana have been reported to possess high P solubilization 
indexes (Matos et al. 2017). Borah et al. (2017) isolated rice 
endophytes viz., Pantoea ananatis, Pseudomonas putida, 
Brevibacillus agri, Bacillus subtilis and Bacillus megate-
rium that were able to efficiently solubilize different sources 
of phosphate viz. TCP, AlPO4, and FePO4. Bacillus subtilis 
(LP31 L03) showed highest phosphate solubilising activ-
ity (57.58 ± 0.65, 6.10 ± 0.65, 7.65 ± 0.30  µg/ml) in TCP, 
AlPO4 and FePO4 respectively. Mei et al. (2021) reported 
five endophytic PSB Pantoea vagans IALR611, Pseudomo-
nas psychrotolerans IALR632, Bacillus subtilis IALR1033, 
Bacillus safensis IALR1035 and Pantoea agglomerans 
IALR1325 having high P solubilization efficiency. Brevi-
bacillus brevis has been reported to be a PSB endophyte 
associated with endemic legume Humboldtia brunonis Wall 
(Shendye and Thamizhseran 2022).

Prototypically, two Gram negative PSB viz., Pantoea 
sp. MR1 and Ochrobactrum sp. SSR were also reported to 
aid in the solubilization and mineralization of both organic 

organic forms, which are subsequently absorbed into their 
cells. Both immobilization and mineralization of P takes 
place at the same time in the soil. Eventually, the C: P pro-
portion ascertains whether there is net immobilization or net 
mineralization.

Phosphate solubilizing microorganisms (PSMs)

Crop production is largely affected by an insufficient supply 
of phosphorus (P), since P functions in various plant physi-
ological processes and overall well-being and growth of 
plants (Rosita et al. 2023; Silva et al. 2023). The orthophos-
phate ions (H2PO4), which are the most dominant form of P 
transported by plant roots, must be available at least > 0.1% 
(w/w) in soils for proper plant growth and health (Vance et 
al. 2003). The available form of P in soils is majorly depen-
dent on the microbes linked with the rhizosphere of plants. 
Therefore, it is critical to investigate and manage the micro-
biomes found in the rhizosphere to increase crop growth 
potential and development. In this context, PSMs have a 
great potential to enhance P availability while maintaining 
the soil’s biochemical balance. Where there is restricted 
access to chemical fertilizers, PSMs are essentially appli-
cable. PSMs are generally not host-specific and can be 
employed in various crops. A few commercially available 
PSMs used as biofertilizers at global level have been listed 
in Table 1. Additionally, patents granted for utilizing PSMs 
as potential biofertilizers have been summarized in Table 2.

The various types of PSMs have been discussed in the 
following sub-sections:

Phosphate solubilizing bacteria (PSB): underground 
living machinery for generation of the available form of 
phosphorus

The quick uptake and assimilation of P by plants largely 
depends on converting the insoluble fraction of P to soluble 
fraction by PSB in the soils. PSB account for 1–50% of the 
total PSMs found in nature (Fatima et al. 2022). The sig-
nificant members of PSB aiding in this conversion include 
Actinomycetes, Aspergillus, Bacillus, Calothrix braunii, 
Pseudomonas, Rhizobium, Streptoverticillium and Strepto-
myces. (Kumar et al. 2012; Kalayu 2019). Other P miner-
alizing and solubilizing bacteria comprise diverse strains 
of Azotobacter (Kumar et al. 2014), Burkholderia (Istina 
et al. 2015; You et al. 2020), Enterobacter and Erwinia 
(David et al., 2014). From rhizobial strains, two species of 
nodulating chickpea, Mesorhizobium mediterraneum and 
Mesorhizobium ciceri, are known for their high phosphate-
solubilizing efficiency (Rivas et al. 2006). In plant tissue, 
in general, endophytic P-solubilizing bacterial populations 
have been reported between 102 and 104 viable bacteria 
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than bacteria, including citric, gluconic, 2-ketogluconic, 
lactic, acetic, oxalic and tartaric acid (Sharma et al. 2013). 
In particular, PSF, for instance, Aspergillus (Aspergillus 
niger), Gongronella, Fusarium, Penicillium (Penicillium 
oxalicum), and Talaromyces, are widely studied to investi-
gate their role in solubilization and availability of P (Li et al. 
2016; Doilom et al. 2020) (Supplementary Table), among 
which Aspergillus is the most reported, followed by Penicil-
lium (Kour et al. 2021; Etesami et al. 2021). For instance, at 
least 359 fungal species, including Aspergillus, Fusarium, 
and Penicillium, have been reported to solubilize the inor-
ganic phosphate to soluble P in several plant species like 
cabbage, faba bean, haricot bean, sugarcane, and tomato 
(Elias et al. 2016a). Moreover, Yarrowia lipolytica yeast 
has been demonstrated to possess the ability to solubilize P 
(Goncalves et al. 2014). The fungal species solubilize and 
transport the nutrients by secreting siderophores and IAA 
(Zhang et al. 2018a). Sharif and Claassen (2011) reported 
the role of hyphal extension as an essential attribute of fungi 
to enhance P uptake in Capsicum annuum L. It is worth 
mentioning that hyphae of PSF can even transport PSB to 
the site of the rhizosphere to aid in transforming insoluble 
P to soluble form for convenient mineralization and trans-
port process (Jiang et al. 2021a). The mineralization of P by 
PSF is aided by the release of phosphatase enzymes, such 
as phytase, which hydrolyses organic phosphate to release P 
(Satyaprakash et al. 2017; Kumar et al. 2018). The P derived 
from phytate is only possible through the intervention of a 
wide range of PSMs (Richardson and Simpson 2011). Fun-
gal species capable of procuring P from phytate by releasing 
phytase enzymes include Aspergillus parasiticus, Aspergil-
lus fumigatus, Aspergillus terreus, Aspergillus candidus, 
Aspergillus rugulosus, Aspergillus niger, Pseudeurotium 
zonatum, Penicillium simplicissimum, Penicillium rubrum, 
Trichoderma harzianum and Trichoderma viride (Tarafdar 
et al. 2003). Similarly, the inorganic form of phosphates is 
solubilized by Aspergillus awamori (S29) (phosphate sol-
ubilizing activity in liquid 1,110  mg/L for TCP) found in 
the rhizosphere of mung bean (Vigna radiata) (Jain et al. 
2012). PSF, such as A. niger, A. fumigatus, and Penicillium 
pinophilum have been demonstrated to effectively solubilize 
the TCP and RP, thereby augmenting the availability of P in 
soils (Wahid and Mehana 2000). The inoculation of these 
species helped to enhance the yield in faba bean and wheat 
crops (Wahid and Mehana 2000).

Phosphorus solubilizing fungal endophytes pertain-
ing to diverse genera including Acremonium, Aspergillus, 
Paecilomyces, Cryptococcus, Curvularia, Rhodotorula, 
Cladosporium, Phaeomoniella, Chaetomium, Berkleas-
mium, Geomyces, Leptospora, Phyllosticta, Microdochium, 
Neotyphodium, Ophiognomonia, Penicillium, Rhizopus, 
Trichoderma, Xylaria, and Wallemia have been isolated 

(109 ± 10 µg mL− 1 and 222 ± 11 µg mL− 1) and inorganic P 
(110 ± 12 µg mL− 1 and 109 ± 15 µg mL− 1) in soils (Rasul et 
al. 2021). Moreover, several studies have unveiled that inoc-
ulation of PSB species to experimental plants can enhance 
growth and metabolism even under stressful conditions (for 
more details, refer to Supplementary Table). For instance, 
inoculation of PSB strain N3 was reported to alleviate cad-
mium (Cd) toxicity in tomato plants (Zhang et al. 2021). 
Likewise, in ryegrass PSB such as Acinetobacter pitti, AP 
was reported to enhance the phytoextraction of Cd from the 
rhizosphere (Zhao et al. 2023). The inoculation of PSB spe-
cies like Bacillus aryabhattai IA20, Bacillus subtilis IA6, 
Paenibacillus polymyxa IA7, and Bacillus sp. IA16 in the 
rhizosphere of cotton enhanced the growth in the semi-arid 
environment (Ahmad et al. 2021). These reports suggest 
the multi-dimensional roles of PSBs in enhancing plants’ 
tolerance capabilities in extreme environmental conditions. 
Besides frequent distribution in the rhizosphere, the PSB 
have been dominantly localized in marine and freshwater 
ecosystems, particularly in sediments (Liu et al. 2015a).

