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Abstract
During the epoch of sustainable development, leveraging cellular systems for production of diverse chemicals via fermenta-
tion has garnered attention. Industrial fermentation, extending beyond strain efficiency and optimal conditions, necessitates 
a profound understanding of microorganism growth characteristics. Specific growth rate (SGR) is designated as a key vari-
able due to its influence on cellular physiology, product synthesis rates and end-product quality. Despite its significance, the 
lack of real-time measurements and robust control systems hampers SGR control strategy implementation. The narrative 
in this contribution delves into the challenges associated with the SGR control and presents perspectives on various control 
strategies, integration of soft-sensors for real-time measurement and control of SGR. The discussion highlights practical and 
simple SGR control schemes, suggesting their seamless integration into industrial fermenters. Recommendations provided 
aim to propose new algorithms accommodating mechanistic and data-driven modelling for enhanced progress in industrial 
fermentation in the context of sustainable bioprocessing.
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Introduction

Contemporary consumer preferences emphasize environ-
mental sustainability and factors such as product quality and 
cost competitiveness. Consequently, there is an imperative 
need to reconsider the process strategies within the field of 
bioprocess development. So the revamping involves opti-
mal utilization of resources and implementation of robust 
measuring, monitoring, modelling, and control techniques 
(Simutis and Lübbert 2015; Rathore et al. 2021; Mondal 
et al. 2023; Wainaina and Taherzadeh 2023). The accessibil-
ity of genetic engineering tools, metabolic engineering, and 
OMICS (genomics, transcriptomics, proteomics, metabo-
lomics) technologies has facilitated the rapid development of 
novel strains. Consequently, the current pipeline of products 
from the microbial route has been expanded to a wide array 
ranging from bulk chemicals to high-value therapeutics with 
batch, fed-batch, and perfusion mode of fermentation being 

standard operating platforms (perfusion mode still in the 
nascent stage at the industrial scale). Consistent control of 
product quantity and quality is inevitable for effective bio-
manufacturing through the infusion of Quality by Design 
(QbD) framework aided by applying Process Analytical 
Technology (Rathore and Winkle 2009; Rathore et al. 2021). 
A successful fermentation process is not solely ascribed to 
enhanced productivity but also to product quality, which is 
primarily governed by critical process parameters (CPPs) 
and their variations. The fluctuations in CPPs [pH, dissolved 
oxygen (DO), specific growth rate (SGR) etc.] significantly 
impact the product’s critical quality attributes, thereby influ-
encing the process’s economics. Mitigating the distortions 
by effectively controlling the process parameters is a direct 
approach to keep the batch-to-batch variation within narrow 
limits and achieve consistent product quality.

Several reviews have surfaced in the scientific literature 
over the last two decades, consolidating advancements in the 
realm of fermentation control (Yamuna Rani and Ramachan-
dra Rao 1999; Lee et al. 1999; Mandenius 2004; Rathore 
et al. 2021; Mitra and Murthy 2022). Nevertheless, the cur-
rent state of bioprocess control remains relatively basic, pri-
marily due to stringent validation prerequisites necessary 
for subsequent implementation in manufacturing processes. 
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Control strategies commonly focus on regulating process 
parameters like temperature, DO, and pH to specific levels, 
often employing PID (Proportional-Integral-Derivative) 
controllers for this purpose (Simutis and Lübbert 2015; 
Reyes et al. 2022). Today, majority of the industrial scale 
fermentations for the production of a wide array of prod-
ucts operate via fed-batch fermentation owing to numerous 
advantages ranging from attaining high cell density, higher 
product yields, and avoiding overflow metabolism. In fed-
batch fermentation control, feeding substrates and additional 
nutrients that influence the SGRs are carried out via prior 
expertise and optimal open-loop control (Narayanan et al. 
2020; Mahmoodi and Nassireslami 2022). The SGR stands 
as a crucial variable in the cultivation process, reflecting 
the physiological state of the cell culture. Its significance 
also extends to the biosynthesis of the intended product, 
with the SGR often profoundly influencing the final prod-
uct quality (Gnoth et al. 2008; Schuler and Marison 2012; 
Galvanauskas et al. 2019a). Regarding product formation, 
the protein production rate and secretory expression are 
often inversely co-related to the SGR of the microorganism. 
Especially in the case of recombinant protein production, 
it has been demonstrated that the phenomenon of growth 
coupling in protein synthesis is postulated to hinge upon 
the growth-dependent modulation of the promoter govern-
ing the expression of the recombinant gene. It is foresee-
able that the transcriptional efficacy of glycolytic promoters, 
frequently employed in yeast for protein synthesis (Schuler 
and Marison 2012), exhibits a direct correlation with glyco-
lytic flux and, consequently, with the SGR. This implies that 
the regulatory mechanisms orchestrating the transcriptional 
activity of glycolytic promoters are intricately linked to the 
physiological state of the host organism. Thereby implicat-
ing a synchronized modulation of protein production with 
the cellular growth dynamics. In certain instances, the maxi-
mum specific product formation rates manifest at SGR that 
is lower than the maximal SGR (�max) . Conversely, in other 

cases, for instance in the production of single-cell proteins, 
where biomass constitutes the final product, optimal effi-
ciency is anticipated to be achieved by running the process at 
maximum SGR. Notably, for Crabtree-positive microorgan-
isms, exceeding critical SGRs triggers a metabolic shift to 
diauxic growth due to surpassing respiratory capacity. Con-
sequently, the metabolism shifts results in the production of 
overflow metabolites, subsequently impeding growth, dimin-
ishing productivity, and negatively impacting product qual-
ity. The impact of SGR on non-growth associated products 
is not high compared to growth-associated or mixed growth 
products. However, a well-regulated growth rate at desired 
value is crucial in order to achieve high cell density cultiva-
tion (during biomass growth phase) and hence, high cell 
density results in high product (non-growth associated) titer 
during production phase. Moreover, precise control of SGR 
is crucial for achieve desired quality [e.g. activity, purity, 
post-translational modification (PTM)] of non-growth asso-
ciated product and suppressing the overflow metabolism due 
to excess substrate consumption (accumulation) leading to 
production of undesired byproduct.

