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Abstract
Plant pathogens with their abundance are harmful and cause huge damage to different agricultural crops and economy of a 
country as well as lead towards the shortage of food for humans. For their management, the utilization of entomopathogenic 
fungi is an eco-friendly technique, sustainable to the environment, safe for humans and has promising effect over chemical-
based pesticides. This process requires a biochemical mechanism, including the production of enzymes, toxins, and other 
metabolites that facilitate host infection and invasion. Essential enzymes such as chitinase, proteinase, and lipase play a 
direct role in breaking down the host cuticle, the primary barrier to EPF (Entomopathogenic Fungi) infection. Additionally, 
secondary metabolites such as destruxins in Metarhizium, beauvericin in Beauveria, hirsutellides in Hirsutella, isarolides in 
Isaria, cordyols in Cordyceps, and vertihemipterins in Verticillium, among others, act both directly and indirectly to disable 
the defense mechanisms of insect hosts, thereby accelerating the EPF infection process. The chemical composition of these 
secondary metabolites varies, ranging from simple non-peptide pigments such as oosporine to highly complex piperazine 
derivatives such as vertihemiptellides. The biocontrol efficacy of EPF is extensively studied, with numerous fungal strains 
commercially available on a large scale for managing arthropod pests. This review emphasizes the role of proteins and 
enzymes against crop pathogens, detailing their mode of action, and describing the metabolites from entomopathogenic 
fungi and their biological activities. In doing so, these findings contribute to establishing a symbiotic equilibrium between 
agricultural productivity and environmental conservation.
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Introduction

Plant diseases are thought to be responsible for 14.1% of 
crop losses worldwide and cause $220 billion loss every 
year. Abiotic elements such as the environment and biotic 
agents such as oomycetes, fungi, viruses, bacteria, nema-
todes, and viroid can all contribute to crop loss (Shahrajab-
ian et al. 2023). The crop production is affected by fungi 
(10–23%), bacteria (20–40%), and herbivores insects (18%) 
(Spescha et al. 2023).

Crop protection by using chemical-based management 
is considered a non-friendly and non-sustainable way to 
the environment (Ahsan et al. 2020). Fungi-based macro-
molecules represent an eco-friendly approach in biological 
control. (Sani et al. 2020). The application of EPF enhanced 
the yields and biodiversity in the ecosystem and utilized less 
amount of chemicals within the environment as compared to 
conventional pesticides (Fig. 1). The genera Beauveria and 
Metarhizium and their mode of action is like endophytes 
(Branine et al. 2019; Akram et al. 2023; Zhang et al. 2023a, 
b).

The objective of this review is to describe EPF for sus-
tainable mode of crop protection. Application of EPF for 
sustainable crop protection increased the environmental 
and ecological beneficial aspects. EPF are insect-parasitiz-
ing fungi and have an excellent mechanism compared to 
other fungi that decompose organic matters, and reproduced 
through sexual, sexual, or combined spore production ways. 
The primary host for EPF attack is insect and possesses sap-
rophytic features that enable the EPF to occur in soil and 
can be isolated from these sources (Bihal et al. 2023; from 
these sources and enhances their potential for utilization 
as effective biological agents (Islam et al. 2021). EPF pro-
duce spores that enter the insect’s cuticle, where they start 
germination and then cause infection (Wang et al. 2019a, 
b). In Brazil, in approximately 10 million hectares agricul-
tural land area, the application of 60% registered benefi-
cial fungi-based pesticides have been used (Mascarin et al. 
2019). EPF have a network of different species that have 
variations in morphology, phylogeny, and ecological niches 
exhibit a diverse array of fungal species with variations in 
morphology, phylogeny and ecological niches (Pattnaik and 
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Busi 2019), showcasing substantial phylogenetic diversity 
that is significant with respect to biocontrol agent for over 
200 years (Bamisile et al. 2021; Wu et al. 2022). For the 
management of insect pests, EPF is utilized in classical, 
augmentation, and conservation biological control. Clas-
sical control introduces EPF to new environments lacking 
natural enemies; augmentation involves mass application 
for immediate pest reduction, while conservation adjusts 
farming practices to enhance EPF activity and diversity 
(Karthi et al. 2024). Today, the market offers a plethora of 
biopesticides, predominantly derived from hypocrealean 
ascomycetes like Beauveria, Metarhizium, Akanthomyces, 
and Cordyceps fungi. These biopesticides effectively tar-
get various arthropod pests spanning locusts, grasshoppers, 
soil-dwelling insects, piercing-sucking insects, mites, stored-
grain pests, forestry pests, and invasive, medical, and veteri-
nary pests (Quesada-Moraga et al. 2020).

It is estimated that around 750 EPF species are reported, 
and these species belong to the phyla Chytridiomycota, 
Blastocladiomycota, Zoopagomycota, Basidiomycota, and 
Ascomycota. The phylum Ascomycota harbours a significant 
number of economically relevant species (Landinez-Torres 
et al. 2019). The key genera that have been extensively 
studied in biological control and sustainable agriculture 
are Metarhizium (Family: Clavicipitaceae) and Beauveria 
(Family: Cordycipitaceae). Entomopathogenic fungi (EPF) 
belong to the phylum Ascomycota and are classified within 
the order Hypocreales.