Bacterial species largely mobilize P by the process of sol-
ubilization through the release of organic acids having low 
molecular mass. The acids released include formic, acetic, 
fumaric, glycolic, propionic, succinic, lactic acid, and acidic 
phosphatases such as phytase. The inorganic acids produced 
by PSB include carbonic acid, nitric acid, sulphuric, and 
various chelating agents that aid in P mineralization (Alori 
et al. 2017). Specifically, these acids’ carboxyl and hydroxyl 
groups aid in chelating phosphate-bound cations to convert 
them into soluble forms of P (Lee et al. 2012). In addition, a 
few bacterial genera like Bacillus and Streptomyces miner-
alize the complex organophosphates by releasing enzymes 
such as phospholipases, phosphodiesterases, phytases, and 
phosphodiesterases to make a readily available form of P 
(Walpola and Yoon 2012). Among PSB, Bacillus, Strepto-
myces, and Pseudomonas have been reported to be most 
effective in accelerating the mineralization of organic phos-
phates (Khan et al. 2009).

Soil fungi: the masters of catching the hidden treasure of 
insoluble P (moulds and yeast)

Prototypical to bacteria, soil fungi (accounting for 0.1–0.5% 
of the total PSMs) also assist in solubilizing the phosphate 
compounds to provide a repository of available P for easy 
uptake and transport through plant roots (Fatima et al. 
2022). Among PSF, 20% belong to Ascomycota and the 
least represented phyla are Mucoromycota (1%) and Basid-
iomycota (3%) (Kour et al. 2021). However, soil fungi can 
pass through longer distances through soil than bacteria and 
are more crucial for solubilizing inorganic phosphate in 
soils because they usually synthesize and release more acids 
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Zingiberaceous species, 4 PSF, namely, Pestalotiopsis thai-
landica He06, Trichoderma atroviride El01, Trichoderma 
brevicrassum displayed the amount of solubilized P in the 
order: P. thailandica (4.61 mg/L), followed by T. scalesiae 
(1.85 mg/L), T. brevicrassum (1.38 mg/L) and T. atroviride 
(1.33  mg/L) (Munir et al. 2022). Recently, Parvez et al. 
(2023) assessed P-solubilization capacity of fungal endo-
phyte Rhizopus oryzae associated with coriander roots, col-
lected from water stressed soil and reported that among the 
6 supplemented P-sources, the highest solubilization was 
observed for tricalcium phosphate (51.45 ± 2.3 mg/L). The 
multifunctional property of soil fungi in phosphate solubili-
zation and plant growth has been illustrated in Fig. 1.

Arbuscular mycorrhizal fungi (AMF) networking for 
facilitating plant growth and development

The AMF establish a symbiotic relationship with plant 
roots. This association exerts beneficial impacts on plants 
in terms of enhancing the uptake of nutrients, boosting 
growth, health, and yield, and also alleviating several abi-
otic stressors (Liu et al. 2021; Zen El-Dein et al. 2022; Kaur 
et al. 2023) (Supplementary Table). Moreover, a large num-
ber of studies have reported the role of AMF in improving 
the availability of P in the rhizosphere of a wide range of 
plants by colonizing the roots intracellularly, thereby pro-
moting overall growth and well-being (Mitra et al. 2020, 
2023; Basiru et al. 2023; Chatterjee and Margenot 2023). 

from various host plants (Yadav et al. 2018; Mehta et al. 
2019; Sujatha et al. 2020). A dark septate root endophytic 
fungus Curvularia geniculata isolated from Parthenium 
hysterophorus roots has been reported to improve plant 
growth through P-solubilization and phytohormone pro-
duction (Priyadharsini and Muthukumar 2017). Researches 
have been conducted globally to investigate the ability of 
endophytic PSF to solubilize insoluble phosphates. In this 
regard, five endophytic fungi, isolated from the roots of 
Taxus wallichiana, belonging to Penicillium and Asperil-
lus spp. were studied for their ability to solubilize insoluble 
phosphates in the presence of tricalcium (TCP), aluminium 
(AlP), and iron phosphate (FeP). Maximum phosphate sol-
ubilization was recorded in the case of the fungal isolate 
P. daleae being 83.42 ± 3.41 µg/ml TCP, 57.63 ± 0.79 µg/
ml AlP, and 57.76 ± 1.70 µg/ml FeP (Adhikari and Pandey 
2019). In another study, three strains of endophytic fungi 
namely, Penicillium simplicissimum CN7, Talaromyces 
flavus BC1, and Trichoderma konilangbra DL3 isolated 
from the roots of Stevia rebaudiana (Bert.) Hemsl., Polys-
cias fruticosa, and Angelica dahurica in some localities in 
Vietnam have been demonstrated to possess the ability to 
solubulize phosphate to 341.90, 1498.46, and 390.79 ppm 
(Huong et al. 2022). The endophytic fungal isolates Tricho-
derma asperellum isolate, Culvularia chiangmaiensis, and 
Fusarium solani collected from rice plant tissue displayed 
phosphate solubility in range of 2.74 to 17.61 µg/mL (Putri 
et al. 2022). Out of 35 endophytic fungal isolates from wild 

Fig. 1  Soil fungi: the architecture of plant growth promotion with different strategies
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Mycorrhizal Fungi (AMF) networking with PSB for facili-
tating phosphate solubilization and plant growth.

Actinomycetes

These are highly ubiquitous organisms with high dissemi-
nating potential through spores, either singly or in chains. 
They possess bacterial properties and also have complex 
life cycles. Recently confirmed as bacteria, due to their 
spore-forming capability, they dominate a broad range of 
soil habitats, acting as phytoenhancers under extreme envi-
ronmental conditions. Among actinomycetes, 20% of the 
genera Micromonospora, Actinomyces, and Streptomyces 
can solubilize P (Alori et al. 2017; Aallam et al. 2021; De 
Zutter et al. 2022). Eighteen actinomycetes strains were 
recovered by Faried et al. (2019) from rhizospheric soils 
collected from an experimental farm grown with wheat, 
faba bean, and clover. Actinomycetes, such as Actinoplanes, 
Frankia, Microbispora, Micromonospora, Nocardia, Rho-
dococcus, and Streptomyces, have been described to boost 
plant growth and development by inducing the release of 
antimicrobials, siderophores, and phytohormones (Menen-
dez and Carro 2019). Recently, Elshafie and Camele (2022) 
demonstrated the function of phosphate-Actinomycetes as 
biofertilizers and biopesticides, thereby aiding in the prepa-
ration of bioformulations. Actinobacteria isolated from 
Laminaria ochroleucahe were able to impede the growth 

AMF have been reported to scavenge P from soils through 
the AM pathway to deliver P to the cortical cells in roots 
quickly, hence bypassing the direct uptake pathways (Smith 
et al. 2011). This reported AM pathway for the transport of 
P involves different cell types, specific areas of roots, and P 
transporters for an efficient transport process (Smith et al. 
2011; Johri et al. 2015). These studies suggest that AMF 
have adopted novel means to transport P directly to the 
root systems. Plants in symbiosis with AMF secrete H+ or 
organic anions to liberate Pi from rocks containing P min-
erals, boosting the uptake of Pi by both AMF and plants. 
This is accomplished by the development of dense “cluster 
roots.” In rice plants, AMF significantly improved P uptake 
under aerobic conditions, and this association also reported 
biomass enhancement (Maiti et al. 2011). Similarly, AMF 
Rhizophagus irregularis colonization greatly enhanced the 
P absorption performance of wheat from soluble P, burned 
sewage sludge, and dehydrated sewage sludge raised in 
pots containing 33P labelled pool dilution (Mackay et al. 
2017). Additionally, in nutrient-limited conditions, AMF 
can increase plant uptake of P by enriching soil PSB in the 
extended hyphae, allowing for a more significant physical 
exploration of P-depleted soil (Tian et al. 2021). A huge 
repository of studies back up the role of AMF in regulating 
plant metabolism by enhancing P solubilization and uptake 
in the rhizosphere. Therefore, AMF need special attention 
and engineering to be included in syncoms for sustain-
able agricultural growth. Figure 2 describes the Arbuscular 

Fig. 2  Arbuscular Mycorrhizal Fungi (AMF) networking with phosphate solubilizing bacteria for facilitating phosphate solubilizaion
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Archaea

Archaea refers to a domain of single-celled organisms that 
lack nuclei and are therefore categorized under prokaryotes. 
They inhabit a wide range of habitats, especially thermal 
vents, psychrophilic, hypersaline, arid, semi-arid, and dry 
environments, and highly acidic and alkaline habitats (Tim-
onen and Bomberg 2009; Ahmad et al. 2011; Huang et al. 
2019; Naitam and Kaushik 2021). Several species belong-
ing to Archaea are reported to be associated with plant 
microbiome, aiding in improving plant health (Taffner et 
al. 2019). For instance, Archaea (Natronoarchaeum, Natri-
alba, Natrinema, Haloterrigena, Halolamina, Halosarcina, 
Haloarcula, Halobacterium, Halococcus, Haloferax and 
Halostagnicola) have been described to play crucial roles in 
phosphate solubilization, sulfur cycling, nitrogen fixation, 
IAA and siderophore release, dissimilatory nitrate reduction 
and ammonia-oxidation (Navarrete et al. 2011; Yadav et al. 
2015, 2017; MacLeod et al. 2019). Natrinema sp. and Halo-
coccus hamelinensis have been reported to solubilize phos-
phate 134.61 mg/L and 112.56 mg/L respectively (Yadav et 
al. 2017). Moreover, Archaea help in driving soil stoichiom-
etry in habitats having P deficiency and also aid in regulat-
ing the C/N/P cycling in subtropical habitats (Wang et al. 
2022b). Hence, Archaea play a vital role in improving the 
production of crops and sustainability in semi-arid and arid 
habitats (Alori et al. 2020).