The control of SGR, especially in the case of industrial 
fermentations, is quite challenging due to the lack of reliable 
online sensors, process models, and batch-to-batch variabil-
ity. Despite efforts to regulate substrate concentration, par-
ticularly in industrial fermenters, the complete eradication 
of batch-to-batch variability issues remains a challenge. To 
surmount this challenge, simple controllers like open-loop 
control are widely used in the industry (Fig. 1). The inherent 
problem associated with simple control, for instance, open-
loop control and standard PID control, may not exhibit high 
efficiency in the control of SGR due to nonlinearity (Gal-
vanauskas et al. 2019a). Dynamic feedback control methods 
are of paramount importance for process control applications 
to achieve batch-to-batch reproducibility and transferabil-
ity. Even though PID controllers have been established as 
workhorses for the control of various process parameters, 

Fig. 1  Overview of classification of various control strategies in fed-batch fermentation
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the effectiveness of PID controllers with fixed tuning param-
eters is severely impeded due to significant variations in 
the process dynamics. Therefore, several approaches have 
been proposed to tune PID control parameters in microbial 
cultivations. These methods include gain-scheduling, first-
principle models, and fuzzy systems. Other advanced control 
systems, such as adaptive and model predictive controllers, 
have been implemented to control various dynamic CPPs 
during cultivation (Galvanauskas et al. 2019a; Narayanan 
et al. 2020; Mitra and Murthy 2022). Successful implemen-
tation of advanced controllers requires robust process mod-
els that provide real-time information about state variables. 
Consequently, these estimates can be incorporated into the 
control loops for a robust and accurate control. In a nutshell, 
the control of SGR is equally dependent on reliable estima-
tion of SGR values and a robust control strategy.

However, there is a scarcity in the literature regarding 
the comprehensive exposition of employing various con-
trol strategies and soft-sensor based real-time estimations 
specifically for regulating SGR. Thus, this review aims to 
provide the necessary background, highlight the various 
control strategies to control SGR, and address different soft 
sensor-based control strategies for the estimation and control 
of SGR. A brief discussion about guidelines for selecting 
the type of controller for a particular application is entailed 
in the discussion section. Finally, challenges faced by the 
bioprocess industry in implementing advanced control 
schemes concerning the current state and possible solutions 
are presented.

Control strategies for SGR control

Open loop control

Open loop operation is the most prevalent approach in 
industrial-scale fed-batch fermentation processes. The pre-
determined substrate feeding is executed according to the 
initial process conditions and specific operating parameters, 
primarily governed by batch kinetic principles. For the ini-
tial growth stage of a process, predetermined exponential 
feed profiles are frequently discussed, where an exponen-
tial profile can be calculated based on the initial conditions 
and strain-specific parameters such as the maximum SGR. 
Several studies reported the implementation of conventional 
open loop control for various microbial systems (Jenzsch 
et al. 2006a, b; Henes and Sonnleitner 2007; Aehle et al. 
2011a; Schaepe et al. 2014; Reichelt et al. 2016). Batch-
to-batch reproducibility must be maintained to guarantee 
the quality of recombinant therapeutic proteins produced 
in mammalian cell cultures. A simple open loop strategy 
was devised to facilitate glutamine feeding for the Chinese 
Hamster Ovary (CHO) cells, and the process deviations were 

minimized by operating the SGR well below the maximum 
SGR (Aehle et al. 2011a). The predetermined feeding of the 
limiting substrate is carried as represented in Eqs. (1) & (2)

where F(t) (mL/h) is the feed rate at the time t , F0 (mL/h) is 
the initial feed flow rate, X0 (g/L) is the biomass concentra-
tion at the start of the fed-batch phase, YX/S (g biomass/g 
substrate) is the batch phase biomass yield on the substrate, 
V0 (L) is the culture volume at the start of the fed-batch 
phase, �sp is the SGR setpoint  (h−1) and S0 (g/L) is the inlet 
concentration of the carbon substrate.

The conventional open-loop feeding strategy does not 
account for biomass loss through foaming; this is a signifi-
cant problem, especially in the production of biosurfactants. 
Chenikher et al. (2010), formulated a control law to maintain 
the SGR at the desired setpoint, considering biomass loss 
due to foaming. The carbon substrate was fed in limiting 
conditions to produce an antibiotic surfactant using Bacil-
lus subtilis. The control law accounted for biomass loss, and 
the feeding rate equation was formulated as represented in 
Eq. (3).

where, fin represents the feed rate (mL/h), Xout represents 
biomass loss due to foam formation (g/L). Even in an open 
loop strategy, the new feeding control law could maintain 
SGR at 0.05  h−1, enhancing biosurfactant (mycosubtilin) 
production. Two evolutionary approaches were developed 
to optimize the fed-batch fermentation of S. cerevisiae. The 
optimization variants included maximizing the biomass con-
centration and controlling SGR. An optimal feed profile was 
attained with the aid of genetic algorithms, where the feed 
rate is designed by applying constraints (Yüzgeç et al. 2009).

Despite being implemented on a large scale for SGR con-
trol, its main advantages are the method’s simplicity and lack 
of reliance on measured variables. However, open-loop con-
trol has a significant limitation. In scenarios where defined 
feeding strategies do not consider any variation in feed con-
centration, open-loop control fails to adapt to disturbances.

Closed loop control with PI/PID controllers

The inherent disadvantages associated with the open-loop 
control system are circumvented by introducing the closed-
loop control system in the form of PI and PID controllers. 
The feedback mechanism enables the system to adjust 

(1)F(t) = F0e
�spt

(2)F0 =
X0V0�sp

YX∕S.S0

(3)V
YX∕SSin

�V

dfin

dt
= �V

YX∕SSin

�V
fin − Xoutfin
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deviations from the setpoint by setting a regulatory action. 
Indeed, the PID controller is extensively used in academic 
research and industrial applications as the control law inte-
grates feedforward and feedback terms. The PID controller’s 
popularity stems from several advantages, including its sim-
plicity in implementation and ease of tuning (Rathore et al. 
2021; Mitra and Murthy 2022). In feedback control, real-
time measurement data is employed directly to rectify pro-
cess deviations from its intended trajectory (Fig. 2). Within 
this context, a distinction exists between control schemes 
implemented to control routinely controlled variables such 
as temperature and pH. However, more intricate regulatory 
mechanisms are required to manage the parameters at the 
desired values in controlling physiological variables like 
SGR. Several researchers comprehended the complexity 
of SGR control and designed the cultivation processes that 
relied on achieving optimal or at least quasi-optimal SGR 
profiles, which lead to enhanced productivity (Jae-Ho et al. 
1989; Yoon et al. 1994; Lee et al. 1999; Wang et al. 2006). 
A generic model control with a feedforward—feedback part 
has been developed to deal with the dynamics of fed-batch 
in recombinant protein production. The approach employed 
was distinct from typical PI controllers. In this method, 
rather than adjusting the action variable directly, the focus 
was on the rate of change of the control variable, which is 
dependent on two proportional components. One propor-
tional constant (k1) to the deviation of the control variable 

from its setpoint and another proportional constant (k2) to 
the time integral of this deviation as represented in Eq. (4).

