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MEL  Melanin
MRSA  Methicillin resistant Staphylococcus aureus
PHZ  Phenazine
PCN  Pyocyanin
PVD  Pyoverdin
PDG  Prodigiosin
QS  Quorum Sensing
RFV	 	Roseoflavin
ROS  Reactive oxygen species
SXT  Staphyloxanthin
TFV	 	Toxoflavin
VIO  Violacein
ZXT  Zeaxanthin

Introduction

Originally	 identified	 as	 coloring	 agents,	 pigments	 iso-
lated from natural resources including plants and micro-
organisms,	 have	 emerged	 as	 molecules	 of	 multitudinous	
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Abstract
Bacterial	pigments	stand	out	as	exceptional	natural	bioactive	compounds	with	versatile	functionalities.	The	pigments	rep-
resent	molecules	 from	distinct	chemical	categories	 including	 terpenes,	 terpenoids,	carotenoids,	pyridine,	pyrrole,	 indole,	
and	phenazines,	which	are	synthesized	by	diverse	groups	of	bacteria.	Their	 spectrum	of	physiological	activities	encom-
passes	 bioactive	 potentials	 that	 often	 confer	 fitness	 advantages	 to	 facilitate	 the	 survival	 of	 bacteria	 amid	 challenging	
environmental	conditions.	A	large	proportion	of	such	pigments	are	produced	by	bacterial	pathogens	mostly	as	secondary	
metabolites.	 Their	 multifaceted	 properties	 augment	 potential	 applications	 in	 biomedical,	 food,	 pharmaceutical,	 textile,	
paint	industries,	bioremediation,	and	in	biosensor	development.	Apart	from	possessing	a	less	detrimental	impact	on	health	
with	environmentally	beneficial	attributes,	tractable	and	scalable	production	strategies	render	bacterial	pigments	a	sustain-
able	option	for	novel	biotechnological	exploration	for	untapped	discoveries.	The	review	offers	a	comprehensive	account	
of	 physiological	 role	 of	 pigments	 from	 bacterial	 pathogens,	 production	 strategies,	 and	 potential	 applications	 in	 various	
biomedical	and	biotechnological	fields.	Alongside,	the	prospect	of	combining	bacterial	pigment	research	with	cutting-edge	
approaches	like	nanotechnology	has	been	discussed	to	highlight	future	endeavours.
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applications	with	least	toxic	impact	on	the	environment	and	
human	health	 (Orlandi	et	al.	2022).	Barring	 their	applica-
tion	as	chromogens	for	foods,	textiles,	cosmetics,	and	other	
industries,	unravelling	the	biological	action	of	the	pigments	
rendered those of immense prospect for clinical application 
(Agarwal	et	al.	2023).	A	number	of	such	natural	pigments	
are preferably extracted from microorganisms including 
chromogenic	 bacteria	 owing	 to	 greater	 stability,	 up-scal-
ing,	 and	 easy-tunable	down-stream	processing	 (Barreto	 et	
al.	2023).	Despite	such	advantages,	bacterial	pigments	are	
relatively less explored compared to pigments from plant 
and	 fungal	 sources.	 Except	 for	 photosynthetic	 pigments	
like	 bacteriochlorophylls,	 bacterial	 pigments	 are	 diverse	
in	 terms	of	chemical	properties	and	belong	 to	groups	 like	
carotenoids,	 melanin,	 phenazines,	 quinones,	 indoles,	 and	
pyrroles	(Barreto	et	al.	2023).	Carotenoids,	pyocyanin,	vio-
lacein,	 prodigiosin,	 and	melanin	 and	 their	 derivatives	 are	
the most profoundly produced bacterial pigments (Acharya 
et	al.	2023).	Producers	of	such	pigments	are	ubiquitous	in	
nature	and	can	be	isolated	from	various	niches	like	marine	
and	 terrestrial	 environments,	 ambient	 to	 extreme	environ-
ments,	 and	 spoilt	 food	 to	 industrial	 effluent	 (Chatragadda	
and Dufosse 2021).	 Well-characterized	 pigment	 produc-
ers	 include	 actinobacteria,	 which	 includes	 Streptomyces,	
unequivocally	 the	 largest	 genus	 of	 pigment	 formers.	 S. 
shaanxiensis,	S. griseoviridis,	and	S. coelicolor are the most 
well-characterized	pigment	former	species	from	this	group	
(Ibrahim	et	al.	2023).	Apart	 from	Streptomyces,	a	number	
of	pathogenic	bacteria,	particularly	opportunistic	pathogens	
from the genera Serratia,	 Pseudomonas,	 Staphylococcus,	
Chryseobacterium,	and	Chromobacterium have been iden-
tified	 as	 profound	 pigment	 producers	 (Chatragadda	 and	
Dufosse 2021).	Similar	 to	 alkaloids	 and	antibiotics	bacte-
rial	 pigments	 are	 secondary	 metabolites.	 Pigment	 anabo-
lism requires the expression of dedicated biosynthetic gene 
clusters	 (BGC),	which	 are	 regulated	by	various	 transcrip-
tion	factors	modulated	by	environmental	cues	(Wang	et	al.	
2021).	The	colossal	genetic	load	dedicated	to	pigment	bio-
synthesis and its regulation underpins the evolutionary rel-
evance	of	pigment	production.	The	majority	of	the	pigments	
offer	fitness	advantages	to	the	producer	organism,	shaping	
microbial	communities,	participating	in	cell-cell	communi-
cation	 processes,	 and	 establishing	 infection	 in	 susceptible	
host	(Liu	et	al.	2024b).	For	the	producers,	pigments	provide	
protection	against	oxidative	damage,	genotoxicity	by	ultra-
violet	radiation	and	mutagens,	and	also	impart	tolerance	to	
elevated	 temperature	 and	 extreme	 desiccation	 (Day	 et	 al.	
2017).	Biological	action	associated	with	such	functions	has	
been	 linked	 to	 antimicrobial,	 antiviral,	 antioxidant,	 anti-
oxidant,	and	anticancer	activities	of	a	number	of	bacterial	
pigments.	With	the	identification	of	such	exotic	properties,	
bacterial pigments are attaining mounting interest in clinical 

and	 pharmaceutical	 industries	 (Barreto	 et	 al.	 2023).	 The	
estimated	global	market	for	some	of	the	pigments	has	been	
projected	 in	 recent	years.	The	predicted	global	market	 for	
natural	pigments	in	the	cosmetic	industry	is	USD	54.5	bil-
lion	in	coming	years	(Kiki	2023).	Thriving	on	the	increasing	
demand	for	biodegradable	and	environment-friendly	dyes,	
the	market	expansion	for	pigments	comprising	other	groups	
are	also	expected	to	escalate.	With	accumulating	evidence	of	
clinical	and	pharmaceutical	applications	like	antimicrobial	
properties,	bacterial	pigments	are	expected	 to	offer	 strate-
gies to combat antimicrobial resistance emergence (Acha-
rya	et	al.	2023).	A	number	of	profound	pigment-producing	
bacteria	 are	 opportunistic	 pathogens,	which	 often	 hinders	
scaling	up	for	production.	Leveraging	synthetic	biology	for	
metabolic	engineering,	development	of	 semisynthetic	pig-
ment	derivatives,	and	nanoformulations	with	bioactive	pig-
ments	are	underway	to	foster	industrial	and	pharmaceutical	
applicability	of	the	molecules	(Muthukrishnan	et	al.	2019).	
Against	this	backdrop,	the	present	review	attempts	to	offer	
a comprehensive retrospect of nonphotosynthetic bacterial 
pigments produced by pathogenic bacteria through a thor-
ough	 introspection	of	existing	 literature	 (Fig.	1).	Some	of	
the pigments of concern are exclusively produced by patho-
genic	 bacteria,	 and	 for	 others,	 both	 pathogenic	 and	 non-
pathogenic	 origin	 have	 been	 reported.	The	 review	 begins	
with	outlining	 the	chemical	 identity	and	bioactive	proper-
ties	of	 the	pigments.	Subsequently,	 the	 impact	of	 the	pig-
ments on microbial communities and their possible role in 
pathogenicity	is	accounted.	A	detailed	discussion	on	various	
biotechnical	 and	 clinical	 applications	 is	 included.	Along-
side,	 an	 insight	 into	 the	 strategies	 for	 the	 industrial	 pro-
duction	 of	 bacterial	 pigments	 is	 discussed.	 Finally,	 recent	
approaches for developing novel formulations exploiting 
the bacterial pigments are highlighted to project possible 
future	endeavours.

Bacterial pigments: producers and chemical 
properties

Bacterial	pigments	have	been	classified	into	various	struc-
tural	 and	 functional	 groups.	 Pigments	 produced	 by	 non-
phototrophic	pathogenic	bacteria	have	been	associated	with	
a higher spectrum of functionalities including adapting to 
certain	environment	 for	 survival,	protection	against	 radia-
tion	and	oxidative	stress,	and	exerting	antimicrobial	effects	
to	offer	fitness	advantage	in	their	own	habitat	(Barreto	et	al.	
2023) (Table 1).	Majority	of	the	pigments	are	produced	as	
secondary	metabolites,	which	are	diverse	in	terms	of	struc-
ture	 (Fig.	2)	and	physicochemical	properties	 (Fig.	3A and 
B).	In	this	segment,	a	brief	discussion	on	ten	major	groups	
of bacterial pigments produced by bacterial pathogens are 
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discussed	in	terms	of	their	chemical	features	linked	to	bio-
logical	function.

Carotenoids

Carotenoids,	are	one	of	 the	most	frequently	observed	pig-
ment in several groups of organisms including bacteria (Devi 
et	al.	2024),	archaea,	fungi,	algae,	plants,	and	even	animals	
(Maoka	2023).	More	than	850	different	types	of	carotenoids	
that are found in nature play important roles as photo-
protection,	color	attractant	as	well	as	hormonal	precursors	
of	 plants.	 In	 animals,	 carotenoids	 act	 as	 photo-protector,	
antioxidants,	 immunity	 boosters,	 and	 vitamin	A	 precursor	
(Maoka	2023).	The	structure	of	all	variants	of	carotenoids	
are	similar.	Although	the	common	precursor	for	carotenoid	
biosynthesis is phytoene (C40),	some	other	C30 and C50 pre-
cursors	are	used	by	a	few	bacterial	species.	All	comprise	of	
a	general	polyene	chain	with	at	least	nine	conjugated	double	
bonds,	both	sides	carrying	an	end	group	(Walter	and	Strack	
2011).	Phytoene	gets	converted	 to	 lycopene	via	numerous	
denaturation	and	polymerization	 reactions.	A	cyclase	 then	
converts	lycopene,	the	red-colored	pigment,	to	yield	α-,	β-	
and	γ-carotenes	(Barreto	et	al.	2023).	Zeaxanthin	(ZXT)	is	
a	 yellow-pigmented	 carotenoid	 that	 has	 a	 linear	 structure	
β,β-carotene-3,3′-diol	(Fig.	2A).	ZXT	can	be	obtained	from	
plants	and	even	the	yolk	of	egg	to	different	yellow	pigmented	
organism.	Among	 bacteria	 Flavobacterium	 sp.,	 Paracoc-
cus zeaxanthifaciens can be the source of ZXT production 
(Li	et	al.	2023a;	Raman	et	al.	2024).	Although	other	higher	

hierarchical	plants,	animals,	and	even	algae	produce	ZXT,	it	
is	difficult	to	isolate	the	pigment	from	them	as	they	also	pro-
duce	other	carotenoids.	In	contrast,	bacteria	such	as	F. multi-
vorum	specifically	produce	3R,3’R-	ZXT	(Vila	et	al.	2020).	
It	also	acts	as	an	anticancer	and	anti-inflammatory	agent	due	
to	its	antioxidant	properties	(Raman	et	al.	2024) (Table 1).	
The pathogenic bacterium Staphylococcus aureus has been 
reported	to	synthesize	a	triterpenoid	carotenoid,	staphylox-
anthin	(SXT)	as	a	possible	virulence	factor	(Liu	et	al.	2005).	
The	 chemical	 structure	 of	 STX	was	 determined	 by	NMR	
spectroscopy,	which	revealed	that	glucose	is	esterified	with	
a triterpenoid carotenoid carboxylic acid at the C1’’	position	
and a C15 fatty acid at C6”	position	(Fig.	2B).	SXT	provides	
the	bacteria	protection	against	antimicrobial	attack	includ-
ing	the	immune	system	owing	to	the	diaponeurosporenoic	
group	and	its	ability	to	lower	the	membrane	fluidity	without	
altering conformation (Table 1),	both	of	which	are	otherwise	
coupled	events	(Munera-Jaramillo	et	al.	2024).	Astaxanthin	
(AXT),	is	an	extremely	important	keto-carotenoid	produced	
by nonpathogenic strains of Paracoccus and Pseudoal-
teromonas	 (Patil	 et	 al.	 2022).	 Though	AXT	 demonstrates	
immense	bioactive	potential,	since	it	is	produced	primarily	
by	nonpathogens,	it	is	not	further	discussed	here.

Azaphenanthrene

Azaphenanthrene (AZP) is a green-colored pigment that can 
be isolated from Bacillus cereus.	 Its	structure	 is	 identified	
as	9-methyl-1,4,5,8-tetra-AZP,	 linked	with	a	chromophore	

Fig. 1	 Bibliographic	analysis.	VOSviewer	generated	map-view	for	rel-
evant	terms	extracted	from	titles	and	abstracts	of	632	research	articles	
identified	by	DimensionsAI	(https://www.dimensions.ai/).	60%	of	the	

most	relevant	terms	are	mapped	on	the	plot	with	‘occurrence’	as	the	
weightage	parameter.	The	map	contains	329	items	distributed	within	7	
clusters	through	18,871	links
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Table 1	 Bacterial	pigments	produced	by	bacterial	pathogens.	Various	pigments	 isolated	from	pathogenic	bacteria	and	their	category,	producer	
organisms,	mechanism	of	action,	and	major	biological	activities	as	evidenced	by	recent	reports	are	enlisted
Bacterial pigment Group Producing 

pathogen
Mode of action Major biological activity

Zeaxanthin Carotenoids S. aureus, 
Paracoccus 
app.

Free radical scavanger 
- antioxidant

Antioxidant	(Raman	et	al.	2024)
Antihelminthic	(Bouyahya	et	al.	2021) Neuropro-
tection	(Stringham	et	al.	2019)
Antidiabetic	(Stringham	et	al.	2019)

Staphyloxanthin Carotenoids S. aureus Free radical scavanger 
-	antioxidant,	Lowering	
membrane	fluidity

Antibacterial (Barretto and Vootla 2018)
Antifungal (Barretto and Vootla 2018)
Antioxidative	properties	(Xue	et	al.	2019)

Azaphenanthrene Azaphenanthrene Bacillus 
cereus

Membrane disruption 
and loss of membrane 
potential

Antitumoral,	antibacterial,	antimalarial,	and	anti-
fungal	(Calabrese	et	al.	2010)

Roseoflavin Flavin Burkholdaria 
spp

Bind	to	FMN	riboswitch	
aptamers,	inhibiting	
the expression of genes 
encoding FMN bio-
synthesis and transport 
proteins

Antimicrobial	(Li	et	al.	2019)

Toxoflavin Flavin Burkholdaria 
spp

By-passing of the 
cytochrome-system and 
producing H2O2

Antimicrobial	(Li	et	al.	2019)

Phenazin Phenazin P. aeruginosa, 
Burkholderia 
spp.

Redox	active,	impairs	
redox balance

Antipersister	(Garrison	et	al.	2018)
Redox	homeostasis	(Schiessl	et	al.	2019)

Pyocyanin Phenazin P. aeruginosa Redox	active,	impairs	
redox balance

Anticancer-apoptotic and necrotic activities 
(Abdelaziz	et	al.	2022)
Antibacterial,	antibiofilm,	and	anti-quorum	sens-
ing	effects	(Kamer	et	al.	2023)
Antifungal	(Sass	et	al.	2021;	Shouman	et	al.	2023)

Pyoverdin Siderophore Pseudomonas 
aeruginosa

Iron quencher Antibacterial	(Vollenweider	et	al.	2023),	Biore-
mediation,	and	phytostimulator	(Dell’Anno	et	al.	
2022)

Prodigiosin Tripyrrole Serratia 
marcescens,

Loss of membrane 
integrity,	intercalate	
DNA and acts as inhibi-
tors of topoisomerases I

Antibacterial	(Acharya	et	al.	2023)
Anticancer	(Tai	et	al.	2024)
UV-screen	(Lin	et	al.	2020)

Violaceine Bisindole Chromo-
bacterium 
violaceum,	 
Janthinobac-
terium lividum

membrane damage and 
depolarization

Antifungal	(Duran	et	al.	2022)
UV	screen	(Zhu	et	al.	2022)
Antibacterial	(El-Zawawy	et	al.	2024)
Antioxidants	(Kordjazi	et	al.	2024)
Anticancer	effects	(de	Souza	Oliveira	et	al.	2022;	
El-Zawawy	et	al.	2024;	Kim	et	al.	2021)

Melanin Melanin (polymer of 
phenolic compounds)

Bordetella 
parapertussis, 
Pseudomo-
nas otitidis, 
Pseudomonas 
stutzeri

UV	and	Radiation	
screen

Antibacterial	(Kordjazi	et	al.	2024;	Polapally	et	
al.	2022;	Singh	et	al.	2021)
Anticancer	effects(El-Zawawy	et	al.	2024)
Antifungal	(Arun	et	al.	2015)
Antiviral	(Abd-El-Aziz	et	al.	2024)

Indigoidin bipyridyl Dickeya 
dadantii

Prevents oxidative 
stress

Antimicrobial	(Xu	et	al.	2015)
Antioxidant	(Cude	et	al.	2012)

Flexirubin Flexirubin Chryseo-
bacterium,	 
Flexibacter

Free radical Scavang-
ing,	Immunomodulation

Free	radical	scavenging	and	anti-inflammatory	
activity	(Mogadem	et	al.	2021)
Proapoptotic	(Venil	et	al.	2016)
Antioxidant	(Amorim	et	al.	2022a)
Hepatoprotective	(Mogadem	et	al.	2022)
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Flavins

The	basic	 structure	 of	 the	flavins,	 a	 group	of	 yellow	pig-
ments,	is	composed	of	a	tricyclic	isoalloxazine	ring,	which	
is	 a	 nitrogen	 and	 oxygen-containing	 heterocycle.	Ribofla-
vin	 also	known	as	 vitamin	B2	 is	 the	major	microbial	fla-
vin	with	pigment	characteristics	and	also	 the	origin	of	all	
biologically	active	flavins.	Two	pentose	phosphate	pathway	
intermediates guanosine triphosphate (GTP) and ribulose-
5-phosphate	(Ru5P)	function	as	the	precursor	for	riboflavin	

derivative	 known	 as	 7-N,	N-dibutylamino-2-AZP	 (Baner-
jee	 et	 al.	 2011,	 2014)	 (Fig.	 2C).	Antibacterial	 activity	 of	
AZP	compounds	was	reported	long	ago	(Gupta	et	al.	1970);	
the	 stability	 of	 which	 was	 demonstrated	 to	 vary	 depend-
ing	 on	 the	 arrangement	 of	 different	 ring	 structures	within	
the	pigment,	including	the	aza,	methyl,	and	benzyl	groups	
(Calabrese	et	al.	2010).	Moreover,	 the	derivatives	of	AZP,	
identified	 from	 other	 resources	 demonstrated	 a	 range	 of	
pharmacological activities as enlisted in Table 1.