Cyanobacteria

Cyanobacteria exist as unicellular, colonial, or multicellular 
filamentous forms and are considered a significant subset of 
the bacterial kingdom. They help in nitrogen fixation, reduce 
CO2 levels, help in phosphate solubilization, and trigger the 
release of plant hormones, amino acids, siderophores, and 
important polysaccharides (Elagamey et al. 2023). Reports 
suggest that metabolites released by cyanobacteria aid in 
soil decontamination, soil fertilization, and resilience to 
biotic and abiotic stressors (Górka et al. 2018; Ronga et 
al. 2019). Most of these bioactive compounds induce gene 
expression, accumulate biomolecules important for plant 
growth, and help mediate tolerance against environmental 
stressors (Han et al. 2018; Pan et al. 2019).

Inoculating cyanobacteria directly on seeds or soil 
increases germination rate and yields in several cereals and 
horticultural crop plants (Singh et al. 2017; Toribio et al. 
2021). The application of Cyanobacteria such as Anabaena 
sphaerica ISB23, Anabaena torulosa, Anabaena oscillari-
oides ISB46, Nostoc calcicola, and Trichormus ellipsospo-
rus to Mentha piperita under saline conditions stimulated 
oil content and also enhanced plant growth (Shariatmadari 
et al. 2015). Similarly, the soils inoculated with Spiritulina 

of Staphylococcus aureus and Candida albicans, hence 
authenticating their antimicrobial potential (Girão et al. 
2019).

The plant-growth-promoting Streptomyces increased 
plant growth potential by inducing phosphate solubiliza-
tion, phytohormones production, and alleviating abiotic 
stress conditions (Sousa and Olivares 2016). It has been 
demonstrated that endophytic Actinobacteria stimulate 
plant growth by inducing the secretion of phytohormones, 
for example, IAA (Manulis et al. 1994; Dochhil et al. 2013). 
The Frankia, a mutualistic Actinobacteria, aids in nitrogen 
fixation, enhances nutrient availability, and helps in solu-
bilizing immobilized potassium and phosphorus. In addi-
tion, reports suggest that actinobacteria improve organic 
matter decomposition by releasing cellulases, glucanases, 
lipases, proteases, chitinases, and xylanase and trigger the 
production of ammonia, siderophores, and hydrogen cya-
nide to combat biotic and abiotic stressors in plants (Mitra 
et al. 2022). More recently, Bouizgarne (2022) evaluated 
the actinomycetes’ high potential for producing metabolites, 
suitability for formulations, adaptability to hostile environ-
ments, and versatility. A few studies have been conducted 
to investigate P solubilizing capability of endophytic acti-
nomycetes. For instance, Gangwar et al. (2012) isolated 35 
endophytic actinomycetes strains from the roots, stems and 
leaves tissues of healthy wheat plants and identified them 
as Streptomyces sp. (24), Actinopolyspora sp. (3), Nocar-
dia sp. (4), Saccharopolyspora sp. (2) Pseudonocardia (1) 
and Micromonospora sp. (1). The authors further reported 
17 endophytic actinomycetes isolates possessing abilities to 
solubilize phosphate in the range of 5 to 42  mg/100 mL. 
Similarly, Passari et al. (2015) isolated 42 endophytic acti-
nomycetes from medicinal plants out of which 14 isolates 
showed the solubilization of inorganic phosphate ranging 
from 3.2 to 32.6 mg/100 ml. In another study, the actino-
mycetes showed P solubilization activity (1,916 mg L− 1) 
and produced phytase (0.68 U mlL− 1), chitinase (6.2 U ml 
L− 1), IAA (136.5 mg L− 1), and siderophore (47.4 mg L− 1). 
Furthermore, inoculation of Streptomyces mhcr0816 and 
mhce0811 with Triticum aestivum significantly improved 
plant growth, biomass (33%), and mineral (Fe, Mn, P) con-
tent in non-axenic conditions (Jog et al. 2014). Mesta et al. 
(2018) isolated 11 phosphate solubilizing endophytic acti-
nomycetes from two mangrove plants Rhizophora mucro-
nata and Sonneratia caseolaris amongst which the highest 
amount of phosphate solubilized was recorded for Isolate 
RO 11 about 1410  µg/mL. Taken together, it is essential 
to highlight and unravel the potential of Actinomycetes in 
regulating plants’ growth and overall well-being.
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gladioli, Pseudomonas sp. and Bacillus subtilis) on various 
culture media containing six different sources of insoluble 
inorganic phosphate such as tri-calcium phosphate (TCP), 
di-calcium phosphate (DCP), zinc phosphate (ZP), fer-
ric phosphate (FP), sodium di-hydrogen phosphate (SP), 
and aluminum phosphate (AP), and two organic P such 
as calcium and sodium phytate and reported P solubiliza-
tion of 37.9 mg/100 ml of TCP, 40.01 mg/100 ml of DCP, 
15.79 mg/100 ml of FP, 43.02 mg/100 ml of SP, no solubi-
lization of ZP and AP, 39.75 mg/100 ml of calcium phytate 
and 24.01 mg/100 ml of sodium phytate. The authors fur-
ther reported that after bio-priming of seeds in pot assay, 
the level of P in soil increased by 54% in consortium treated 
soil compared to control soil. In another study, Kumar et al. 
(2016a) observed solubilization of TCP, DCP, ZP on differ-
ent media by consortia Bacillus sp., Pseudomonas sp. and 
Rhizobium leguminosarum.

Effect of consortia of rhizospheric and endophytic 
PSMs on plant phosphorus efficiency

Besides rhizospheric communities, huge and diverse popu-
lation of microbes reside within plant tissues without caus-
ing any visible signs of disease and are called endophytes 
(Deng and Cao 2017). Limited reports are available in the 
literature regarding co-inoculation of rhizospheric and endo-
phytic PSMs and their effect on P efficiency of plants. For 
instance, dual inoculation of Rhizobium and PSB in wheat 
resulted in yield increases of 29% and 25% with and with-
out P fertilizer respectively (Afzal and Bano 2008). It has 
been proposed that rhizospheric and endophytic bacterial 
inoculation could improve P efficiency of plants by increas-
ing P bioavailability and extension of root system via IAA 
production. In this context, Emami et al. (2020) selected 22 
isolates from rhizosphere and inside root of wheat (Triticum 
aestivum L.) plants based on their plant growth promoting 
traits and demonstrated their significant ability to solubilize 
P from tri-calcium phosphate and production of IAA under 
in vitro condition. In pot experiments, the authors reported 
synergistic interaction between PGPR and plant growth pro-
moting endophytes in increasing P uptake, growth and yield 
in two wheat cultivars, Marvdasht and Roshan. The uptake 
of P was 3.61 mg pot− 1 for Marvdasht cultivar and 6.44 mg 
pot− 1 for Roshan cultivar. The co-inoculation of N-fixing 
bacteria (Bradyrhizobium japonicum) and PSMs (Saccha-
romyces cerevisiae and Saccharomyces exiguus) increased 
P utilization and atmospheric nitrogen fixation in soybean, 
leading to enhanced soil fertility and crop productivity 
(Zveushe et al. 2023). Similarly, Tennakoon et al. (2019) 
reported that application of N2 fixing and PSB dual inocu-
lants reduced application rate of N by 33% and P by 50%. 
Meena et al. (2010) analyzed inoculation of chickpea with 

meneghiniana and Anabaena oryzae in lettuce plants helped 
alleviate the drought stress (Ibraheem 2007). Seed priming 
with Nostoc sp. and Microcoleus sp. enhanced seed ger-
mination and growth of Acacia hilliana and Senna nota-
bilis seedlings (Muñoz-Rojas et al. 2018). Additionally, 
Cyanobacteria assist in regulating soil vigor by increasing 
soil physiochemical properties, such as aeration aggrega-
tion, and help release nutrients (Singh et al. 2016). Rai et 
al. (2019) reported that cyanobacteria could facilitate the 
solubilization and mobilization of insoluble organic phos-
phates like aluminium phosphate, tricalcium diphosphate, 
and ferric phosphate into soluble and available forms of 
phosphorus inplants, primarily due to the presence of phos-
phatase enzymes. Hence, it is evident from the above stud-
ies that cyanobacteria can aid in accomplishing agricultural 
sustainability by improving plants’ overall physiology and 
development. Therefore, they are the best candidates to be 
explored for enhancing crop production and sustainable 
agricultural development.