where, k1 and k2 are adjustable tuning parameters.
The final control law was based on the Eq. (5)

where, �max represents maximum substrate uptake rate, KS 
represents Monod saturation constant, KI represents inhibi-
tion constant. The control mechanism adapted to the devia-
tions in the setpoint by adjusting the feeding rate appropri-
ately, thereby minimizing the fluctuations in desired SGR 
profiles for the production of recombinant proteins (Jenzsch 
et al. 2006c). The nonlinearity exhibited during the regula-
tion of SGR was successfully dealt with by the application of 
a nonlinear PI control algorithm was proposed (De Battista 
et al. 2012). The control system was based on a minimalist 
model approach, necessitating solely the measurement of 
biomass and volume, in addition to certain limitations on 
the reaction rate. The controller is designed as a partial state 
feedback mechanism with an adaptable gain. It utilizes a 
PI algorithm based on the notion of invariant control. The 

(4)
d�set

dt
= k1

(
�set − �

)
+ k2∫

t

0

(�set − �)dt

(5)F =

⎛
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�
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k1
�
�set − �

�
+k2∫ t

0
(�set − �)dt
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Fig. 2  Block diagram of PI and 
PID controller manipulating 
substrate feed rate
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nonlinear integral action was devised to maintain the invari-
ance of a target manifold as specified by the reference model 
dynamics. Subsequently, a proportional output error feed-
back component is integrated into the control law to expedite 
the convergence process. At the same time, PI/PID control-
lers are robust in controlling physical process parameters 
and variables where linearity is involved. However, the con-
trol action is impeded by introducing nonlinear dynamics, 
alterations in operating conditions, and disturbances. More 
advanced control strategies such as adaptive control, fuzzy 
control, model predictive control (MPC), and data-driven 
control could be employed to overcome these limitations for 
improved performance and robust control.

Fuzzy control

Fuzzy logic serves as the basis of fuzzy control, designed to 
address system uncertainties without the necessity of com-
plex models. As fed-batch fermentations exhibit highly non-
linear behaviour, a rigorous approach is necessary to capture 
the system dynamics to control state variables. Nevertheless, 
fuzzy logic employs a fundamentally different approach than 
other model-based techniques as it requires no prior infor-
mation regarding the process dynamics. Based on the cur-
rent state of the process and the user’s experience with the 
process, the fuzzy logic rules are formulated to achieve the 
desired control objectives (Lee et al. 1999). The transforma-
tion of quantitative data into qualitative characteristics is the 
foundation of fuzzy control. The process of establishing the 
input–output relationship within a system using fuzzy logic 
involves a set of if–then rules and an interface mechanism. 
Initially, fuzzification transforms numerical input data into 
‘membership functions’, which evaluates how these numeri-
cal values align with a fuzzy set (typically represented by a 
value between 0 and 1) (Seborg et al. 2016). Fuzzification 
[involves taking crisp (numerical) inputs from the real world 
and mapping them to fuzzy sets] and defining a range of 
potential values for each input variable, thereby establishing 
a comparison scale. Each variable is characterized using a 
fuzzy set, assigning it a degree of membership based on its 
conformity to this set. Fuzzy control relies on a series of 

fuzzy rules that articulate the system’s conditions (Fig. 3). 
These rules are derived from the operator’s experience with 
the process and are structured as conditional statements 
using terms like ‘if’ and ‘then.’ For instance, a rule might 
state: “If the substrate concentration (S) is deemed ‘High,’ 
then the substrate feed rate (F) should be ‘low’. In this sce-
nario, the controller evaluates the substrate concentration 
as high and adjusts the substrate feed rate to a lower level. 
Since it operates based on linguistic rules rather than rigid 
mathematical systems, it becomes more adaptable to vari-
ous processes or scales. Due to the greater flexibility and 
ease of operation, fuzzy controllers have been successfully 
employed in bioprocess applications, such as to control 
the fermenter temperature and the substrate concentration 
(Escalante-Sánchez et al. 2018; Fonseca et al. 2018). How-
ever, to control the challenging bioprocess state variable, 
i.e., the SGR, only a few reports of fuzzy logic being used 
to solve the control problem are available. The first applica-
tion of fuzzy logic for SGR control was demonstrated on the 
Saccharomyces cerevisiae strain (Zhang et al. 1994). Fuzzy 
rules were based on values of DO, respiratory quotient val-
ues. The optimal SGR was maintained by regulating the sub-
strate feed rate as mentioned in Eqs. (6) and (7).

where, F∗
in

 is practical feed rate, Fin is the ideal feed rate, and 
� is the positive fuzzy factor.

A feedforward-feedback control strategy with a five-layer 
fuzzy neural network (FNN) was implemented to control 
fed-batch fermentation of recombinant E. coli JM 103 har-
bouring plasmid pUR 2921. Variations in SGR and pH were 
used as inputs for FNN to calculate the glucose feeding rate 
(output). A four-fold increase in the relative activity of �
-galactosidase was obtained by employing two FNNs (Ye 
et al. 1994). An optimized feeding rate of carbon substrate 
was achieved by implementing an FNN controller on yeast 
strain for fed-batch fermentation. The five-layer FNN con-
troller included cell concentration, glucose concentration, 

(6)F∗
in
= (1 + 𝛼)Fin(RQ < 1)

(7)F∗
in
= (1 − 𝛼)Fin(RQ > 1)

Fig. 3  Working principle of 
fuzzy logic controller
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and increment in cell concentration as the input data and 
optimized glucose feed rate as the output data. It is well 
established that values estimated from soft sensors are 
highly susceptible to deviations from the original value due 
to process-related disturbances. A robust control mechanism 
is necessary to counteract such deviations and achieve tight 
control over SGR. An adaptive fuzzy logic-based control 
algorithm coupled to a PI controller was implemented to 
control � on recombinant E. coli BL21 strain harbouring 
pBR322 plasmid (Butkus et al. 2020). Interestingly, the 
authors chose to couple the fuzzy logic with the PI control-
ler, and the input variables were oxygen uptake rate (OUR) 
and weight of the culture broth (w), the output variables 
being PI controller parameters, controller gain KC and inte-
gration time constantTi . The fuzzy rules were created based 
on the heuristic knowledge as follows.