Fig. 2 Pigments produced by 
pathogenic	bacteria.	Structures	
of various bacterial pigments 
are illustrated using PubChem 
Sketcher	V2.4	and	ACD/	ChemS-
ketch	based	on	isomeric	SIMLES	
retrieved	from	PubChem.	(A) 
zeaxanthin (ZXT) (B) staphy-
loxanthin	(SXT),	(C) azaphen-
anthrene	(AZP),	(D)	roseoflavin	
(RFV),	(E)	toxoflavin	(TFV),	(F) 
phenazine	(PHZ),	(G) pyocyanin 
(PCN),	(H)	pyoverdin	(PVD),	(I) 
prodigiosin	(PDG),	(J) violacein 
(VIO),	(K)	melanin	(MEL),	(L),	
indigoidin	(IND),	and	(M)	flexi-
rubin (FLR)
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Pyocyanin

The bacterial genus Pseudomonas synthesizes a number of 
phenazine	(PHZ)	pigments	 (Fig.	2F)	which	are	prominent	
virulence	factors	for	the	bacterium.	These	pigments	play	a	
crucial	role	in	biofilm	formation	by	P. aeruginosa by regu-
lating	gene	expression	(Fekete-Kertesz	et	al.	2024).	Pyocya-
nin	 (PCN)	 is	a	nonfluorescent	water-soluble	blue	pigment	
that changes color according to the oxidation status (Pier-
son and Pierson 2010).	It	is	a	nitrogen-containing	PHZ	and	

biosynthesis contributing to the pyrimidine part and hetero-
cyclic	 ring	 portion	 of	 the	 isoalloxazine	 ring,	 respectively.	
GTP	also	provides	 two	nitrogen	atoms	 to	 the	 ring	as	well	
as	a	ribityl	side	chain.	Streptomyces	spp.	and	Burkholderia 
spp.	have	been	reported	to	synthesize	structural	analogues,	
roseoflavin	(RFV)	(Fig.	2D)	and	toxoflavin	(TFV)	(Fig.	2E) 
respectively,	 which	 exert	 antimicrobial	 actions	 (Li	 et	 al.	
2019;	Mora-Lugo	et	al.	2019) (Table 1).

Fig. 3 Diversity of physicochemi-
cal property among bacterial 
pigments.	Hierarchical	cluster-
ing	was	performed	for	bacterial	
pigments on physicochemical 
analysis	by	ChemMine	tools	with	
average	distance	with	OpenBabel	
(A) ChemimeR (B) descrip-
tors.	The	colour	code	represent	
Z-scores
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the	peptide	varies	among	PVD	secreted	by	different	Pseu-
domonas strains and is attributed to the diverse substrate 
specificities	of	 the	NRPSs	(Ghssein	and	Ezzeddine	2022).	
Incorporation of the chromophore moiety is also cata-
lyzed	by	NRPSs	which	are	synthesized	in	the	cytoplasm	by	
three	enzymes	PvdA,	PvdF,	and	PvdH	(Schalk	and	Guillon	
2013).	Apart	from	inducing	biofilm	formation	by	regulating	
QS	pathways	and	exotoxin	A	production,	PVD	contributes	
towards	overall	nonresponsiveness	of	P. aeruginosa to anti-
microbial	therapies	(Ullah	et	al.	2017).	A	recent	screen	by	
Vollenweider	et	 al.	 (2023)	with	320	natural	Pseudomonas 
isolates	against	12	human	pathogens	identified	most	potent	
PVD	forms,	which,	 in	a	concentration	and	iron-dependent	
manner,	markedly	dampened	Acinetobacter baumannii, K. 
pneumonia,	and	S. aureus.	PVD	has	also	been	reported	as	
a potential candidate for delivering antimicrobial and/or 
anticancer	agents	 to	 the	 target	cells,	biosensor	 for	various	
molecules	including	pathogens	and	antibiotics,	bioremedia-
tion,	and	phytostimulation	(Dell’Anno	et	al.	2022) as sum-
marized in Table 1.

Prodigiosin

Prodigiosine (PDG) is a member of the prodiginine fam-
ily	which	is	a	red	pigment	and	has	a	linear	pyrrolyl	dipyr-
romethene	 skeleton	 produced	 by	 a	 number	 of	 microbial	
groups including Serratia,	Phaeocystis,	Microcystis,	Vibrio,	
Hahella,	 Janthinobacterium,	 and	 Streptomyces	 (Koksal	
Karayildirim	et	al.	2024;	Mukhia	et	al.	2023).	The	structure	
of	 PDG	 consists	 of	 2-methyl-3-pentyl-6-methoxyprodigi-
nine	which	 is	 a	 tri-pyrrole	 ring	with	 red	fluorescence	and	
basic	nature	(Fig.	2I).	Besides	PDG,	a	few	other	members	
of	the	prodiginine	family	carry	a	linear	chain	like	undecy-
lPDG	and	few	others	are	cyclic	derivatives	like	streptorubin	
B,	 cyclononylPDG,	cycloPDG,	and	butyl-meta-cyclohept-
ylprodiginine (Darshan and Manonmani 2015;	Williamson	
et	 al.	 2006).	The	 biosynthetic	 pathway	 of	 PDGs	 includes	
the	condensation	of	a	bipyrrole	molecule	4-methoxy-2-2’-
bipyrrole-5-carbaldehyde	(MBC)	with	a	monopyrrole.	Con-
densation	 with	 monopyrrole	 2-methyl-3-n-amyl-pyrrole	
(MAP)	yields	PDG	whereas	with	 2-undecylpyrrole	 yields	
undecylPDG	 (Williamson	 et	 al.	 2006).	MBC	biosynthesis	
involves	successive	combination	of	proline,	malonyl-	CoA	
and	serine	moieties	whereas	the	monopyrrole	portion	is	syn-
thesized	from	different	substrates	and	enzymes	(Barreto	et	
al.	2023).	PDG	can	intercalate	DNA	and	act	as	an	inhibitor	
of	topoisomerases	I	and	II,	thereby	inducing	DNA	damage	
(Lins	 et	 al.	 2015).	 It	 can	 compromise	 the	 integrity	 of	 the	
cytoplasmic membrane and bacterial outer membrane sig-
nificantly	(Danevcic	et	al.	2016) (Table 1).	PDG	has	been	
reported to display an array of biological functions as anti-
bacterial,	anticancer,	antiviral,	antifungal,	and	antiparasitic	

the	 heterocyclic	 structure	 is	 composed	 of	 two	 N-methyl-
1-hydroxyPHZ subunits (Goncalves and Vasconcelos 2021) 
(Fig.	2G).	The	synthesis	begins	from	the	precursor	choris-
mic acid that is converted to an intermediate PHZ-1-carbox-
ylic	acid	(PCA)	involving	seven	enzymes	from	two	operons	
(phz1 and phz2).	PCA	is	 then	converted	 to	PCN	either	by	
phzM-encoded methyltransferase or phzS-encoded mono-
oxygenase (Pierson and Pierson 2010).	It	stays	in	a	zwitter-
ionic	form	at	neutral	pH	7	hence	appearing	blue	and	also	in	
the	oxidized	state	under	alkaline	condition.	On	the	contrary,	
the	color	turns	red	when	in	an	acidic	environment	(Muda-
liar and Bharath Prasad 2024).	PCN	is	capable	of	showing	
antimicrobial	action	by	modifying	cellular	oxidation	state.	
Having	 both	 hydrophobic	 and	 hydrophilic	moieties,	 PCN	
easily crosses the cell membrane and being a redox-active 
molecule	kills	 the	 target	 cells	by	creating	oxidative	 stress	
via the production of reactive oxygen species such as super-
oxide and hydrogen peroxide (Goncalves and Vasconcelos 
2021).	 Being	 a	 redox-active	 molecule,	 PCN	 specifically	
exerts	its	action	by	oxidizing	NADH	and	NADPH,	conse-
quently	elevating	cytosolic	ROS	levels	and	redox	potential.	
This cascade of events results in diminished ATP production 
and a dysregulation of the reduced-to-oxidized glutathione 
(GSH/	GSSG)	ratio	(Hall	et	al.	2016).	Thus	PCN	can	act	as	
an	apoptosis	inducer	along	with	acting	as	an	antibacterial,	
antifungal,	and	QS	inhibitor	as	summarized	in	Table	1.

Pyoverdine

Pyoverdine	(PVD)	is	a	yellow	fluorescent	pigment	secreted	
by P. aeruginosa that acts as a siderophore and helps the 
organism survive in iron-limiting condition by accu-
mulating,	 mobilizing,	 and	 transporting	 iron	 into	 the	 cell	
(Dell’Anno	et	al.	2022).	More	than	100	variants	of	the	dye	
are secreted by Pseudomonas spp. depicting considerable 
structural diversity (Ghssein and Ezzeddine 2022).	 The	
structure	can	be	divided	into	three	segments:	a	6–12	amino	
acid	long	strain-specific	peptide	linked	to	a	carboxyl	group,	
a	 chromophore	 responsible	 for	 the	 fluorescence	 property,	
and a side chain that is connected to the nitrogen atom pres-
ent	at	 the	C-3	position	of	 the	chromophore,	which	mostly	
are	Krebs	 cycle	 intermediates	or	 their	 derivatives	 (Schalk	
and Guillon 2013)	(Fig.	2H).	It	is	also	a	QS-regulator	there-
fore	 controls	 its	 own	 synthesis	 apart	 from	contributing	 to	
Pseudomonas	 pathogenesis	 (Dietrich	 et	 al.	 2006).	 Non-
ribosomal peptide synthetases (NRPSs) containing multiple 
modules	are	involved	in	the	biosynthesis	of	PVD.	Four	gene	
products of the pvd	locus,	pvdL,	pvdI,	pvdJ,	and	pvdD have 
been	identified	for	coding	the	NRPSs	in	PAO1	(Dell’Anno	
et	al.	2022).	Each	module	of	 the	NRPS	 is	 responsible	 for	
the inclusion of individual amino acids to the peptide and 
bonding	 them	with	 peptide	 linkages.	 The	 composition	 of	
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al.	2021).	Streptomyces is the most extensively studied for 
the	production	of	the	brown/black	pigment	as	suggested	by	
recent reports on S. djakartensis	 (El-Zawawy	et	 al.	 2024) 
and S. nashvillensis	(Restaino	et	al.	2024).	Bacterial	MEL	
(Fig.	2K) is a heterogeneous mix of molecules and hence the 
structure	is	quite	undefined.	Fungi	and	bacteria	start	the	syn-
thesis process using precursors L-tyrosine or malonyl CoA 
(Carletti	 et	 al.	 2014).	By	 the	 action	of	 tyrosinase,	L-tyro-
sine	is	initially	converted	to	L-3,4-dihydroxyphenylalanine	
(L-DOPA) and subsequently transformed through interme-
diates	into	L-3,4-dihydroxyphenylalanine	(L-DOPA)	which	
is	 the	 precursor	 for	 euMELs.	 PyoMEL	 is	 synthesized	 by	
converting L-tyrosine into the precursor homogenistic acid 
via	an	intermediate	p-hydroxyphenylpyruvate	(Pralea	et	al.	
2019).	Although	 the	pyoMEL	synthesis	pathway	has	been	
studied in detail in P. aeruginosa,	enzyme	homologs	have	
been reported in Shewanella spp, Vibrio spp and Hypomo-
nas spp.	 (Plonka	 and	 Grabacka	 2006).	 L-tyrosine	 and/or	
L-DOPA	are	oxidized	in	the	presence	of	L-cystein,	and	phe-
oMEL	is	generated	which	is	a	red-yellow	colored	pigment.	
Malonyl CoA is used as precursor to produce the fungal 
alloMEL	(Restaino	et	al.	2024).	Through	its	polymeric	struc-
ture,	MEL	can	scavenge	free	radicals,	toxic	metal	ions,	and	
drugs (El-Naggar and Saber 2022).	MEL	has	been	assigned	
with	multiple	 bioactive	 characteristics	 like	 anti-inflamma-
tory,	 antioxidant,	 and	 antimicrobial	 properties	 (Furlani	 et	
al.	2024).	The	pigment	functions	as	an	effective	UV	screen	
as MEL derivatives have been reported to be present in the 
spore coat of Bacillus thuringiensis	to	protect	against	UV-
mediated	damage	(Zhu	et	al.	2022).	El-Zawawy	et	al.	(2024) 
have	recently	reported	that	purified	MEL	pigment	showed	
antibacterial action against multidrug-resistant strains of 
S. aureus,	Escherichia coli,	Klebsiella pneumoniae,	and	P. 
aeruginosa.	The	biological	significance	of	MEL	is	outlined	
in Table 1.

Indigoidine

A diverse group of bacteria produces a natural indigoidine 
(IND).	 The	 pigment	 3′,3′-bipyridyl	 pigment	 (Fig.	 2L) is 
formed	through	condensation	of	two	molecules	of	L-gluta-
mine	catalyzed	by	a	NRPS	(Yu	et	al.	2013).	Dickeya dadantii 
(formerly	known	as	Erwinia chrysanthemi),	a	plant-patho-
genic	enterobacterium,	is	one	of	the	prolific	IND-producing	
bacteria	 (Reverchon	 et	 al.	 2002).	 The	 pigment	 was	 also	
isolated from Streptomyces,	 Phaeobacter,	 Arthrobacter,	
Corynebacterium insidiosum,	 and	 other	 bacterial	 species.	
The	bacteria	can	mitigate	the	growth	of	diverse	microorgan-
isms such as E. coli and S. aureus,	and	the	fungal	pathogen	
Candida albicans	(Day	et	al.	2017).	This	pigment	has	wide	
applications	in	textile,	food,	and	pharmaceutical	industries	
(Zhao	 et	 al.	 2024).	Along	 with	 its	 antibiotic	 action,	 IND	

agent	(Islan	et	al.	2022).	Tai	et	al.	(2024) have reported that 
it	 can	 successfully	down-regulate	 the	TGF-β	 signalling	 in	
cancer cell lines and hence could be a potential therapeu-
tic	 agent.	 Due	 to	 its	 effectiveness	 against	 UV-spectrum,	
PDG	exhibited	excellent	sun	protection	factor,	hence	it	is	of	
immense	interest	for	cosmetic	industries	(Lin	et	al.	2020).

Violacein

Violacein	 (VIO)	 is	 an	 excellent	 example	 of	 alkaloid	 pig-
ment.	This	violet	pigment	is	a	bisindole	(Fig.	2J) that is bio-
synthesized	by	condensation	of	 two	 tryptophan	molecules	
by	 forming	 indolocarbazole	 (Choi	 et	 al.	2015b).	An	array	
of enzymes coded by the vioABCDE operon catalyzes the 
reactions.	 The	 bacterium	 Chromobacterium violaceum is 
recognized	as	the	most	prominent	producer	of	this	pigment.	
Multiple	Gram-negative	organisms	that	show	considerable	
phylogenetic	distances	and	found	in	different	environmen-
tal	niches	 like	members	of	 the	genera	Janthinobacterium, 
Alteromonas, Collimonas, Duganella, Pseudoalteromonas, 
Massilia,	and	Iodobacter have been reported to synthesize 
the	pigment	(Inan	Bektas	et	al.	2023;	Kumar	et	al.	2022).	VIO	
production	by	the	organisms	has	been	related	to	biofilm	for-
mation and quorum sensing system regulates the production 
(Batista	et	al.	2024).	VIO	is	known	for	its	diverse	biological	
effects	like	antimicrobial	(Inan	Bektas	et	al.	2023;	Johnson	
et	al.	2023),	antitumor	(De	Leon	et	al.	2024),	and	antican-
cer	 (Dahlem	 et	 al.	 2022)	 action.	 The	 major	 mechanisms	
underpinned are extensive membrane damage and mito-
chondrial	membrane	depolarization	 (Aruldass	 et	 al.	 2018;	
Duran	et	al.	2022).	Aruldass	et	al.	(2018)	reported	efficient	
antibacterial action of VIO against S. aureus and MRSA 
strains	by	affecting	the	membrane	integrity	(Aruldass	et	al.	
2018).	In	osteosarcoma	and	rhabdomyosarcoma	cell	 lines,	
VIO has been reported to increase apoptosis in an oxida-
tive	stress-independent	manner	(Milosevic	et	al.	2023).	de	
Souza	Oliveira	et	al.	(2022) reported induction of apoptotic 
effect	on	colorectal	cancer	cells,	and	in	a	similar	study	by	
Kim	et	al.	(2021)	on	hepatocellular	carcinoma	cells.	Anti-
oxidant	 (Xu	et	al.	2022)	and	anti-parasitic	 (Bilsland	et	al.	
2018) properties have also been assigned to VIO (Table 1).	
DeoxyVIO,	a	VIO	derivative	that	 lacks	a	hydroxyl	group,	
is	 extremely	 cytotoxic	 as	 observed	 against	 HepG2	 cells.	
Another	 derivative,	 oxyVIO,	with	 an	 additional	 hydroxyl	
group,	 demonstrated	 potent	 anti-Staphylococcal activity 
(Marinelli	et	al.	2015).

Melanin

Melanin (MEL) is a heterogeneous natural pigment pro-
duced by a number of bacterial genera including Proteus, 
Pseudomonas,	 Streptomyces,	 and	 several	 fungi	 (Singh	 et	
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In	mixed	cultures	with	(A) baumannii or Enterococcus fae-
cium,	PCN	production	has	been	shown	to	get	elevated	com-
pared to pure culture condition of P. aeruginosa (Laliany et 
al.	2022).	PHZs	can	promote	survival	in	anoxic	condition	by	
acting	as	an	alternate	terminal	electron	acceptor,	particularly	
in	biofilm	communities	(Saunders	et	al.	2020),	as	a	cross-
species	signaling	molecule	(Dietrich	et	al.	2006),	expediting	
iron	acquisition	(Wang	et	al.	2011),	and	eliminating	competi-
tor	Gram-positive	co-occupants	(Wang	et	al.	2011).	A	recent	
report	by	Jean-Pierre	et	al.	(2023) demonstrated that in an 
in	vivo	model	of	polymicrobial	infection,	mimicking	cystic	
fibrosis	 (CF)	with	P. aeruginosa,	S. aureus,	Streptococcus 
sanguinis,	 and	Prevotella melaninogenica,	 enhanced	PHZ	
production	that	allows	P. aeruginosa	to	tolerate	tobramycin.	
PHZs	like	PCN	can	interfere	with	the	redox	status	of	bacte-
rial	and	fungal	pathogens	and	thereby	can	interfere	with	the	
metabolic	activity	of	the	pathogen	in	a	community	while	it	
precisely controls redox balance in P. aeruginosa to reduce 
intracellular	oxidative	stress	(Jacob	et	al.	2011;	Thalhammer	
and	Newman	2023).	Dietrich	et	al.	(2008) demonstrated that 
redox-active PCN shapes community structure by activating 
the transcription factor SoxR in Proteobacteria and Acti-
nobacteria.	The	complexity	of	the	microbial	community	in	
the CF respiratory tract is determined by PHZ content in 
the	 community.	 Extracellular	 release	 of	 PCN	 can	 impede	
neighbouring E. coli	and	induce	significant	 transcriptional	
reprogramming of E. coli,	related	to	respiration	and	mem-
brane	biogenesis	(Yuan	et	al.	2021).	PCN	has	been	projected	
as a major determinant of antimicrobial responsiveness in 
communities	with	non-PCN-producing	opportunistic	patho-
gens,	such	as	(B) cepacia	complex,	where	PCN	induces	tol-
erance	against	fluoroquinolone	antibiotics	(Meirelles	et	al.	
2021).	PCN	is	involved	in	QS-mutant	cheater	suppression	
by	acting	as	a	policing	toxin	to	selectively	block	the	growth	
of	 cheaters.	 In	 a	 dual-species	 community	with	 S. aureus,	
P. aeruginosa can determine phage-S. aureus interaction 
by triggering prophage induction through PCN production 
(Jancheva and Bottcher 2021).	Contradictory	results	consid-
ering the impact of PHZ in determining microbial commu-
nity	have	been	observed	by	Ibberson	et	al.	(2022),	in	wound	
infection model for P. aeruginosa and S. aureus dual species 
infection	community.	 In	 rat	and	pig	gut	microbiome	PCN	
exposure	has	been	reported	to	induce	dysbiosis	(Peng	et	al.	
2022).

