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Abstract

Plant pathogens with their abundance are harmful and cause huge damage to different agricultural crops and economy of a
country as well as lead towards the shortage of food for humans. For their management, the utilization of entomopathogenic
fungi is an eco-friendly technique, sustainable to the environment, safe for humans and has promising effect over chemical-
based pesticides. This process requires a biochemical mechanism, including the production of enzymes, toxins, and other
metabolites that facilitate host infection and invasion. Essential enzymes such as chitinase, proteinase, and lipase play a
direct role in breaking down the host cuticle, the primary barrier to EPF (Entomopathogenic Fungi) infection. Additionally,
secondary metabolites such as destruxins in Metarhizium, beauvericin in Beauveria, hirsutellides in Hirsutella, isarolides in
Isaria, cordyols in Cordyceps, and vertihemipterins in Verticillium, among others, act both directly and indirectly to disable
the defense mechanisms of insect hosts, thereby accelerating the EPF infection process. The chemical composition of these
secondary metabolites varies, ranging from simple non-peptide pigments such as oosporine to highly complex piperazine
derivatives such as vertihemiptellides. The biocontrol efficacy of EPF is extensively studied, with numerous fungal strains
commercially available on a large scale for managing arthropod pests. This review emphasizes the role of proteins and
enzymes against crop pathogens, detailing their mode of action, and describing the metabolites from entomopathogenic
fungi and their biological activities. In doing so, these findings contribute to establishing a symbiotic equilibrium between
agricultural productivity and environmental conservation.
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Introduction

Plant diseases are thought to be responsible for 14.1% of
crop losses worldwide and cause $220 billion loss every
year. Abiotic elements such as the environment and biotic
agents such as oomycetes, fungi, viruses, bacteria, nema-
todes, and viroid can all contribute to crop loss (Shahrajab-
ian et al. 2023). The crop production is affected by fungi
(10-23%), bacteria (20-40%), and herbivores insects (18%)
(Spescha et al. 2023).

Crop protection by using chemical-based management
is considered a non-friendly and non-sustainable way to
the environment (Ahsan et al. 2020). Fungi-based macro-
molecules represent an eco-friendly approach in biological
control. (Sani et al. 2020). The application of EPF enhanced
the yields and biodiversity in the ecosystem and utilized less
amount of chemicals within the environment as compared to
conventional pesticides (Fig. 1). The genera Beauveria and
Metarhizium and their mode of action is like endophytes
(Branine et al. 2019; Akram et al. 2023; Zhang et al. 2023a,
b).

@ Springer

The objective of this review is to describe EPF for sus-
tainable mode of crop protection. Application of EPF for
sustainable crop protection increased the environmental
and ecological beneficial aspects. EPF are insect-parasitiz-
ing fungi and have an excellent mechanism compared to
other fungi that decompose organic matters, and reproduced
through sexual, sexual, or combined spore production ways.
The primary host for EPF attack is insect and possesses sap-
rophytic features that enable the EPF to occur in soil and
can be isolated from these sources (Bihal et al. 2023; from
these sources and enhances their potential for utilization
as effective biological agents (Islam et al. 2021). EPF pro-
duce spores that enter the insect’s cuticle, where they start
germination and then cause infection (Wang et al. 2019a,
b). In Brazil, in approximately 10 million hectares agricul-
tural land area, the application of 60% registered benefi-
cial fungi-based pesticides have been used (Mascarin et al.
2019). EPF have a network of different species that have
variations in morphology, phylogeny, and ecological niches
exhibit a diverse array of fungal species with variations in
morphology, phylogeny and ecological niches (Pattnaik and
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Fig. 1 Demonstrates the uses
of entomopathogenic fungus.
Applications for EPF in pest
management include protection
of stored grains, forestry, and
agriculture. Different crops are
affected by various pests such
aphids, caterpillars, wood-bor-
ing insects, and disease vectors
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Busi 2019), showcasing substantial phylogenetic diversity
that is significant with respect to biocontrol agent for over
200 years (Bamisile et al. 2021; Wu et al. 2022). For the
management of insect pests, EPF is utilized in classical,
augmentation, and conservation biological control. Clas-
sical control introduces EPF to new environments lacking
natural enemies; augmentation involves mass application
for immediate pest reduction, while conservation adjusts
farming practices to enhance EPF activity and diversity
(Karthi et al. 2024). Today, the market offers a plethora of
biopesticides, predominantly derived from hypocrealean
ascomycetes like Beauveria, Metarhizium, Akanthomyces,
and Cordyceps fungi. These biopesticides effectively tar-
get various arthropod pests spanning locusts, grasshoppers,
soil-dwelling insects, piercing-sucking insects, mites, stored-
grain pests, forestry pests, and invasive, medical, and veteri-
nary pests (Quesada-Moraga et al. 2020).

It is estimated that around 750 EPF species are reported,
and these species belong to the phyla Chytridiomycota,
Blastocladiomycota, Zoopagomycota, Basidiomycota, and
Ascomycota. The phylum Ascomycota harbours a significant
number of economically relevant species (Landinez-Torres
et al. 2019). The key genera that have been extensively
studied in biological control and sustainable agriculture
are Metarhizium (Family: Clavicipitaceae) and Beauveria
(Family: Cordycipitaceae). Entomopathogenic fungi (EPF)
belong to the phylum Ascomycota and are classified within
the order Hypocreales.