There is similarity among all EPF fungi with respect to 
mode of action. Insect pest management begins when vulner-
able host affected by many infective propagules, and favorable 

conditions make fungus to grow (Sani et al. 2020). Insect 
cuticle is the direct entry point of EPF, consists of various 
physical and enzymatic mode of actions. Infection starts when 
fungal conidia fully enter into host cuticle, start germination 
directly or by formation of aspersorium (Boni et al. 2021). 
This process involves physical and enzymatic mechanisms. 
The EPF mechanism of action begins when fungal conidia set-
tle onto the insect's cuticle, and then these germinate and gain 
entry into the cuticle directly or by forming a structure known 
as an appressorium (Batool et al. 2020). The fungal hyphae 
produce within the insects hypodermis and then proliferating 
within the blood cells and finally death occurs (Fig. 2). These 
fungi can cause the death of the insect, but they also cause 
pathologies that regulate their population without directly 
causing death (Liu et al. 2022). Toxins from fungi such as 
B. bassiana, such as nonribosomal peptides and polyketides, 
help regulate environmental stress, aiding fungal invasion and 
acting as virulence factors (Park et al. 2023). These substances 
can potentially induce insect mortality even before the fungal 
spores spread and form within the parasitized tissue (Altinok 
et al. 2019). In many cases, the demise of insects caused by 
fungal propagules primarily results from toxic effects rather 
than direct mycosis (Pedrini 2018).

Role of enzymes and proteins in pest 
management as a complement to EPF

The larvicidal activity has been evaluated using Beauveria 
bassiana (TV and OZ1 strains) and Metarhizium anisopliae 
(CS1 strain) based proteins against Plodia interpunctella 

Fig. 1  Demonstrates the uses 
of entomopathogenic fungus. 
Applications for EPF in pest 
management include protection 
of stored grains, forestry, and 
agriculture. Different crops are 
affected by various pests such 
aphids, caterpillars, wood-bor-
ing insects, and disease vectors
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larvae. The TV strain, exhibiting the highest mortality rate 
(41.7%), displayed increased specific activity in exochi-
tinase, protease, and lipase enzymes. These findings imply 
a positive association between protease and lipase activities 
and fungal virulence, underscoring their potential signifi-
cance in controlling P. interpunctella larvae (Golzan et al. 
2023).

Several studies have examined the insecticidal potential of 
extracellular proteins from entomopathogenic fungi (Fig. 3). 
Farooq and Freed (2018) investigated larvicidal activity 
using crude proteins from M. anisopliae, B. bassiana, and I. 
fumosorosea against Musca domestica adults. The crude pro-
teins derived from entomopathogenic fungi induced notable 
mortality (52.0–91.0%) in Musca domestica. Concentrations 
of 8 and 10 mg/mL resulted in 100.0% mortality within 2.77 
to 3.77 days, with B. bassiana (Bb-01) at 10 mg/mL causing 
100.0% mortality within 96 h. Ayudya et al. (2019) studied 
B. bassiana strain to investigate larvicidal activity against 
Spodoptera litura larvae and the culture filtrates of Beauve-
ria bassiana at pH 6 demonstrated high toxicity (92% mor-
tality) against Spodoptera litura larvae. Quesada-Moraga 
et al. (2006) found that proteic macromolecules in B. bassi-
ana supernatant significantly contributed to larvae mortal-
ity. Ortiz‐Urquiza et al. (2009) conducted a study affirming 
the biocontrol potential of proteins from entomopathogenic 
fungi. They assessed soluble proteins from the supernatant 
of M. anisopliae (EAMa 01/58-Su) using liquid chroma-
tography on Ceratitis capitata (Wiedemann) flies, noting 

chronic insecticidal effects with long-term oral application) 
(Rosa et al. 2018). The same proteins, when presented to 
Drosophila melanogaster (Meigen) adults, resulted in a 70% 

Fig. 2  The mode of action of entomopathogenic fungi. In the first 
step EPF is isolated from its respective host (insect) then, after 
growth has occurred, fungal extract with desirable concentrations are 

applied either as foliar spray or soil irrigation and sometimes is inoc-
ulated into the stem to cope with the target phytopathogens

Fig. 3  Genetic pathways of fungal sensing and infection of insects
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mortality rate after continuous exposure for 3 days (Zhou 
et al. 2016).