Effect of consortia of diverse PSMs on phosphorus 
solubilization and plant aquisition

The combined inoculation of two or more phosphate solu-
bilizing microbial species has often been reported to exert 
positive effect on growth and yield of various crops. For 
example Saxena et al. (2015) demonstrated significant posi-
tive impact of dual inoculation of a PSB Bacillus sp. RM-2 
and a free living PSF species Aspergillus niger S-36 on 
growth and development of chickpea plants than their respec-
tive individual inoculations. Similarly, the addition of con-
sortium containing PSB (BRC-AP and BRC-AK) and IAA 
producing fungi (Humicola sp. R.Dn) improved the growth 
of elephant grass (Imaningsih et al. 2019). Co-inoculation 
with Trichoderma viride, Humicola spp., Paecilomyces 
lilacinus, Gluconacetobater diazotropicus, Azospiriillum 
brasilense, and Bacillus subtilis improved nutrient cycling 
and soil fertility, thereby promoting sugarcane root devel-
opment (Tayade et al. 2019). Similarly, inoculation with 
Azospirillum brasilense and Bacillus subtilis improved the 
quality and yield of sugarcane crop (Rosa et al. 2020). The 
composite inoculation of Bradyrhizobium japonicum 5038 
and Paenibacillus mucilaginosus 3016 in soybean caused 
significant increase in the abundance of phosphorus cycle 
genes, soil available phosphorus and phosphatase activity 
(Xing et al. 2022). Nandimath et al. (2017) isolated, iden-
tified and developed a consortium of five thermo-tolerant 
phosphate solubilizing actinomycetes for producing a mul-
tipurpose bio-fertilizer which released soluble phosphate of 
up to 46.7 µg ml− 1. Kumar et al. (2020) performed quali-
tative and quantitative analyses of inorganic and organic 
P solubilization by three PSR consortia (Burkholderia 
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and the mineralization-assisted degradation of substrates are 
the strategies adopted by PSMs through which the soil phos-
phate dissolution occurs (Rawat et al. 2020) (Fig. 3).

Solubilization of soil inorganic phosphates

The various ways through which PSMs assist in the solubi-
lization of inorganic phosphates (like Fe-P, Ca-P, and Al-P) 
present in the soil have been discussed in the following 
sub-sections:

Secretion of organic acids

PSMs produce organic acids via physiological secretion and 
decomposition of organic matter (Schneider et al. 2019). It 
has been demonstrated that the PSMs-mediated exudation 
of organic acids such as gluconic, tartaric, lactic and citric 
acid solubilize the soil inorganic phosphates via chelation of 
cations complexed with phosphate, decrease in pH, forma-
tion of a complex with phosphate bound metals and distur-
bance in P adsorption region (Rawat et al. 2021; Li et al. 
2023). The low molecular mass organic acids assist in the 
hydroxylation and carboxylation mediated chelation of cat-
ions bound to Pi, reduced rhizospheric pH via exchange of 
O2 and CO2 and balancing of proton bicarbonate, ultimately 
creating a favourable soil environment for the release of 
bound Pi (Mander et al. 2012; Wei et al. 2018). It has been 
reported that P mobilization via citric acid and its acquisition 
is very strong in cluster root rhizosphere such as those found 
in white lupin and yellow lupin, because of the strong accu-
mulation of citric acid and efficient uptake of the mobilized 
P (Adams and Pate 1992). Several PSMs have been reported 
to secrete carboxylates which increase the solubility of P in 
soils (Jayakumar et al. 2019). Nevertheless, P mobilization 
by carboxylates depends on the chemical reactions occur-
ring at the solid phase of soils (Gerke 2015b). Adsorption 
of P to the soil solid phase may inhibit its degradation by 
microbes which partially describes the long-term impact of 
carboxylates on P solubility in soil (Gerke 2015b). Addition-
ally, citrate and to some extent oxalate are more effecient 
in mobilizing P as compared to other carboxylates (Barrow 
and Lambers 2022). Zaheer et al. (2019) reported secretion 
of oxalic acid, gluconic, citric, acetic, and lactic acid from 
the AZ15 strain of Pseudomonas species, which enhanced 
the P solubilization up to 109.4 µg mL− 1. The researchers 
also observed increased growth and yield traits in chickpeas 
due to application of this particular bacterial strain (Zaheer 
et al. 2019). Similarly, various strains of Trichoderma like 
AMS 31.15, AMS 1.43, and AMS 34.39 have been demon-
strated to aid in the solubilization of P in soybean by secret-
ing various organic acids (gluconic acid, malic acid, phytic 
acid, citric acid, and ascorbic acid) and supplementation 

endophytic fungus, Piriformospora indica, in combination 
with PSB, Pseudomonas striata and reported their synergis-
tic effect on population buildup of P. striata and plant dry 
biomass compared to individual inoculations.

Mechanism of phosphate solubilization by 
phosphate solubilizing microorganisms

After nitrogen, P has been considered the second most cen-
sorious macronutrient, which significantly enhances plants’ 
growth, metabolism, and overall health (Silva et al. 2023). 
Even though P is present in significant amounts in organic 
and inorganic fractions in soil, its complex formation with 
metal ions generally leads to reduced plant uptake (Rawat 
et al. 2020). Furthermore, the agrochemical-mediated 
increased P requirement for improving crop yield has dete-
riorated the soil ecosystem and the balance of soil micro-
biota. To overcome this issue, there is a pressing need to 
adopt environment-friendly strategies that can enrich the 
soil with P, ultimately making the P readily available for 
plants (Rawat et al. 2020). One of the most promising strat-
egies is the addition of microorganisms, which aid in the 
solubilization of insoluble phosphates in the soil (Wang et 
al. 2023). These microorganisms secrete various enzymes, 
siderophores, and organic acids, which facilitate the dissoci-
ation of metal ions from the phosphate-metal complex, con-
sequently making the phosphate readily accessible to plants 
for uptake (Rawat et al. 2020, 2021; Silva et al. 2023; Khan 
et al. 2024). It has been demonstrated that diverse PSMs 
can transform insoluble P into readily available fractions 
for the plant. Moreover, their abundant presence in the soil 
and P-solubilization ability can be analyzed via different 
quantitative and qualitative methods. It is worth mention-
ing here that in most experiments, microorganisms intended 
to solubilise soil phosphate are selected on their ability to 
produce a clear halo around the colony on a plate when 
they are grown on a medium containing sparingly-soluble 
phosphate compounds which involves production of acidity. 
Barrow and Lambers (2022) are of the opinion that if plants 
are inoculated with such microbes, any benefit arising from 
increased acidity is likely to be as a result of increased rate 
of P uptake by plant roots rather than from increased desorp-
tion of phosphate from soil.

The dynamics of soil P status depend on various fac-
tors such as (i) precipitation and dissolution, (ii) desorp-
tion and sorption, and (iii) the reaction that stimulates the 
interconversion between inorganic and organic P (Sims and 
Pierzynski 2005). The PSM-mediated immobilization, min-
eralization, and solubilization of P in soil up-regulate the 
dissemination of soil P, which is impacted by the availability 
of inorganic minerals in the soil. The enhanced exudation of 
organic acids, siderophores, protons, extracellular enzymes, 
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production of metabolic byproduct, H2S, by sulfur-and aci-
dophilic bacteria facilitate the production of ferrous sulphate 
by reacting with ferric phosphate, thus liberating the bound 
P (Florentino et al. 2016). Roy and Roy (2019) observed 
that about 1 g L-1 elemental sulfur was oxidized to 203 mg 
L-1 sulfate, and 20mM thiosulfate was oxidized to 220 mg 
L− 1 sulfate with the help of the SR4 strain of sulfur-oxidiz-
ing bacteria of Delftia species. Further, the inoculation of 
this strain to Brassica juncea enhanced P-solubilization effi-
ciency by up to 116% compared to the control plants (Roy 
and Roy 2019).

Extrusion of the proton from ammonium ion (NH4
+)

The PSM-mediated synthesis of amino acids via assimila-
tion of soil ammonium (NH4

+) leads to enhanced proton 
(H+) concentration in the microbial cytoplasm. This acidi-
fies the surrounding microbial cell medium and enhances the 
dissolution efficiency of insoluble phosphates (Gaind 2016). 
The extrusion of H+ reduces the soil pH, depending on the 
nitrogen source. It has been reported that utilizing NH4

+ 
enhances the dissolution of P as a nitrogen source compared 
to NO3

- (Sharan and Darmwal 2008). FA7 strain of Bacillus 
marisflavi, an alkalophilic bacterium, plays a pivotal role in 
the H+extraction-mediated dissolution of phosphate. It was 
observed that this particular strain maximized the dissolu-
tion of TCP when NH4Cl was used as an inorganic source 

of these strains enhanced the growth of plants up to 40% 
as compared to uninoculated plants (Bononi et al. 2020). 
Despite beneficial influence of PSMs-induced organic acid 
secretion at desorbing phosphate from soil and making it 
available for plant uptake under controlled conditions, Bar-
row and Lambers (2022) are of the opinion that the effects 
of the production of organic acids under field conditions 
are probably over-estimated. Apart from this, carboxylate 
groups present in organic acids also assist in mobilizing Po, 
especially phytate via three mechanisms: (i) desorption of 
P anions from soil through ligand exchange via replacing P 
with a carboxylate anion, (ii) solubilization of Fe and Al via 
H+, thereby destroying P sorption sites and (iii) solubiliza-
tion of organic matter binding to P through Fe/Al-bridges, 
with P being solubilized as organic matter-Fe/Al-P complex 
(Gerke 2010).