Apart	 from,	 toxic	 metabolites,	 competition	 for	 essen-
tial	 nutrients	 like	 iron	 are	 key	 in	 determining	 commu-
nity	 structure.	 Pigments	 like	 PVD	 and	 pyochelin,	 major	
siderophores produced by Pseudomonas,	 manifest	 high	
iron-binding	 affinity	 (>	1030 M− 1) and determine species 
interaction in aquatic and terrestrial environments (Buta-
ite	et	al.	2018).	The	iron-complexed	PVD	is	imported	into	
the	cell	by	specific	receptors.	PVD	shows	an	extraordinary	

displays	 antioxidant	 properties	 (Xu	 et	 al.	 2015) as a free 
radical scavenger (Table 1)	 that	allows	phytopathogens	 to	
tolerate organic peroxides and superoxide generated by 
plant	defence	response.

Flexirubin

The	 yellow-orange	 pigment	 is	 synthesized	 primarily	 by	
Chryseobacterium and Flexibacter	 with	 C. artocarpi,	 C. 
shigense,	 F. elegans,	 F. humi,	 and	 Cytophaga johnsonae 
as	 profound	 producers	 (Kim	 et	 al.	 2019;	Mogadem	 et	 al.	
2022).	The	pigment	has	quite	a	unique	chemical	build-up.	It	
has	an	interlocking	ring	structure,	some	with	four	nitrogens	
(pyrrole)	and	others	with	one	less	nitrogen	(pyridine)	with	
alternating	single	and	double	bonds	(Fig.	2M),	which	makes	
flexirubins	(FLR)	appear	yellow	or	orange.	This	molecule	is	
composed	of	aryl	polyenes	and	terminal	alkyl	substitution	
with	a	fatty	acid	tail	of	ω-phenyl	octanoic	acid	chromophore	
with	two	alkylated	resorcinol	with	ester	bonds	(Bukowy	et	
al.	2008).	Synthesis	of	FLR,	therefore,	involves	a	complex	
enzyme	cascade	(Schoner	et	al.	2014).	The	biosynthesis	of	
the	pigment	initiates	with	the	generation	of	a	polyene	moi-
ety	 through	 a	 type	 II	 fatty	 acid	 synthase-like	 pathway	 as	
suggested by the gene composition of the BGC for the pig-
ment,	which	 harbors	 genes	 of	 several	 putative	 β-ketoacyl	
synthases,	 reductases,	 dehydratases,	 and	 thioesterases.	
Deamination	 of	 L-tyrosine	 to	 4CA	 and	 its	 activation	 for	
the	 polyketide	 synthase	 (PKS)	 machinery	 by	 adenylation	
through	 the	 putative	 acyl-CoA	 ligase	 is	 the	 next	 step.	An	
aryl-octane	moiety	synthesized	utilizing	4-coumaroyl-CoA	
by	β-ketoacyl	synthases	and	reductases	to	form	aryl-octane	
moiety.	A	ligase	joins	the	aryl	octane	with	2,5-	dialkylres-
orcinol	 (DAR).	 A	 putative	 polysaccharide	 deacetylase,	 a	
phospholipid/glycerol	 acyltransferase,	 an	 outer	membrane	
lipoprotein	 carrier,	 a	 glycosyltransferase,	 and	 a	 putative	
exporter are predicted to be involved in the export of the 
pigment	to	outer	membrane	(Schoner	et	al.	2014).	Biologi-
cal activities of FLR and FLR-derived molecules include 
prolific	free	radical	scavenging	and	anti-inflammatory	activ-
ity as enlisted in Table 1	(Mogadem	et	al.	2021).

Role of bacterial pigment in community-level 
interactions

Pigments produced by bacteria often play a crucial role in 
determining	 microbial	 community	 structures.	 Alongside,	
for	 pigment-producing	 bacterial	 pathogens	 like	P. aerugi-
nosa or S. marcescens,	pigments	act	as	immunomodulators	
and	impact	host	microbiomes.	The	impact	on	the	bacterial	
community is particularly evident for secreted pigments 
like	PHZs,	where	the	producer	bacteria	gain	a	fitness	advan-
tage	 against	 other	 bacteria	 in	 polymicrobial	 communities.	
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condition,	S. marcescens enhanced the susceptibility of A. 
baumannii	 against	 ciprofloxacin	 (Acharya	 et	 al.	 2023).	 In	
one	of	their	recent	reports,	Heu	et	al.	(2021) highlighted the 
possible impact of PDG on the microbiota of the insect vec-
tor Aedes aegypti.

The carotenoids in S. auerus,	have	been	shown	to	influ-
ence membrane structure and physicochemical properties 
by	increasing	the	order	of	the	fatty	acyl	chains.	Such	altered	
membrane structure prevents the insertion of a number of 
antimicrobial	peptides	including	daptomycin	and	magainin,	
and thereby prevents pore formation (Manrique-Moreno et 
al.	2022).	STX	also	fosters	fitness	by	preventing	oxidative	
stress	which	renders	survival	in	wounds	and	delays	the	heal-
ing	of	diabetic	wounds	as	revealed	recently	by	Campbell	et	
al.	(2023).

Bacterial pigment in the pathogenicity of the 
producer

Though	a	number	of	pigment-producing	bacteria	are	known	
as	 opportunistic	 pathogens	 for	 humans,	 except	 PCN	 and	
PVD in P. aeruginosa,	and	MEL	produced	by	a	Vibrio chol-
erae	mutant,	no	other	bacterial	pigments	have	directly	been	
associated	 with	 virulence.	 Strains	 of	 S. marcescens have 
been	reported	as	enteric	pathogen	in	human	(Murdoch	et	al.	
2011).	Several	strains	of	the	bacteria	can	infect	other	verte-
brates	in	insects	and	insect	larvae	(Li	et	al.	2023b;	Shikov	et	
al.	2023).	Though	PDG	elicits	immunomodulatory	function	
as	observed	 in	 in	vivo	 infection	models,	 it	does	not	affect	
virulence	of	 the	bacteria,	 as	demonstrated	 in	 insect	 infec-
tion	models	(Zhou	et	al.	2016).	C. violaceum is an oppor-
tunistic pathogen that causes ocular infection in humans 
(Venkatramanan	and	Nalini	2024).	Another	VIO-producing	
bacteria,	J. lividum,	emerged	as	a	pathogen	for	aquaculture,	
and	caused	severe	mortality	of	rainbow	trout	Oncorhynchus 
mykiss	 (Oh	 et	 al.	 2019).	Though	VIO	demonstrates	mod-
est	cytotoxicity	against	some	mammalian	cell	 lines,	 it	has	
not been assigned as a virulence factor for the producer 
(Duran	et	al.	2021).	MEL	synthesis	has	been	associated	with	
virulence for a variety of pathogenic fungi by mitigating 
the	efficacy	of	antimicrobials	and	by	 its	 influence	on	host	
immune	response	(Nosanchuk	and	Casadevall	2006).	For	a	
MEL-producing V. cholerae mutant elevated production of 
toxin-coregulated	pilli	(TCP),	a	major	virulence	factor,	was	
observed.	The	mutant	also	demonstrated	improved	coloni-
zation to intestinal tissue of infant mice suggesting possible 
involvement	of	MEL	production	with	bacterial	pathogenic-
ity	(Valeru	et	al.	2009).

PCN is a QS-regulated virulence factor for P. aeruginosa,	
released through into the infection loci by a type II secre-
tion	system	and	impacts	pathophysiology	of	cystic	fibrosis	
(Caldwell	et	al.	2009).	PCN	can	disrupt	redox	homeostasis	

structural	diversity	with	three	major	classes	(I,	II,	and	III)	
and	more	than	70	described	variants	that	differ	in	their	pep-
tide	backbone.	pH,	iron	content,	carbon	concentration,	and	
community	 diversity	 determine	 PVD	 production.	 PVD	 is	
secreted	 extracellularly,	 and	 following	 extracellular	 iron	
chelation,	the	bacterium	will	uptake	the	complex	PVD-Fe3+ 
to	 acquire	 iron.	 PVD	 I	 is	 stored	 in	 the	 periplasmic	 space	
which	prevents	cellular	uptake	of	other	antimicrobial	metal	
ions	 (Schalk	and	Guillon	2013).	 Inhibiting	PVD	by	novel	
small molecules mitigates the pathogenesis of P. aeruginosa 
(Schalk	and	Guillon	2013).	PVD	also	plays	a	crucial	 role	
in enriching the soil microbial community and inter-species 
social dynamics comprising the siderophore-producing P. 
fluorescens	(O’Brien	et	al.	2023).

The	antagonistic	interaction	of	VIO	with	planktonic	cells	
of S. aureus and S. epidermidis had been documented earlier 
(Batista	et	al.	2017;	Dodou	et	al.	2017).	Albeit	only	very	few	
Gram-negative	bacteria	are	susceptible	to	VIO,	Gram-pos-
itive bacterial strains including Staphylococcus,	 Bacillus,	
and Streptococcus	are	sensitive	to	VIO	(Choi	et	al.	2021).	
At	a	community	level,	VIO	production	is	triggered	by	sub-
lethal concentrations of hygromycin B and hygromycin A 
from Streptomyces	 sp.	 2AW	 in	 soil	 (Lozano	 et	 al.	 2020).	
Combining	VIO	with	predatory	bacteria	Bdellovibrio bac-
teriovorus	 HD100,	 eventuated	 the	 elimination	 of	 polymi-
crobial	community	comprising	Gram-negative	bacteria	like	
Acinetobacter and Klebsiella	(Im	et	al.	2017).	VIO	has	been	
reported	to	affect	intestinal	and	skin	microbiome.	While	in	
the	gut	microbiome	of	Wistar	rats,	at	low	VIO	dose,	Bacillus 
and Clostridia	(Firmicutes)	were	found	as	dominant,	at	high	
doses,	Bacillus	 followed	by	Clostridia and Actinobacteria 
were	identified	as	the	abundant	members	(Pauer	et	al.	2018).

Direct	contact	between	S. auerus and S. marcescens has 
been demonstrated to be a prerequisite for the anti-Staph-
ylococcal action of S. marcescens	 in	dual-species	 culture.	
The interaction possibly involves the TypeVI secretion sys-
tem	(Lim	et	al.	2022).	PDG	can	modulate	microbial	com-
munity	 structure	 and	disease	 outcomes	 in	 amphibian	 skin	
infection	models	(Madison	et	al.	2019).	In	mouse	models,	
administration	 of	 PDG	 beneficially	 altered	 the	 structure	
of	 cecum	 microbiota	 with	 enrichment	 of	 Lactobacillus 
reuteri and depletion of Desulfovibrio	(Li	et	al.	2021).	PDG	
derived from chromium-resistant Serratia	sp	was	also	dem-
onstrated	 to	modulate	 gut	microbiota	 (Nie	 et	 al.	 2023) in 
dextran	sulfate	sodium-induced	colitis	mice.	In	an	elabora-
tive	study,	Kim	et	al.	(2023) explored the impact of PDG on 
six	 skin	microorganisms	 available	 in	 commercially	 avail-
able	 skin	 microbiome	 mix.	 The	 acne	 vulgaris	Cutibacte-
rium acnes	was	evidenced	to	be	highly	susceptible	to	PDG	
with	an	alteration	of	global	gene	expression	pattern.	PDG-
producing S. marcescens,	when	grown	in	dual-species	bio-
films	 outcompetes	A. baumannii.	Moreover,	 in	 co-culture	
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Biosynthetic gene clusters for bacterial pigments

The majority of the pigments are synthesized through 
defined	 enzymatic	 reaction	 cascades.	 The	 enzymes	 are	
encoded	 by	 genes	 that	 are	 part	 of	 a	 BGC,	 expression	 of	
which	is	precisely	modulated	by	the	regulatory	circuits.	In	
this segment composition and regulation of BGCs for seven 
major	bacterial	 pigments	 are	discussed.	Alongside,	 use	of	
the	identified	BGCs	in	synthetic	biology	for	improved	pro-
duction	of	the	pigments	are	mentioned.

BGC for carotenoids

Defined	biosynthetic	gene	clusters	 (BGC)	 linked	 to	carot-
enoid	biosynthesis	have	been	identified	in	a	spectrum	of	bac-
teria.	Overtly,	the	BGCs	are	categorized	into	three	different	
gene	clusters	the	first	one	is	organized	in	crtEXYIBZ	order.	
The second one projects an organization of crtE-idi-crtXY-
IBZ,	and	the	third	one	contains	crtE-idi-crtYIBZ	(Fig.	4A).	
Albeit	 the	genes	and	organizations	are	similar	 in	different	
bacteria,	a	diverse	array	of	carotenoids	can	be	synthesized	
by	the	bacteria	(Zhang	et	al.	2012).	Each	of	the	gene	prod-
ucts participates in conversion of isopentenyl pyrophosphate 
(IPP)	 to	 a	 specific	 carotenoid.	 For	 efficient	 production	 of	
carotenoids in E. coli	Bl21(DE3)	metabolic	engineering	was	
performed	by	Yang	et	al.	(2014).	A	combination	of	crt genes 
from Erwinia herbicola	with	geranyl	diphosphate	synthase2	
from Abies grandis generated a high carotenoid-yielding 
strain of E. coli.	A	high-yielding	ZXT	mono	or	di	glycoside	
synthesizing E. coli strain could be developed by express-
ing seven crt genes of Cronobacter sakazakii	(Zhang	et	al.	
2014).	A	high	 amount	 of	 accumulation	of	 β-carotene	was	
achieved by expressing crtEE,	crtYB and crt I from Xantho-
phyllomyces dendrorhous	using	marker-less	genome	editing	
CRISPR/Cas9	technology	(Lopez	et	al.	2020).

VIO Cluster

A	single	operon	comprising	five	genes	vioABCDE consti-
tutes	 the	BGC	for	VIO	production	via	 shikimate	pathway	
from	L-tryptophan	(Xu	et	al.	2022)	(Fig.	4B).	Each	of	the	
gene products participates in independent reactions of the 
pathway.	 The	 operon	 is	 regulated	 by	 the	 CviI-CviR	 QS	
system	(Fig.	5A).	Expression	of	 the	genes	and	production	
of	VIO,	particularly	from	the	Cv206	strain,	has	long	been	
implemented	in	screening	and	identification	of	inhibitors	of	
the	AHL	dependent	QS	system.	Cv206,	is	an	AHL-deficient	
mutant of C. violaceum.	Upon	AHL	induction,	QS	modu-
lation can be estimated quantitatively by determining VIO 
accumulation	(Duran	et	al.	2016).	A	visualization	reporter	
system based on Gram-negative bacterial acyl-homoserine 
lactone	 quorum-sensing	 (VRS-bAHL)	 was	 constructed	

in	mammalian	cells	with	reduction	in	cellular	ATP	genera-
tion,	NAD/	NADH	ratio,	and	level	of	reduced	glutathione	
(O’Malley	 et	 al.	 2004).	 In	 contrast	 to	 other	 bacterial	 pig-
ments	 that	 act	 as	 antioxidants,	 PCN	 induces	 the	 genera-
tion of ROS and perturbs mitochondrial metabolism (Hall 
et	al.	2016).	ROS	induction	induces	MUC2	and	MUC5AC	
expression,	 both	 encoding	 for	mucin	 secretion	 (Jeffries	 et	
al.	 2016).	 PCN	 activates	 MAPK	 signalling,	 particularly	
ERK1/2,	 p38,	 and	 JNK	 signalling	 (Chai	 et	 al.	 2014;	Hall	
et	al.	2016).	PCN	can	act	as	an	immunomodulator	to	trig-
ger	proinflammatory	response	through	elevated	IL-2,	IL-6,	
and	prostaglandin	E2	production,	which	eventuates	T-	and	
B-	lymphocyte	proliferation	(Jablonska	et	al.	2023).	It	can	
also induce cellular senescence and therefore impair tissue 
regeneration in P. aeruginosa-infected	wounds	 (Muller	 et	
al.	2009).	PCN	can	induce	dysbiosis	of	microbiota	and	dam-
age	to	the	gut	mucosal	layer	(Peng	et	al.	2022).	Moreover,	
with	its	potential	to	permeate	the	blood-brain	barrier,	it	can	
influence	cognitive	function	in	the	murine	model	(Rashid	et	
al.	2022).	Overall,	PCN	can	result	in	neurotoxicity,	hepato-
toxicity,	 and	cognitive	 impairment	 (Mudaliar	 and	Bharath	
Prasad 2024).

The siderophore pigments produced by P. aeruginosa are 
also	 associated	with	 virulence	 of	 the	 pathogen.	 PVD	 can	
directly	kill	C. elegans even in the absence of the bacteria 
(Kang	et	al.	2018;	Kirienko	et	al.	2015).	It	binds	with	iron	in	
1:1	stoichiometry	and	due	to	its	high	affinity	for	Fe3+,	it	can	
outcompete	host	 transferrin	 (Kang	et	 al.	 2018).	The	 ferri-
PVD	 complex	 is	 recognized	 by	 the	 receptor	 FpvA	which	
triggers	 the	alternative	sigma	 factor	PvdS.	PvdS	activated	
expression	of	the	BGC	for	PVD	(Cornelis	et	al.	2023).	Such	
a	positive	 loop	allows	PVD	generation	until	Fe3+ require-
ment	of	the	bacteria	is	satisfied	(Cornelis	et	al.	2009).	Accu-
mulation of PVD in extrapharyngeal tissues of C. elegans 
and	lung	tissues	of	mice	directly	correlates	with	cytotoxic-
ity.	Specific	PVD	inhibitors	like	gallium,	fluoropyrimidines,	
and LK11 can considerably ameliorate cell survival (Kang 
et	al.	2019).

4,4’-diaponeuresporenoic	 acid	 and	 STX,	 two	 major	
carotenoids produced by S. aureus,	 have	been	detected	 to	
enhance	virulence	and	fitness	of	 the	pathogen	possibly	by	
providing protection against host innate immune system 
(Xue	 et	 al.	 2019).	 STX	 biosynthetic	 pathways	 have	 been	
highlighted as a prospective target for designing anti-vir-
ulent drugs (Cueno and Imai 2018).	However,	an	extensive	
genetic	 and	 phenotypic	 profiling	 for	 pigmented	 and	 non-
pigmented S. aureus	by	Zhang	et	al.	(2018),	suggested	no	
significant	difference	in	virulence	between	the	two	types	of	
strains.
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23	genes	in	four	clusters.	Two	of	the	23	genes	in	the	clus-
ter (redD and Z)	 are	 pathway-specific	 regulators,	 six	 are	
assigned	 to	 4-methoxy-2,2′-bipyrrole-5-carboxaldehyde	
biosynthesis (redW, O, M, L, K, and I),	eight	are	assigned	
to	2-undecylpyrrole	biosynthesis	 (redX, R, Q, P, N, H, G,	
and F),	and	two	are	assigned	as	housekeeping	genes	(redU 
and J)	 (Fig.	 4C).	Various	QS	 and	 two-component	 system	
genes	 are	 attributed	 to	 regulation	 of	 PDG	 gene	 cluster.	
Among	the	QS	systems,	SmaI/SmaR	and	SpnI/SpnR	were	
reported to control PDG production in Serratia	spp.	strains.	
Four	two-component	systems	including	PigQ/PigW,	PhoB/
PhoR,	RssB/RssA,	and	EepR/EepS	can	regulate	the	synthe-
sis	of	PDG	(Jia	et	al.	2021).	OmpR	and	PsrA	were	identified	
as transcriptional activators for PDG genes in S. marces-
cens	 JNB5-1	 through	a	Tn5	mutagenesis	 screen.	A	 robust	
PDG-producing	strain	was	constructed	by	cloning	the	tran-
scriptional activation under a strong constitutive promoter 
P17	to	attain	a	metabolically	engineered	strain	(PG06)	(Pan	
et	 al.	 2022b).	 Robust	 PDG-producing	S. coelicolor strain 
was	generated	 by	 concerted	metabolic	 engineering	by	 (1)	
inactivation of a gene for repressor (ohkA),	(2)	knocking	out	
the actinorhodin (ACT) and calcium-dependent antibiotic 
(CDA)	 BGCs,	 and	 (3)	 multi-copy	 chromosomal	 integra-
tion of the red	 BGC.	 Such	 a	 strategy	 resulted	 in	 a	 strain	
of ∼	12-fold	 improvement	 for	PDG	production	 (Liu	 et	 al.	
2017).	 Similar	 to	 PCN,	 heterologous	 expression	 of	 PDG	
BGC from S. marcescens	ATCC274	has	been	accomplished	
in Pseudomonas putida	(Cook	et	al.	2021).

exploiting	the	operon.	The	VRS-bAHL	can	be	implemented	
in	 profiling	 gene	 expression	 in	 Streptomyces	 (Liu	 et	 al.	
2022).	 Robust	 VIO-producing	C. violaceum	 strains	 were	
developed by altering the ribosome binding site (RBS) of 
the	 VIO	 operon.	 Such	 altered	 cassettes	 were	 cloned	 and	
expressed in E. coli and Corynebacterium glutamicum to 
attain higher yield/ titre for industrial production (Zhang et 
al.	2021).	Other	heterologous	hosts	like	the	oleaginous	yeast	
Yarrowia lipolytica,	were	used	to	express	the	genes	of	VIO	
operon	through	three	different	promoters	and	were	assem-
bled	to	a	combinatorial	pathway	library	by	golden	gate	clon-
ing	(Nemer	et	al.	2023).