There is similarity among all EPF fungi with respect to
mode of action. Insect pest management begins when vulner-
able host affected by many infective propagules, and favorable

Integrated Pest
Management (IPM)

conditions make fungus to grow (Sani et al. 2020). Insect
cuticle is the direct entry point of EPF, consists of various
physical and enzymatic mode of actions. Infection starts when
fungal conidia fully enter into host cuticle, start germination
directly or by formation of aspersorium (Boni et al. 2021).
This process involves physical and enzymatic mechanisms.
The EPF mechanism of action begins when fungal conidia set-
tle onto the insect's cuticle, and then these germinate and gain
entry into the cuticle directly or by forming a structure known
as an appressorium (Batool et al. 2020). The fungal hyphae
produce within the insects hypodermis and then proliferating
within the blood cells and finally death occurs (Fig. 2). These
fungi can cause the death of the insect, but they also cause
pathologies that regulate their population without directly
causing death (Liu et al. 2022). Toxins from fungi such as
B. bassiana, such as nonribosomal peptides and polyketides,
help regulate environmental stress, aiding fungal invasion and
acting as virulence factors (Park et al. 2023). These substances
can potentially induce insect mortality even before the fungal
spores spread and form within the parasitized tissue (Altinok
et al. 2019). In many cases, the demise of insects caused by
fungal propagules primarily results from toxic effects rather
than direct mycosis (Pedrini 2018).

Role of enzymes and proteins in pest
management as a complement to EPF

The larvicidal activity has been evaluated using Beauveria

bassiana (TV and OZ]1 strains) and Metarhizium anisopliae
(CS1 strain) based proteins against Plodia interpunctella

@ Springer
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Fig.2 The mode of action of entomopathogenic fungi. In the first
step EPF is isolated from its respective host (insect) then, after
growth has occurred, fungal extract with desirable concentrations are

larvae. The TV strain, exhibiting the highest mortality rate
(41.7%), displayed increased specific activity in exochi-
tinase, protease, and lipase enzymes. These findings imply
a positive association between protease and lipase activities
and fungal virulence, underscoring their potential signifi-
cance in controlling P. interpunctella larvae (Golzan et al.
2023).

Several studies have examined the insecticidal potential of
extracellular proteins from entomopathogenic fungi (Fig. 3).
Farooq and Freed (2018) investigated larvicidal activity
using crude proteins from M. anisopliae, B. bassiana, and I.
fumosorosea against Musca domestica adults. The crude pro-
teins derived from entomopathogenic fungi induced notable
mortality (52.0-91.0%) in Musca domestica. Concentrations
of 8 and 10 mg/mL resulted in 100.0% mortality within 2.77
to 3.77 days, with B. bassiana (Bb-01) at 10 mg/mL causing
100.0% mortality within 96 h. Ayudya et al. (2019) studied
B. bassiana strain to investigate larvicidal activity against
Spodoptera litura larvae and the culture filtrates of Beauve-
ria bassiana at pH 6 demonstrated high toxicity (92% mor-
tality) against Spodoptera litura larvae. Quesada-Moraga
et al. (2006) found that proteic macromolecules in B. bassi-
ana supernatant significantly contributed to larvae mortal-
ity. Ortiz-Urquiza et al. (2009) conducted a study affirming
the biocontrol potential of proteins from entomopathogenic
fungi. They assessed soluble proteins from the supernatant
of M. anisopliae (EAMa 01/58-Su) using liquid chroma-
tography on Ceratitis capitata (Wiedemann) flies, noting
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chronic insecticidal effects with long-term oral application)
(Rosa et al. 2018). The same proteins, when presented to
Drosophila melanogaster (Meigen) adults, resulted in a 70%
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mortality rate after continuous exposure for 3 days (Zhou
et al. 2016).

The protein extracted from Lecanicillium lecanii exhib-
ited a dose-dependent reduction in the survival and fecundity
of Myzus persicae on tomato plants. The application of pro-
tein extract upregulates the genes linked with salicylic acid,
and genes associated with jasmonic acid were upregulate
moderately. It suggests that EPF-based protein can man-
age aphids. (Hanan et al. 2020). Different EPF strains have
different optimal conditions for enzyme production. There-
fore, optimization of EPF culture is mandatory to produce
extracellular enzymes (Shah et al. 2005). Kim et al. (2010)
reported that enzymes (chitinases and proteases) produced
from B. bassiana (SFB-205) exhibited aphicidal activity
against the cotton aphid Aphis gossypii that caused degra-
dation of insect's cuticles. Chitinases from supernatant of
Metarhizium anisopliae (M408) was tested against Plutella
xylostella larvae that reduced the pupation and enhanced
lethality (Wu et al. 2010). Alves et al. (2020) reported that
that a purified cocktail from B. bassiana (IBCB 66) contain-
ing exocellulase, endocellulase, p1, 3-glucanase, and chi-
tinase led to increased mortality rates, reaching 100% for
first instar larvae and 40% for developed larvae after 24 h
that demonstrating the potential of enzymatic cocktails for
effective pest control.