The protein extracted from Lecanicillium lecanii exhib-
ited a dose-dependent reduction in the survival and fecundity 
of Myzus persicae on tomato plants. The application of pro-
tein extract upregulates the genes linked with salicylic acid, 
and genes associated with jasmonic acid were upregulate 
moderately. It suggests that EPF-based protein can man-
age aphids. (Hanan et al. 2020). Different EPF strains have 
different optimal conditions for enzyme production. There-
fore, optimization of EPF culture is mandatory to produce 
extracellular enzymes (Shah et al. 2005). Kim et al. (2010) 
reported that enzymes (chitinases and proteases) produced 
from B. bassiana (SFB-205) exhibited aphicidal activity 
against the cotton aphid Aphis gossypii that caused degra-
dation of insect's cuticles. Chitinases from supernatant of 
Metarhizium anisopliae (M408) was tested against Plutella 
xylostella larvae that reduced the pupation and enhanced 
lethality (Wu et al. 2010). Alves et al. (2020) reported that 
that a purified cocktail from B. bassiana (IBCB 66) contain-
ing exocellulase, endocellulase, β1, 3-glucanase, and chi-
tinase led to increased mortality rates, reaching 100% for 
first instar larvae and 40% for developed larvae after 24 h 
that demonstrating the potential of enzymatic cocktails for 
effective pest control.

Different G-protein-coupled receptors (GPCRs) recognize 
insects, with a core one sensing many species. MAPK path-
way directs appressoria formation, PKA pathway matures 
them. Membrane proteins Tspan and OPY2 help in sensing 
and penetration. COH1 and COH2 control cuticle to hemo-
coel transition. Abbreviations: AC (adenylyl cyclase), CaMK 
(calcium/calmodulin-regulated kinase), CN (calcineurin), 
CREB (cAMP response element-binding protein), IP3 (ino-
sitol 1,4,5-triphosphate), MAPK (mitogen-activated protein 
kinase), PKA (protein kinase A), PLC (phosphatidylinositol-
specific phospholipase C), RAP (Ras superfamily guanine-
nucleotide-binding protein), Tspan (tetraspanin) (Hong et al. 
2023).

The emerging role of RNA in pest 
management as a complement to EPF

RNA interference (RNAi), a mechanism of post-transcrip-
tional gene silencing, holds promise as a pest control strat-
egy (Zhu and Palli 2020). The delivery of double-stranded 
RNA (dsRNA) has been assessed in aphids using different 
techniques such as injection, feeding, topical application, 
and integration into transgenic plants (Hou et al. 2019). The 
complementary effects were explored using application of 
RNAi along with other pest management techniques (Ding 
et al. 2020). EPF (B. bassiana) produced a high mortality 
rate in aphids when the silencing of immune-associated 

genes in aphids was described (Ye et al. 2021). Aphid mor-
tality was also increased when RNA interference with B. 
bassiana (Bb07) offering a promising way for minimizing 
the need for chemical pesticides (Zhang et al. 2023a, b).

Contributions of entomopathogenic fungi 
spores in pest control

Previous studies revealed the importance of EPF spores in 
pest management and have a central position regarding the 
efficiency of EPF as biocontrol agents (Sharma et al. 2023). 
Therefore, long time sustained spores have started infec-
tion and regulate the insect’s papulation because of viabil-
ity guarantees (Mei et al. 2021). These spores produced 
appressorium after attachment with insect cuticle (Man-
nino et al. 2019). The amalgamation of adhesion and subse-
quent penetration into the insect host amplifies the potency 
of entomopathogenic fungi in governing pest populations 
(Bava et al. 2022). In conjunction with their infectivity, 
entomopathogenic fungal spores showcase a comprehensive 
host range, a trait of paramount importance in crop pathogen 
control. This versatility assumes significance by enabling 
these fungi to effectively target and regulate various insect 
pests (Selvaraj and Thangavel 2021).

The production and extensive distribution of significant 
spore numbers by EPF enhances their efficacy in disease 
control (Santos et al. 2022). EPF could produce large num-
bers of spores, which makes it easier for them to spread 
over the surroundings (Rajula et al. 2020). The abundance 
and wide dispersal of spores increases the contact with and 
infecting desired pest targets, hence maximizing the effec-
tiveness of pest control measures (Cafarchia et al. 2022).

EPF derived bioactive metabolites

Secondary metabolites have remarkable potential to pen-
etrate host cells, also facilitate EPF to invade or inhibit the 
immune system of pathogens (Table 1). Different forms of 
toxins such polyketides and nonribosomal peptides help EPF 
to attack pathogens (Wang et al. 2021). EPF produce a vast 
variety of secondary metabolites that can either be released 
or kept in developmental structures, such as conidia (Fig. 4). 
Some secondary metabolites, including pigments, polyols, 
and mycosporines, are connected to fungal pathogenicity 
and/or tolerance to a variety of environmental stressors, such 
as temperature and sun radiation extremes (Carollo et al. 
2010). According to previous study, metabolites (propanoic 
acid, ethyl ester, acetic acid, propyl ester, isopentyl acetate, 
acetic acid, 2-methylpropyl ester, behenic alcohol, 1-hexa-
decene, 1-octadecene, 1-hexacosanol, n-hexadecanoic acid, 
1-tetradecanol, 1-dodecene, tetrydamine, and octadecanoic 
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Table 1  Examples of bioactive metabolites from entomopathogenic fungi

Fungal Species Bioactive Compounds Chemical structure Characterization Technique References

Aschersonia confluens 4′-O-methyltorachrysone 
8-O-Glucoside

 PubChem CID: 
156,582,430

HPLC Sadorn et al. (2020)