Secretion of inorganic acids and hydrogen sulfide (H2S)

Apart from organic acids, diverse PSMs secrete different 
types of inorganic acids like nitric acid, sulfuric acid, hydro-
chloric acid, and carbonic acid to solubilize phosphate, 
though with less efficiency than organic acids (Siddique 
et al. 2021; Pang et al. 2024). Nitrobacter and Thiobacil-
lus species secrete inorganic acids such as sulfuric acid and 
nitric acid, respectively, which assist in the dissolution of 
P (Shrivastava et al. 2018). It has been reported that the 

Fig. 3  Various mechanisms of phosphate solubilization in soil adopted by phosphate solubilizing microorganisms (PSM)
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compounds (Sharma et al. 2013). It has been reported that 
about 90% of the soil’s organic P is hydrolyzed by alkaline 
phosphatases, making P readily accessible to plants (Chen 
and Arai 2023). It was observed that alkaline phosphatases 
extracted from the MTCC 2312 strain of Bacillus licheni-
formis when supplemented with the soil-grown Zea mays, 
enhanced the percentage of P in the root by about 2.35 fold 
and in the stem by about 1.76-fold (Singh and Banik 2019). 
The co-inoculation of the L7B strain of PSF (Talaromyces 
helices) and AMF (Rhizophagus irregularis) increased the 
activity of soil alkaline phosphatase in comparison to the 
uninoculated soil which in turn enhanced the P solubiliza-
tion by about 50% than uninoculated controls (Della Mon-
ica et al. 2020).

Phytases (myo-inositol hexakisphosphate 
phosphohydrolases)

One of the abundant forms of soil organic P is the phytate 
compounds from which the P is removed via the catalytic 
activity of phytases. These phytate compounds are the reser-
voir of inositol and the house of seed and pollen P (Sharma et 
al. 2013). Plants show low efficacy of P uptake directly from 
the phytate since it is strongly bound to soils. It has been 
reported that the concentrations of soluble phytate-P in the 
soil solution are typically very low (4–14.3 µg L− 1) (Shand 
et al. 1994). Phytases are extracellular enzymes secreted 
by soil microorganisms and/or plant roots and participate 
in phytate mineralization. Phytase liberates orthophosphate 
from phytate organic compounds, thereby changing P into a 
phyto-available form (Ortega-Torres et al. 2021; Timofeeva 
et al. 2022). Depending on catalytic mechanism, phytases 
are classified as histidine acid phosphatase (HAP), purple 
acid phosphatase (PAP), Cys phosphatase, or β-propeller 
phosphatase, with HAP and PAP being more prevalent (Lei 
et al. 2007). HAPs originate mainly from plants and show 
specific activity toward phytate whereas PAPs originate 
from both plants and microbes and can hydrolyze various 
Po forms besides phytate (Hegeman, and Grabau 2001). 
Phytase activity in soils is affected by soil pH, with optimal 
activity at 2.5 − 8.0 pH and then decrasing with increasing 
pH, thus, it is higher in acidic soils than alkaline soils.

When the phyA gene from Aspergillus niger was trans-
ferred into the Arabidopsis plant, the genetically-modified 
Arabidopsis showed P-mediated enhanced growth and 
development (Richardson 2001). In addition, inoculation 
of phytases-producing bacteria to different cereal crops 
increased the rate of P uptake without exogenous supple-
mentation of phosphate fertilizers (Martinez et al. 2015). 
Similarly, inoculation of the fungus Aspergillus niger to 
Lagenaria siceraria and Abelmoschus esculentus enhanced 
the morphological characters like leaf area, fruit number, 

of nitrogen in the media (Prabhu et al. 2018). In addition to 
this, the BPM12 strain of Bacillus subtilis enhanced the sol-
ubilization of P up to 272.02 µgmL− 1 when (NH4)2SO4 as 
a source of nitrogen was supplemented to the media (Wang 
et al. 2020).

Production of siderophores

The low molecular mass siderophores are the iron-chelating 
substances obtained from iron-stressed plants and microor-
ganisms. They form the strongest complex with ferric ions 
(Verma et al. 2012; Rizvi et al. 2021), and presently about 
500 known siderophores are obtained from both microbes 
and plants (Sharma et al. 2013). It has been reported that the 
release of PSM-mediated siderophores in soil aids in iron 
chelation from the Fe-P complex (Collavino et al. 2010; Cui 
et al. 2022). Several types of PSMs, like Rhizobium radio-
bacter, Bacillus megaterium, Pantoeaallii, and Bacillus 
subtilis, have been reported to produce siderophores vary-
ing from 80 to 140 µmol L− 1 that enhance the solubilization 
of P and create an environment for the survival of organisms 
(Ferreira et al. 2019). Recently, a novel fungus, Beauveria 
brongniartii, has been reported to produce siderophores 
in the range of 59.8% Fe3+-Chrome azurol-S degradation, 
which enhanced the solubilization of P by about 158.95 mg 
L− 1 (Toscano-Verduzco et al. 2020).

Solubilization of soil organic phosphates

About 20–30% of organic phosphates have been reported in 
soil, and their dissolution occurs via mineralization through 
enzymatic processes (Kumar and Shastri 2017). Three broad 
enzymatic reaction mechanisms have been reported through 
which PSM-mediated dissolution of organic phosphates 
occurs. These mechanisms have been discussed as follows:

Phosphomonoesterases or non-specific acid phosphatases 
(NSAPs)

Acid and alkaline phosphatases are the two main types of 
NSAPs produced by PSMs, whose categorization is based 
on the optimal pH at which they function (Liang et al. 
2020; Cheng et al. 2023). Acidic soil contains acid phos-
phatases, whereas alkaline to neutral soil contains alkaline 
phosphatases (Cheng et al. 2023). The activity of alkaline 
phosphatases is hindered by inorganic phosphates in the 
environment, while acid phosphatases activity is not inhib-
ited by high levels of phosphates (Li et al. 2021; Xie et 
al. 2021). Phosphatases catalyze the dephosphorylation of 
phosphoanhydride or phosphoesterlinkages of organic phos-
phate compounds and are exudated by the microorganisms 
which show high affinity towards soil organic phosphate 
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and Penicillium) have been reported to encode C-P lyase 
enzymes (Mehta et al. 2019). Mechanism of action of C-P 
lyase and phosphonatase has been described in Fig. 4.

Molecular background of PSM-mediated phosphate 
solubilization

The molecular aspects of PSM-mediated phosphate solubi-
lization revealed that a small number of genes are respon-
sible for the dissolution of phosphate (Table 3), known as 
pyrroloquinoline quinne genes (pqq). The PQQ gene family 
contains about six genes, pqqA, B, C, D, E, and F, which 
encode a tiny redox active molecule and co-factor for PQQ 
and quinoprotein enzyme glucose dehydrogenase, respec-
tively (Wu et al. 2022a). The latter enzyme plays a pivotal 
role in producing gluconic acid from glucose, which is 
considered an essential PSM-released organic acid respon-
sible for P dissolution (Wan et al. 2020; Joshi et al. 2023). 
Previously, it was shown that mutations in pqqA in Rahn-
ella aquatilis HX2H led to a reduced content of gluconic 
acid, thereby decreasing soluble P (Li et al. 2014). Various 
investigations have reported that bacterial and fungal-medi-
ated solubilization of inorganic phosphate is the outcome 
of the pqq genes (Chen et al. 2016; Suleman et al. 2018). 
Additionally, pqqE is extremely conserved and critical for 
the biosynthesis of PQQ (Lo et al. 2023). Pantoea sp. and 
Pseudomonas sp. possessing pqqE can solubilize P and 
enhance crop yields (Tahir et al. 2020). The pqq genes can 
be transferred to other microorganisms present in the soil 
to increase their P solubilization efficiency. The genetically 
engineered transformation of pqq genes into Rhizobium has 
been reported to enhance their capabilities of P solubiliza-
tion and nitrogen fixation. The expression of pqq genes in 
different soil microbes reduced the need for an association 
for the same objective (Sharma et al. 2013). The membrane-
bound quinoprotein glucose dehydrogenase (PQQGDH) 
is the key enzyme responsible for regulating the synthe-
sis of gluconic acid coupled with dissolution of insoluble 

and plant height in both the plants when compared to their 
respective uninoculated plants (Din et al. 2019). Ben Zineb 
et al. (2020) described that phytase-producing strains of 
Serratia liquefaciens (LR88) and Pseudomonas corrugate 
(SP77) displayed their phytase activity by about 24.84 and 
23.02 U mL− 1 respectively, which in turn exhibited their 
rate of phosphate solubilization efficiency by about 306.74 
and 714.96 µg mL− 1 respectively. A close analysis of lit-
erature revealed contrasting results regarding the role of 
phytases in P acquisition from phytate. A few researchers 
have reported that hydrolysis by phytases is not the limit-
ing step in P acquisition from phytate in a strong P deficient 
soil (Tarafdar and Claassen 1988). On the contrary, another 
group of researchers argued that even under conditions of 
high P solubility, the enzymatic hydrolysis via phytases is 
the limiting step in P acquisition from phytate (Hayes et al. 
2000; George et al. 2004). These contrasting reports might 
be attributed to the differences in the soils that were used for 
experiments by the two groups of researchers. According to 
the results of Adams and Pate (1992), phytate P acquisition 
is limited by its fixation to the soil solid and that inadequate 
phytase activity is not the limiting factor in P acquisition. 
Similarly, Lung and Lim (2006) also advocated the solubil-
ity of phytate to be the limiting factor in phytate P acquisi-
tion in soil and not the hydrolysis of its ester bond. As such, 
there is no agreement regarding the limiting step in phytate-
P acquisition by plants.