PDG gene cluster

In Serratia,	the	PDG	gene	cluster	is	organized	in	a	defined	
order	starting	with	pigA	gene	and	ending	with	pigM gene 
(Fig.	4C).	A	certain	group	of	 the	gene	products	 including	
pigD,	pigE,	and	pigB	are	engaged	in	synthesizing	2-methyl-
3-n-amyl-pyrrole	 (MAP)	 and	 another	 group	 comprising	
pigA,	pigF,	pigG,	pigH,	pigI,	pigJ,	 pigL,	pigM,	 and	pigN 
yields	 4-methoxy-2,2’-bipyrrole-5-carbaldehyde	 (MBC).	
PigC	 condenses	 the	 two	 products	 at	 the	 terminal	 step	 of	
PDG	 biosynthesis	 (Williamson	 et	 al.	 2006).	 Except	 for	
such conserved genes in PDG-producing Serratia	 strains,	
in	some	strains,	an	additional	gene	pigO is harboured in the 
PDG	cluster	(Jia	et	al.	2021).	The	orthologues	of	PDG	bio-
synthetic genes in S. coelicolor are encoded by distributing 

Fig. 4 Organization of bacte-
rial pigment biosynthetic gene 
cluster.	The	organization	of	
biosynthetic gene clusters for (A) 
carotenoids,	(B)	violacein,	(C) 
prodigiosin,	(D)	phenazine,	(E) 
pyoverdin,	and	(F)	flexirubin	is	
shown
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and rhl	system.	A	third	signalling	system,	integrated	with	the	
two	QS	systems,	quinolone	signalling	system	(pqs)	charac-
teristic	also	regulates	PCN	synthesis.	While	the	PHZ	operon	
is	directly	activated	by	PqsR	and	RhlR,	the	LasR	and	IqsR	
indirectly	affect	the	activation	by	modulating	PqsR	and	RhlR	
(Abdelaziz	et	al.	2023)	(Fig.	5B).	In	order	to	achieve	PHZ	
production in E. coli,	da	Silva	et	al.	(2021) implemented a 
construct	by	cloning	nine	genes	of	PCN	pathway	in	ePath-
Brick	vectors	platform.	Optimal	PCN	production	from	each	
strain	 were	 further	 evaluated	 by	 altering	 aeration	 condi-
tions	 in	bioelectrochemical	systems.	Heterologous	synthe-
sis of PCN has been optimized in non-pathogenic P. putida 

PCN gene cluster

The conversion of chorismate to PHZ involves seven 
enzymes	 that	 are	 conserved	 among	 PHZ	 producers.	 In	P. 
aeruginosa,	 two	 independent	 homologous	 gene	 clusters,	
phzA1B1C1D1E1F1G1 (phz1) and phzA2B2C2D2E2F2G2 
(phz2)	 (Fig.	 4D)	 are	 associated	 with	 PHZ	 production	 as	
revealed	by	Mavrodi	et	al.	(2001).	The	gene	products	medi-
ate the conversion of chorismate to PHZ-1-carboxylic acid 
(PCA)	and	PHZ-1,6-dicarboxylic	acid	(PDC).	The	product	
of phzM and phzS	in	combination	converts	PCA	to	PCN.	In	
the	bacteria,	there	are	two	QS	systems,	namely	las system 

Fig. 5 Quorum sensing mediated 
regulation of bacterial pigment 
production.	AHL	mediated	QS	
system regulating expression of 
VIO gene-cluster in C. viola-
ceum depends on CviI-CviR 
system (A).	PCN	production	
from P. aeruginosa is regulated 
by	a	complex	network	of	three	
QS	system,	the	AHL	dependent	
LasI-LasR,	RhlI-RhlR,	and	the	
quinone dependent PQS system
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impact post-treatment on the patients are major concerns 
warranting	 the	 quest	 for	 novel	 drugs.	 Bacterial	 pigments	
have recently been explored as a prospective alternatives to 
tackle	some	major	health	concerns	of	present	era.	A	snap-
shot of therapeutic potential of the pigments is portrayed in 
Fig.	6A.

Anti-bacterial

AZP	 shows	 antibacterial	 activity	 against	 Pseudomo-
nas fragi,	P. putida,	P. pyocyanae,	V. cholerae,	E. coli,	S. 
aureus,	Salmonella paratyphi,	Bacillus cereus,	Mycobacte-
rium smegmetis,	M. phlei	(Gupta	et	al.	1970).	A	number	of	
studies	 consistently	 showed	 antibacterial	 activity	 of	MEL	
against pathogenic species of Bacillus including B. cereus 
and Pseudomonas including P. aeruginosa and even on E. 
coli,	K. pneumoniae and S. aureus	 (Ghattavi	 et	 al.	 2022;	
Polapally	et	al.	2022;	Singh	et	al.	2021).	PDG	is	observed	
to	 be	 effective	 even	 against	 members	 of	 the	 ESKCAPE	
group	 of	 pathogens	 (Acharya	 et	 al.	 2023;	 Lapenda	 et	 al.	
2015).	 PDG	 inhibits	 staphylococcal	 infection	 by	 disrupt-
ing	cell	membranes,	leading	to	cell	lysis	and	death	(Koksal	
Karayildirim	et	al.	2024).	Recently	profound	anti-adherence	
activity	of	PDG	was	reported	(Diken-Gur	2024).	An	exten-
sive	 transcriptomic	 analysis	 of	 PDG	 treatment	 (Liu	 et	 al.	
2024a)	 indicated	 cell	 wall	 synthesis,	 cell	 membrane,	 and	
biofilm	formation	impairment	as	possible	mechanisms.	VIO	
is	efficient	in	inhibiting	Gram-positive	bacteria	like	E. fae-
calis,	S. aureus	at	extremely	low	concentrations	but	are	inef-
fective even in higher concentrations against some Gram 
negatives	 like	Morganella morganii,	K. pneumoniae,	 and	
Proteus mirabilis (Mudaliar and Bharath Prasad 2024).	VIO	
exerts	 antimycobacterial	 effects	 against	 M. tuberculosis 
(Duran	et	al.	2016,	2021;	Inan	Bektas	et	al.	2023).	With	its	
iron	(Fe)	scavenging	siderophore	action,	PVD	demonstrated	
concentration-dependent and iron-limited suppression of the 
growth	 of	 the	 bacteria.	 PVD	 also	 possesses	 antimicrobial	
activity	against	bacteria	 like	Vibrio sp.,	 and	Xanthomonas 
oryzae	(Chen	et	al.	2016;	Zhang	et	al.	2016).	A	recent	screen	
identified	12	effective	PVD	derivatives;	exerting	inhibitory	
effects	on	A. baumannii,	K. pneumoniae,	and	S. aureus in 
a	concentration-	and	iron-dependent	manner	(Vollenweider	
et	 al.	 2023).	PCN	exhibits	 a	 robust	 antibacterial	 effect	by	
disrupting the microbial cell membrane and thereby com-
promising the function of the respiratory chain (Jayaseelan 
et	 al.	 2014).	 PCN	 facilitates	 cell	 lysis	 by	 increased	 ROS	
production	(Abdelaziz	et	al.	2023).	Collectively,	these	mul-
tifaceted antimicrobial properties position PCN as a critical 
factor in the persistence and proliferation of P. aeruginosa 
within	 various	 environments.	 PHZs	 have	 been	 shown	 to	
accept	metabolic	 electrons	 and	 facilitate	 redox	 balancing,	
ATP	production,	and	survival	 in	P. aeruginosa (Glasser et 

KT2440	earlier.	Here	Askitosari	et	al.	(2019) expressed one 
PHZ	operon	from	PAO1	and	two	PHZ	operon	from	PA14	
and	combined	each	with	simultaneous	expression	of	phzM 
and phzS	to	achieve	PCN	generation.

PVD gene cluster

The gene required for biosynthesis of PVD is localized in 
the pvd	locus,	which	comprises	larger	genes	like	pvdL,	pvdI,	
pvdJ,	and	pvdD	encoding	diverse	groups	of	enzymes	linked	
to	NRPSs.	Gene	pvdA,	pvdF,	and	pvdH produces chromo-
phores	and	other	groups	(Fig.	4E).	A	number	of	substitutions	
in	different	domains	of	PvdJ	and	PvdD	rendered	synthesis	
of	novel	modified	PVD	(Puja	et	al.	2023).

IND gene cluster

The	IND	biosynthetic	gene	cluster	was	initially	character-
ized from D. dadantii.	A	single	module	NRPS,	catalyses	the	
condensation reaction of L-glutamine to yield IND (Kong 
et	al.	2019).	The	transcription	PecS	regulates	the	synthesis	
of indigoidine by genes indA,	 indB,	and	 indC	 (Zhao	et	al.	
2024).	The	IND	synthase	gene	was	engineered	for	synthetic	
biology	 purposes,	 for	 developing	 chemogenomic	 reporter	
system in E. coli	 as	 well	 as	 mammalian	 cells,	 including	
human	 stem	 cells	 (Muller	 et	 al.	 2012;	 Xie	 et	 al.	 2017).	
Exploiting	 a	 dual	 expression	 strategy	 Nanjaraj	 Urs	 et	 al.	
(2019),	recently	generated	a	transgenic	blue	rose	by	synthe-
sis	of	IND.	High-level	production	of	IND	in	C. glutamicum 
was	accomplished	by	heterologous	expression	of	IND	syn-
thetase from Streptomyces lavendulae	(Ghiffary	et	al.	2021).

FLR BGC

A	 hypothesized	 biosynthetic	 pathway	 suggests	 the	 con-
version of resorcinol and aryl polyene into FLR-type pig-
ments.	Responsible	genes	for	pigment	production	are	darA 
and darB	genes	(Fig.	4F),	which	are	part	of	a	large	group	
of	 gene	 clusters	 from	Fjoh_1080,	 Fjoh_1084,	 Fjoh_1095,	
Fjoh_1097,	Fjoh_1098,	Fjoh_1100,	Fjoh_1108	(McBride	et	
al.	2009).	Presence	of	such	gene	clusters	and	identification	
of	 typical	 orthologues	were	 possible	 from	 data	 generated	
through genomic and metagenomic analysis in other stud-
ies including genome analysis of the bacteria C. pinensis 
(Keller-Costa	et	al.	2021;	Schoner	et	al.	2014;	Vacheron	et	
al.	2017).

Biomedical applications of bacterial pigments

The	 arising	 problems	 like	multidrug	 resistance	 for	 patho-
genic	 infections,	 resistance	 against	 existing	 chemothera-
peutics	in	cancer,	healthcare	expenses,	and	the	irreversible	
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Anti-protozoan

AZP	exhibits	significant	anti-protozoan	activity	against	var-
ious	protozoan	parasites,	 including	Plasmodium,	Trypano-
soma,	and	Leishmania	species.	The	mechanisms	underlying	
their	 anti-protozoan	effects	 involve	disruption	of	 essential	
metabolic	pathways,	inhibition	of	key	enzymes	vital	for	par-
asite	 survival,	 and	 interference	with	 protozoan	membrane	
integrity.	Additionally,	AZPs	 have	 been	 shown	 to	 possess	
low	 cytotoxicity	 towards	 mammalian	 cells,	 highlighting	
their	 potential	 as	 safe	 and	 effective	 anti-protozoan	 agents	

al.	 2014;	 Schiessl	 et	 al.	 2019).	Eventuating	 restoration	 of	
electron	transport	chain	(ETC),	like	fumarate,	it	can	poten-
tially	revert	metabolic	dormancy	in	persisters.	In	fact,	back	
in	2018,	halogenated	derivatives	of	PHZ	were	shown	to	act	
as antipersister against M. tuberculosis and MRSA (Garri-
son	et	al.	2018).	SXT	pigment	has	been	evidenced	to	possess	
antibacterial activity against pathogenic strains of E. coli 
(Barretto and Vootla 2018).	FLR,	a	yellow-orange	pigment	
from Flavobacterium	sp.	Ant342	(F-YOP,)	was	projected	as	
a prospective compound for chemotherapy of tuberculosis 
(Agarwal	et	al.	2023).

Fig. 6	 Networks	highlighting	
application	for	bacterial	pigment.	
(A)	Nondirectional	network	dem-
onstrating various therapeutic 
applications of bacterial pigments 
are	demonstrated	with	therapeutic	
application as source node and 
the	pigments	as	the	target	node.	
(B) Similarly a nondirectional 
network	depicting	various	indus-
trial applications of the pigments 
are	projected.	The	networks	were	
generated	using	Cytoscape	with	
a	network	file	generated	from	the	
data available in the literature
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involve	interference	with	viral	binding	to	host	cells,	and	the	
induction	of	antiviral	cytokines.	Antiviral	properties	can	be	
observed	 against	 human	 immunodeficiency	 virus	 (HIV),	
SARSCoV2,	and	herpes	simplex	virus	(Abd-El-Aziz	et	al.	
2024;	Montefiori	and	Zhou	1991).	VIO	also	exhibits	anti-
viral activity against herpes simplex virus and poliovirus 
(Duran	 et	 al.	 2016).	 Suryawanshi	 et	 al.	 (2020) reported 
anti-HSV activity of PDG through inhibition of prosurvival 
NF-κB	and	Akt	signalling	pathways	and	eventual	death	of	
infected	cells.

Anti-cancer

AZPs exhibit activity against multiple signaling cascades 
implicated	in	cancer	progression	and	can	target	 the	leuke-
mic	 cells	K562	 (Lucio	 et	 al.	 2011).	MEL	pigment	 shows	
anticancer	 properties	 against	 skin	 cancer	 cell	 lines	 and	
anti-tumor properties by controlling tumor necrosis factor-
alpha	(TNF-α),	interleukin	6	(IL-6)	(El-Obeid	et	al.	2006),	
and	 vascular	 endothelial	 growth	 factor	 (VEGF)	 synthe-
sis	 by	 monocytes	 (El-Naggar	 and	 El-Ewasy	 2017).	MEL	
is	 a	 potential	 singlet	 oxygen	 scavenger	 and	 hence	 shows	
antioxidant	properties	 (Ju	et	 al.	2011).	MEL	has	a	unique	
skin	wound	healing	and	regeneration	capacity,	and	coated	
nano-hydroxyapatite formulation is used for healing (Fur-
lani	et	 al.	2024).	 It	 also	poses	an	anti-hemolytic	effect	by	
neutralizing free radicals from erythrocytes membrane and 
cell	 lysis.	Across	species,	MEL	acts	as	a	protector	against	
radiation-induced	 and	 free	 radical	 stress	 (Kordjazi	 et	 al.	
2024)	and	has	also	been	reported	to	have	anticancer	effects	
(El-Zawawy	 et	 al.	 2024).	 PDG	 has	 low	 cytotoxicity	 and	
can	show	anticancer	and	antitumor	activity	by	programmed	
cell death system for cancer cell line and inhibition of cell 
cycle	(Anwar	et	al.	2022).	VIO	possesses	antitumoral	and	
anti-cancer	properties,	and	can	function	as	an	immunomod-
ulator.	VIO	prompts	myeloid	leukemia	cells	and	TF1	leuke-
mia	cells	to	program	cell	death.	In	breast	cancer	cells	VIO	
showed	a	non-canonical	mechanism	of	cell	death.	VIO	also	
acts on glioblastoma and lung cancer cell lines and reduces 
metastasis	and	glioblastoma	migration	(Duran	et	al.	2016;	
Mehta	et	al.	2015;	Queiroz	et	al.	2012).	PCN	demonstrated	
significant	cytotoxic	effects	on	human	pancreatic	cancer	cell	
line	 PANC-1	 cells,	 triggering	 both	 apoptotic	 and	 necrotic	
pathways.	 Subsequent	 in	 vivo	 studies	 employing	 animal	
models	 are	 imperative	 to	 assess	 its	 efficacy	 as	 a	 potential	
anti-tumor	therapy	(Moayedi	et	al.	2018).	PCN	suppresses	
the	cell	proliferation	of	human	melanoma	cells	SK-MEL-30	
and	human	colon	cancer	cells	HT-29.	PCN	shows	anti-can-
cer properties against human breast cancer cell line MCF-
7,	human	hepatoma	cell	HepG2,	and	colorectal	carcinoma	
HCT-116	(Zhao	et	al.	2014).	FLR	produced	by	C. artocarpi 
CECT8497	 demonstrated	 a	 proapoptotic	 effect	 against	

(Tahghighi	 et	 al.	 2018).	Activity	of	PDG	against	Plasmo-
dium falciparum indicated that PDG exhibits antiparasitic 
activity	 which	 inhibits	 the	 growth	 and	 proliferation	 of	
malaria parasites (Castro 1967) and Leishmania sp. (Moraes 
et	al.	2008).	VIO	displays	anti-protozoan,	anti-helminthic,	
and anti-parasitic activity against various pathogens such 
as Plasmodium	 spp.,	 Leishmania	 spp.,	 and	 Trypanosoma 
spp.	(Duran	et	al.	2016).	ZXT	has	potential	activity	against	
helminthiasis	 caused	 by	 nematodes,	 platyhelminths,	 and	
anti-malarial	 activity	 of	 the	 carotenoid	 was	 also	 reported	
(Bouyahya	et	al.	2021).

Anti-fungal

Limited data suggest potential antifungal activity of AZPs 
against clinically relevant fungi such as C. albicans and 
Cryptococcus neoformans	 (Gupta	 et	 al.	 1970;	Zhao	 et	 al.	
2018).	MEL	plays	a	critical	role	in	the	virulence	of	fungal	
pathogens	like	C. neoformans.	Fungi	produce	MEL,	a	dark	
pigment,	which	significantly	contributes	 to	 their	ability	 to	
resist	 the	 body’s	 immune	 defenses	 and	 antifungal	 medi-
cations.	 However	 MEL	 demonstrates	 antifungal	 proper-
ties against Trichophyton simii,	and	T. rubrum	(Arun	et	al.	
2015).	 VIO	 exhibits	 effectiveness	 as	 an	 antifungal	 com-
pound,	 particularly	 against	 the	 fungi	 Rosellinia necatrix,	
Rhizopus arrhizus,	and	C. aurius	(Duran	et	al.	2022).	PDG	
demonstrated antifungal activity against plant pathogenic 
fungi	 (Islan	 et	 al.	 2022).	 Some	 antifungal	 activity	 can	 be	
observed	by	PVD	on	fungi	like	Piricularia oryzae,	Botrytis 
cinerea,	 and	A. fumigatus	 (Liu	 et	 al.	 2021).	Antagonistic	
activity	is	observed	against	some	fungi	and	phytopathogens.	
Additionally,	 PCN	 demonstrates	 potent	 antifungal	 activ-
ity	 by	 interfering	with	 the	 electron	 transport	 chain	within	
fungal	 cells.	The	 pigment	 also	 showed	 antifungal	 actions	
against Aspergillus spp, Candida spp.,	and	C. neoformans 
(Kaur	et	al.	2015;	Sass	et	al.	2021;	Shouman	et	al.	2023) and 
was	also	found	to	be	effective	in	treating	T. rubrum infection 
in	human	(El-Zawawy	and	Ali	2016).	Antifungal	activity	of	
SXT against C. albicans has also been reported (Barretto 
and Vootla 2018).