Beauveria asiatica 6-(methoxycarbonyl) Pico-
linic acid

 PubChem CID: 4,019,172

Mosher’s method and ECD 
calculation

Kornsakulkarn et al. (2021)

Beauveria bassiana Beauvericin

 PubChem CID: 3,007,984

GC–MS Al-Khoury et al. (2022)

Lumichrome

 PubChem CID: 5,326,566

GC–MS Andrioli et al. (2017)

Bassianolide

 PubChem CID: 89,254,632

HPLC Xu et al. (2009)

Melanin

 PubChem CID: 6,325,610

LC–MS Fuguet and Vey (2004)

Chitinase

 PubChem CID: 86,223,063

LCMS-QTOF Bhadani et al. (2021)

Xylanase and Endoglu-
canase

PubChem CID: 9394

GC–MS Amobonye et al. (2021)

Sphingomyelins
Phenolic/glycolipids, Phos-

phatidylcholines
PubChem CID: 9,939,941

HPLC Tsoupras et al. (2022)

Naphthalene

PubChem CID: 931

SPME–CGC–MS Crespo et al. (2008)
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Table 1  (continued)

Fungal Species Bioactive Compounds Chemical structure Characterization Technique References

Beauveria caledonica Oosporein

PubChem 
CID: 135,426,831

RP-HPLC Mc Namara et al. (2019)

Chrysoporthe sp. Rugulosin

PubChem CID: 62,769

HPLC Nirma et al. (2015)

Cordyceps militaris Cordycepin

PubChem CID: 6303

HPLC Woolley et al. (2020)

Cordyceps sp. Cordyglycoside

PubChem 
CID: 156,582,401

NMR,HRESIMS, HPLC,X-
ray crystallography

Fan et al. (2023)

Lecanicillium sp. Verlamelin

PubChem 
CID: 139,588,823

HPLC Ishidoh et al. (2014)

Metarhizium anisopliae

1,2-dihydrohelvolic acid

PubChem CID: 23,844,015

HPLC Lee et al. (2008)

Bicyclogermacrene

PubChem CID: 13,894,537

GC–MS Bitencourt et al. (2022)

Metarhizium brunneum 3-octanone

PubChem CID: 246,728

GC–MS Hummadi et al. (2021)
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acid) from EPF Penicillium sp. were tested for larvicidal 
activity against Spodoptera litura and Culex quinquefascia-
tus. The mortality rate after 48 h was checked and 90% mor-
tality occurred at 282.783 mg/mL against Spodoptera litura 
and 475.049 mg/mL concentration against Culex quinque-
fasciatus (Arunthirumeni et al. 2023). Similarly, Qasim 
et al. (2020) used EPF based on classes of mycotoxins alka-
loids, peptides, and polyketides to manage Diaphorina citri. 
After two days of application of mycotoxin (bassianolide) 
caused more than 70% and 80% mortality of D. citri nymphs 
and adults. Bioactive metabolities have ability to mitigate 
resistance development within pest populations, disrupting 
the physiological processes in insect’s pests, and leading 
towards their death (Mantzoukas and Eliopoulos 2020). 
Bioactive metabolities such as destruxins, beauvericin, 
and metarhizins have been identified as remarkable potent 

entities having insecticidal potentials. Destruxins affect the 
insect immune system, inducing immune suppression and 
subsequent fatality, conversely, beauvericin manifests dual 
insecticidal and antifungal activities, interfering with essen-
tial cellular mechanisms in insects while also perturbing 
fungal cell membranes (Paschapur et al. 2021). Metarhizins 
enact their impact by targeting the insect cuticle, facilitat-
ing host penetration and subsequent infection. Beyond their 
insecticidal properties, these bioactive compounds can also 
demonstrate antimicrobial effects, hindering the growth of 
secondary pathogens that might exploit the insect postmor-
tem (Paschapur et al. 2021).

In the absence of metabolites, severe damage of plants 
occurs due to increased susceptibility to necrotrophic and 
biotrophic pathogens. Underdeveloped root systems result in 
poor nutrient uptake, leading to plant death. In the presence 

Table 1  (continued)

Fungal Species Bioactive Compounds Chemical structure Characterization Technique References

Ophiocordyceps sinensis Meso-erythritol

PubChem CID: 222,285 

GC–MS Zhang et al. (2020a, b)

Fig. 4  Showing plant responses against phytopathogens in (A), absence and (B), presence of EPF based metabolites
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of EPF metabolites, enhanced plant growth due to improved 
nutrient acquisition occurs. Increased tolerance to various 
stresses (drought, salt, herbivory) through complex signal 
communications and increased photosynthetic rates also 
changes in root exudates, altering the soil microbial commu-
nity and suppressing pathogens occurs. Reduced incidence 
of soilborne pathogens through priming of plant defense 
mechanisms, mediated by phytohormones such as JA and 
ET, leading to enhanced Induced Systemic Resistance (ISR).