Different G-protein-coupled receptors (GPCRs) recognize
insects, with a core one sensing many species. MAPK path-
way directs appressoria formation, PKA pathway matures
them. Membrane proteins Tspan and OPY2 help in sensing
and penetration. COH1 and COH2 control cuticle to hemo-
coel transition. Abbreviations: AC (adenylyl cyclase), CaMK
(calcium/calmodulin-regulated kinase), CN (calcineurin),
CREB (cAMP response element-binding protein), IP3 (ino-
sitol 1,4,5-triphosphate), MAPK (mitogen-activated protein
kinase), PKA (protein kinase A), PLC (phosphatidylinositol-
specific phospholipase C), RAP (Ras superfamily guanine-
nucleotide-binding protein), Tspan (tetraspanin) (Hong et al.
2023).

The emerging role of RNA in pest
management as a complement to EPF

RNA interference (RNAi), a mechanism of post-transcrip-
tional gene silencing, holds promise as a pest control strat-
egy (Zhu and Palli 2020). The delivery of double-stranded
RNA (dsRNA) has been assessed in aphids using different
techniques such as injection, feeding, topical application,
and integration into transgenic plants (Hou et al. 2019). The
complementary effects were explored using application of
RNAI along with other pest management techniques (Ding
et al. 2020). EPF (B. bassiana) produced a high mortality
rate in aphids when the silencing of immune-associated

genes in aphids was described (Ye et al. 2021). Aphid mor-
tality was also increased when RNA interference with B.
bassiana (Bb07) offering a promising way for minimizing
the need for chemical pesticides (Zhang et al. 2023a, b).

Contributions of entomopathogenic fungi
spores in pest control

Previous studies revealed the importance of EPF spores in
pest management and have a central position regarding the
efficiency of EPF as biocontrol agents (Sharma et al. 2023).
Therefore, long time sustained spores have started infec-
tion and regulate the insect’s papulation because of viabil-
ity guarantees (Mei et al. 2021). These spores produced
appressorium after attachment with insect cuticle (Man-
nino et al. 2019). The amalgamation of adhesion and subse-
quent penetration into the insect host amplifies the potency
of entomopathogenic fungi in governing pest populations
(Bava et al. 2022). In conjunction with their infectivity,
entomopathogenic fungal spores showcase a comprehensive
host range, a trait of paramount importance in crop pathogen
control. This versatility assumes significance by enabling
these fungi to effectively target and regulate various insect
pests (Selvaraj and Thangavel 2021).

The production and extensive distribution of significant
spore numbers by EPF enhances their efficacy in disease
control (Santos et al. 2022). EPF could produce large num-
bers of spores, which makes it easier for them to spread
over the surroundings (Rajula et al. 2020). The abundance
and wide dispersal of spores increases the contact with and
infecting desired pest targets, hence maximizing the effec-
tiveness of pest control measures (Cafarchia et al. 2022).

EPF derived bioactive metabolites

Secondary metabolites have remarkable potential to pen-
etrate host cells, also facilitate EPF to invade or inhibit the
immune system of pathogens (Table 1). Different forms of
toxins such polyketides and nonribosomal peptides help EPF
to attack pathogens (Wang et al. 2021). EPF produce a vast
variety of secondary metabolites that can either be released
or kept in developmental structures, such as conidia (Fig. 4).
Some secondary metabolites, including pigments, polyols,
and mycosporines, are connected to fungal pathogenicity
and/or tolerance to a variety of environmental stressors, such
as temperature and sun radiation extremes (Carollo et al.
2010). According to previous study, metabolites (propanoic
acid, ethyl ester, acetic acid, propyl ester, isopentyl acetate,
acetic acid, 2-methylpropyl ester, behenic alcohol, 1-hexa-
decene, 1-octadecene, 1-hexacosanol, n-hexadecanoic acid,
1-tetradecanol, 1-dodecene, tetrydamine, and octadecanoic

@ Springer



217 Page6of22

World Journal of Microbiology and Biotechnology (2024) 40:217

Table 1 Examples of bioactive metabolites from entomopathogenic fungi

Fungal Species

Bioactive Compounds Chemical structure

Characterization Technique

References

Aschersonia confluens

Beauveria asiatica

Beauveria bassiana

4'-O-methyltorachrysone
8-O-Glucoside

PubChem CID:
156,582,430
6-(methoxycarbonyl) Pico-

linic acid

PubChem CID: 4,019,172

Beauvericin (<31
Lumichrome
Bassianolide
Melanin
Chitinase
PubChem CID: 86,223,063
Xylanase and Endoglu- "-‘;«? ‘ » )
ht “'\. '“I." [
canase AT \’ 'ff..\'
PubChem CID: 9394
Sphingomyelins o
Phenolic/glycolipids, Phos- F
phatidylcholines
PubChem CID: 9,939,941
Naphthalene

P

PubChem CID: 931

HPLC

Mosher’s method and ECD
calculation

GC-MS

GC-MS

HPLC

LC-MS

LCMS-QTOF

GC-MS

HPLC

SPME-CGC-MS

Sadorn et al. (2020)

Kornsakulkarn et al. (2021)

Al-Khoury et al. (2022)

Andrioli et al. (2017)

Xu et al. (2009)

Fuguet and Vey (2004)

Bhadani et al. (2021)

Amobonye et al. (2021)

Tsoupras et al. (2022)

Crespo et al. (2008)
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Table 1 (continued)

Fungal Species

Bioactive Compounds

Chemical structure

Characterization Technique

References

Beauveria caledonica

Chrysoporthe sp.