Carbon–Phosphorus (C–P) lyases /Phosphonatases

These enzymes extract phosphate from organophosphates 
by catalyzing the breakdown of C-P linkage, thereby gener-
ating P readily accessible to plants (Rodriguez et al. 2006). 
Several phosphate solubilizing bacteria (Acinetobacter, 
Enterobacter, Burkholderia, Rhizobium, Bacillus, and Pseu-
domonas) have been demonstrated to have C-P lyases activ-
ity (Vazquez et al. 2000; Teng et al. 2019). Further, some 
endophytic fungi (Piriformospora, Curvularia, Aspergillus, 

Fig. 4  Mechanism of action of C-P lyase and phosphonatase
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PCR. Fraser et al. (2017) demonstrated a positive correla-
tion between the transcriptome level of phosphatase gene, 
the up-regulated activity of phosphatase in the rhizosphere, 
and enhanced P uptake by plants. The specific acid phospha-
tase genes (ACP) along with non-precise acid phosphatase 
genes (napA and phoC) screened from Burkholderia pyrro-
cinia and Morganella morganii, respectively are considered 
to be responsible for solubilizing organic P (Rodriguez et al. 
2006; Zhu et al. 2019). The phoD gene is generally used as 
a marker gene to assess the abundance and community com-
position of organic PSMs (Azene et al. 2023). It has been 
reported that exudates from the hyphae of AM fungus R. 
irregularis MUCL 43194 increased the transcriptome level 
of a phosphatase gene present in Rahnella aquatilis HX2, 
a phosphate solubilizing bacterium (Zhang et al. 2018b). 
Association of P cycling genes (bbb, pqqC, phoD, phoX) 
containing bacteria and hyphae of Penicillium increased the 
expression level of pqqC, phoX, phoD, bbb when compared 
to the native soil inhabitants (Hao et al. 2020b), suggest-
ing an indirect role of fungi in enhancing the potential of P 
solubilization in closely associated bacteria. Two strains of 
rhizospheric bacteria were developed through an artificial 
biological approach using Pseudomonas putida KT2440, 
Pseudomonas simiae WCS417r and Ralstonia sp. strain 
UNC404CL21Col in which the engineered phytase gene 
was used. Both strains containing the phytase gene produced 
an increased amount of inorganic P when cultured on the 
phytate-containing liquid culture media (Shulse et al. 2019 
Genetic transformation of maize using the phytase gene 
(phyA2) of Aspergillus ficuum resulted in improved growth 

phosphate and is encoded by the gcd gene (Wu et al. 2022a). 
The genes related to gluconic acid production include gabY 
and mps (Rawat et al. 2021). The abundance of gcd genes 
has been reported to be significantly correlated with several 
environmental factors such as dissolved total phosphorus, 
dissolved oxygen and phosphorus hydrochloride (Li et al. 
2019). Hence, gcd gene could act as a genetic marker for 
evaluating the potential of microbes to dissolve inorganic 
phosphate. Rice plants inoculated with Pseudomonas sp. 
MR7 (DSM 106634) and Acinetobacter sp. MR5 (DSM 
106631) carrying gcd gene displayed increased P bioforti-
fication and growth parameters. The higher P content and 
grain yield (67% and 55% respectively) was recorded in 
rice plants as compared to control, which in turn led to a 
decrease in fertilizer input by about 20% (Rasul et al. 
2019). ‘gab Y gene’ reported from Burkholderia cepacian 
encodes an enzyme apo glucose dehydrogenase responsible 
for producing gluconic acid that participates in solubilizing 
inorganic P (Zhao et al. 2014). In another study, the eno-
lase encoding gene, known as the ‘eno gene’, isolated from 
strain 71 − 2 of B. cepacian assisted in the solubilization of 
P (Liu et al. 2019). Novel enzymes, such as bacterial phos-
phatases, aid in producing orthophosphates from phospho-
monoesters and phosphodiesters via hydrolytic process and 
are encoded by PhoA, PhoD, and PhoX (Zhou et al. 2021; 
Yuan et al. 2023). Bacterial phosphatases have been exten-
sively studied in terms of biosynthesis, genetic control, 
and catalytic properties (Park et al. 2022; Wijeratne et al. 
2022). Two bacterial phosphatase genes known as phoC and 
phoD have been quantified through quantitative real-time 

Table 3  Genes responsible for acidolytic and enzymolytic action of different phosphate solubilizing bacteria (PSB)
PSB Genes Gene product and functions References
Ochrobactrum 
haematophilum

CS, ACO, 
ODGH, 
SFD, FH, 
MDA

Tricarboxylic acid cycle related genes reduce the pH of medium by releasing H+ions 
which leads to the dissolution of insoluble phosphorus

Ding et al. (2021)

POX, LDH Genes play a pivotal role in the regulation of acetic acid and lactic acid
Pseudomonas putida gcd Gene codes for enzyme glucose dehydrogenase which plays pivotal role in the solu-

bilization of inorganic phosphorus
Luo et al. (2019)

Pseudomonas sp. gcd Gene codes for enzyme glucose dehydrogenase, which plays pivotal role in the solu-
bilization of inorganic phosphorus and enhance the production of gluconic acid

Suleman et al. 
(2018)

Acinetobacter sp. gcd Gene codes for enzyme glucose dehydrogenase which plays pivotal role in the solu-
bilization of inorganic phosphorus and enhance the production of gluconic acid

Xie et al. (2021)

Acinetobacter pittii 
gp-1

gcd Gene codes for enzyme glucose dehydrogenase and plays essential role in the solu-
bilization of inorganic and organic phosphorus

He and Wan 
(2021)

phoD, bpp Upregulation of solubilization of organic as well as inorganic phosphorus
Acinetobacter spp., 
Pseudomonas spp

pqqC, pqqE Genes responsible for the regulation of gluconic acid production Rasul et al. (2019)

Ochrobactrum sp. pho Upregulation of solubilization of organic as well as inorganic phosphorus Maria et al. (2021)
Arthrobacter sp. Ppx, ppk Increase in the transcriptome level of exonuclease polyphosphate kinase and exo-

nuclease polyphosphatase
He and Wan 
(2021)

Pseudomonas sp. bpp Genes responsible for the synthesis of phytases Cotta et al. (2016)
Aryabhattai sp. Phn, pho, Upregulates the phosphorus metabolic pathway Xing et al. (2022)
Pantoea agglomerans phy Increase in phytic acid dissolution Maria et al. (2021)

1 3

Page 17 of 32    291 



World Journal of Microbiology and Biotechnology          (2024) 40:291 

microbial density and plant root phosphatases in the former 
(See Fig. 6).

Arbuscular mycorrhizal fungi (AMF) and PGPB are 
amongst the most widespread microbes in the rhizosphere. 
AMF and PGPB, particularly the PSB, aid in overcoming P 

and ability to obtain P from phytates (Jiao et al. 2021). 
Several studies have reported isolation of various genes 
with P-solubilization ability from different species, such as 
mMDH from Penicillium oxalicum C2 (Lü et al. 2012), vgb 
from Vitreoscilla hemoglobin (Yadav et al. 2014), Zymomo-
nas mobilis (invB), and Saccharomyces cerevisiae (suc2) 
(Kumar et al. 2016b). Comparison of phosphate solubilizing 
genes of Rhizobium, Burkholderia cepacians and Burkhold-
eria pyrrocinia with their enzymatic activity and phosphate 
solubilization pathways has been represented in Fig. 5.