Biological activities

Controlling phytopathogens is becoming a major concern 
world-wide, mainly due to usage of different pesticides, and 
phytopathogens are gaining resistance to pesticides. Con-
sidering this, more research has been done about a sustain-
able method of controlling plant diseases and increase crop 
protection (Keshmirshekan et al. 2024). Thus far, several 
EPF have been extensively investigated for their biological 
activities (Table 2). Among these, EPF such as Beauveria, 
Metarhizium, Akanthomyces, and Cordyceps fungi are the 
most studied in the context of their antimicrobial activity 
(Zhang et al. 2024).

Phytopathogen control

Plant pathogenic bacteria (PPB) represent a significant 
group of phytopathogens that inflict substantial harm on a 
wide range of both cultivated and wild plants worldwide 
(Abdelsattar et al. 2023). To mitigate the damage caused 
by PPB, various control strategies are frequently employed, 
including the cultivation of resistant or tolerant plant vari-
eties and the use of chemical treatments (Kumawat et al. 
2023). Plant viruses constitute a major group of pathogens 
for crops. Despite their simple structural makeup, they 
exhibit intricate mutations and possess a broad host spec-
trum, posing a significant peril to agriculture and leading 
to substantial economic losses (Spechenkova et al. 2023). 
Plant-parasitic nematodes (PPNs), constituting one of the 
three prevalent crop infestations, are parasitic worms that 
infest plants. With over 4100 identified PPN species (Khan 
et al. 2023), four among them stand out as particularly peril-
ous. Root-knot nematodes (RKN) belonging to the Meloi-
dogyne genus exhibit a wide-ranging host preference and 
predominantly inflict damage on vegetable crops (Chen et al. 
2023). The presence of nematode diseases exerts a substan-
tial adverse influence on both agricultural and horticultural 
production, resulting in annual losses amounting to a stag-
gering $173 billion (Fan et al. 2023). Beauveria alba dis-
played significant antibacterial activity against Bacillus sub-
tilis in vitro (Fabelico 2015). B. bassiana exhibited antiviral 

activity against Squash Leaf Curl Virus (SLCV) in vivo, 
reducing transmission by Bemisia tabaci. Whiteflies from 
EPF-treated squash plants showed only 33.4% transmission 
effectiveness, compared to 100% in untreated plants (Abd 
El-Wahab et al. 2023). Karabörklü et al. (2022) reported 
that B. bassiana and M. anisopliae have excellent nemati-
cidal activity against Meloidogyne incognita in both tomato 
and cucumber, resulting in gall index reductions to 3.2, 2.0, 
and 2.2 for B. bassiana, M. anisopliae, and P. lilacinum, 
respectively. The highest decrease in gall formation (75.2%) 
occurred with M. anisopliae treatment in tomato, while in 
cucumber, the highest control index (71.7%) was achieved 
with M. anisopliae as mentioned in Table 3.

Diverse entomopathogenic fungal species have dem-
onstrated their multifaceted roles within natural ecosys-
tems, serving as endophytes, antagonists against plant 
pathogens, and stimulators of plant growth (Ownley et al. 
2010). Moreover, the well-known entomopathogenic fun-
gus Metarhizium roberstsii establishes beneficial interac-
tions by forming endophytic associations with plant roots, 
imparting advantageous effects to the plant (Sasan and 
Bidochka 2012). Recent studies have unveiled the potential 
of entomopathogenic fungi to exert antimicrobial effects 
against various microorganisms (Lee et al. 2005; Goettel 
et al. 2008; Lozano-Tovar et al. 2013). Dual action against 
insect pests and plant pathogens were studied in Beauveria 
spp., Metarhizium spp., Lecanicillium spp. and Clonostachys 
rosea with good results (Kim et al. 2007). Saidi et al. (2023) 
described the antifungal activity of Akanthomyces muscarius 
against the tested phytopathogenic fungi resulted in inhi-
bition rates ranging from 39.61% to 52.94%. Ajvad et al. 
(2020) reported the antifungal activity of entomopathogenic 
fungi Metarhizium anisopliae against Lycoriella auripilla 
and concluded that M. anisopliae at  108 spores/mL improved 
compost-to-mushroom conversion. Chairin and Petch-
arat (2017) reported that the crude extract from fruit peel 
of Metarhizium guizhouense exhibited antifungal activity, 
inhibiting the mycelial growth of Botrytis sp. (34.9 ± 3.1%) 
and Fusarium sp. (29.3 ± 5.0%). Lozano-Tovar et al. (2013) 
demonstrated the antifungal activity of Metarhizium brun-
neum and B. bassiana against olive pathogens, with inhibi-
tion rates of 42–62% for Phytophthora spp. and 40–57% for 
V. dahliae. Boguś et al. (2010) also reported the antifun-
gal activity of entomopathogenic fungi and concluded that 
applied concentrations (ranging from 0.1% to 0.0001% w/v), 
of the entomopathogenic fungi inhibited the growth of the 
parasitic fungus Conidiobolus coronatus.