Anti-viral

The	 mechanisms	 underlying	 MEL’s	 antiviral	 activity	
are	 multifaceted	 and	 may	 involve	 direct	 interaction	 with	
viral particles (El-Naggar and Saber 2022).	MEL	exhibits	
broad-spectrum	antiviral	activity,	hindering	various	 stages	
of	 the	viral	 lifecycle.	Studies	 suggest	 that	 it	disrupts	viral	
entry,	replication,	and	maturation.	Additionally,	MEL	pos-
sesses	immunomodulatory	properties,	bolstering	the	host’s	
immune	response	against	viral	infections.	The	mechanisms	
underlying this antiviral activity are multifaceted and may 
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ulcer	healing	(Antonisamy	et	al.	2014).	PCN	exerts	its	cyto-
toxic	effects	through	the	generation	of	ROS.	While	ROS	are	
endogenously	 produced	 during	 cellular	 respiration,	 their	
excessive	accumulation	 triggers	oxidative	stress.	This	dis-
rupts	 cellular	 homeostasis,	 compromising	 metabolic	 pro-
cesses	and	ultimately	leading	to	cell	death.	PCN	specifically	
mediates	 its	 toxicity	 by	 oxidizing	 NADH	 and	 NADPH,	
consequently elevating cytosolic ROS levels and redox 
potential.	This	cascade	of	events	results	in	diminished	ATP	
production and a dysregulation of the reduced-to-oxidized 
glutathione	 ratio.	 Notably,	 PCN	 has	 been	 implicated	 in	
the	pathogenesis	of	various	physiological	systems,	includ-
ing	 the	urological,	nervous,	hepatic,	and	vascular	 systems	
(Hall	 et	 al.	2016).	The	 impact	of	PCN	 is	demonstrated	 to	
be	dose-dependent.	At	lower	concentrations,	PCN	exhibits	
immunomodulatory	properties,	stimulating	the	proliferation	
of	T	 and	B	 lymphocytes,	 enhancing	 IL-2	production,	 and	
promoting	B	cell	differentiation	(Ulmer	et	al.	1990).	Con-
versely,	in	vivo	studies	demonstrated	that	PCN	accelerates	
neutrophil	apoptosis,	thereby	mitigating	local	inflammation	
and potentially favouring P. aeruginosa persistence during 
infection	(Allen	et	al.	2005).	ZXT	acts	as	an	anticancer	and	
anti-inflammatory	due	to	its	antioxidant	properties	(Raman	
et	al.	2024).	SXT	is	a	carotenoid	pigment	that	reduces	the	
activity	of	ROS,	and	thereby	increases	neutrophil	resistance	
and	virulence	in	the	host	for	the	bacteria	(Xue	et	al.	2019).	
FLR	 demonstrated	 hepatoprotective	 effects	 to	 ameliorate	
oxidative	stress,	steatosis,	ballooning	degeneration,	 leuko-
cytic	infiltration,	and	necrosis	(Mogadem	et	al.	2022).

Neuroprotection

The role of MEL in the central nervous system (CNS) has 
gained	 interest,	 especially	 in	 the	 context	 of	 neurodegen-
erative	diseases.	The	potential	neuroprotective	effects	stem	
from	 its	 proposed	 functions.	One	key	 function	 is	 its	 abil-
ity	 to	act	as	a	 free	 radical	 scavenger.	By	neutralizing	 free	
radicals,	 MEL	 helps	 reduce	 oxidative	 stress,	 a	 cellular	
condition implicated in neuronal damage and neurodegen-
eration.	Furthermore,	MEL	might	play	a	role	in	regulating	
neurotransmitter	levels	and	synaptic	function,	both	crucial	
for maintaining healthy and functional neurons (Petrosyan 
2015;	Petrosyan	et	al.	2012;	Tang	et	al.	2022).	The	tripyrrole,	
PDG	shows	promise	as	a	neuroprotectant.	Studies	suggest	
it	 improves	 chronic	 unpredictable	 mild	 stress	 (CUMS)-
induced	depression-like	behaviour	 in	 rats	 (Albrakati	et	al.	
2021).	 Beyond	 its	 antioxidant	 effects,	 PDG	 also	 combats	
inflammation	 in	 the	 brain,	 potentially	 aiding	 neurodegen-
erative	diseases.	PDG	further	protects	neurons	by	interfer-
ing	with	cell	death	pathways,	making	it	a	strong	candidate	
for	 the	 treatment	of	neurodegenerative	diseases.	 Its	multi-
faceted approach includes boosting natural antioxidants and 

human	 breast	 cancer	 cell	 line	 MCF7.	 The	 pigment	 also	
demonstrated	anti-cancer	activity	for	7,12-dimethylbenz(a)
anthracene (DMBA) induced breast cancer in the Sprague 
Dawley	rat	model	 (Venil	et	al.	2016,	2021).	STX	isolated	
from S. gallinarum	 against	 Dalton’s	 lymphoma	 ascites,	
Ehrlich	ascites	carcinoma,	adenocarcinomic	human	alveo-
lar	basal	epithelial	cells,	and	Mus musculus	skin	melanoma	
(B16F10)	(Barretto	and	Vootla	2018).

Antioxidant

The antioxidant potential of AZPs has been evaluated 
using	 established	 assays,	 such	 as	 DPPH	 radical	 scaveng-
ing	and	ferric-reducing	antioxidant	power	 (FRAP)	assays.	
These	compounds	also	inhibit	lipid	peroxidation.	This	dual	
mechanism mitigates cellular damage caused by oxidative 
stress.	Furthermore,	AZPs	appear	to	up-regulate	the	activity	
of	endogenous	antioxidant	enzymes,	 including	superoxide	
dismutase	(SOD)	and	catalase	(CAT),	resulting	in	enhanced	
overall	 antioxidant	 capacity	 (Girgis	 et	 al.	 2018).	 MEL	
showed	oxygen-scavenging	properties	and	metal-chelating	
activity,	hence	having	high	antioxidant	properties	(Maniv-
asagan	 et	 al.	 2013).	 IND	has	high	 antibiotic	 activity	with	
antioxidant	 properties	 (Cude	 et	 al.	 2012;	Xu	 et	 al.	 2015).	
The structure of the pigment suggests hydroxyl-radical-
scavenging	properties	(Ali	et	al.	2013).	ZXT	protects	from	
reactive	oxygen	intoxication	and	hence	is	an	effective	anti-
oxidant and plays a major role in condensing central fovea 
of retina to protect it from light-initiated oxidative dam-
age and macular degeneration (Landrum and Bone 2001;	
Widomska	et	al.	2020).	Antioxidant	property	is	evaluated	to	
be high in an FLR-type pigment from C. artocarpi CECT 
8497	by	a	number	of	standard	antioxidant	assay.	The	pig-
ment	demonstrated	scavenging	of	superoxide,	hydroxyl	free	
radicals,	 and	H2O2,	 along	with	mitigation	of	 lipid	peroxi-
dation.	FLR	can	bind	directly	with	SOD	and	modulate	 its	
activity	(Amorim	et	al.	2022a;	Mogadem	et	al.	2021).

Anti-inflammatory

MEL	has	some	biological	applications	such	as	anti-tumoral,	
reduced	ROS	production	oxidative	liver	damage,	and	DNA	
damage	(Tong	et	al.	2023).	Other	utilities	of	MEL	are	that	
it	can	be	used	 in	 implantable	devices	 like	biosensors,	and	
fluorescent	 probes	 and	 as	 hydrogel	 in	 photothermal	 ther-
apy	 (Kim	 et	 al.	 2020;	Vahidzadeh	 et	 al.	 2018).	MEL	 has	
been	 suggested	 to	act	 as	 a	 free	 radical	 scavenger,	 thereby	
mitigating	oxidative	stress	often	associated	with	inflamma-
tory	 processes.	 Different	 proinflammatory	 cytokine	 levels	
decrease	with	VIO	administration	and	different	growth	fac-
tors	like	endothelial,	hepatocyte,	epidermal,	and	hepatocyte	
increase,	 leading	 to	major	activity	 in	mucin	 secretion	and	
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is	 used	 to	 treat	 along	with	 novobiocin	 and	 nalidixic	 acid	
then	 it	 shows	potentiation	of	 antibacterial	 activity	 against	
S. aureus.	In	combination	with	ciprofloxacin	and	nalidixic	
acid	it	shows	such	activity	against	E. coli.	With	meropenem	
synergy	was	 observed	 against	S. marcescens and Proteus 
mirabilis	 (Abdelaziz	 et	 al.	 2023).	 Subinhibitory	 concen-
trations	of	ciprofloxacin,	 tobramycin,	and	meropenem	can	
modulate PCN production by various strains of P. aerugi-
nosa	(Mojsoska	et	al.	2021).

Industrial application of bacterial pigment

Though a number of bioactive pigments are profoundly 
produced	 by	 opportunistic	 pathogenic	 bacteria,	 consider-
ing	 their	 potential	 of	 as	 natural	 dye,	 the	 molecules	 have	
immense	 prospect	 in	 food,	 agriculture,	 textile,	 and	 cos-
metic	industries.	Alongside,	the	pigments	are	gaining	novel	
implication	 in	 bioremediation,	 biofuel	 cell	 designing,	 and	
biosensor	development.	An	association	network	map	for	the	
diverse	industrial	use	of	the	pigments	is	provided	in	Fig.	6B 
to	offer	a	snippet	of	their	industrial	application.

Food

In	order	 to	make	 their	 food	appealing,	 the	 food	 industries	
began	to	use	synthetic	colorants.	Since	the	synthetic	colo-
rants	 were	made	 out	 of	 petroleum	 by-products	 they	 pose	
health	 risks	 to	 the	 consumers,	 which	 insist	 industries	 to	
switch	to	natural	colorants.	In	the	food	industry,	among	the	
bacterial	pigments,	riboflavin,	β-carotene,	PDG,	PCN,	MEL,	
VIO,	and	lycopene	have	been	identified	as	safe	and	edible	
colorants	 (Sen	 et	 al.	 2019).	 In	 contrast,	 yellow-colored	
water-soluble	pigment	riboflavin	has	been	reported	to	have	
applications as a dietary supplement and additive in dairy 
products,	baby	foods,	and	energy	drinks	for	their	ability	to	
break	down	polymeric	components	like	carbohydrates,	pro-
teins,	and	fat	to	release	energy.	It	is	also	extensively	used	as	
a	component	of	the	vitamin	B	complex	to	treat	specific	defi-
ciency	(Peechakara	et	al.	2024).	Red-orange	colored	bacte-
rial	pigment	β-carotene	is	an	excellent	source	(provitamin)	
of vitamin A that helps boosting the immune system and is 
necessary	to	prevent	night	blindness	in	human	(Eroglu	et	al.	
2012).	Some	other	members	of	the	carotenoid	family	have	
also been reported to have applications as food additives for 
animal	 and	 fish	 feed	 for	 aquaculture,	 and	 pharmaceutical	
fields	(Stafsnes	et	al.	2010).	PDG,	the	red	pigment	produced	
by a number of bacteria has been recognized as a multi-
purpose pigment that can be used extensively in commer-
cial	 preparations	 of	milk,	 yoghurt,	 and	 carbonated	 drinks	
(Namazkar	 2013).	 Another	 blue-colored	 pigment,	 PCN,	
can	 be	 used	 in	 sweets,	 ice	 creams,	 and	 in	 proteinaceous	
dietary	 supplements.	 It	 can	 also	 purposed	 as	 a	 protective	

lowering	harmful	molecules	(ROS)	in	neurons,	further	pro-
tecting	them	from	damage	(Salem	et	al.	2022).	Furthermore,	
PDG	modulates	neuroinflammatory	responses	by	inhibiting	
the	 NF-κB	 signalling	 pathway	 and	 down-regulating	 the	
expression	of	pro-inflammatory	cytokines,	thereby	creating	
a	neuroprotective	milieu.	Because	of	its	well-known	bioac-
tive	qualities,	PDG	from	S. marcescens has been proposed 
as a potential medication for the treatment of neurodegen-
erative	 along	with	 cancerous	 disorders	 as	 summarized	 by	
Tunca	Koyun	et	al.	(2022).	Acetylcholine	esterase	(AChE)	
enzyme activity responsible for neurodegenerative diseases 
can be inhibited using PCN (Mudaliar and Bharath Prasad 
2024).	 Even	 neural	 injury	 caused	 by	 AChE	 induced	 by	
H2O2	can	be	protected	by	PCN	(Ibberson	et	al.	2022).	ZXT	
reduces	Alzheimer’s	disease	and	neural	disorders	related	to	
visualization	and	auditory	signals	(Wong	et	al.	2017).	Even	
regular	ZXT	in	a	diet	reduces	pro-inflammatory	hormones,	
anxiety,	depression,	and	diabetics	(Stringham	et	al.	2019).

Bacterial pigment and antibiotic interaction

MEL	 can	 bind	 to	 certain	 antibiotics,	 potentially	 affecting	
their	distribution	and	bioavailability	within	 the	body.	This	
interaction	may	consequently	influence	the	pharmacokinet-
ics	and	pharmacodynamics	of	the	antibiotics.	MEL	can	bind	
to	 fluoroquinolones	 like	 ciprofloxacin	 and	 moxifloxacin,	
potentially	 affecting	 their	 distribution	 and	 bioavailability	
(Alyami	et	al.	2022;	Beberok	et	al.	2011).	The	pigment	also	
interacts	 with	 β-lactam	 antibiotics,	 including	 penicillins	
and	 cephalosporins,	 influencing	 the	 pharmacokinetics	 of	
β-lactams	and	impacting	their	effectiveness	against	bacteria	
(Barza	et	al.	1976).	MEL	binding	 to	 tetracyclines	 such	as	
doxycycline	and	minocycline	has	been	observed.	This	may	
affect	 their	distribution	and	efficacy	within	 the	body	(Rok	
et	al.	2021).	Some	potential	interactions	between	MEL	and	
macrolide	antibiotics	 like	erythromycin	and	azithromycin,	
potentially	 influence	 their	 pharmacokinetics	 and	 bioavail-
ability	(Barza	et	al.	1976).	VIO	can	be	used	to	treat	bovine	
mastitis	either	in	single	or	in	combinatorial	treatment	with	
antibiotics.	It	is	observed	that	combinatorial	usage	of	VIO	
along	with	antibiotics	like	azithromycin,	cefadroxil,	genta-
mycin,	 and	 kanamycin	 accentuates	 antibacterial	 activity	
against	multidrug-resistant	pathogenic	bacteria	(Duran	et	al.	
2016).	During	combinatorial	treatment	along	with	antibiot-
ics,	VIO-gentamicin	and	VIO-cefadroxil	treatments,	effec-
tive results can be observed in S. epidermidis,	Salmonella 
typhi,	V. cholerae,	P. aeruginosa,	K. pneumoniae,	 and	 S. 
aureus	(Dodou	et	al.	2017;	Subramaniam	et	al.	2014).	PDG	
exhibits	synergistic	or	additive	effects	against	many	bacteria	
like	E. coli,	S. aureus,	Bacillus cereus,	C. violaceum,	M. 
smegmatis,	 and	P. aeruginosa	when	used	 in	a	combinato-
rial	 antimicrobial	 system	 (Gohil	 et	 al.	 2020).	When	 PCN	
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whereas	plant-based	materials	like	cellulose	require	higher	
pH	as	acidic	conditions	may	cause	the	cellulose	to	degrade.	
Again	pigments	are	also	sensitive	towards	pH	change.	Pig-
ments from Serratia sakuensis	change	color	at	different	pH:	
pH	4	(pink),	pH	5	(red),	pH	7	(orange),	and	pH	9	(yellow)	
(Ren	 et	 al.	 2018).	PDG	 from	 the	 strains	Streptomyces	 sp.	
NP2	and	NP4	showed	brownish-to-red	colour	at	low	pH	3.5	
and	4.5	and	grey-to-blue	at	a	pH	of	8,	thus	dying	at	different	
pH	 induce	different	colour	 in	multifibre	 fabric	 (Kramar	et	
al.	2014).	Pigment	isolated	from	P. aeruginosa	under	alka-
line	conditions	is	blue	but	when	dying	polyester	at	130	°C,	
the	polyester	dyed	yellow.	This	is	because	of	the	pyrolysis	
of	the	PCN	pigment;	hence	it	is	important	to	determine	the	
sensitivity	of	both	 the	pigment	and	 the	 fabric	 towards	pH	
and	 temperature.	Frequently	 salts	 are	used	 as	 additives	 in	
dyebaths	for	improving	the	fixation	of	natural	dyes	to	fibres.	
These	 salts	 are	 called	 mordents,	 which	 form	 a	 complex	
with	 the	 pigment	 and	 are	 also	 able	 to	 attach	 to	 the	 fibre.	
Some	conventional	mordents	are	 iron,	copper,	aluminium.	
Mordants	have	an	effect	on	 the	resulting	color	of	 the	fab-
ric.	Mordents	like	Al	and	Ti	have	significant	positive	impact	
on	washing	 fastness,	perspiration,	and	dry-cleaning	of	 the	
dyed	 silk	 using	 PDG	 extracted	 from	Zooshikella rubidus 
(Kim and Choi 2015).	The	synergistic	antimicrobial	activ-
ity of the pigment and silver nanoparticle (AgNP) exhibited 
remarkable	effect	against	bacteria	and	C. albicans (Kim and 
Choi 2015).	Synergy	between	the	antimicrobial	property	of	
the pigment VIO extracted from J. lividum,	and	silver	and	
titanium	dioxide	nanoparticles	was	observed	when	a	viscose	
fabric	was	 coated	with	 the	 nanoparticle.	After	 dying	with	
the	pigment,	it	showed	greater	antimicrobial	activity	against	
E. coli	 than	 the	regular-dyed	fabric	 (Khaksar	et	al.	2021).	
The	works	highlighted	obstacles	 that	must	be	surmounted	
in	order	to	make	microbial	pigments	widely	used	for	com-
mercial	 dyeing,	 including	 the	 high	 costs,	 yield,	 and	 color	
stability,	 as	well	 as	 advancements	 in	 the	 extraction	meth-
ods.	But	in	spite	of	all	of	 this,	 the	market	 is	growing,	full	
of	creative	and	innovative	opportunities,	and	offering	more	
environment-friendly	products,	opening	up	new	avenues	for	
biotechnological	solutions.

Cosmetics

Cosmetic	industries	are	also	switching	to	the	safer	alterna-
tive	i.e.	the	microbial	pigments	especially	the	carotenoids	as	
they also have excellent capacity to reduce ROS production 
and	are	 the	major	active	 ingredients	 in	anti-aging	creams.	
External	 environmental	 factors	 such	 as	 the	UV	 exposure,	
smoke	pollution,	and	intrinsic	factors	like	genetics	and	life-
style resulting in damage and degradation of the dermis and 
epidermis	are	the	major	factors	in	skin	aging	(Guillerme	et	
al.	2017).	A	number	of	bacterial	pigments	have	found	their	

supplement	 due	 to	 its	 anti-bacterial,	 anti-fungal,	 and	 neu-
roprotective	 properties	 (Jayaseelan	 et	 al.	 2014).	MEL	has	
also been reported to have application as food additive 
(Sen	et	al.	2019).	VIO	is	 in	demand	for	use	 in	cosmetics,	
medicine,	textile	as	well	as	food	industries	(Sutherland	et	al.	
2011)	owing	to	its	diverse	bioactivities	including	antiulcero-
genic,	 anticancer,	 antimicrobial,	 enzyme	 modulation,	 and	
anti-parasitic	 activities	 (Soliev	 et	 al.	 2011).	 Furthermore,	
a number of pigments are undergoing laboratory analysis 
and	may	 soon	 be	 used	 in	 the	 food	 industry	 as	 non-toxic,	
therapeutic	 food	 colorants.	 Examples	 of	 these	 pigments	
include undecylprodigiosin (isolated from S. marcescenes),	
and STX (derived from S. aureus)	 (Agarwal	 et	 al.	 2023).	
A	new	class	of	 immune-fortified	 foods	may	 soon	become	
widespread	 as	 a	 result	 of	 increased	 studies	 into	 the	 quest	
for	new	bacterial	pigments.	These	foods	would	not	only	be	
aesthetically	 pleasing	 to	 eat,	 but	 they	would	 also	 provide	
therapeutic	immunity	to	the	consumer—a	valuable	benefit	
in	the	current	period	where	infectious	diseases	and	lifestyle	
problems	are	more	prevalent	than	ever.