Cordyceps militaris

Cordyceps sp.

Lecanicillium sp.

Metarhizium anisopliae

Metarhizium brunneum

Oosporein

Rugulosin

Cordycepin

Cordyglycoside

Verlamelin

1,2-dihydrohelvolic acid

Bicyclogermacrene

3-octanone

RP-HPLC
PubChem
CID: 135,426,831
HPLC
PubChem CID: 62,769
HPLC

Wl
>v,

PubChem CID: 6303

NMR,HRESIMS, HPLC,X-
ray crystallography

R
PubChem
CID: 156,582,401
HPLC
PubChem
CID: 139,588,823
HPLC
PubChem CID: 23,844,015
; GC-MS
PubChem CID: 13,894,537
e e GC-MS

PubChem CID: 246,728

Mc Namara et al. (2019)

Nirma et al. (2015)

Woolley et al. (2020)

Fan et al. (2023)

Ishidoh et al. (2014)

Lee et al. (2008)

Bitencourt et al. (2022)

Hummadi et al. (2021)

@ Springer



217 Page8of22

World Journal of Microbiology and Biotechnology (2024) 40:217

Table 1 (continued)

Fungal Species Bioactive Compounds

Chemical structure

Characterization Technique References

Ophiocordyceps sinensis Meso-erythritol o

GC-MS Zhang et al. (2020a, b)

PubChem CID: 222,285
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Fig.4 Showing plant responses against phytopathogens in (A), absence and (B), presence of EPF based metabolites

acid) from EPF Penicillium sp. were tested for larvicidal
activity against Spodoptera litura and Culex quinquefascia-
tus. The mortality rate after 48 h was checked and 90% mor-
tality occurred at 282.783 mg/mL against Spodoptera litura
and 475.049 mg/mL concentration against Culex quinque-
fasciatus (Arunthirumeni et al. 2023). Similarly, Qasim
et al. (2020) used EPF based on classes of mycotoxins alka-
loids, peptides, and polyketides to manage Diaphorina citri.
After two days of application of mycotoxin (bassianolide)
caused more than 70% and 80% mortality of D. citri nymphs
and adults. Bioactive metabolities have ability to mitigate
resistance development within pest populations, disrupting
the physiological processes in insect’s pests, and leading
towards their death (Mantzoukas and Eliopoulos 2020).
Bioactive metabolities such as destruxins, beauvericin,
and metarhizins have been identified as remarkable potent

@ Springer

entities having insecticidal potentials. Destruxins affect the
insect immune system, inducing immune suppression and
subsequent fatality, conversely, beauvericin manifests dual
insecticidal and antifungal activities, interfering with essen-
tial cellular mechanisms in insects while also perturbing
fungal cell membranes (Paschapur et al. 2021). Metarhizins
enact their impact by targeting the insect cuticle, facilitat-
ing host penetration and subsequent infection. Beyond their
insecticidal properties, these bioactive compounds can also
demonstrate antimicrobial effects, hindering the growth of
secondary pathogens that might exploit the insect postmor-
tem (Paschapur et al. 2021).

In the absence of metabolites, severe damage of plants
occurs due to increased susceptibility to necrotrophic and
biotrophic pathogens. Underdeveloped root systems result in
poor nutrient uptake, leading to plant death. In the presence
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of EPF metabolites, enhanced plant growth due to improved
nutrient acquisition occurs. Increased tolerance to various
stresses (drought, salt, herbivory) through complex signal
communications and increased photosynthetic rates also
changes in root exudates, altering the soil microbial commu-
nity and suppressing pathogens occurs. Reduced incidence
of soilborne pathogens through priming of plant defense
mechanisms, mediated by phytohormones such as JA and
ET, leading to enhanced Induced Systemic Resistance (ISR).

Biological activities

Controlling phytopathogens is becoming a major concern
world-wide, mainly due to usage of different pesticides, and
phytopathogens are gaining resistance to pesticides. Con-
sidering this, more research has been done about a sustain-
able method of controlling plant diseases and increase crop
protection (Keshmirshekan et al. 2024). Thus far, several
EPF have been extensively investigated for their biological
activities (Table 2). Among these, EPF such as Beauveria,
Metarhizium, Akanthomyces, and Cordyceps fungi are the
most studied in the context of their antimicrobial activity
(Zhang et al. 2024).