Yang et al. (2023) reported that Beauveria bassiana and 
Isaria fumosorosea exhibited larvicidal activity against 
Rhynchophorus ferrugineus. Five fungal strains, compris-
ing four strains of Beauveria bassiana (JEF-484, 158, 462, 
507) and one of Isaria fumosorosea (JEF-014), caused 
100% mortality in last stage R. ferrugineus larvae within 
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5–10 days post inoculation. The combination of JEF-484 
and JEF-158 offers a promising microbial control approach 
against R. ferrugineus at different life stages in palm trees 
under fields. The ethyl acetate extract derived from EPF Pen-
icillium sp. exhibited larvicidal activity against Spodoptera 
litura and Culex quinquefasciatus larvae with  LC50 values 
of 72.205 mg/mL and 94.701 mg/mL, and  LC90 values of 
282.783 mg/mL and 475.049 mg/mL respectively.

Rocha et al. (2022) reported the larvicidal activity of B. 
bassiana, Metarhizium humberi, M. anisopliae, Akanthomy-
ces saksenae, and Simplicillium lamellicola against Aedes 
aegypti. For this purpose, 21 strains (7 Beauveria bassiana, 
7 Metarhizium humberi, 3 M. anisopliae, 2 Cordyceps sp., 
and one each of Akanthomyces saksenae and Simplicillium 
lamellicola) of EPF were used against Aedes aegypti. M. 
anisopliae and M. humberi were highly effective.

Michereff-Filho et al. (2022) described that B. bassiana 
strains showed larvicidal activity against Neoseiulus species, 
with mortality exceeding 70% under in vitro study. Neoseiu-
lus mites, particularly N. barkeri, showed susceptibility to 
fungi, while low humidity hindered their feeding and repro-
duction. Combining B. bassiana and Neoseiulus compro-
mised mite survival and offspring. Conidia of entomopatho-
genic were fungi applied against Aedes aegypti larvae with 
concentrations  105  106,  107, and  109 propagules  mL−1 water 
suspension. Larvae survival rates were observed for 7 days, 
with median survival time (S50) determined. Beauveria 
bassiana and Metarhizium anisopliae reduced larval sur-
vival time to two days at  108 propagules  mL−1 and three days 
at  108 conidia  mL−1, respectively (Bitencourt et al. 2021).

Metarhizium anisopliae was applied with concentrations 
of 1 ×  106 conidia/mL against larvae of Aedes albopictus 
and Aedes aegypti. After 7 days, high larvicidal activity was 
observed by killing both larvae (Zuharah et al. 2021). Koo-
dalingam Dayanidhi, (2021) reported the larvicidal activity 
of B. bassiana and Metarhizium anisopliae that increased 
mortality of Culex quinquefasciatus larvae by 60% and 
50.59%, respectively. Wang et al. (2021) checked the lar-
vicidal activity of Metarhizium rileyi against Spodoptera 
litura larvae and led to the identification of M. rileyi's high-
pressure appressorium, the vital function of the Mrpmk1 
gene, blastospore formation within larvae, activation of host 
immunity, and stage-specific metabolic adjustments facilitat-
ing infection. Gamma irradiation (0.2 to 1 kGy) increased 
the enzymatic activity of Metarhizium anisopliae, opti-
mizing activity at 0.4 kGy. TiNPs were synthesized from 
both irradiated and unirradiated fungi. The combination of 
irradiated M. anisopliae with TiNPs showed strong larvi-
cidal activity against Galleria mellonella larvae, indicating 
a potential strategy against insect resistance (Yosri et al. 
2018).

Kirubakaran et  al. (2018) reported that Metarhizium 
pingshaense caused > 90% mortality in Cnaphalocrocis Ta
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medinalis larvae when subjected to the concentration of 
1 ×  108 conidia/mL. Similarly, M. pingshaense also exhibited 
lower  LC50 (7.94 ×  105 conidia/mL) against pupae.

Metarhizium brunneum reduced western corn rootworm 
population without affecting plant yield (Rauch et al. 2017). 
B. bassiana strains (MS-8) showed high pathogenicity on 

L. serricorne eggs (Saeed et al. 2017). Liao et al. (2023) 
reported that Metarhizium robertsii promoted wheat plant 
growth by producing 1-aminocyclopropane-1-carbox-
ylate deaminase (ACCD), leading to a 66.2% increase in 
root length and a 56.6% increase in plant biomass. It also 
enhanced shoot growth by 42.3%. Zitlalpopoca-Hernandez 

Table 3  Antibacterial, antiviral, and nematicidal activity of EPF

Fungi Targeted Pathogen Activity Mode of study Effect References

Beauveria alba Bacillus subtilis Antibacterial In vitro Displayed significantly 
high antibacterial activity 
against Bacillus subtilis

(Fabelico 2015)

Beauveria bassiana
Metarhizium anisopliae

Bacillus and Staphylococcus Antibacterial In vitro The entomopathogenic 
fungi (81%) produced 
antibacterial compounds, 
and a substantial portion 
(64%) produced com-
pounds effective against 
Staphylococcus

(Lee et al. 2005)

Beauveria bassiana Squash Leaf Curl Virus 
(SLCV)