Utilization of phosphate by plants and microbes

The orthophosphates (HPO4
2− and H2PO4

−) are the primary 
forms of P absorbed by plants, although plant uptake of 
HPO4

2− is considered gradual compared to H2PO4
− uptake 

(Kumar et al. 2018). H2PO4
− is the dominant form present 

in soil, especially when the soil pH is below 7.0. Though 
less widespread, a few organic P fractions can be easily 
absorbed by plants. It is believed that Po is initially min-
eralized with the help of extracellular phosphatases before 
plants take it up. Phosphatase activity is typically maximum 
when P levels in the soil solution are low since phosphatases 
are the enzymes synthesized when there is a requirement for 
P by soil microbes and roots of plants. Elevated activities of 
phosphatases are typically observed in the rhizospheric soil 
rather than in the non-rhizosphere region due to the higher 

Fig. 6  Multipurpose role of phosphate in plant Growth

 

Fig. 5  Comparison of posphate solubilizing genes of Rhizobium, Burkholderia cepacians and Burkholderia pyrrocinia
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and modes of action, is one such mechanism. An alterna-
tive pathway by which microbes adapt to the variations in 
accessibility of P in the environment is the production of 
reserve P compounds, which are stored or used under excess 
or deficiency of P sources in the medium, respectively. Low-
soluble phosphates, such as MgPO4OH•4H2O produced 
by the halophilic archaea Halobacterium salinarium and 
Halorubrum distributum (Smirnov et al. 2002 Sminov et 
al. 2005), as well as NH4MgPO4•6H2O produced by Bre-
vibacterium bacteria and Acetobacter xylinum (Smirnov 
et al. 2005; Ryazanova et al. 2009), are the best examples 
of simplest reserve P compounds. During their growth, the 
archaea H. distributum and H. salinarium concentrate P (Pi) 
from aqueous solutions, and when Pi is in excess, its large 
portion accumulates inside the microbial biomass (Smirnov 
et al. 2002, 2005). It has been reported that several species 
of Brevibacteria store P as low-soluble salts, and during 
their growth, these Brevibacteria almost completely con-
sumed the medium’s Pi at its concentration of about 11 mM 
(Smirnov et al. 2005; Ryazanova et al. 2009).

Inorganic polyphosphates (polyP), which are straight 
anionic polymers of orthophosphoric acid and contain three 
to several hundreds or even thousands of phosphate resi-
dues connected via energy-rich phosphoanhydride bonds, 
play the role of P reserve in the majority of microorgan-
isms (Kulakovskaya 2015). However, Mandala et al. (2020) 
recently reported substantial amounts of cyclic polyphos-
phates in Xanthobacter autotrophicus. Reports suggest 
that these polymers are present in all cells, although their 
concentration and length usually differ. PolyP was initially 
discovered by Arthur Meyer in microbes in 1904. However, 
it was named volutin because of its pink colour obtained 
when stained with blue dyes and was recognized as polyP in 
1947 by J. M. Wiame (Kornberg 1995). Because the energy 
in the phosphodiester bond of polyP is the same as in an 
ATP molecule, it functions as an energy reserve and does 
not affect osmotic pressure. Numerous microorganisms 
ranging from a variety of taxa, from archaea to fungi, have 
demonstrated the function of polyP as a phosphate reserve 
(Wood and Clark 1988). Their functions in living organisms 
are extensive, including metal chelation, energy storage, 
Ca2+ storage influencing bacterial transformation, regula-
tion of osmotic pressure, alkali buffering, increased bio-
logical phosphate exclusion, chaperon protecting protein, 
stress response, survival, and assisting factor in gene regu-
lation (Rao et al. 2009; Achbergerova and Nahalka 2011; 
Gray et al. 2014). Furthermore, polyP is directly related 
to bacterial physiological processes such as signalling and 
regulation, DNA replication, cell proliferation, production 
of poly-3-hydroxybutyrate, mobility, quorum sensing, bio-
film formation, and pathogen virulence (Rashid et al. 2000; 
Tumlirsch et al. 2015; Albi and Serrano 2016). Wang et al. 

deficiency in plants. AMF and PSB are the critical compo-
nents of biogeochemical cycles (Sharma et al. 2013; Etesami 
2021). AMF can boost P uptake by host plants through (i) 
enhancement in the P uptake per unit of AMF colonized root 
owing to the great efficiency of hyphal surfaces to absorb P 
from the soil, in contrast to root surfaces having cylindri-
cal shape (Sharif and Claassen 2011); (ii) expansion of the 
hyphal networks to stretch outside the rhizospheric region, 
absorption of Pi via AMF through Pi transporters around 
25 cm close to the roots, translocation of Pi to intracellular 
AMF structures colonizing root cortical region (Garg and 
Pandey 2015); (iii) storage of P as polyphosphates, so that 
AMF can maintain internal Pi concentration comparatively 
low, successfully transporting P from soil to AMF hyphae 
via formation of appressoria and from extra-radical to intra-
radical mycelium (Pepe et al. 2020); (iv) small diameter 
of hyphae (2–20  μm) which helps AMF to explore min-
ute soil interiors for P, and attain higher P absorption rates 
for a specific surface area (Jakobsen et al. 2001); and (v) 
reduction in the depletion area around the hyphae or roots 
(Garg and Pandey 2015). Bacteria acquire P chiefly as Pi 
and assimilate it in the cytoplasm as adenosine triphosphate 
(ATP) (Bruna et al. 2021). Microbes should strictly control 
Pi acquisition and consumption since P absorption is neces-
sary; however, surplus Pi in cytoplasm proves to be toxic 
(Lubin et al. 2016; diCenzo et al. 2017). Soil microbes are 
a sink for P because they can immobilize available P from 
the soil. As soon as P is absorbed by microbial cells, it gets 
integrated into cellular constituents (for example, organic 
P-esters, nucleic acids, coenzymes, free Pi, and excess P, 
which can accumulate as polyphosphates) (Hallama et al. 
2019). Numerous reports have indicated that immobilized P 
is considerably distributed into diverse P pools (for instance, 
resin-extractable P, water-extractable P, and microbial P) 
after its liberation from microbial biomass (Bünemann et 
al. 2012; Bi et al. 2018). Furthermore, soil microorganisms 
have been reported to compete with plants for the acces-
sible P, and microbial cells symbolize a critical transient 
immobilized assemblage of P, which could be mobilized 
and discharged in the soil solution in the form of available P 
(Richardson and Simpson 2011).

Storage of phosphate within cells

Phosphate is a necessary nutrient for every cell in nature. 
The growth and development of microorganisms is sup-
pressed by P deficiency, while its surplus levels negatively 
affect phosphate metabolism regulation. Pi’s intracellular 
concentration is tightly controlled inside microbial cells. 
Microorganisms living in varied environments possess 
diverse mechanisms for adaptation to P excess and defi-
ciency. The Pi transport system, which has diverse affinities 
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linkages constitute the polymeric compounds in Gram-posi-
tive bacterial cell walls. These polymers participate in adhe-
sion and bacterial cell morphogenesis and regulate the ionic 
composition of cell walls and autolysin activity (Brown et 
al. 2013). These polymers are consumed in a P- deficient 
medium and may constitute up to 30% of the cells’ total P 
(Grant 1979). Hence, it is believed that one of the functions 
of teichoic acids is phosphate reservation.

Besides bacteria, AMF contain significant amounts of 
Pi and polyP granules or volutin granules in cell vacuoles 
(Dhalaria et al. 2020). AM fungi take up Pi from the soil via 
Pi transporters present on the plasma membrane of extra-
radical hyphae (Xie et al. 2016), which is quickly changed 
into polyP and then sequestered into tubular vacuoles (Kiku-
chi et al. 2014). Scattered polyP has been discovered in 
the extra-radical and intra-radical mycelium of Gigaspora 
margarita, indicating a strong link and substantiation of 
polyP confinement in AMF vacuoles (Nayuki et al. 2014). 
Studies on obligate mycorhizal fungus have revealed that 
polyP builds up in fungal cells and is hydrolyzed to provide 
phosphate to symbiotic plants (Ohtomo and Saito 2005). Pi 
is liberated from polyP with polyphosphates present in the 
vacuole, exported to the cytosol via vacuolar Pi exporter 
(PHO91), and subsequently integrated into ATP (Kikuchi 
et al. 2014). Using these processes, the fungi can accumu-
late enormous quantities of polyP (up to 64% of total phos-
phorus in cells) within several hours without disturbing the 
cellular Pi level (Hijikata et al. 2010), indicating strict regu-
lation of Pi homeostasis in fungi. The polyP content in the 
fungus varies during mycorrhizal development and can be 
exploited as an indicator of fungal activity as a phosphate 
supplier for the plant. It has been reported that the obligatory 
mycorrhizal fungus has polyP-synthetase activity when ATP 
is present (Tani et al. 2009). Mycorrhizal fungi are essential 
for providing P to symbiotic plants (Plassard and Dell 2010) 
due to their capacity to concentrate Pi from soil, release 
organic acids that cause the dissolution of low-soluble min-
eral phosphorous compounds, and accumulate polyP.