Phytopathogen control

Plant pathogenic bacteria (PPB) represent a significant
group of phytopathogens that inflict substantial harm on a
wide range of both cultivated and wild plants worldwide
(Abdelsattar et al. 2023). To mitigate the damage caused
by PPB, various control strategies are frequently employed,
including the cultivation of resistant or tolerant plant vari-
eties and the use of chemical treatments (Kumawat et al.
2023). Plant viruses constitute a major group of pathogens
for crops. Despite their simple structural makeup, they
exhibit intricate mutations and possess a broad host spec-
trum, posing a significant peril to agriculture and leading
to substantial economic losses (Spechenkova et al. 2023).
Plant-parasitic nematodes (PPNs), constituting one of the
three prevalent crop infestations, are parasitic worms that
infest plants. With over 4100 identified PPN species (Khan
et al. 2023), four among them stand out as particularly peril-
ous. Root-knot nematodes (RKN) belonging to the Meloi-
dogyne genus exhibit a wide-ranging host preference and
predominantly inflict damage on vegetable crops (Chen et al.
2023). The presence of nematode diseases exerts a substan-
tial adverse influence on both agricultural and horticultural
production, resulting in annual losses amounting to a stag-
gering $173 billion (Fan et al. 2023). Beauveria alba dis-
played significant antibacterial activity against Bacillus sub-
tilis in vitro (Fabelico 2015). B. bassiana exhibited antiviral

activity against Squash Leaf Curl Virus (SLCV) in vivo,
reducing transmission by Bemisia tabaci. Whiteflies from
EPF-treated squash plants showed only 33.4% transmission
effectiveness, compared to 100% in untreated plants (Abd
El-Wahab et al. 2023). Karaborkli et al. (2022) reported
that B. bassiana and M. anisopliae have excellent nemati-
cidal activity against Meloidogyne incognita in both tomato
and cucumber, resulting in gall index reductions to 3.2, 2.0,
and 2.2 for B. bassiana, M. anisopliae, and P. lilacinum,
respectively. The highest decrease in gall formation (75.2%)
occurred with M. anisopliae treatment in tomato, while in
cucumber, the highest control index (71.7%) was achieved
with M. anisopliae as mentioned in Table 3.

Diverse entomopathogenic fungal species have dem-
onstrated their multifaceted roles within natural ecosys-
tems, serving as endophytes, antagonists against plant
pathogens, and stimulators of plant growth (Ownley et al.
2010). Moreover, the well-known entomopathogenic fun-
gus Metarhizium roberstsii establishes beneficial interac-
tions by forming endophytic associations with plant roots,
imparting advantageous effects to the plant (Sasan and
Bidochka 2012). Recent studies have unveiled the potential
of entomopathogenic fungi to exert antimicrobial effects
against various microorganisms (Lee et al. 2005; Goettel
et al. 2008; Lozano-Tovar et al. 2013). Dual action against
insect pests and plant pathogens were studied in Beauveria
spp., Metarhizium spp., Lecanicillium spp. and Clonostachys
rosea with good results (Kim et al. 2007). Saidi et al. (2023)
described the antifungal activity of Akanthomyces muscarius
against the tested phytopathogenic fungi resulted in inhi-
bition rates ranging from 39.61% to 52.94%. Ajvad et al.
(2020) reported the antifungal activity of entomopathogenic
fungi Metarhizium anisopliae against Lycoriella auripilla
and concluded that M. anisopliae at 10® spores/mL improved
compost-to-mushroom conversion. Chairin and Petch-
arat (2017) reported that the crude extract from fruit peel
of Metarhizium guizhouense exhibited antifungal activity,
inhibiting the mycelial growth of Botrytis sp. (34.9+3.1%)
and Fusarium sp. (29.3 +5.0%). Lozano-Tovar et al. (2013)
demonstrated the antifungal activity of Metarhizium brun-
neum and B. bassiana against olive pathogens, with inhibi-
tion rates of 42—-62% for Phytophthora spp. and 40-57% for
V. dahliae. Bogus et al. (2010) also reported the antifun-
gal activity of entomopathogenic fungi and concluded that
applied concentrations (ranging from 0.1% to 0.0001% w/v),
of the entomopathogenic fungi inhibited the growth of the
parasitic fungus Conidiobolus coronatus.

Yang et al. (2023) reported that Beauveria bassiana and
Isaria fumosorosea exhibited larvicidal activity against
Rhynchophorus ferrugineus. Five fungal strains, compris-
ing four strains of Beauveria bassiana (JEF-484, 158, 462,
507) and one of Isaria fumosorosea (JEF-014), caused
100% mortality in last stage R. ferrugineus larvae within

@ Springer
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Table 2 (continued)
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Targeted Pathogen
Cossus chloratus

Metarhizium guizhouense (Sorokin)

Fungi

Springer

erpillars, achieving 0.0-18.0% larval survival

McGuire and Northfield (2021)

In vitro and In vivo Reduced thrips damage and improved market-

Chaetanaphothrips signipennis

Metarhizium lepidiote (Driver and Milner)

ability of treated banana bunches

100% mortality at 3rd day

Heo et al. (2023)
Gorg et al. (2021)

In vitro

cotton aphids

Psyllid

Metarhizium pinghaense (Chen and Guo)

Effectively controlling vectors

In vitro

Pandora sp. (Remaud and Henn)

5-10 days post inoculation. The combination of JEF-484
and JEF-158 offers a promising microbial control approach
against R. ferrugineus at different life stages in palm trees
under fields. The ethyl acetate extract derived from EPF Pen-
icillium sp. exhibited larvicidal activity against Spodoptera
litura and Culex quinquefasciatus larvae with LC, values
of 72.205 mg/mL and 94.701 mg/mL, and LCy, values of
282.783 mg/mL and 475.049 mg/mL respectively.