Textile

The application of microbial pigments as industrial fabric 
dyes	 is	 not	 yet	 common	 and	 further	 exploration	 is	 war-
ranted.	In	recent	times,	textile	industries	are	venturing	into	
bacterial pigments rather than synthetic ones because they 
are	 non-carcinogenic,	 eco-friendly,	 and	 also	 have	 antimi-
crobial	activity.	A	number	of	bacterial	pigments	have	found	
application	in	the	field	of	textile	dyeing	owing	to	their	abil-
ity	to	bind	to	the	textile	fiber	and	the	most	commonly	used	
ones	 are	PDG,	MEL,	 and	VIO.	PDG	 from	S. marcescens 
SB08	is	used	frequently	for	dyeing	fibers	like	nylon,	acryl-
ics,	cotton,	and	silk,	and	is	quite	stable	when	tested	at	vari-
able	conditions	of	washing,	perspiration,	and	rubbing.	PDG	
from Vibrio sp.	is	used	for	dying	nylon,	acrylics,	silk,	and	
wool	(Barreto	et	al.	2023).	Similarly,	VIO	extracted	from	C. 
violaceum	has	been	used	for	dyeing	pure	silk,	cotton,	rayon,	
and	polyester.	The	coloring	could	be	obtained	by	either	dip-
ping the fabric into the dye solution or by boiling the fab-
ric	along	with	the	bacteria	and	the	intensity	varies	with	the	
time and the temperature of exposure of the fabric to the 
dye.	The	process	is	divided	into	three	stages	–	preparation	
of	dyeing	solution	with	pigment	fixing	additives,	hot	dye-
ing	at	60	°C	–	80	°C,	washing	and	drying	of	dyed	fabric.	
Dissolution of pigment depends on the nature of the pig-
ment	requiring	solvents	like	ethanol,	acetone,	and	methanol	
(Kramar	 et	 al.	 2021).	Dye	 baths	 produced	 using	 acetone,	
water,	or	ethanol	are	also	considered	eco-friendly.	Appro-
priate	 pH	 optimization	 is	 also	 necessary	 while	 preparing	
dye	baths	depending	on	the	type	of	textile	material.	Protein-
based	fibres	 like	wool	and	silk	 require	an	acidic	dye-bath	
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concentrations	 of	 Pb(II)	 (Hui	 et	 al.	 2022b).	A	whole-cell	
biosensor	 for	detecting	cadmium	was	subsequently	devel-
oped	using	the	cd	(II)	sensory	element	fused	with	IND	BGC	
and	expression	of	CadR.	Naked-eye	detection	for	induction	
of	blue	coloration	was	achieved	along	with	a	colorimetric	
detection	system	with	a	limit	of	detection	as	low	as	0.024	
µM.	 The	 system	 also	 demonstrated	 modest	 nonspecific-
ity	 as	 it	 could	weakly	detect	 other	metal	 ions	 like	Zn(II),	
Pb(II),	and	Hg(II)	(Hui	et	al.	2022a).	Through	incorporation	
of vio-genes under mercury resistance (mer) promoter and 
mercury	resistance	regulator	(MerR),	a	Hg(II)	detection	bio-
sensor	was	developed	with	a	colorimetric	detection	range	of	
0.78–12.5	µM	(Guo	et	al.	2021).

Implementing	 two	 Zn-responsive	 transcription	 factors	
and	regulatory	element	system,	a	tricolor	sensor	system	for	
Zn	present	 in	 serum	was	developed	by	Watstein	 and	Sty-
czynski	 (2018).	 The	 gene	 for	 conversion	 of	 lycopene	 to	
β-carotene	(crtY)	was	placed	in	 the	promoter	PzntA.	Under	
PznuC,	 with	 additional	 “decoy”	 binding	 sites	 to	 sequester	
zinc-bound	 zinc	 uptake	 regulator	 (Zur),	 VIO-producing	
genes	 were	 placed.	 Thus	 two	 systems	 responding	 to	 two	
different	 concentrations	 of	 Zn,	 rendered	 development	 of	
a	 three-colored	biosensor	 for	Zn.	Recently,	 in	an	effort	 to	
develop a bacterial pigment-based biosensor for detecting 
bacterial	 pathogens	 in	 water	 samples	 constructed	 on	 the	
basis of the QscR quorum sensing signal generated by the 
pathogenic	 bacteria.	 The	 system	was	 primarily	 optimized	
with	 eGFP	 as	 reporter	 and	 subsequently	 the	 red	 pigment	
lycopene synthesizing module ctrE,	 ctrB,	 and	 ctrI genes 
were	introduced	in	the	system	with	ctrI under the regulation 
of	QscR.	The	configured	strain	enabled	point-of-care	detec-
tion	of	water	contamination	by	P. aeruginosa and Burkhold-
eria pseudomallei	(Wu	et	al.	2021).	In	the	recent	most	effort	
to	 develop	 bacterial	 pigment-based	 biosensor,	 Hui	 et	 al.	
(2023)	designed	a	high	throughput	system	through	profiling	
nine	stress-responsive	promoters.	A	set	of	 such	promoters	
was	fused	with	purple	deoxyVIO	synthetic	enzyme	cluster	
and	another	set	was	fused	with	the	blue	IND	gene	cluster.	
Through	 this	 system,	 sensitive	 and	 efficient	 detection	 of	
genotoxic	compounds	like	mitomycin	C	and	nalidixic	acid	
was	accomplished.

Agriculture

Safe agricultural practices have included the use of biologi-
cal	agents	mostly	due	to	safety	and	specificity	in	their	actions.	
Bacterial	pigments	have	also	been	explored	with	the	same	
goal.	VIO	was	found	to	be	effective	as	a	component	of	an	
insecticide	in	preventing	fungal	infection	in	plants	like	grass	
sclerotinia	 stem	 rot,	 bean	 sprout	 seedling	 blight,	 pythium	
blight,	as	well	as	parasitic	infections	like	Meloidogyne	spp.	
diseases	 in	 watermelon	 (Orlandi	 et	 al.	 2022).	 Similarly,	

application	in	the	cosmetics	industry	owing	to	their	antioxi-
dant	properties.	Carotenoids	like	lycopene,	β-carotene,	and	
canthaxanthin	belong	to	this	category	(Wan	et	al.	2014).	The	
red pigment PDG has also been found to be incorporated in 
a number of dermatological formulations to enhance their 
UV	 protection	 ability	 as	 measured	 by	 sunscreen	 protec-
tion	factor	by	25–65%.	The	combination	of	PDG	with	aloe	
Vera and Cucumis sativus	 fruit	 extract	was	 also	 found	 to	
enhance	the	order	of	protection	(Suryawanshi	et	al.	2015).	
VIO,	isolated	from	the	genus	Pseudoalteromonas has been 
extensively tested in various cosmetic preparations due to 
the	nonpathogenic	character	of	the	bacterium	(Duran	et	al.	
2016).	 It	 has	 been	 examined	 as	 an	 ingredient	 of	 products	
that	come	in	direct	and	prolonged	contact	with	the	airways,	
mucous	membrane,	and	skin,	like	antiperspirants,	lipsticks,	
and	eye	makeup.

Biosensor

Gu and Cheung (2001) projected IND production from 
Vogesella indigofera up on exposure to Cr6+ as a biosen-
sor	 for	 hexavalent	 Cr.	 Subsequently,	 IND	 production	 has	
been	 used	 in	 various	metal	 ion	 detection	 with	 sensitivity	
between	200	and	300	µg/ml	(Bereza-Malcolm	et	al.	2015).	
In	an	intensive	effort,	Gustavsson	et	al.	(2016),	engineered	
E. coli,	 for	 outer	 membrane	 expression	 of	 tyrosinase	 for	
complete oxidation and polymerization of tyrosine to mela-
nin.	Thus	 an	 efficient	 system	 in	 removal	 of	 pharmaceuti-
cal	contaminants	from	polluted	waters	was	generated	with	
a rapid regeneration of the melanin matrix by simple pH 
cycling.	A	number	of	whole-cell	biosensors	based	on	pig-
ment	biosynthesis	have	been	engineered	in	the	recent	past.	
For	detecting	low	concentrations	of	QS	signal,	a	N-butyryl 
homoserine	 lactone	 sensing	 biosensor	 was	 developed	 by	
genetically modifying P. aeruginosa	CGMCC	1.860	RhlR	
(Yong and Zhong 2009).	A	strategy	for	developing	copper	
biosensors	was	configured	by	Chen	et	al.	(2017),	using	the	
production	of	the	plant	pigment	β-xanthene.	Using	a	simi-
lar	strategy,	bacterial	pigment	biosynthetic	genes	have	been	
implemented	 in	 developing	 biosensors,	 particularly	 for	
metal	and	metalloid	ions.	Hui	et	al.	(2020) described devel-
opment	of	a	whole-cell	biosensor	for	lead	with	E. coli cells 
by integrating a circuit for expression of vio-genes under the 
control	of	PbrR,	a	Pb(II)	dependent	transcriptional	regula-
tor.	Direct	visualization	for	Pb	contamination	was	achieved	
with	 a	 linear	 detection	 for	 VIO	 accumulation	 (OD490	 nm) 
within	a	range	of	0.19–1.5	µM.	Further	improvement	of	the	
sensor	was	accomplished	with	the	incorporation	of	triggers	
for vio	ABE-catalysed	production	of	green	prodeoxyVIO,	
vio	 ABDE-catalysed	 production	 of	 blue	 proVIO,	 vio 
ABCE-catalysed	production	of	purple	deoxyVIO,	and	vio-
ABCDE-catalysed production of navyVIO to detect varied 
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Fuel cell

PHZ,	is	a	class	of	pigments	that	has	electron	transfer	abil-
ities and thus is used as an electron shuttle by a number 
of	bacteria	 including	 the	producer.	This	particular	charac-
teristic of the dye has made it a potent candidate for the 
production	of	biofuel	cells	(Simoska	et	al.	2023).	Respira-
tory electrons generated by a group of microorganisms are 
diverted	toward	an	electrode	for	the	production	of	electrical	
energy.	Constant	oxidation	of	the	dye	additionally	ensures	
overproduction	aided	by	increasing	cell	density.

The use of bacterial pigments is currently supported and 
regulated	by	 laws,	 and	 this	 trend	 is	 expected	 to	persist	 in	
the	coming	years	(Sen	et	al.	2019).	Commercial	processes	
for this are either already operational or in the develop-
mental	stages.	According	to	Dufossé	(2018),	the	industrial	
production of bacterial pigments such as PDG has already 
commenced for use as anticancer drugs and immunosuppres-
sants.	On	the	other	hand,	bacterial	pigments	such	as	rubro-
lone,	heptylPDG,	and	ZXT	are	still	in	their	developmental	
stages	(Dufossé	2018).	The	present	colorant	production	fig-
ure	consists	75%	of	petroleum	derivatives	and	25%	of	plant	
extraction,	both	of	which	are	challenged	in	terms	of	sustain-
ability	and	environmental	impact.	Keeping	aside	the	techni-
cal	aspects	in	translating	bacterial	pigment	to	market	ready	
product,	 the	 business	 perspective,	 in	 terms	 of	 embracing	
newer	 sustainable	 technologies	within	 a	 reasonable	finan-
cial	 limit,	 remains	a	major	challenge	in	expanding	market	
for	natural	pigments.	With	Europe	widening	the	avenue	for	
natural colorants including pigments originating from bacte-
ria	with	raising	their	use	in	various	industries	including	food	
and	textile,	an	escalation	of	market	entry	for	bacterial	pig-
ment-based product across the globe is anticipated (Venil et 
al.	2020b).	The	market	share	for	carotenoids,	particularly	in	
food	and	nutraceutical	industry,	is	till	date	overwhelmingly	
dominated	 by	 synthetic	 carotenoids	 with	 68.24%	 market	
share	for	synthetic	AXT,	beta-carotene,	and	canthaxanthin	
(Market	Research	Report,	2022).	Though	ZXT	can	be	pro-
duced from Chryseobacterium proteolyticum and Flavobac-
terium granuli	with	a	yield	of	>	90%,	and	more	than	99%	
yield	could	be	achieved	for	canxanthin	when	produced	by	
Dietzia schimae	 (Lopez	et	al.	2023),	high	production	cost	
remains	a	prime	factor.	Deinove,	a	cleantech	company,	ear-
lier pointed out that high cost of natural carotenoids against 
synthetic	carotenoids	($350–7,500/	kg	vs.	$250–2,000/	kg)	
is	restricting	its	market.	Deinove	recently	identified	deino-
xanthin from Deinococcus sp.	along	with	the	identification	
of terminal enzymes for synthesizing various carotenoids 
and	 optimizing	 the	 yield	 and	market	 finish	 (https://www.
labiotech.eu/trends-news/synbio-carotenoids-market-
deinove-greentech-industry-milestones/).	 In	 a	 major	 leap	
towards	application	of	bacterial	pigment	in	textile	industry,	

PDG	 was	 found	 to	 be	 effective	 in	 inhibiting	Drosophila 
larvae,	Aedes aegypti,	and	Anopheles stephensi	 (Suryawa-
nshi	et	al.	2015).	PDG	has	also	been	found	to	be	effective	
in	 restricting	 viral	 infections	 involved	 in	 sericulture.	This	
dye	has	also	been	effective	in	restricting	the	environmental	
pollution caused by bloom of the cyanobacteria Microcys-
tis aeruginosa	 (Wei	 et	 al.	 2020).	 Scientists	 have	 reported	
a melanin-synthesizing mutant strain of B. thuringiensis to 
be	resistant	against	UV-mediated	damage	(Zhu	et	al.	2022).	
This	finding	has	opened	the	pathway	for	industrial	produc-
tion	of	 light-stable	eco-friendly	insecticide.	PHZ	has	been	
reported	to	have	beneficial	effect	on	plant	roots	as	it	helps	
to	overcome	ROS-mediated	stress.	Some	PHZ-derivatives	
display	inhibitory	effects	on	the	plant	pathogen	Rhizoctonia 
solanii	(Xiang	et	al.	2018).	Antifungal	activity	has	also	been	
reported for PVD against Aspergillus	(Sass	et	al.	2021).

Bioremediation

A	major	 cause	 of	 low	 crop	 yield	 is	 iron	 deficiency,	 even	
though	Fe	being	the	fourth	most	abundant	metal	on	Earth.	
Fe	 in	 soil	 reacts	 with	 the	 insoluble	 bicarbonates	 causing	
the	micronutrient	deficiency	in	plants.	This	is	mostly	noted	
in	 soils	with	 pH	 of	 7.4–8.5	 as	 in	 calcareous	 and	 alkaline	
soil.	To	counter	this	reduced	availability,	chelators	such	as	
ethylendiamine-N-N’bis(o-hydroxyphenylacetic)	 acid	 (o,	
o-EDDHA)	are	employed	 to	efficiently	chelate	Fe	but	are	
harmful	to	the	environment	and	are	expensive.	Siderophores	
produced	and	released	by	bacteria	have	high	affinity	for	Fe	
due	 to	groups	 like	 catecholate,	 hydroxamate,	 carboxylate,	
and	 can	 act	 as	 chelators	 (Cordero	 et	 al.	 2017).	 PVD-type	
siderophores are produced by P. fluorescens,	 in	 uranium	
mines.	These	are	able	to	enhance	mobility	and	reduce	heavy	
metal	toxicity	(Edberg	et	al.	2010).	The	binding	capability	
of siderophores to Fe is stronger than to toxic heavy metals 
(Baysse	et	al.	2000;	Braud	et	al.	2009),	still,	siderophores	
bind	 to	 toxic	 heavy	 metals,	 like	 Cr3+,	 Cu3+,	 Pb2+,	 Cu2+,	
V4+,	and	Al3+	(Braud	et	al.	2009),	thus	the	detoxifying	and	
binding	capability	of	siderophore	plays	a	remarkable	role	in	
plant	growth	on	heavy	metal-polluted	lands.

E. coli can be genetically engineered to melanize its sur-
face	and	remove	pharmaceutical	pollutants	from	wastewater	
with	high	efficiency	(Cordero	et	al.	2017).	Melanotic	micro-
organisms	are	particularly	attractive	given	their	remarkable	
ability	to	grow	in	highly	radioactive	sites.	The	capacity	of	
melanin pigments to readily adsorb radionuclides such as 
uranium	 and	 cobalt	 is	 advantageous.	 For	 instance,	 MEL	
has	 a	 significantly	 greater	 capacity	 to	 adsorb	 uranium	
(∼	10-fold)	than	activated	carbon	(Saini	and	Melo	2013).
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microbial	 contaminants,	 and	 toxic	 by-products	 (Dasgupta	
Mandal and Majumdar 2023).	Agro-industrial	wastes	 like	
sugarcane	 juice,	 sugar	 beet,	 and	molasses	 are	 utilized	 for	
pigment	 production	 at	 minimal	 production	 cost.	 Optimi-
zation of fermentation media through advanced statistical 
methods	like	response	surface	methodology	(RSM),	artifi-
cial	neural	networks	(ANNs),	and	genetic	algorithms	(GAs)	
has	 enhanced	 production	 efficiency,	 although	 challenges	
remain in optimizing complex factor-response interactions 
(Padhan	et	al.	2021;	Singh	et	al.	2015).	Scale-up	optimiza-
tion	with	intense	monitoring	hence	becomes	a	prerequisite	
to minimize the physical and chemical stress for industrial 
pigment	production.	Like	other	metabolites,	strain	improve-
ment	 is	 exigent	 for	 the	 industrial	 production	of	pigments.	
Certain strategies have been adopted to develop high-yield 
strains	 that	 enhance	 pigment	 production	 along	 with	 cost	
rationalization for stringent fermentation conditions aiming 
an	 increase	 in	 pigment	 production	per	 unit	mass.	 Innova-
tive	bioreactor	designs,	such	as	bubble	columns,	contribute	
to higher pigment production rates by maintaining optimal 
oxygen	transfer	and	reducing	energy	consumption,	thereby	
improving	 overall	 process	 economics	 (Lyu	 et	 al.	 2022).	
Following	 production,	 the	 downstream	 method	 used	 in	
the	 purification	 of	 pigment	 from	 the	 fermentation	 media	
defines	 the	pigment	quality,	making	a	systematic	purifica-
tion	 scheme	 essential	 for	 pigment	 purification.	 Bacterial	
pigments	 can	 either	 be	 extracellular	where	 they	 permeate	
from	 the	biosynthesizing	cell,	 or	 they	can	be	 intracellular	
where	 it	 is	contained	and	stored	within	 the	producing	cell	
(Agarwal	et	al.	2023).	The	extracellular	pigment	can	be	iso-
lated	from	the	culture	matrix	through	chromatography.	For	
intracellular	 or	 insoluble	 pigments,	 isolation	 first	 requires	
the cells to be disrupted to release the pigment into the sur-
rounding	medium	(Agarwal	et	al.	2023).	Most	of	the	bacte-
rial pigments are hydrophobic and are soluble selectively 
in	organic	solvents.	After	obtaining	the	pigment	in	desired	
organic	solvent	the	solvent	is	allowed	to	evaporate	and	the	
powdered	residue	is	analysed	further	(Agarwal	et	al.	2023).	
An	enormous	amount	of	effort	has	been	put	into	optimizing	
the production of all the industrially relevant bacterial pig-
ments.	Industrial	production	of	MEL,	and	PHZs	including	
PCN	has	recently	been	elegantly	elaborated	by	Orlandi	et	al.	
(2022)	and	Jabłońska	et	al.	(2023).	Here	we	discuss	recent	
progress made in industrial production of the industrially 
relevant	bacterial	pigments-	VIO,	IND,	PDG,	and	FLR	with	
emphasis on strain isolation and improvement by genetic 
engineering,	 combinatorial	 strategy	 integrating	 synthetic	
biology,	metabolic	engineering.	Alongside,	development	of	
production	media	and	 scale	up,	 and	extraction	and	down-
stream	processing	are	delineated.