Antiviral In vivo Reduced transmission of 
SLCV by Bemisia tabaci; 
whiteflies acquired from 
EPF-treated squash plants 
showed lower transmis-
sion effectiveness (33.4%) 
compared to untreated 
plants (100%)

(Abd El-Wahab et al. 2023)

Barley yellow dwarf virus 
(BYDV)

Antiviral In vitro Direct killing of aphids 
and beneficial effect in 
delaying PLRV infection 
in plants

(Fingu-Mabola et al. 2021)

Meloidogyne incognita Nematicidal In vivo Improved tomato leaf count 
and root weights

(Karabörklü et al. 2022)

Isaria fumosorosea Tomato yellow leaf curl 
virus (TYLCV)

Antiviral In vivo Significant reduction in 
TYLCV transmission by 
Bemisia tabaci pest

(Zhang et al., (2016)

Isaria javanica Tomato yellow leaf curl 
virus (TYLCV)

Antiviral In vivo Decreased TYLCV levels 
in whiteflies; reduced 
disease index in tomato 
plants attacked by virulif-
erous whiteflies

(Sun et al. 2021)

Metarhizium brunneum Xanthomonas euvesicatoria Antibacterial In vivo Three days after inocula-
tion, there was a 40% 
reduction in bacterial 
colony-forming units 
(CFU) when compared 
to plants that were not 
sprayed with EPF

(Gupta et al. 2022)

Meloidogyne hapla Nematicidal In vivo Increased nematode num-
bers on tomato plants with 
higher conidia doses

(Khoja et al. 2021)

Metarhizium majus Novel dsRNA virus 
MmPV1

Antiviral In vivo Potential antiviral activity 
in the host

(Wang et al. 2023a, b)

Metarhizium rileyi Helicoverpa armigera Antibacterial In vitro Plasma antibacterial activ-
ity and AMP expression 
increased as a result of M. 
rileyi infection

(Wang et al. 2023a, b)

Phomopsis amygdali Pseudomonas aeruginosa Antibacterial In vitro MIC values 26 μg/mL to 
58 μg/mL

(Ma et al. 2016)



 World Journal of Microbiology and Biotechnology (2024) 40:217217 Page 14 of 22

described that in tomato seedlings, combining entomopatho-
genic fungi (Metarhizium spp. and Beauveria bassiana) with 
arbuscular mycorrhizal fungus showed promise for boost-
ing plant growth and controlling the foliar phytopathogen 
Botrytis cinerea. According to González-Pérez et al. (2022) 
entomopathogenic fungi Metarhizium anisopliae strains 
act as both biocontrol agents for insects and promote plant 
growth in Arabidopsis, tomato, and maize, offering promis-
ing applications in field production. Zitlalpopoca- Gonza-
lez-Guzman et al. (2021) reported that B. bassiana and M. 
brunneum, as entomopathogenic fungi, positively enhanced 
durum wheat growth, increasing aerial dry matter and root 
parameters during early and mid-crop growth stages in field 
experiments. Mantzoukas and Grammatikopoulos (2020) 
reported that entomopathogenic fungi (Beauveria bassiana, 
Metarhizium robertsii, and Isaria fumosorosea) significantly 
enhanced sorghum plant growth, while reducing Sesamia 
nonagrioides larval infestation (20–30%) and tunneling 
length (19–43%). Canassa et al. (2019) reported that seed 
treatment with entomopathogenic fungi M. robertsii and B. 
bassiana enhanced bean plant (Phaseolus vulgaris) growth 
and suppressed spider mite (Tetranychus urticae) popula-
tions. Russo et al. (2019) reported that entomopathogenic 
fungi, acting as endophytes, effectively colonize soybean 
plants, promoting growth parameters such as root, stem 
and leaves using different methods such as leaf asper-
sion, seed immersion and root immersion. The presence of 
entomopathogenic fungi was not observed in the non-inoc-
ulated controls. All inoculation techniques effectively intro-
duced B. bassiana strain into soybean plants. However, the 

seed immersion technique failed to introduce M. anisopliae 
and M. roberstii.s

Espinoza et al. (2019) described that B. bassiana had 
minimal effects on chive plant growth, but significantly 
increased total alkaloid content in the leaves by approxi-
mately 52–91%. Krell et al. (2018) reported that M. brun-
neum enhanced plant productivity and vitality, particularly 
under nutrient-poor conditions in potato plants. EPF can be 
applied as seed treatment. For this purpose, cultivated cotton 
(Gossypium hirsutum) was subjected to Beauveria bassiana 
and Purpureocillium lilacinum as seed treatments. There 
was a significant increase in plant dry biomass and the num-
ber of flowers (Sword 2015).

Application methods for commercial EPF 
formulations

EPF can be applied to plants using various methods. These 
methods include leaf spraying, stem injection, seed treat-
ment, and soil irrigation (Fig. 5) (Quesada-Moraga et al. 
2006). A highly effective approach for controlling insect 
pests on the leaf surface (phylloplane region) is the applica-
tion of EPF spore suspensions through spraying (Vega et al. 
2009). EPF targets insects that feed on the leaves, roots, 
stems, seeds, and rhizomes (Resquín-Romero et al. 2016). 
Studies have demonstrated that foliar spraying of EPF strains 
like Metarhizium brunneum and B. bassiana can lead to 
temporary endophytic colonization of plants such as alfalfa, 
tomato, sweet pepper, and melons (Jaber and Araj 2018). 