IF OUR/w is poor, THEN Ti is big.
IF OUR/w is excellent, THEN Ti is small.
IF OUR/w is poor, THEN KC is small.
IF OUR/w is excellent, THEN KC is big.

The developed controller demonstrated better stability 
over a wide setpoint range than the gain scheduling adap-
tive controller. Thus, in combination with any controller or 
observer, fuzzy logic proves to be a promising control strat-
egy for tight control over various bioprocess state variables. 
Nevertheless, there are significant limitations linked with 
fuzzy logic systems. These limitations include imprecise 
parameter estimation due to improper fine-tuning of rules, 
a lack of adaptability for dynamic process states, alterations 
in process variables due to sensor failure, and inexperience 
of process operators. Consequently, it is challenging to have 
robust control over bioprocess state variables when a fed-
fermentation undergoes any aforementioned problem.

Adaptive control

The application of a standard PID controller is effective in 
regulating process parameters like temperature, pH, and 

DO. However, for highly dynamic variables, the fixed tun-
ing parameters of the PID controller (KC, �I , �D) might not 
inherently provide the most appropriate control action. 
Effectively controlling a dynamic variable necessitates 
adjusting the PID controller’s tuning parameters based on 
the controlled variable’s response. Adaptive control strate-
gies encompass nonlinear control algorithms that adjust the 
controller parameters automatically during the ongoing pro-
cess (Fig. 4). These algorithms incorporate various strategies 
to modify specific control parameters to address the non-
linear dynamics and system uncertainties more effectively. 
Adaptive control is a valuable alternative in cases where the 
structure of kinetics and the precise kinetic parameters are 
inaccurately or imprecisely known. The controller types are 
segregated based on the parameter estimation and adapta-
tion method. As fed-batch fermentations are associated with 
nonlinear dynamics and system uncertainties, the adaptive 
nature of various controller types makes them intriguing 
for the fed-batch fermentation process. Gain scheduling 
represents one approach within adaptive control. In this 
method, the controller tuning parameters are not fixed but 
adapted based on prior knowledge of the system, allowing it 
to accommodate and address changing dynamics. The pre-
programmed tweaking can be executed based on data analy-
sis from previous batches and examination of the controller’s 
response over time. Gain scheduling was used by Hisbullah 
and Ramachandran (2002), to manage the feed rate for a 
model baker’s yeast system. When the tuning was off, it also 
led to oscillatory behaviour at specific times. An enhance-
ment to the traditional gain scheduling method involves the 
online adaptation of controller parameters utilizing avail-
able measurement data. Adaptation allows the controller to 
dynamically adjust to non-predictable system dynamics. The 
available measurement data is initially processed in certain 
scenarios to predict a particular system parameter or state 
of interest. Subsequently, this predicted parameter or state 
is integrated into an adaptation algorithm, further refining 
the controller’s parameters and improving its responsive-
ness to the system’s changing dynamics (Duan et al. 2006; 
Butkus et al. 2020). In the aforementioned adaptive control 

Fig. 4  Block diagram of an 
adaptive control
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methods, the control law is iteratively adjusted either via a 
predetermined gain or through updates to the process model, 
where changes in the model directly impact the control law. 
However, an alternative approach involves defining the opti-
mal control action required to regulate a process variable. 
The control action aims to reduce discrepancies between the 
ideal model and the process outputs. Known as model refer-
ence adaptive control (MRAC), this technique has been uti-
lized to address the challenge of feed rate control (Oliveira 
et al. 2004). To cope with the dynamics, i.e., exponential 
increase in biomass concentration and working volume of 
culture broth for Bordetella pertussis in fed-batch fermenta-
tions, a stable MRAC was designed to control SGR. A key 
advantage of this design is that the only essential online 
measurement necessary is DO. The validity of the design 
was examined by performing the fed-batch cultivation of B. 
pertussis. The controller effectively maintained the SGR at 
the desired set point, consistently managing the increased 
demands for substrates and oxygen throughout an extended 
fed-batch cultivation duration (Soons et al. 2006). A com-
parative study focussed on designing two distinct adaptive 
control algorithms for regulating SGR in fed-batch biotech-
nological processes using E. coli for recombinant protein 
production. The results indicated that both the controllers, 
i.e., gain scheduling-based adaptive PI controller and model-
free adaptive controller utilizing artificial neural networks 
(ANN), showed comparable control performance, which 
was particularly effective when employing the substrate 
limitation approach and manipulating substrate feeding 
rates (Butkus et al. 2020). Considering the efforts involved 
in controller design and tuning, especially in developing 
adaptation/learning algorithms, the model-free adaptive 
control algorithm emerged as more suitable for industrial 
applications, especially in scenarios with limited knowledge 
of the process and its mathematical model. The investigation 
revealed that the model-free adaptive controller displayed 
better control quality, particularly under low SGR conditions 
observed during the phase of recombinant protein produc-
tion. Throughout the simulation runs, the average tracking 
error did not exceed 0.01  h−1, and the temporary overshoots 
caused by maximal disturbances stayed within the range of 

0.025–0.11  h−1 (Galvanauskas et al. 2019b). Adaptive con-
trol is particularly well-suited for dynamic systems char-
acterized by significant disturbances in control parameters. 
Unlike other control methods that reject disturbance vari-
ables, adaptive control inherently adjusts to accommodate 
disruptions in the control parameters (Landau et al. 2011). 
Consequently, this approach is highly relevant to fermenta-
tion systems with unpredictable system dynamics and erratic 
disturbances, as it possesses the inherent capability to adapt 
to these unforeseen changes and maintain effective control 
over the system. However, adaptive control is posed with 
system identification challenges to update control parameters 
based on observed process behaviour. Convergence of these 
control parameters can be difficult due to the nonlinearity of 
the processes and convergence issues can lead to oscillations 
and instability.