Rocha et al. (2022) reported the larvicidal activity of B.
bassiana, Metarhizium humberi, M. anisopliae, Akanthomy-
ces saksenae, and Simplicillium lamellicola against Aedes
aegypti. For this purpose, 21 strains (7 Beauveria bassiana,
7 Metarhizium humberi, 3 M. anisopliae, 2 Cordyceps sp.,
and one each of Akanthomyces saksenae and Simplicillium
lamellicola) of EPF were used against Aedes aegypti. M.
anisopliae and M. humberi were highly effective.

Michereff-Filho et al. (2022) described that B. bassiana
strains showed larvicidal activity against Neoseiulus species,
with mortality exceeding 70% under in vitro study. Neoseiu-
lus mites, particularly N. barkeri, showed susceptibility to
fungi, while low humidity hindered their feeding and repro-
duction. Combining B. bassiana and Neoseiulus compro-
mised mite survival and offspring. Conidia of entomopatho-
genic were fungi applied against Aedes aegypti larvae with
concentrations 10° 10, 10, and 10° propagules mL~! water
suspension. Larvae survival rates were observed for 7 days,
with median survival time (S50) determined. Beauveria
bassiana and Metarhizium anisopliae reduced larval sur-
vival time to two days at 10® propagules mL ™! and three days
at 108 conidia mL ™", respectively (Bitencourt et al. 2021).

Metarhizium anisopliae was applied with concentrations
of 1x10° conidia/mL against larvae of Aedes albopictus
and Aedes aegypti. After 7 days, high larvicidal activity was
observed by killing both larvae (Zuharah et al. 2021). Koo-
dalingam Dayanidhi, (2021) reported the larvicidal activity
of B. bassiana and Metarhizium anisopliae that increased
mortality of Culex quinquefasciatus larvae by 60% and
50.59%, respectively. Wang et al. (2021) checked the lar-
vicidal activity of Metarhizium rileyi against Spodoptera
litura larvae and led to the identification of M. rileyi's high-
pressure appressorium, the vital function of the Mrpmkl
gene, blastospore formation within larvae, activation of host
immunity, and stage-specific metabolic adjustments facilitat-
ing infection. Gamma irradiation (0.2 to 1 kGy) increased
the enzymatic activity of Metarhizium anisopliae, opti-
mizing activity at 0.4 kGy. TiNPs were synthesized from
both irradiated and unirradiated fungi. The combination of
irradiated M. anisopliae with TiNPs showed strong larvi-
cidal activity against Galleria mellonella larvae, indicating
a potential strategy against insect resistance (Yosri et al.
2018).

Kirubakaran et al. (2018) reported that Metarhizium
pingshaense caused >90% mortality in Cnaphalocrocis
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Table 3 Antibacterial, antiviral, and nematicidal activity of EPF

Fungi

Targeted Pathogen

Activity

Mode of study Effect

References

Beauveria alba

Beauveria bassiana
Metarhizium anisopliae

Beauveria bassiana

Isaria fumosorosea

Isaria javanica

Metarhizium brunneum

Metarhizium majus

Metarhizium rileyi

Phomopsis amygdali

Bacillus subtilis

Bacillus and Staphylococcus

Squash Leaf Curl Virus
(SLCV)

Barley yellow dwarf virus
(BYDV)

Meloidogyne incognita

Tomato yellow leaf curl
virus (TYLCV)

Tomato yellow leaf curl
virus (TYLCV)

Xanthomonas euvesicatoria

Meloidogyne hapla

Novel dsRNA virus
MmPV1

Helicoverpa armigera

Pseudomonas aeruginosa

Antibacterial In vitro

Antibacterial In vitro

Antiviral In vivo

Antiviral In vitro

Nematicidal In vivo

Antiviral In vivo

Antiviral In vivo

Antibacterial In vivo

Nematicidal In vivo

Antiviral In vivo

Antibacterial In vitro

Antibacterial In vitro

Displayed significantly
high antibacterial activity
against Bacillus subtilis

The entomopathogenic
fungi (81%) produced
antibacterial compounds,
and a substantial portion
(64%) produced com-
pounds effective against
Staphylococcus

Reduced transmission of
SLCV by Bemisia tabaci;
whiteflies acquired from
EPF-treated squash plants
showed lower transmis-
sion effectiveness (33.4%)
compared to untreated
plants (100%)

Direct killing of aphids
and beneficial effect in
delaying PLRV infection
in plants