Rettori	et	al.	(1998) reported successful isolation of VIO 
from C. violaceum cultivated on cotton and extracted by 

Colorifix,	 a	 UK-based	 biotech	 company	 have	 engaged	 in	
implementing synthetic biology in genetically modifying 
bacteria	 to	 produce	 a	 range	 of	 natural	 pigments.	Colorfix	
implements	an	on-site	live	whole	dying	process	for	fabrics	
in	fermenter,	which	significantly	reduces	use	of	water	and	
other	chemicals.	The	industry	trial	for	Colorfix	in	Portugal	
demonstrated	30-80%	lesser	impact	on	10	critical	environ-
mental impact assessment parameters (https://colorifix.com/
app/uploads/2022/12/colorifix-environmental-impact.pdf 
and https://colorifix.com/colorifix-proves-lower-environ-
mental-impact-at-every-stage-of-its-biological-dyeing-pro-
cess/).	Pili	Bio,	a	France	based	biotech	farm,	has	developed	
bacterial	 biofactories	 integrated	 with	 pigment-producing	
enzyme	 cascades	 to	 produce	 pigments	 emphatically	 with	
least pollution (https://www.pili.bio/9/technology).

Industrial production of bacterial pigments

The pigments discussed here are produced profoundly by 
pathogenic	 bacteria,	 and	 are	 often	 associated	 with	 infec-
tion	establishment.	However	pathogenic	strains	of	bacteria	
are not considered as an ideal cell factories considering the 
risk	as	public	and	occupational	health	hazard.	To	our	advan-
tage,	most	of	the	pigments	are	not	exclusively	produced	by	
pathogenic strains and a number of non-pathogenic pro-
ducer	 strains,	 generally	 considered	 as	 safe	 (GRAS),	 have	
been	 identified.	For	 pigments	 like	VIO,	PDG,	 and	 IND	a	
number of such non-pathogenic producers have been iso-
lated from soil or other environmental sources (Pailliè-
Jiménez	et	al.	2020).	Apart	from	native	pigment	producers,	
pigment production by expression of the BCGs in amicable 
hosts by implementing synthetic biology strategy have been 
achieved	(Banerjee	et	al.	2020).	Even	cell-free	multienzyme	
systems have been optimized for pigment production at 
industrial	scale	(Hooe	et	al.	2024).

In	the	context	of	industrial	production	of	pigments,	tra-
ditional methods are limited by their dependence on natural 
sources	and	the	typically	low	yield	of	target	molecules.	To	
address	these	challenges	and	scale	up	industrial	production,	
significant	efforts	have	been	made	to	enhance	pigment	yields	
from	natural	producers	 (Lyu	et	al.	2022).	The	quality	and	
yield	of	bacterial	pigments	synthesized	in	different	species	
depend	on	specific	growth	conditions	and	growth	medium-
supplementation	for	optimal	synthesis	of	specific	pigment	at	
a	desired	growth	phase	(Galasso	et	al.	2017).	Hence	intense	
observation	of	production	kinetics	 and	yield	 at	 laboratory	
scale is required prior to scaling up the production (Agar-
wal	 et	 al.	 2023).	 Physical	 stress	 associated	with	 the	 scal-
ing	 up	 includes	 the	 hydrostatic	 pressure	 gradient,	 which	
affects	the	membrane	integrity,	cell	viability,	and	metabolic	
flux	 (Wehrs	 et	 al.	 2019b).	Major	 chemical	 stresses	 linked	
to	 scaling	 up	 pigment	 production	 are	 the	 raw	 material,	
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production	was	established	(Tong	et	al.	2021).	Nemer	et	al.	
(2023),	recently	optimized	a	protocol	of	VIO	extraction	from	
engineered Y. lipolytica through extraction by ethyl acetate/
cyclohexane mixture and subsequent column chromatog-
raphy.	 Kholany	 et	 al.	 (2020)	 earlier	 described	 a	 two-step	
downstream	 process	 based	 on	 solid-liquid	 extraction	 and	
a second step addressing the separation of VIO from con-
taminant	proteins	using	aqueous	bi-phasic	separation	with	
Tween	 20	 and	 cholinium-based	 ionic	 liquids.	A	 synthetic	
VIO	BGC	expressing	 construct	was	generated	 for	 expres-
sion in C. glutamicum	ATCC	 21,850	with	 a	 host-specific	
RBS positioned upstream of VIO	BGC.	When	optimized	for	
fermentation condition and medium for bio-reactor scale a 
VIO	titre	of	5436	mg/	L	was	attained	(Sun	et	al.	2016).	Aim-
ing for further optimization of the bioprocess of VIO pro-
duction a number of synthetic biology-based designing of 
its	synthesis	in	heterologous	system	has	been	attempted.	In	
one	of	the	earliest	of	such	efforts,	Lee	et	al.	(2013) screened 
a library generated and analysed by TaqMan Rapid Analysis 
of Combinatorial assemblies (TRAC) of a set of constitutive 
promoters	with	the	genes	for	the	five-enzyme	VIO	biosyn-
thetic	cascade.	Satisfactory	production	of	VIO,	deoxyVIO,	
proVIO,	 and	 prodeoxyVIO	 was	 observed	 in	 downstream	
analysis.	Using	a	cell-free	multi-enzyme	system,	Hooe	et	al.	
(2024),	 explored	 substrate	 analogues	 for	 enzymes	of	VIO	
biosynthetic	cascade.	A	number	of	homo-substituted	com-
pounds	like	6,6′-difluoroVIO	could	be	synthesized	without	
interrupting	 tryptophan	metabolism.	A	CRISPRi-mediated	
metabolic	flux	engineering	method	was	optimized	recently	
by designing a single-guide RNA (sgRNA) library to func-
tion	 with	 dCas9.	 An	 extensive	 metabolic	 rewiring	 was	
possible	 to	 tune	metabolic	 flux	 through	VIO	 biosynthetic	
cascade	employing	 the	approach	(Byun	et	al.	2023).	With	
further optimization of such processes implementing robust 
prediction	models,	striking	advancement	for	industrial	pro-
duction	of	VIO	in	the	near	future	is	anticipated.

The	natural	blue	pigment,	 IND,	 is	produced	by	several	
bacteria	formed	through	the	condensation	of	two	molecules	
of L-glutamine	to	3′,3′-bipyridyl	pigment	by	a	single	NRPS	
(Takahashi	 et	 al.	 2007).	Being	 a	monoenzymatically	 syn-
thesized	 pigment,	 in	 recent	 years	 production	 of	 the	 pig-
ment has been immensely improved by employing various 
genetic	 engineering	 strategies.	 Brachmann	 et	 al.	 (2012),	
successfully activated the silent IND BGC in Photorhabdus 
luminescens	by	promoter	exchange.	In	the	same	work,	the	
group reported heterologous expression of IND genes in E. 
coli.	Cloning	and	expression	of	IND-synthase	and	its	acti-
vator in E. coli	resulted	in	IND	synthesis.	The	fermentation	
was	further	optimized	by	supplementation	with	L-glutamine	
or by in situ L-glutamine synthesis by over-expression of 
glutamine	synthetase.	The	media	optimization	with	various	
nitrogen	sources	enabled	the	production	of	7	g/	L	IND	(Xu	

ethanol.	 Subsequently,	 various	 agricultural	 waste	 materi-
als	 (sugarcane	 bagasse,	 solid	 pineapple	 waste,	 molasses,	
and	brown	sugar)	were	examined	for	optimal	VIO	produc-
tion	with	tryptophan	supplementation	(Ahmad	et	al.	2012).	
Kanelli	 et	 al.	 (2018) reported an optimal fedbatch culture 
condition	for	VIO	with	production	as	high	as	1.8	g/	L	from	
J. lividum.	Addition	 of	 a	 sub-inhibitory	 concentration	 of	
ampicillin	and	1%V/V	glycerol	for	fed-batch	fermentation	
substantially	 improved	VIO-producing	 biomass.	 Recently	
Cheng	et	al.	(2022)	reported	that	augmenting	QS	with	for-
mic acid enhanced the production of VIO from C. viola-
ceum.	The	group	successfully	scaled	up	the	formulation	up	
to	bioreactor	level	to	achieve	an	elevated	VIO	level.	Optimi-
zation of VIO production from a number of native-produc-
ing	species	has	been	attempted	for	quite	a	long	time.	Gohil	
et	al.	(2022) recently formulated a soybean meal-based cost-
effective	growth	medium	for	achieving	a	crude	VIO	yield	of	
1.5	g/L	from	C. violaceum.	Using	C. violaceum	MTCC2626	
strain Gharat and Singhal (2024),	 formulated	 a	 medium	
and	fed-batch	condition	with	pulse	feeding	of	glucose	and	
tryptophan	to	attain	markedly	enhanced	yield	of	VIO.	Apart	
from C. violaceum,	a	number	of	VIO-producing	strains	have	
been	identified	through	a	consistent	effort	by	several	groups.	
From	 the	 Pacific	 coast	 of	 Japan,	VIO-producing	Pseudo-
alteromonas	 strains	were	 identified	by	Yada	et	 al.	 (2008).	
For	VIO	production,	 an	 extremely	 high	yielding	 strain	 of	
Duganella violaceinigra	 str.	NI28	was	 identified	 (Choi	 et	
al.	 2015a).	 Sequencing	 and	 functional	 characterization	 of	
VIO	BGC	was	 performed	 by	August	 et	 al.	 (2000),	which	
widened	the	avenue	for	metabolic	engineering-based	strain	
improvement.	Wu	et	al.	(2017) published the draft genome 
sequence of J. lividum	which	 further	unveiled	 the	 regula-
tion of VIO	BGC	expression.	A	VIO-producing	recombinant	
Citrobacter freundii	 strain	was	 developed	 by	 cloning	 and	
expression of VIO	gene	cluster	in	a	plasmid.	The	fed-batch	
fermentation	condition	was	optimized	with	controlled	dis-
solved	oxygen	and	pH	with	continuous	feeding	of	glycerol,	
ammonium	 chloride,	 and	 tryptophan	 to	 attain	 a	 final	 pro-
duction	for	crude	VIO	of	4.13	g/	L	 (Yang	et	al.	2011).	E. 
coli	was	 engineered	 for	VIO	 production	 utilizing	 glucose	
through	 combinatorial	 knockout	 of	 three	 genes	 linked	 to	
regulation of tryptophan metabolism (trpR,	tnaA,	and	pheA) 
and	overexpression	of	two	rate-limiting	genes	of	tryptophan	
metabolism (trpE and trpD).	Subsequently,	VIO	BCG	was	
introduced	for	downstream	expression.	At	a	bioreactor	level	
scale-up,	the	strain	could	produce	a	VIO	titre	of	1.75	g/	L	
(Fang	et	al.	2015).	Strong	heterologous	expression	of	vioB,	
vioC,	and	vioD in the yeast Y. lipolytica enabled increased 
yield	of	VIO	production.	With	optimization	of	the	medium	
and	 culture	 condition,	 a	 production	 of	 70.04	mg/L	 could	
be	achieved	in	shake-flask	scale.	In	the	same	study,	strong	
correlation	 of	 weak	 expression	 of	 vioD and deoxy-VIO 
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marcescens,	 in	 subsequent	 years	 a	 number	 of	 species	 of	
Serratia and Pseudoalteromonas rubra,	Janthinobacterium,	
Hahella chejuensis,	and	S. coelicolor	were	reported	to	pro-
duce	and	accumulate	PDG.	These	 isolated	 strains	demon-
strated	variation	in	terms	of	PDG	generation.	S. marcescens 
is	 considered	 as	 the	most	 prolific	PDG	producer	with	 the	
highest	 recorded	 production	 of	 49.5	 g/L	 from	UCP	 1549	
strain,	which	was	isolated	from	a	semiarid	soil	by	de	Araújo	
et	al.	(2010).	A	number	of	indigenous	PDG-producing	strains	
have been isolated from diverse ecological niches includ-
ing	 soil,	 sea,	 freshwater	 lakes,	 polar	 region,	 and	 glaciers.	
A	comprehensive	profile	of	such	 isolated	strains	and	 their	
PDG-producing potential has been aptly summarized by 
Han	et	al.	(2021).	Though	S. marcescens isolates from soil 
have been projected as profound PDG producers for high-
level	 industrial	production	of	PDG,	strain	 improvement	 is	
exigent.	 Following	 the	 identification	 of	 the	 biosynthetic	
pathway	for	PDG	(Williamson	et	al.	2005),	the	understand-
ing of the regulation of PDG biosynthetic cassette has grad-
ually	accumulated.	PigP,	a	positive	regulator	of	pig	operon,	
is negatively regulated by LysR-type regulator MetR (Pan 
et	al.	2020).	OmpR	family	transcriptional	regulator,	CpxR	
was	 identified	 as	 a	 temperature-sensitive	 regulator	 of	 pig 
operon	(Sun	et	al.	2020).	A	transcriptional	regulator	RcsB	
represses pig	 operon	 by	 regulating	 FhlDC,	 which	 is	 an	
activator of pig	operon	(Pan	et	al.	2021).	The	MarR-family	
transcriptional	repressor	OhrR	was	identified	as	a	negative	
regulator	of	PDG	synthesis	(Sun	et	al.	2022).	Disruption	of	
barA or/and uvrY results in elevated level PDG production 
in S. marcescens	 (Liu	et	al.	2023).	A	recent	genome-wide	
Tn5	random	loss	of	function	mutagenesis	screen	by	Jia	et	
al.	 (2021)	 identified	 essential	 genetic	 elements	 for	 PDG	
biosynthesis.	Exploiting	such	knowledge	recombinant	PDG	
producers have been designed by engineering on Serratia 
or	by	heterologous	expression	of	PDG-biosynthetic	network	
in P. putida.	 CpxR-deleted	 S. marcescens strains demon-
strated	considerable	improvement	in	PDG	production	with	
a production of ∼	6	 g/	 L	 (Sun	 et	 al.	 2020).	P. putida has 
been exploited as a heterologous host to express pig genes 
by	 chromosomal	 integration.	With	promoter	 shuffling	 and	
media	optimization,	a	production	of	1.1	g/	L	was	attained	in	
non-baffled	shake-flask	level	(Cook	et	al.	2021).		Pan	et	al.	
(2022a),	 recently	 reported	 a	 constitutive	promoter	 screen-
ing	linked	to	the	application	of	expression	of	pig genes in 
S. marcescens	to	enhance	PDG	production.	However,	such	
directed	engineered	strain	development	involves	huge	effort	
and	 also	 there	 are	finite	 chances	 of	 genetic	 compensation	
against	secondary	metabolite	production.	In	this	regard,	ran-
dom	mutagenesis	might	provide	culture	condition-specific	
selective	 advantage	 to	 the	 hyperproducers.	However,	 bar-
ring	 some	 intermittent	 trials	with	 ethyl	methane	 sulfonate	
(EMS)	or	γ-ray	(Elkenawy	et	al.	2017),	 intensive	effort	 to	

et	 al.	 2015).	 S. lavendulae NRPS (blue-pigment indigoi-
dine	synthetase,	BpsA)	was	heterologously	expressed	in	S. 
cerevisiae.	With	media	optimization	for	carbon	sources	and	
process	optimization	at	 the	bioreactor-scale	980	mg/l	pro-
duction	was	attainable	 for	 IND	(Wehrs	et	al.	2018).	BpsA 
and sfp	were	expressed	in	the	basidiomycete	Rhodosporid-
ium toruloides	to	produce	IND	in	a	low-cost	renewable	car-
bon	and	nitrogen	sources	enriched	medium.	With	sorghum	
lignocellulosic hydrolysate in a batch process ∼	3	g/	L	IND	
could	be	produced	with	 the	 strain	while	 in	a	glucose	 fed-
batch	process,	∼	86	g/	L	production	could	be	attained	(Wehrs	
et	al.	2019a).	Heterologous	expression	of	bpsA from S. lav-
endulae in C. glutamicum	was	performed	for	IND	produc-
tion.	IND	production	from	this	strain	was	further	improved	
by	tuning	the	influx	of	precursors	L-glutamate	and	L-gluta-
mine,	bolstering	glucose	uptake,	and	minimizing	by	product	
formation.	An	 optimized	 fed-batch	 fermentation	 protocol	
yielded	49.30	g/L	IND	from	the	engineered	strain	(Kim	et	
al.	2020).	Recently	Aspergillus oryzae has been utilized as a 
platform cell factory for expression of IND synthetase gene 
from Streptomyces chromofuscu	s.	Media	optimization	and	
addition	of	Tween	20	for	fostering	pigment	release	resulted	
in a production of ∼	1.4	g/	L	(Panchanawaporn	et	al.	2022).	
Cell-free systems have been adopted for synthesizing sec-
ondary	metabolites,	particularly	to	avoid	the	complexity	of	
cellular	metabolic	cross-talks	that	impair	product	yield.	For	
IND,	the	minimal	complex	PURE	system	was	exploited	to	
express the NRPS bpsA from S. lavendulae.	The	 enzyme	
produced	 from	 cell-free	 system	 can	 be	 evaluated	 for	 effi-
cacy	of	IND	production	(Siebels	et	al.	2020).	In	an	intense	
effort	 to	 optimize	 genome-scale	 rewiring	 for	 metabolite	
production	Banerjee	 et	 al.	 (2020),	 aimed	 IND	 production	
by P. putida.	A	minimum	cut	set	model	was	 implemented	
to	set	up	strong	growth-coupled	IND	production	leveraging	
the genome-scale metabolic model (GSMM) for P. putida 
KT2440.	A	multiplex	CRISPRi-based	knockdown	approach	
was	exploited	to	edit	P. putida	and	rewire	the	host	metaboli-
cally through detailed introspection of the multi-gene engi-
neered	production	strain.	At	a	bioreactor-scale	production	of	
12.5–25	g/	L	was	achieved	through	the	approach.	Recently,	
the	same	group	rewired	P. putida	KT2440	for	the	produc-
tion of IND from para-coumarate.	Following	optimization	
of para-coumarate	minimal	medium,	7.3	g/L	IND	produc-
tion	could	be	obtained	from	the	final	growth-coupled strain 
(Eng	 et	 al.	 2023).	Thus	 rationalizing	 genome	 engineering	
combined	with	omics	data	is	expediting	higher	production	
of	the	pigment	for	industrial	use.

Though increasing reports on diverse bioactivity of PDG 
is	warranting	extensive	 therapeutic	and	 industrial	applica-
tion	of	 the	pigment,	 industrial	production	of	 the	pigments	
remains a major hindrance to the broader applicability of 
the	pigment.	Though	PDG	was	 initially	 identified	from	S. 
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challenging	as	PDG	is	intracellular	and	insoluble	in	water.	
Following	 culture,	PDG-containing	 cells	 are	harvested	by	
centrifugation.	Acidified	ethanol	(95%,	pH3.0)	is	added	fol-
lowing	 harvest	 and	 lysis	 of	 cells.	The	 PDG	 is	 trapped	 in	
the organic phase and can be separated from ethanol by 
evaporation.	 Subsequently,	 the	 dried	mass	 is	 resuspended	
in	 ethanol	 and	PDG	 is	 purified	by	 liquid	 chromatography	
or	column	chromatography.	PDG	is	purified	from	the	col-
umns	using	organic	elution	by	hexane-acetone	(Paul	et	al.	
2022).	The	extracted	PDG	fraction	can	be	further	purified	
by	TLC.	Since	the	use	of	organic	solvent	for	extraction	is	
expensive	and	toxicogenic	to	a	certain	extent,	optimization	
of	 environment-friendly	 low-cost	methods	 like	 the	 use	 of	
chitin	 or	 resin	 for	 separation	 of	 PDG	 is	 underway.	Often	
incorporation of additives in culture broth facilitates iso-
lation	or	 secretion	of	 pigment	 from	 the	 cells.	Addition	of	
SDS	at	suboptimal	concentration	was	observed	to	promote	
release	of	PDG	possibly	by	 forming	an	effective	negative	
macromolecular	 charge	 cloud	 around	 cells.	 Hydrophobic	
polyurethane	 foam	 cubes	 allow	 absorption	 of	 PDG	 from	
the	lysates,	which	can	be	subsequently	washed	off	from	the	
foam	cubes	by	organic	solvents	(Han	et	al.	2021).