Model Predictive Control (MPC)

Due to its capacity to manage intricate multivariate sys-
tems, MPC is a widely utilised control technique (Forbes 
et al. 2015). MPC involves assessing the variance between 
predicted and reference values of the controlled variable 
(SGR) to ascertain the appropriate course of control action. 
A robust predictive process model must be in place to simu-
late the fermentation process, foresee future timeframes, 
and predict current outputs and forthcoming system states. 
MPC relies on these predictions, considering an optimiza-
tion process across the entire duration of fermentation. The 
optimization of a predefined cost function determines the 
most suitable control action at the current time, often in 
the form of corrections to the feed rate. The method ena-
bles the system to dynamically adjust the control actions 
in response to discrepancies between predicted and desired 
outcomes, offering a proactive and precise means of control 
in fermentation (Fig. 5). While utilizing MPC to regulate 
feed rates, selecting an appropriate optimization function 
holds pivotal importance. Two relevant approaches involve 
tracking a reference trajectory for either biomass or sub-
strate concentrations throughout the cultivation process. 
These reference trajectories can be derived from various 

Fig. 5  Block diagram of a 
model predictive control 
manipulating substrate feed rate
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sources, including previously recorded data mathematical 
models. Employing standard sensors such as pH and DO 
and at-line measurements of biomass and glucose, Kupri-
janov et al. (2013), adeptly manipulated the substrate feed 
rate through a facile integration of MPC within an industrial 
bioreactor system. This approach successfully demonstrated 
the MPC’s capability to adhere to a predetermined biomass 
growth profile. Aehle et al. (2012), utilized an MPC system 
to attain consistent batch-to-batch reproducibility in an ani-
mal cell culture, specifically targeting recombinant therapeu-
tic protein production from CHO cells. The primary control 
objective was to regulate the SGR optimally by managing 
the oxygen mass consumed by cells through adjustments 
in the glutamine feed rate. A favourable assessment of the 
controller’s performance was reported, particularly high-
lighted by the high batch-to-batch reproducibility achieved 
in cultures operating under this control system. The outcome 
underscores the effectiveness of the MPC in ensuring con-
sistent and reliable outcomes across multiple batches in the 
production process. A comparative analysis of two distinct 
model-based control (MBC) strategies for concurrently man-
aging two individual substrate uptake rates via two substrate 
feeds within an E. coli fed-batch process was conducted by 
Ulonska et al. (2018), and the controllers evaluated were an 
elemental balance controller (EBC) and MPC based on a 
mechanistic model. Both controllers exhibited similar per-
formance and demonstrated competence in fulfilling their 
designated tasks. But, for the specific application under 
investigation, the EBC was favoured due to its straightfor-
ward nature. However, the potential of the MPC lies in its 
predictive capabilities and adaptability to diverse objective 
functions. Consequently, the MPC was deemed more suit-
able when optimizing product-related objectives. In a Peni-
cillium chrysogenum fed-batch process, a nonlinear Model 
Predictive Controller was implemented and contrasted with 
a PI(D) controller and an open-loop feedback control scheme 
referred to as MBC. The control actions were guided by state 
estimation and predictions derived from a kinetic model, 
adjusted to suit the specific control objectives. State estima-
tions were facilitated through modifications, including the 

simplification of the hyphal compartmentalization and the 
incorporation of measurable OUR and CER (carbon dioxide 
evolution rate). Experimental validation revealed unstable 
behaviour in the PI(D) controller due to nonlinear process 
dynamics. In contrast, the MPC showed efficient avoidance 
of by-product formation, leading to enhanced substrate uti-
lization and an overall productivity gain of 14% compared to 
the PI(D) and MBC approaches (Kager et al. 2020). MPC is 
a robust closed-loop control approach specifically designed 
for controlling nonlinear processes. It optimizes control 
actions over the entire process duration, not merely at the 
current time instant, and incorporates disturbance modelling 
as an integral part of the optimization problem. Although 
MPC is extensively used in various industries, transition-
ing to the bioprocess industry demands a notable leap. To 
facilitate its adaptation in the bioprocess domain, substantial 
effort is required to develop dependable and accurate process 
models. Moreover, the effectiveness of MPC is contingent 
upon the accuracy of the process model and its capability to 
manage unforeseen disturbances. Nonetheless, certain draw-
backs of this method exist. One primary limitation is its 
reliance on robust process models, which may not always be 
readily available or completely accurate. Additionally, MPC 
tends to be computationally intensive, requiring significant 
computational resources, which can pose challenges in real-
time implementation.

ANN‑based control

Neural networks have the ability to deal with nonlinear sys-
tems and adaptively learn about process dynamics; hence, 
they are extensively used to solve various engineering prob-
lems (Abiodun et al. 2018). A complex nonlinear system can 
be described using an ANN, a data-driven method, without 
the use of explicit model equations (Fig. 6). Its applications 
are extensively increasing in bioprocess monitoring and con-
trol. Researchers have implemented different variants of neu-
ral networks for bioprocess monitoring and control purposes. 
An online state estimator was developed through a Radial 
Basis Function neural network. These estimates were used 

Fig. 6  Block diagram for 
artificial neural network-based 
feedback control



World Journal of Microbiology and Biotechnology (2024) 40:196 Page 9 of 19 196

for the closed-loop control, resulting in minimum tracking 
error compared to the loop strategy (Rómoli et al. 2017). 
Multiphase Artificial Neural Networks have been designed 
to predict biomass concentration in various phases of fun-
gal cultivation (Murugan and Natarajan 2019). Data avail-
ability is the major limitation associated with a data-driven 
modelling approach. A substantial amount of process data is 
necessary to train the networks and establish a relationship 
between the trained data and SGR. Biomass concentration 
is an offline measurement, and to generate a massive amount 
of data for this variable, some interpolation techniques were 
employed. Therefore, there is limited literature on SGR con-
trol using a data-driven approach. Regulated methanol feed-
ing in P. pastoris maintained a constant, optimal SGR value 
to produce alpha 1- antitrypsin. A Multi-Layer Perception 3 
neural network was developed to prevent time loss and con-
troller divergence. Based on the weight matrices, the con-
troller mitigated the error rate, which resulted in enhanced 
production of alpha 1- antitrypsin (Tavasoli et al. 2019). A 
Recurrent Neural Network (RNN) with a topology of 3:4:1 
was used to estimate biomass concentration and SGR in real-
time for producing HBsAg in P. pastoris. DO concentra-
tion, CER, and methanol concentration served as inputs for 
RNN. Constant SGR was maintained by combining the RNN 
with a PID controller, and methanol feeding was regulated 
accordingly (Table 1), resulting in higher productivity than 
conventional open loop control (Beiroti et al. 2019).