Improved tomato leaf count
and root weights

Significant reduction in
TYLCYV transmission by
Bemisia tabaci pest

Decreased TYLCV levels
in whiteflies; reduced
disease index in tomato
plants attacked by virulif-
erous whiteflies

Three days after inocula-
tion, there was a 40%
reduction in bacterial
colony-forming units
(CFU) when compared
to plants that were not
sprayed with EPF

Increased nematode num-
bers on tomato plants with
higher conidia doses

Potential antiviral activity
in the host

Plasma antibacterial activ-
ity and AMP expression
increased as a result of M.
rileyi infection

MIC values 26 pg/mL to
58 pg/mL

(Fabelico 2015)

(Lee et al. 2005)

(Abd E1-Wahab et al. 2023)

(Fingu-Mabola et al. 2021)

(Karaborklii et al. 2022)

(Zhang et al., (2016)

(Sun et al. 2021)

(Gupta et al. 2022)

(Khoja et al. 2021)

(Wang et al. 2023a, b)

(Wang et al. 2023a, b)

(Ma et al. 2016)

medinalis larvae when subjected to the concentration of
1% 108 conidia/mL. Similarly, M. pingshaense also exhibited
lower LCs (7.94 % 10° conidia/mL) against pupae.
Metarhizium brunneum reduced western corn rootworm
population without affecting plant yield (Rauch et al. 2017).
B. bassiana strains (MS-8) showed high pathogenicity on

L. serricorne eggs (Saeed et al. 2017). Liao et al. (2023)
reported that Metarhizium robertsii promoted wheat plant
growth by producing l-aminocyclopropane-1-carbox-
ylate deaminase (ACCD), leading to a 66.2% increase in
root length and a 56.6% increase in plant biomass. It also
enhanced shoot growth by 42.3%. Zitlalpopoca-Hernandez

@ Springer
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described that in tomato seedlings, combining entomopatho-
genic fungi (Metarhizium spp. and Beauveria bassiana) with
arbuscular mycorrhizal fungus showed promise for boost-
ing plant growth and controlling the foliar phytopathogen
Botrytis cinerea. According to Gonzalez-Pérez et al. (2022)
entomopathogenic fungi Metarhizium anisopliae strains
act as both biocontrol agents for insects and promote plant
growth in Arabidopsis, tomato, and maize, offering promis-
ing applications in field production. Zitlalpopoca- Gonza-
lez-Guzman et al. (2021) reported that B. bassiana and M.
brunneum, as entomopathogenic fungi, positively enhanced
durum wheat growth, increasing aerial dry matter and root
parameters during early and mid-crop growth stages in field
experiments. Mantzoukas and Grammatikopoulos (2020)
reported that entomopathogenic fungi (Beauveria bassiana,
Metarhizium robertsii, and Isaria fumosorosea) significantly
enhanced sorghum plant growth, while reducing Sesamia
nonagrioides larval infestation (20-30%) and tunneling
length (19-43%). Canassa et al. (2019) reported that seed
treatment with entomopathogenic fungi M. robertsii and B.
bassiana enhanced bean plant (Phaseolus vulgaris) growth
and suppressed spider mite (Tetranychus urticae) popula-
tions. Russo et al. (2019) reported that entomopathogenic
fungi, acting as endophytes, effectively colonize soybean
plants, promoting growth parameters such as root, stem
and leaves using different methods such as leaf asper-
sion, seed immersion and root immersion. The presence of
entomopathogenic fungi was not observed in the non-inoc-
ulated controls. All inoculation techniques effectively intro-
duced B. bassiana strain into soybean plants. However, the

Fig.5 Showing different
methods to apply EPF for crop
protection. EPF is initially
isolated from sources such as
insects or soil, then pure culture
is obtained which can be used
as extract for application. It

can be applied as foliar spray
directly on crops or injected into
stem. Moreover, soil irrigation
and seed priming also proved
useful

9

Entomopathogenic
fungi

@ Springer

seed immersion technique failed to introduce M. anisopliae
and M. roberstii.s

Espinoza et al. (2019) described that B. bassiana had
minimal effects on chive plant growth, but significantly
increased total alkaloid content in the leaves by approxi-
mately 52-91%. Krell et al. (2018) reported that M. brun-
neum enhanced plant productivity and vitality, particularly
under nutrient-poor conditions in potato plants. EPF can be
applied as seed treatment. For this purpose, cultivated cotton
(Gossypium hirsutum) was subjected to Beauveria bassiana
and Purpureocillium lilacinum as seed treatments. There
was a significant increase in plant dry biomass and the num-
ber of flowers (Sword 2015).

Application methods for commercial EPF
formulations

EPF can be applied to plants using various methods. These
methods include leaf spraying, stem injection, seed treat-
ment, and soil irrigation (Fig. 5) (Quesada-Moraga et al.
2006). A highly effective approach for controlling insect
pests on the leaf surface (phylloplane region) is the applica-
tion of EPF spore suspensions through spraying (Vega et al.
2009). EPF targets insects that feed on the leaves, roots,
stems, seeds, and rhizomes (Resquin-Romero et al. 2016).
Studies have demonstrated that foliar spraying of EPF strains
like Metarhizium brunneum and B. bassiana can lead to
temporary endophytic colonization of plants such as alfalfa,
tomato, sweet pepper, and melons (Jaber and Araj 2018).