Deficiency of phosphorus in soil and its effects on 
microbes and plants

Phosphorus plays a critical role in agricultural production 
whose status is non-substitutable. This element has been 
found to regulate the growth and endurance of plants and 
their allied microorganisms, most especially in the rhizo-
sphere. Against this background, the correlation and interde-
pendency of P, microbes, and plant growth are discussed in 
this section to unravel its role in enhancing food production. 
A large number of studies have focused on the influence of P 
on microbial organization and diversity in diverse soil types 
and their role in mining the unavailable P (Dai et al. 2020; 

(2018) proved the relationship of polyP with virulence and 
durability in bacteria.

Several ultra-structural studies have demonstrated the 
presence of polyP granules in archaebacteria, e.g. Archaea-
globus fulgidus, Sulfolobus sp., Methanospirillum hungatei, 
Metallosphaera sedula, and in members of Methanosarcina-
ceae (Toso et al. 2011, 2016). In some archaea, the accumu-
lation of polyP is an essential resistance mechanism against 
metals (Rivero et al. 2018) and oxidative stress (Jasso-
Chávez et al. 2015). Recently, polyP has been shown to play 
a role in heterochromatin formation in bacteria (Beaufay et 
al. 2021). These polymers are low under P deficiency and 
high under adequate phosphate content in the medium (Nes-
meyanova 2000). Bacteria belonging to the genera Myco-
bacteria and Corynebacteria store large amounts of polyP 
as cytoplasmic granules (Lindner et al. 2010). Mycobacteria 
and Corynebacteria have enzymes that directly use poly-
phosphate energy for substrate phosphorylation, such as 
polyphosphate glucokinase (Hsieh et al. 1996), NAD kinase 
(Mori et al. 2004), fructose and mannose kinases, in addi-
tion to polyphosphate kinase, the essential enzyme involved 
in polyP synthesis in prokaryotes (Mukai et al. 2003).

In yeast, the function of polyP as a phosphate-storing 
reserve material is well established (Vagabov et al. 2000), 
where it functions as a buffer and maintains intracellu-
lar phosphate levels when external P is transitorily limit-
ing (Thomas and O’Shea 2005). Additionally, polyP plays 
a pivotal role in oxidative stress response (Hothorn et al. 
2009; Reddi et al. 2009) and accumulates in response to the 
scarcity of some nutrients in yeast (Breus et al. 2012). PolyP 
is primarily synthesized and accumulates in yeast vacuoles 
with the vacuolar transporter chaperone (VTC) complex 
(Gerasimaite et al. 2014). PolyP can be non-covalently con-
nected to lysine residues of proteins as a non-enzymatic 
post-translational modification (PTM), suggesting their 
role in regulating protein interactions (Azevedo et al. 2015; 
McCarthy et al. 2019). PolyP has have also been consid-
ered to facilitate adequate deoxynucleoside triphosphates 
(dNTPs) and check the genome’s constancy during yeast rep-
lication (Bru et al. 2016). A few yeast species, for example, 
Candida humicola (McGrath et al. 2005), Hansenula fabi-
ani, and Hansenula anomala have been reported to accumu-
late considerable amounts of polyP and were isolated from 
wastewaters containing excess levels of polyP (Watanabe et 
al. 2008). Even the enzymes involved in polyP metabolism 
are well characterized in yeast (Hothorn et al. 2009). It has 
been reported that phosphate uptake-consumption balance 
generates an intracellular free P content of about 20 mM in 
yeast (Pinson et al. 2004; van Heerden et al. 2014). Besides 
PolyP, some bacteria have also reported the presence of 
organic P reserves. Teichoic acids, made up of repeating 
polyol or glycosylpolyol residues linked by phosphodiester 
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Trichoderma increased upon administration of nutrient-rich 
fertilizers (Kraut-Cohen et al. 2021).

Constraints in bulk production of phosphate 
solubilizing microorganisms and adoption by the 
farmers

Biofertilizers are the substitute of synthetic or chemical 
fertilizers and have gained significant attention in sustain-
able agriculture. But still there are many challenges in 
commercializing these alternative fertilizers including bulk 
production, technical complexities, regulatory hurdles and 
adaptation by the farmers (Yadav and Yadav 2024). At pres-
ent the main problem associated with the PSMs is selection 
of efficient strain, standardization and scale up of the strain 
for bulk production, optimization of process parameters for 
mass production. PSMs also do not persist in soil for long 
time and may lose viability due to competition from other 
microorganisms in the soil and soil conditions such as tem-
perature, pH, heavy metal toxicity and salinity limiting their 
effectiveness over long time. The other factors that limit the 
application of PSMs are the high production cost and also 
its application require technical support (Wang et al. 2023). 
At the same time many farmers are not aware of PSMs. 
They must be extensively educated about the role of bio-
fertilizers and PSMs in agriculture, how their use improves 
the quality and quantity of crop production. If farmers are 
convinced the availability and distribution network should 
be strong so that PSMs reach to the farmers on timely even 
in remote area.

Genetically engineered PSMs and its regulatory 
hurdles

Genetically engineered PSMs are produced by chromo-
somal integration of the gene for higher solubilization 
capability and stability but full proof strategies should be 
implemented to avoid the horizontal gene transfer in other 
soil microbes (Ingle and Padole 2017). Getting approvals 
for the use of genetically modified PSMs is also time con-
suming and costly process. Different countries have their 
own regulatory standards for the application of recombi-
nant microorganisms in agricultural application. As we are 
directly inoculating large amount of recombinant microbes 
in the environment, therefore comprehensive research and 
study required to ensure the ecological and environmental 
safety. For the widespread application of PSMs the govern-
ment should provide funding for the research and develop-
ment, joint venture of private–public partnership can also 
accelerate the commercialization of PSMs. Government 
also streamlined the regulatory frameworks so the approval 
process would be easy and convenient for the safe use of 

Enebe et al. 2021; Ducousso-Détrez et al. 2022). In addi-
tion, P is found to promote plant-microbe interaction and 
improve soil aggregation in arid habitats (Rillig and Mum-
mey 2006; Smith and Schindler 2009). Reports suggest that 
P facilitates the growth of almost all organisms, even though 
it is scarcely found in many ecosystems (Van Mooy et al. 
2009; George et al. 2016). P availability drastically changes 
the dynamics of the soil microbiome in the rhizosphere. 
For instance, Ling et al. (2017) highlighted the significance 
of P in changing scenarios of soil microbial communities. 
The authors concluded that microbes play a critical role in 
regulating nutrient cycling to accelerate the organic matter 
decomposition in terrestrial ecosystems. On the contrary, a 
few studies have demonstrated an insignificant correlation 
between increased P availability and composition of micro-
bial communities in soil; rather, their abundance is related to 
several other factors such as plant species, type of fertilizer 
applied, and physicochemical conditions of soil (Huang et 
al. 2016; Lagos et al. 2016; Shi et al. 2020). A close literature 
analysis revealed that P exerts negative, neutral, and positive 
impacts on soil microbiomes, influencing plant growth and 
well-being (Thirukkumaran and Parkinson 2002; Groffman 
and Fisk 2011). For instance, the composition of fungal and 
bacterial communities altered in temperate meadow soils 
upon P addition, with increased operational taxonomic unit 
(OTU) of fungi and a decline in OTU richness of bacterial 
communities (Yan et al. 2021). Plant-linked microorgan-
isms stimulate growth, aid in the up-regulation of nutrient 
uptake, and, more importantly, help plants in alleviating 
biotic and abiotic stressors (Trivedi et al. 2020). The diver-
sity and richness of plant-associated microbial communities 
are grossly dependent on the nutrient composition of the 
rhizosphere. For example, reports suggest that rhizosphere 
bacterial genera, for instance, Arthrobacter, Devosia, and 
Bacillus,varied upon nitrogen supply, and the same is least 
influenced by increasing the levels of P in wheat (Chen et 
al. 2019). Reports in the literature revealed that P availabil-
ity is an essential aspect for controlling the richness of soil 
microbiomes in grassland ecosystems, and its dependency 
is also found to be associated with fertilization frequencies, 
soil types, and soil use systems (Dong et al. 2020; Yan et 
al. 2021; Wu et al. 2022b). It is reported that the P status 
of soils impacts the diversity and incidence of soil bacteria 
involved explicitly in P cycling (Ikoyi et al. 2018; Widdig 
et al. 2019). Recently, Chen et al. (2023) demonstrated that 
variation in organic and inorganic P pools greatly influenced 
the microbial composition of the rhizosphere in paddy-rice 
red soil. This study further reported that there was a shift-
ing of microbial communities after adding P fertilizers. 
For example, Thiobacillus, a class of dominant PSB, was 
found to be abundant after adding P fertilizer. Similarly, the 
abundance of PSF such as Aspergillus, Flavobacterium, and 
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Conclusions and future prospects

Within the soil-plant nutrition cycle, P is a limiting nutri-
ent. While exogenous chemical fertilizers can meet crop P 
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cultural land for providing required organic P to plants. In 
a nutshell it can be concluded that utilization of PSMs is an 
essential biotechnological tool for raising agricultural out-
put and has a vast array of possible uses.
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