ANNs and other data-driven approaches have been used 
for control applications since it has been demonstrated that 
they can accurately predict the behaviour of fermentation 
systems based on the recorded data. In situations when first 
principle-based models and empirical models could not be 
used to represent complex, nonlinear biological systems, 
data-driven-based control renders advantages in dealing with 
nonlinearity and adapting to the continuously evolving sys-
tems. However, the inability to read the resulting network to 
comprehend linkages between variables makes this method 
less advantageous than other control strategies. As a result, 
little process knowledge is gained. Additionally, it should 
be noted that the network is not scalable because it was only 
trained for one scale and operation of the process, and it 
must be retrained for other scales and operations. Nonethe-
less, the limitations of data-driven approaches in decipher-
ing the resultant network structure to comprehend variable 
linkages pose a drawback.

Consequently, limited process knowledge is acquired, 
hindering a deeper understanding of the relationships 
between variables. Moreover, it is essential to highlight the 
scalability of the data-driven approach, which is a concern 
as they are primarily trained for a specific process scale and 
operational configuration. Retraining is necessary when 
transitioning to different scales or operations, making it less 

adaptable across diverse operational contexts (Peng et al. 
2013; Cheng et al. 2023).

Soft sensors for SGR estimation and control 
strategies

The ability to adjust control actions based on deviations from 
the setpoint becomes feasible only when measurements/
estimates of the controlled variable are readily available. 
Information obtained from offline and at-line measurements 
is often delayed for process control due to labour-intensive 
manual steps and is suspectable to various sources of error 
(Sommeregger et al. 2017). Soft sensors are an amalgama-
tion of online measurements from process analysers and 
mathematical models employed to estimate difficult-to-
measure variables. Soft sensors can be categorized into 
knowledge-driven and data-driven approaches. Knowledge-
driven strategies are developed from fundamental principles 
detailing the relationships between process variables and 
quality attributes. However, the accuracy of these models 
relies heavily on the available process knowledge (e.g., first-
principles understanding) (Mears et al. 2017a). In contrast, 
data-driven soft sensors use multivariate data analysis tools, 
such as principal component analysis or partial least squares, 
to derive models based on the available data (Glassey 2013). 
This review deals with soft sensors utilized for estimating 
SGR in real-time from various process analysers and their 
implementation to control SGR.

Soft sensor based on off‑gas analysis for SGR 
estimation and control

Accurate estimates of SGR might be impeded when there 
is no reliable sensor or model to determine biomass con-
centration online. Additionally, when the biomass con-
centrations are low, the accuracy of SGR is hampered by 
oscillations due to instability in SGR estimator values. 
An alternative approach to estimate SGR is to use other 
directly measurable stoichiometric variables such as the 
substrate uptake rate, OUR, carbon dioxide evolution/
production rate, and base consumption rate (Schuler and 
Marison 2012). OUR and CER measurements provide an 
accurate estimate of the cellular demands; as cells repli-
cate more strongly, their OUR and CER increase (Sinner 
et al. 2021). Based on this, a simple closed-loop control 
for SGR was developed with CER as the input signal. The 
SGR estimator was modelled based on a linear relationship 
between CER and SGR, as represented in Eq. (8)

A predefined SGR profile corresponds to a unique 
OUR/CER profile. Thus, OUR/CER can be used as a 

(8)CER(t) = ��(t)X(t)
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controlled variable for indirect control of SGR. Utilizing 
this approach, the glutamine feed rate for CHO cell culti-
vation was manipulated according to a modified P control 
algorithm as represented in Eq. (9)

where, Fset is the reference feed rate, i.e., the glutamine feed 
rate for the undisturbed process, and E is the error term. 
Compared to the primary P controller, which solely relies 
on the error to determine the control action, an adaptation 

(9)FGln = (1 + KPE)Fset

to the process dynamics was considered by incorporating 
the desired glutamine feed rate. A more comprehensive 
approach for accounting for the fluctuations and modifica-
tions within the system allowed for a refined control where 
the viability of CHO cells never dropped below 93% when 
SGR was maintained at 0.02  h−1 (Aehle et al. 2011b). With 
minimalistic mathematical modelling and no prior knowl-
edge of the microbial system, an accurate SGR control sys-
tem was proposed (Levisauskas 2001). The substrate feeding 
rate was manipulated to control OUR during the cultiva-
tion process so that the OUR-based ratio R (Eq. (10)) was 

Table 1  Overview of various control strategies for SGR control

Controller type Control Law Objective Reference

Open loop F(t) = F0e
�spt

V YX∕SSin
�V

dfin
dt

= �V YX∕SSin
�V

fin − Xout fin

Maximize productivity
Account for biomass loss due to 

foaming

(Jenzsch et al. 
2006a; Jacobs 
et al. 2010; 
Aehle et al. 
2011b; Mears 
et al. 2017b; 
Liu et al. 2020; 
Gautam et al. 
2021; Ibáñez 
et al. 2021; Jia 
et al. 2022; Hu 
et al. 2022)

(Chenikher et al. 
2010)

Feedback with 
PI&PID

F(t) = F0e
(�SP−�PV )t To avoid overflow metabolism and 

maximize productivity
(Pinsach et al. 

2006; Mears 
et al. 2017b; 
Habegger et al. 
2018; Beiroti 
et al. 2019; 
Kager et al. 
2020)

Adaptive control
Fin =

(�1+�2X)(Eset−E)+�PX
YS,fer,ESin−E

F = �X�

To avoid overflow metabolism and 
maintain SGR at desired setpoint

The feedback gain is continuously 
adapted to maintain SGR

(Ibáñez et al. 
2021)

(De Battista et al. 
2007)

Fuzzy logic
Fuzzy logic with 

neural networks
Fuzzy logic + PI 

controller

F∗
in
= (1 + 𝛼)Fin(RQ < 1)

F∗
in
= (1 − 𝛼)Fin(RQ > 1)

Linguistic rules
Linguistic rules

To maintain SGR closer to the 
maximum SGR

To control SGR and glucose con-
centration

Maximize productivity with a 
stable SGR

(Zhang et al. 
1994)

(Ye et al. 1994)
(Butkus et al. 