FLRs are unique type of bacterial pigments produced by 
the bacteria from the genera Flavobacterium and Chrys-
eobacterium.	For	 industrial	production	of	 the	pigment,	C. 
artocarpi	 CECT	 8497,	 has	 been	 exploited	 for	 optimizing	
maximum	yield	by	Venil	et	al.	(2015).	Optimizing	a	medium	
with	lactose	and	tryptophan,	and	culture	condition	variables	
a	maximum	production	of	521.64	mg/L	could	be	achieved	
in	a	50	L	bioreactor	scale.	The	pigment	is	soluble	in	acetone,	
alkaline	aqueous,	and	DMSO	while	insoluble	in	water	and	
most	organic	solvents	(Venil	et	al.	2014)	which	makes	the	
extraction	arduous.

Bacterial pigments implication in nanotechnology

Bacteria-derived	 pigments	 are	 looked	 in	 to	 as	 a	 possible	
beneficial	replacement	for	synthetic	pigments	in	the	field	of	
natural	dyes	because	of	their	many	benefits,	which	include	
color	 stability,	 improved	 environmental	 friendliness,	 eco-
nomics,	and	ease	of	production.	However,	in	the	presence	of	
extreme	heat,	radiation,	pH,	or	oxygen,	bacterial	pigments	
frequently	 show	 noticeable	 instability,	 finding	 it	 difficult	
to retain their properties under certain natural conditions 
(Chiba	et	al.	2006;	Devi	et	al.	2024;	Narsing	Rao	et	al.	2017;	
Pagano	et	al.	2018).	To	address	this	challenge,	microencap-
sulation	emerges	as	a	promising	technique,	which	is	capable	
of	enhancing	the	solubility,	stability,	and	photo-oxidation	of	
materials	by	encapsulating	active	ingredients	within	micro/
nanoparticles	(Martinez-Alvarez	et	al.	2020).	Encapsulated	
pigments	within	polymers	enhance	their	stability	and	solu-
bility	 under	 ambient	 conditions,	 consequently	 extending	

exploit random mutagenesis for PDG production is still 
awaited.

Scaling up of PDG production using diverse strategies 
and	 conditions	 has	 been	 attempted	 by	 different	 groups	
(Abdul	Manas	et	al.	2020;	de	Araujo	et	al.	2010;	Dos	Santos	
et	al.	2021;	Elkenawy	et	al.	2017;	Nguyen	et	al.	2020),	albeit	
satisfactory yield and purity remain unattained through any 
kind	of	economical	production	strategy.	Hence,	mass-scale	
production of PDG by S. marcescens remains highly expen-
sive	as	the	culture	medium	should	contain	glucose,	sucrose,	
and	 fructose	 as	 pure	 carbon	 sources,	 at	 least	 1.5%	casein	
hydrolysate	as	nitrogen	source,	and	plant	seed	oils	for	sat-
isfactory	 growth.	 So,	 the	 development	 of	 an	 economical	
culture	medium	is	exclusively	needed	to	make	the	process	
economically	favorable.	Consistent	efforts	through	the	last	
decade to optimize media composition for PDG production 
underscored	the	nutritional	prerequisites	for	its	production.	
All	 such	 efforts	 engaged	 robust	 statistical	 methodology.	
PDG	production	of	2.6	g/	L	was	attained	from	H. chejuen-
sis	M3349	by	Kim	et	al.	 (2008),	with	a	media	containing	
sucrose	10.0	g/L,	peptone	8.0	g/L,	and	yeast	extract	2.0	g/L.	
Chen	et	al.	(2013),	identified	starch	6/peptone	as	C	and	N-	
source	 for	 SmC3	 strain.	 The	 composition	 elevated	 PDG	
production up to ∼	7	 g/	 L.	 Su	 et	 al.	 (2011) subsequently 
attained PDG production of ∼	2.5	 g/	L	with	 0.454%	pep-
tone,	0.5%	sucrose	as	C	and	N-source	respectively.	Miglani	
et	al.	(2023)	optimised	a	medium	with	xylose	derived	from	
rice	straw	and	peanut	de-oiled	cake	as	an	economical	carbon	
source.	An	 extremely	 high	 production	 of	 PDG	 (∼	6	 g/	L)	
was	attained	through	the	fermentation	condition.	A	number	
of	media	supplementation	improved	PDG	production.	Elke-
nawy	et	al.	(2017) demonstrated that crude glycerol induced 
PDG production by several folds in S. marcescens	strains.	A	
number of oil supplements including olive oil and plum oil 
have been tested for PDG production by S. marcescens by 
Abdul	Manas	et	al.	(2020).	A	number	of	amino	acid	supple-
mentations	have	been	profiled	with	diverse	impacts	on	PDG	
production by S. marcescens	(Han	et	al.	2021).	A	medium	
was	developed	for	PDG	production	by	Serratia from Cas-
sava	 waste	 water	 with	 2%	 mannitol	 supplementation	 to	
attain	45	g/	L	PDG	production	 (de	Araujo	et	 al.	2010).	A	
low-cost	scaling-up	approach	was	adopted	using	deminer-
alized	crab	shell	powder	by	Nguyen	et	al.	(2020),	for	pilot	
scaling up of PDG production to ∼	5.1	g/	L	of	PDG.	Dos	
Santos	 et	 al.	 (2021) optimized a solid substrate fermenta-
tion	 on	 agro-waste	 to	 attain	 PDG	 production	 of	 119.8	 g/
kg	dry	substrate	with	a	medium	containing	wheat	bran	and	
soybean	oil.	Using	bagasse	as	an	inert	matrix	excelled	PDG	
yield	up	to	40.86	g/kg	dry	solid	was	attained	by	Xia	et	al.	
(2016).	A	detailed	list	of	such	media	optimization	and	sup-
plementation	is	reviewed	by	Han	et	al.	(2021).	Downstream	
processing and isolation of PDG after fermentation is also 
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(CSA),	 known	 as	 plCSA-BP,	 derived	 from	 the	 malarial	
protein	 VAR2CSA.	 This	 produced	 PDG-loaded	 nanopar-
ticles,	which	had	a	negatively	charged	surface	and	an	aver-
age	diameter	of	396	nm.	These	nanoparticles	demonstrated	
an	 encapsulating	 efficacy	 of	 90%	 and	 a	 loading	 capacity	
of	 around	41%.	Studies	 conducted	on	 the	 in	 vitro	 release	
revealed	 a	 rapid	 initial	 release	within	12	h	 at	 pH	5.3	 and	
7.4,	indicating	its	prospect	as	a	delivery	system.	Assessment	
of	 their	 cytotoxic	 impact	on	 choriocarcinoma	cells	 (JEG3	
cells)	demonstrated	 significantly	enhanced	anticancer	effi-
cacy	both	in	vitro	and	in	the	JEG3	tumor	model	in	vivo,	as	
compared	 to	 free	PDG	 (Zhao	et	 al.	 2019).	Utilizing	PDG	
nano-micelles,	 a	 cotton	 dyeing	 technique	 was	 developed	
to	exploit	the	antimicrobial	properties	of	PDG.	The	hydro-
phobic	pigment	was	encapsulated	into	micelles	by	means	of	
microbial	fermentation	with	constant	agitation	in	presence	
of	a	nonionic	surfactant,	Tween	80.	The	dyed	cotton	dem-
onstrated	strong	bacteriostatic	effects	against	E. coli and S. 
aureus,	with	 efficacy	 rates	 of	 85%	and	 99%,	 respectively	
(Gong	et	al.	2017).

The	restricted	water	solubility,	low	bioavailability,	oxida-
tion	propensity,	photo-	and	heat	instability,	and	poor	solubil-
ity	all	contribute	 to	 their	 limited	use.	 In	order	 to	preserve	
ZEA from degradation and enhance their intestinal stability 
and	permeability,	the	work	reported	by	Radic	et	al.	(2023) 
aimed to create nano-structured lipid carriers (NLCs) loaded 
with	these	substances.	For	the	first	time,	they	have	demon-
strated a considerable increase in intestinal absorption of 
ZEA-NLCs,	which	may	help	their	applications	in	the	food	
and	pharmaceutical	industries.

Due to their capability to function as either electron 
donors	 or	 acceptors	 in	 enzyme	 reactions,	 PHZs	 exhibit	
significant	 promise	 as	 support	 materials	 for	 enzyme	
immobilization	 and	 biosensing	 purposes.	 This	 feature	
improves	 the	 efficiency	 of	 the	 catalyst	 as	well	 as	 long-
term	stability	(da	Silva	et	al.	2020).	Moreover,	when	com-
bined	with	Fe2O3	nanoparticles	to	form	a	nanocomposite,	
the complementary electrochemical catalytic character-
istics	of	polyPHZ	films	and	Fe2O3 nanoparticles suggest 
improved performance in both conductivity and sensing 
applications.	 Additionally,	 these	 novel	 nanostructured	
materials create an ideal environment for biomolecule 
immobilization,	 thereby	 further	 enhancing	 biosensing	
capabilities	(da	Silva	et	al.	2020).

MEL	nanoparticles	 (MNPs)	have	been	shown	 in	sev-
eral studies to have potential applications in a variety of 
fields;	 their	 semiconductor	 qualities	 have	 prompted	 the	
development	of	electronic	films	(Vahidzadeh	et	al.	2018).	
They have been used as adjuvants in cancer radiation 
therapy (Cuzzubbo and Carpentier 2021;	Yue	 and	Zhao	
2021;	Zhou	 et	 al.	 2019)	 and	 sun	protection	 against	UV	

the	 shelf	 life	 of	 the	 final	 product	 (Soukoulis	 and	 Bohn	
2018;	Zabot	et	al.	2022).	Microencapsulation	significantly	
improved the stability of FLR isolated from C. artocarpi 
CECT8497	compared	to	their	unencapsulated	counterparts,	
offering	 increased	 protection.	 Additionally,	 the	 improved	
characteristics and potent antioxidant activity of the micro-
capsules,	the	pigment	derived	from	C. artocarpi	CECT8497	
may	find	application	as	a	natural	colorant	in	the	food	sec-
tor	(Mogadem	et	al.	2021).	Using	the	human	breast	cancer	
cell	line	MCF-7,	Venil	et	al.	(2016) examined the antican-
cer	 effects	 of	 FLR-mediated	 AgNP	 and	 discovered	 that	
they	suppressed	99%	of	 the	cells.	Their	method	 is	unique	
because it produces stable AgNPs that have strong antican-
cer	effects	in	an	environmentally	friendly	manner.	The	find-
ings indicate that AgNP mediated by FLR have potential as 
sophisticated	chemotherapeutic	interventions.

A	recent	study	shows	light,	pH	changes,	and	variations	
in	temperature	cause	poor	stability	for	PDG.	Encapsulated	
PDG,	on	the	other	hand,	 improves	stability	and	solubility,	
and presents a viable alternative to the synthetic colorants 
that	 are	 presently	marketed	 (Desai	 2012).	 In	 a	 study,	 the	
water-in-oil	 emulsion	 approach	 was	 implemented	 to	 cre-
ate	40	 to	60	μm	chitosan	microspheres	 loaded	with	PDG,	
and	glutaraldehyde	as	 the	cross-linker.	Breast	cancer	cells	
(MDA-MB-231	cells),	when	utilized	to	assess	drug	release,	
exhibited	significantly	reduced	viability	following	24	h	of	
PDG	 therapy	 (Dozie-Nwachukwu	 et	 al.	 2017).	An	 alter-
native approach for administering cancer chemotherapy 
entails crafting microparticles composed of biodegradable 
poly (lactide-co-glycolide) (PLGA) encapsulating PDG by 
the	evaporation	of	a	single	emulsion	solvent,	wherein	poly-
vinyl	alcohol	served	as	the	emulsifying	agent.	In	addition,	
as	a	control,	paclitaxel	(PTX)-loaded	particles	were	created.	
Compared	to	the	PLGA	microspheres	loaded	with	PTX,	these	
PDG-loaded	microspheres	showed	comparatively	high	and	
comparable	drug	loading	and	encapsulation	efficiency,	with	
particle	 diameters	 ranging	 from	5	 to	 50	μm.	This	 renders	
them appropriate for controlled and targeted drug delivery 
system	in	cancer	therapy.	Upon	testing	their	cytotoxicity	on	
MDA-MB-231	cells,	 the	results	were	comparable	to	those	
of	PTX,	causing	apoptosis	by	inhibiting	the	growth	of	the	
cells during a mitotic phase of the cell cycle (Obayemi et 
al.	2016).	A	rapid	single-step	method	was	employed	to	pro-
duce	 PDG-conjugated	AgNPs,	 harnessing	 the	 amphoteric	
properties	of	 silver	oxide	 in	 an	alkaline	 solution.	With	an	
average	 diameter	 of	 10	 nm,	 these	 very	 stable	 and	 spheri-
cal	 nanoparticles	 showed	 an	 IC50	 value	 of	 29.85	 µg/	mL	
against	the	human	liver	cancer	cell	line	HepG2,	while	free	
PDG	showed	an	IC50	of	44.83	µg/	mL	(El-Batal	et	al.	2017).	
In	 a	 similar	 targeted	 delivery	 approach,	 dendrigraft	 poly-
L-lysines	 (DGL)	underwent	modification	with	 a	 synthetic	
peptide capable of binding to placental chondroitin sulfate 
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groups	 of	 bacterial	 pigments.	 Attempts	 for	 optimiza-
tion of industrial production of bacterial pigments and 
developing formulations to maximally exploit properties 
like	 antioxidant,	 antimicrobial,	 anti-inflammatory,	 and	
anticancer	are	underway	for	pharmacological	application	
along	with	 the	 obvious	 application	 as	 dye	 by	 replacing	
chemical	dyes	in	various	industries.

Bacterial pigments represent a part of the vast spec-
trum	 of	 organic	 pigments	which	 are	 biodegradable	 and	
sustainable.	 The	 global	 organic	 pigment	 market	 is	 set	
to	 reach	 around	 4.89	 billion	 USD	 by	 the	 present	 year	
(https://menafn.com/1097992026/Global-Organic-
Pigments-Market-Worth-Reach-USD-489-Billion-
By-2024).	 Though	 till	 now	 pigments	 extracted	 from	
microalgae and fungi are predominating over the bacte-
rial	pigments	in	terms	of	use	in	industry,	diverse	groups	
of	 bacterial	 pigments	 are	 gaining	 attention,	 particularly	
for	their	diverse	bioactive	potential	and	advent	of	effec-
tive	encapsulation	strategies	to	increase	sustainability.	In	
contrast to the industrially important pigment-producing 
bacterial	 strains,	 a	 number	 of	 the	 pigment-producing	
fungi	synthesize	mycotoxins	along	with	the	pigments	as	
enlisted	by	Poorniammal	et	al.	 (2021).	Coproduction	of	
such toxic metabolites impairs safety of the pigments and 
thereby	restricts	application	in	food,	pharmaceutical,	and	
cosmetic industry (Lin and Xu 2022).	A	second	impedi-
ment	for	fungal	pigment	production	is	the	product	yield.	
As a cell factory fungal cells are less tuneable compared 
to bacteria and the array of chemical entities present in 
the pigment-containing biomass limits its yield through 
purification	(Chadni	et	al.	2017).	Apart	from	purification,	

radiation	(Mavridi-Printezi	et	al.	2020) because of their 
strong	radiation-absorption	and	antioxidant	abilities.

The main hindrance to the delivery and bioavailability of 
VIO	is	 its	hydrophobic	character	 (Arif	et	al.	2017).	Com-
pared	 to	 starch-capped	 silver	NPs	 (cAgNPs),	VIO-capped	
silver NPs (vAgNPs) are more stable and have therapeutic 
efficacy	against	multidrug-resistant	bacteria	and	fungi	that	
are	three	to	ten	times	higher.	The	attributes	of	VIO-capped	
nanoparticles	(VNPs)	include	antibacterial,	anticancer,	and	
anticancer	 effects	 (Konzen	 et	 al.	 2006).	 There	 have	 been	
prior investigations on the antibacterial and anticancer prop-
erties	of	VNPs	(Arif	et	al.	2017).	Comparing	low	doses	of	
VNPs	to	high	doses	of	free	VIO,	the	former	demonstrated	
stronger	 antioxidant	 properties.	The	 scavenging	 ability	 of	
peroxides	and	superoxides	by	VIO	was	the	plausible	reason	
for	 such	 observation.	 The	 characteristics	 and	 advantages	
of	various	nano	combinations	with	bacterial	 pigments	 are	
summarized Table 2.	Also,	the	benefits	offered	by	the	nano-
formulations to enhance sustainability and bioavailability of 
the	pigments	are	highlighted.

Concluding remarks

Despite	 their	 striking	 bioactive	 potential,	 bacterial	 pig-
ments	have	been	overlooked	to	a	certain	extent	with	lim-
ited	 effort	 to	 systemically	 explore,	 evaluate,	 and	 invent	
strategies	 for	 application.	A	 plethora	 of	 reports	 emerg-
ing throughout the last decade or so in their impact on 
pathogenicity,	function	in	community	and	host	interface,	
have	 precisely	 illuminated	 the	 significance	 of	 various	

Table 2	 Nano	formulation	with	bacterial	pigments.	Various	nanoformulations	developed	with	bacterial	pigments	are	enlisted.	The	improvements	
in terms of application are also mentioned
Pigment Nanoparticles	(average	particle	size,	nm) Advantages
Flexirubin (a) Flexirubin-mediated silver nanoparticles 

(49)
Potentially	toxic	for	human	breast	cancer	cell	line	(Venil	et	al.	2016)

(b)	Polyvinyl	alcohol/kefiran/	polycaprolactone	
nanofibers	loaded	with	flexirubin	(211)

Higher	antioxidant	activity	(Amorim	et	al.	2022b)

Melanin Melanin	nanoparticles	(40) Used	as	adjuvants	in	cancer	radiation	therapy	(Yue	and	Zhao	2021;	Zhou	et	
al.	2019)

Phenazine Nanostructured Poly(Phenazine)/
Fe2O3	nanofilm

Enhanced biosensing for the detection of H2O2	(da	Silva	et	al.	2020)

Prodigiosin (a)	chitosan	–PDG	microspheres	(60) Significantly	reduced	triple	negative	breast	cancer	cell	viability	(Dozie-
Nwachukwu	et	al.	2017)

(b)	PLGA-PDG	microparticles	(400) Potentially	toxic	for	triple	negative	breast	cancer	cells	(Obayemi	et	al.	2016)
(c)	PDG-AgNPs	(10) Potentially	toxic	against	liver	cancer	cells	(El-Batal	et	al.	2017)
(d)	DGL/CSA-PNPs	(396) Shown	cytotoxicity	against	choriocarcinoma	cells	and	JEG3	tumor	model	

(Zhao	et	al.	2019)
(e)	PDG	Nanomicelles	with	Tween	80	(224) Strong bacteriostatic agent against Escherichia coli and Staphylococcus 

aureus	(Gong	et	al.	2017)
Violacein VIO-capped	silver	NPs	(70) Therapeutic potential against multidrug-resistant bacteria (Nielsen and 

Nielsen 1989)
Zeaxanthin ZEA-loaded nano-structured lipid carri-

ers	(ZEA-NLC)	(280)
Considerable	increase	in	intestinal	absorption	(Radic	et	al.	2023)
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