Fig. 5  Showing different 
methods to apply EPF for crop 
protection. EPF is initially 
isolated from sources such as 
insects or soil, then pure culture 
is obtained which can be used 
as extract for application. It 
can be applied as foliar spray 
directly on crops or injected into 
stem. Moreover, soil irrigation 
and seed priming also proved 
useful
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Artificial inoculation of EPF in tomato plants has shown 
promising results in effectively controlling Tuta absoluta 
(Leaf miner) (Klieber and Reineke 2016). EPF formulations 
on the market generally have three to six months of shelf 
life. These formulations typically contain a concentration 
of fungal spores ranging from  109 to  1010 spores per gram, 
the appropriate dosage for application may vary depend-
ing on the specific formulation, the severity of the insect 
infestation, the type of insect targeted, and the prevailing 
environmental conditions. Recent research has concentrated 
on developing novel formulations and treatments to enhance 
the efficacy of entomopathogenic fungi as biopesticides with 
improved biopesticidal formulation with a shelf life of at 
least one year at temperatures from 0 to 38 °C. This formula-
tion involves biphasic solid-state fermentation, followed by 
mixing the conidia with various additives and compressing 
them into tablets (Wakil et al. 2022). Additionally, micro-
sclerotial granular formulations of entomopathogenic fungi 
have shown effectiveness against pests such as the annual 
bluegrass weevil, with combinations of microsclerotia and 
imidacloprid being particularly potent (Koppenhӧfer et al. 
2022). Moreover, biopolymer-based formulations have 
emerged as promising methods for delivering entomopath-
ogenic fungi, enhancing their stability and effectiveness in 
pest control (Friuli et al. 2023).

Commercialization and future prospects

The use of EPF such as Beauveria, Metarhizium, Lecani-
cillium, and Isaria is upsurging in recent years to manage 
crop insect pests. EPF are considered better than synthetic 
insecticides as they are safe for humans, sustainable to the 
environment, and target specific. Many of these EPF are 
pathogenic to economically important insect pests and thus 
can control them. They are cheaper in long run, show lesser 
residual effects, and can overcome the problem of resist-
ance (Sharma et al. 2023). In recent years, entomopatho-
genic fungi have emerged as a compelling substitute for 
chemical pesticides, offering environmentally sustainable 

solutions for pest control. Anticipated growth in the market 
for these fungi is fueled by rising demand for eco-friendly 
pest management options and heightened awareness of the 
adverse effects of chemical pesticides on human health and 
the environment (Bamisile et al. 2021). Approximately 200 
commercial products of EPF are available globally, such as 
liquid formulation, wettable powder, and suspensible gran-
ules (Fig. 6A&B). These available formulations under differ-
ent trade names can be used for several crops and pests at the 
recommended dosage to obtain optimum results (Jaronski 
2023).

Challenges and future directions

Despite the evident potential of entomopathogenic microbes 
as biological control agents (BCAs), several obstacles need 
to be addressed to enable their effective and widespread 
application. These challenges can be broadly grouped into 
four key areas: bioassay procedures, production, formula-
tion, and application strategies. Bioassay procedures are piv-
otal for evaluating the effectiveness of entomopathogenic 
microbes against targeted pests (Spescha et al. 2023). Cur-
rent protocols are often intricate, labor-intensive, and lack-
ing in standardization, which makes it challenging to make 
meaningful comparisons. Furthermore, results obtained in 
controlled laboratory conditions may not always accurately 
predict the performance of BCAs in natural field settings 
due to variations in environmental factors like temperature, 
humidity, and interactions with other living and non-living 
factors (Shukla et al. 2023). Consequently, refining and 
standardizing bioassay protocols to ensure consistent and 
replicable outcomes represent a crucial challenge. Scaling 
up the production of entomopathogenic microbes also pre-
sents significant difficulties. In the future, EPF products will 
last longer on the shelf, without causing allergies in humans 
and animals. There is a need to study how EPF interacts with 
insects and their surroundings to create better versions of 
insecticides (Siddiqui et al. 2022).

Fig. 6  A diagram of commer-
cial products of two species 
of Beauveria (B. brongniartii 
and B. bassiana). EPF based 
different commercially available 
products A B. brongniartii and 
B B. bassiana. The name inside 
the brackets such stones, probio-
agro, arista are name of com-
pany but name out of brackets 
such ostrinil, betel, proceol etc. 
are different products
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Conclusions

The utilization of EPF is a sustainable and eco-friendly 
strategy to control different phytopathogens such as fungi, 
bacteria, viruses, nematodes as well as insects’ pests. Also, 
it has a significant role in improving crop growth and devel-
opment. The biological activity and presence of bioactive 
metabolites of EPF indicates the nature-based solution for 
crop protection.
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