Foliar spray

_,_,

Extract

Stem injection

Soil irrigation

Pure culture

Seeds priming



World Journal of Microbiology and Biotechnology (2024) 40:217

Page 150f22 217

Artificial inoculation of EPF in tomato plants has shown
promising results in effectively controlling Tuta absoluta
(Leaf miner) (Klieber and Reineke 2016). EPF formulations
on the market generally have three to six months of shelf
life. These formulations typically contain a concentration
of fungal spores ranging from 10° to 10'° spores per gram,
the appropriate dosage for application may vary depend-
ing on the specific formulation, the severity of the insect
infestation, the type of insect targeted, and the prevailing
environmental conditions. Recent research has concentrated
on developing novel formulations and treatments to enhance
the efficacy of entomopathogenic fungi as biopesticides with
improved biopesticidal formulation with a shelf life of at
least one year at temperatures from 0 to 38 °C. This formula-
tion involves biphasic solid-state fermentation, followed by
mixing the conidia with various additives and compressing
them into tablets (Wakil et al. 2022). Additionally, micro-
sclerotial granular formulations of entomopathogenic fungi
have shown effectiveness against pests such as the annual
bluegrass weevil, with combinations of microsclerotia and
imidacloprid being particularly potent (Koppenhofer et al.
2022). Moreover, biopolymer-based formulations have
emerged as promising methods for delivering entomopath-
ogenic fungi, enhancing their stability and effectiveness in
pest control (Friuli et al. 2023).

Commercialization and future prospects

The use of EPF such as Beauveria, Metarhizium, Lecani-
cillium, and Isaria is upsurging in recent years to manage
crop insect pests. EPF are considered better than synthetic
insecticides as they are safe for humans, sustainable to the
environment, and target specific. Many of these EPF are
pathogenic to economically important insect pests and thus
can control them. They are cheaper in long run, show lesser
residual effects, and can overcome the problem of resist-
ance (Sharma et al. 2023). In recent years, entomopatho-
genic fungi have emerged as a compelling substitute for
chemical pesticides, offering environmentally sustainable

Fig.6 A diagram of commer-
cial products of two species
of Beauveria (B. brongniartii

solutions for pest control. Anticipated growth in the market
for these fungi is fueled by rising demand for eco-friendly
pest management options and heightened awareness of the
adverse effects of chemical pesticides on human health and
the environment (Bamisile et al. 2021). Approximately 200
commercial products of EPF are available globally, such as
liquid formulation, wettable powder, and suspensible gran-
ules (Fig. 6A&B). These available formulations under differ-
ent trade names can be used for several crops and pests at the
recommended dosage to obtain optimum results (Jaronski
2023).

Challenges and future directions

Despite the evident potential of entomopathogenic microbes
as biological control agents (BCAs), several obstacles need
to be addressed to enable their effective and widespread
application. These challenges can be broadly grouped into
four key areas: bioassay procedures, production, formula-
tion, and application strategies. Bioassay procedures are piv-
otal for evaluating the effectiveness of entomopathogenic
microbes against targeted pests (Spescha et al. 2023). Cur-
rent protocols are often intricate, labor-intensive, and lack-
ing in standardization, which makes it challenging to make
meaningful comparisons. Furthermore, results obtained in
controlled laboratory conditions may not always accurately
predict the performance of BCAs in natural field settings
due to variations in environmental factors like temperature,
humidity, and interactions with other living and non-living
factors (Shukla et al. 2023). Consequently, refining and
standardizing bioassay protocols to ensure consistent and
replicable outcomes represent a crucial challenge. Scaling
up the production of entomopathogenic microbes also pre-
sents significant difficulties. In the future, EPF products will
last longer on the shelf, without causing allergies in humans
and animals. There is a need to study how EPF interacts with
insects and their surroundings to create better versions of
insecticides (Siddiqui et al. 2022).

(A) y (B)

and B. bassiana). EPF based Biolisa. Ostrinil (";n‘:::::t';
different commercially available (Nitto Denko) (Arysta) Biocontrol
products A B. brongniartii and , S— ——
B B. bassiana. The name inside [ h‘; R— (Fytovita) ) Intrachem
the brackets such stones, probio- ‘ g:::‘;‘l;“:‘ brongniartii Beaav.er/a

agro, arista are name of com- (LBU) Betel Conidia bassiana Proecol
pany but name out of brackets (Arysta) (LST) ) (Probioagro

such ostrinil, betel, proceol etc.
are different products Meloconts

r{m‘r‘l:r kwizda)

;rrlehebain-i..

Bio power r
 (AMC chemical)

(Stanes)
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Conclusions

The utilization of EPF is a sustainable and eco-friendly
strategy to control different phytopathogens such as fungi,
bacteria, viruses, nematodes as well as insects’ pests. Also,
it has a significant role in improving crop growth and devel-
opment. The biological activity and presence of bioactive
metabolites of EPF indicates the nature-based solution for
crop protection.
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