2020)

Probing control Fk =
K

h
(
�
Csp − Ck

�
+

h

Ti

∑
1≤j≤k(Csp − Cj)) Ensure continuous exponential 

feeding of substrate with DO as 
input signal for SGR control

(Johnsson et al. 
2013)

ANN based control
RNN based control

F(t) = F0e
�t

F(t) = Kp�(t) + KI∫
t
0�(t)dt + KDd�(t)∕dt

�(t) = �set − �observed,ANN

Predict the changes in SGR through 
neural network and regulate the 
feed to maintain optimal SGR

Tight control of SGR with real-
time prediction from RNN based 
observer

(Tavasoli et al. 
2019)

(Beiroti et al. 
2019)

MPC
Jk =

∑P

i=1

�yk+1,j−ysp,k+1,j�
yk+1,j

wj +
∑M

i=1

�uk+1−uk�
Δu

Jk =
∑P

i=1

�
qs − qspt

�2
+
∑P

i=1

�
qs,L − qs,L,spt

�2
+
∑M

i=1
‖�ΔF2‖

To track the predefined SGR
To control the substrate uptake 

rate which has direct influence 
on SGR

(Kager et al. 
2020)

(Ulonska et al. 
2018)
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stabilized at the desired SGR setpoint; then, the SGR will 
asymptotically approach the setpoint.

A PI controller was implemented to control R, and the 
controller gain was adapted to the time-varying dynamics 
using a gain scheduling approach with the feeding rate as 
a scheduling variable. The dependence of different con-
trol algorithms on the accuracy of biomass growth models 
for the online estimation and control of SGR in fed-batch 
fermentations can sometimes introduce challenges due to 
discrepancies between the plant and process models. To 
overcome this issue, soft sensors that do not rely on a spe-
cific biomass model can be employed. A soft sensor was 
developed for the real-time estimation of SGR. This soft 
sensor utilized online measurement data of OUR dynam-
ics. By considering the dynamics of oxygen consumption 
and a tuning parameter ((β)⁄(α)) specific to the microbial 
strain, the study achieved the real-time estimation of SGR 
without the necessity of a biomass growth model (Survyla 
et al. 2021).

The results from the SGR control study reported (Soons 
et al. 2006) have demonstrated that a conventional control 
system utilizing Proportional-Integral (PI) controllers can 
effectively achieve acceptable control quality. However, 
applying gain-scheduling algorithms, as discussed in the 
adaptive control section, and using the CER signal as a 
scheduling variable offers a more flexible approach to adapt-
ing controller parameters to the time-varying dynamics of 
the controlled process, resulting in improved control quality. 

(10)R =
dOUR

dt

1

OUR

It’s worth noting that a well-established method involves 
implementing a Luedeking-Piret type correlation between 
CER and biomass growth rate, which has been shown to 
provide more accurate results.

Another option for real-time SGR estimation involves 
using OUR data (Table 2). Nevertheless, when additional 
oxygen is introduced into the aeration air to maintain critical 
DO levels at higher cell densities, the accuracy of OUR data 
can be compromised due to variations in off-gas composi-
tion, pressure, and gas flow rate. As a result, it is advisable to 
employ CER data in SGR estimation relationships, particu-
larly when controlling high-density cultivation processes.

SGR control based on DO concentration

Achieving high volumetric productivity hinges on optimiz-
ing the feed rate, requiring a delicate balance to maximize 
SGR while preventing oxidative capacity saturation or other 
limiting phases in respiratory metabolism. A notable chal-
lenge lies in managing the oxygen demand, which is cru-
cial for sustaining microorganism exponential growth at the 
desired SGR. This demand can surpass the fermenter sys-
tem’s oxygen transfer capacity at elevated biomass concen-
trations, hindering continued growth and productivity. The 
“probing control” approach circumvents these challenges by 
assessing the system’s response to feed rate variations. DO 
saturation in the fermentation broth is a crucial response 
variable, directly correlating with overflow metabolism and 
oxygen consumption. Utilizing reliable probes for regular 
and precise DO measurements offers a practical and effective 
means of controlling the feed rate in fermentation processes. 

Table 2  Summary of soft sensor-based SGR estimation and control

Process analyser Input signal for estimator model Estimator model Controller References

Exhaust gas analyser OUR
CER
OUR
CER

�est =
rXYO2∕X

XYO2∕X

�est =
rXYCO2∕X

XYCO2∕X

�est =
dOUR

dt

1

OUR

�est =
CER(t)

∫ t
0CER(�)d�

–
–
–
Adaptive control

(Wechselberger et al. 2013)
(Wechselberger et al. 2013)
(Levisauskas 2001)
(Lee et al. 1999)

Dielectric spectroscopy Capacitance
Cell number

�est(t) =
ln(CX,t∕CX,t−1)

tt−tt−1
N(t) = N0e

�t

PID
PID

(Dabros et al. 2010; Ehgartner et al. 
2017; Katla et al. 2019)

(Zitzmann et al. 2018)
NIR spectroscopy Biomass concentration �est =

rX,NIR
XNIR

PID (Soons et al. 2008; Warth et al. 
2010)

Biocalorimeter Metabolic heat rate
Metabolic heat rate

dqP

dt
= �qP

�est =
qP

X0V0YQ∕X+(Qt−Q0)

PI and PID
Adaptive PID, PID and PI

(Biener et al. 2010, 2012; Paulsson 
et al. 2014; Kottelat et al. 2021)

(Schuler and Marison 2012; Mohan 
et al. 2022; Allampalli et al. 
2022)
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Henes and Sonnleitner (2007) applied the probing control 
approach to industrially relevant microorganisms, including 
S. cerevisiae, P. pastoris, and E. coli. The method involved 
initially feeding the limiting substrate at an exponential rate. 
Once system stability was achieved, feeding was halted or 
reduced to observe the DO signal response. In the absence of 
overfeeding, the DO signal rose due to substrate limitation, 
and upon reinitiating feeding, the signal rapidly declined. 
DO levels, feed rate perturbation, and perturbation duration 
influenced the peak size. This approach offers simple and 
susceptible detection of under and over-feeding, as even a 
slight accumulation of overflow metabolites/substrate yields 
a significantly smaller signal. The probing control approach 
typically results in a piecewise linear feed rate trend. A final 
biomass of 118 g/L was achieved with P. pastoris, 93 g/L 
for E. coli, and 85 g/L for S. cerevisiae. To address the limi-
tations of a linear feed rate trend, alternative strategy that 
utilizes different analysis methods of response to external 
perturbations was devised. In this method, the frequency 
spectrum of the DO signal was calculated, and the power 
spectral density for frequencies close to that of the exter-
nally applied disturbances was employed to derive the con-
trol variable. The afore-cited method enabled the continu-
ous tracking of optimal feed rate, effectively overcoming the 
inherent risks of probing control. The developed method was 
implemented on a pilot scale fermenter to produce amylase 
using a model strain of Bacillus licheniformis. The limiting 
substrate was fed into the fermenter based on the control law 
with a gain scheduler, as presented in Eqs. (11) and (12).

where, Fk is the feed rate at the current sampling point k, 
Ti is the integral time constant, h is the sampling rate, K 
is the gain constant. Overflow metabolism was success-
fully curtailed with this methodology, and an increment of 
24% in biomass concentration was attained compared to 
the standard controller (Johnsson et al. 2013). The probing 
control approach offered by the DO signal provides the most 
accessible methodology for controlling SGR, as there is no 
additional requirement for costly online sensors and math-
ematical models. However, in the case of high cell density 
cultivation, where oxygen limitation is quite common, the 
DO signal will be subjected to many perturbations. It may 
interact with the SGR control loop, leading to the substrate 
being fed erroneously.

(11)Fk =
K

h

((
Csp − Ck

)
+

h

Ti

∑
1≤j≤k

(Csp − Cj)

)

(12)K = K0

√
Fk−1

Fmin

Soft sensor based on dielectric spectroscopy for SGR 
estimation and control

In the context of estimating biomass concentration in real-
time, spectroscopy-based monitoring, including fluorescence 
probes and dielectric spectroscopy, was widely employed 
over a class of microbial systems (Haack et al. 2007; Ödman 
et al. 2009; Ehgartner et al. 2017). However, there were 
limitations found with fluorescence probes when used in 
cultures complex media. The changes in the composition 
of the medium influenced the fluorescence, rendering these 
probes less effective in such circumstances (Nielsen et al. 
1996). Dielectric spectroscopy emerged as a better alterna-
tive because it could measure only viable cell concentration.

The principle for biomass measurement via dielectric 
spectroscopy is based on the function of cells as capacitors. 
When an electric field is introduced to a cell suspension, 
charge separation or polarization transpires at the cell poles. 
Polarization happens due to the movement of intracellular 
ions along the electric field, hindered by the low conductiv-
ity of the plasma membrane, which serves as an insulating 
barrier. Consequently, ions from the cytoplasm and culture 
medium migrate toward the electrode with the opposite 
charge. The measured signal is a function of the volume frac-
tion of the cells. Only cells with an intact membrane poten-
tial are recorded with dielectric spectroscopy. Hence, the 
method is insensitive to dead cells and only measures viable 
biomass (Dabros et al. 2010; Justice et al. 2011; Moore et al. 
2019). Controlling the SGR in filamentous cultures is par-
ticularly challenging due to the relatively low growth rate 
levels compared to organisms like E. coli. The low SGRs 
create difficulties in controlling and assessing the control 
strategy, primarily because of the lower signal-to-noise 
ratio (Wechselberger et al. 2013). Additionally, fluctuations 
in biomass yields throughout the production process have 
emerged as a significant concern in SGR control. To miti-
gate potential error propagation in calculating the SGR, the 
control strategy prioritizes tracking biomass trends instead 
of the SGR directly. The cell growth rate was estimated by 
linearizing the growth rate equation for an exponential phase 
which is shown in Eq. (13)

where, CX is the current biomass concentration, Vt is the 
culture volume at current t . Due to the fed-batch dynamics, 
changes in culture volume are accounted for. The controlled 
variable was incorporated into a suitable control algorithm 
based on estimates derived from the dielectric signal. The 
designed control strategy was intended to be adaptable dur-
ing both the growth and decline phases of the process, ena-
bling automatic adjustments to changing biomass yields. It 

(13)
�
est

=

ln

(
C
X,tVt

C
X,ΔtVX,Δt

)

Δt
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utilized a feedforward-feedback scheme where the error term 
was integrated into the exponential segment of the feed rate 
equation (Table 1). This approach significantly improved 
controller performance by reducing high-frequency oscilla-
tions in both the controlled and manipulated variables (Dab-
ros et al. 2010; Katla et al. 2019). A decline in the SGR 
arising from factors such as nutrient depletion, accumulation 
of toxins, or other physiological and chemical stresses could 
significantly impact cellular energy production. Which, in 
turn, may affect the quantity and quality of monoclonal 
antibodies. In the context of mAb production, the improper 
execution of PTMs might become more frequent when SGR 
is not effectively regulated. Real-time estimation of SGR 
through online monitoring of biomass growth has proven 
invaluable and applied to the cultivation of recombinant 
immunoglobulin G on CHO cells, allowing for the avoid-
ance of nutrient starvation. By renewing the medium based 
on the online estimation of SGR, a consistent value of SGR 
was maintained throughout the entire cultivation process (Li 
et al. 2019).

Soft sensor based on metabolic heat rate 
production for SGR estimation and control

Microbial growth is facilitated by the breakdown of high-
energy nutrients into lower-energy components via catabo-
lism. The energy derived from the catabolism drives the 
replication of cells through an anabolic process, and the 
excess energy from the catabolism process is exported as 
entropy from the cell membrane. According to the sec-
ond law of thermodynamics, the cell growth process is 
spontaneous, and cellular proliferation is fostered by the 
dissipation of Gibb’s energy to sustain the metabolism 
(Von Stockar et al. 2006). The quantification of net meta-
bolic heat dissipation is effectively measured through a 
biocalorimeter (Landau 1996). The interplay between 
Gibb’s energy dissipation and microbial growth has been 
successfully investigated, elucidating fundamental prin-
ciples governing metabolic regulation and cellular pro-
liferation (Maskow et al. 2010). Utilizing Gibb’s energy 
dissipation concept, multiple frameworks have been estab-
lished to analyse various types of microbial metabolism, 
enabling real-time monitoring of diverse bioprocess sys-
tems. In the context of industrial-scale fermenters, their 
low surface-to-volume ratio leads to substantial metabolic 
heat generation, rendering it a crucial online signal for 
monitoring and controlling various bioprocess systems 
(Maskow and Harms 2006). Catabolite repression is quite 
notably significant in industrially important strains like S. 
cerevisiae. Consequently, the principal objective of any 
fed-batch fermentation involving this yeast is to mitigate 
excessive ethanol production. The calorimetric signal was 
used as an input parameter to regulate glucose feeding and 

avoid catabolite repression. The feedback mechanism to 
the controller was based on the decrement of heat signal 
(glucose exhaustion), and implementing controlled feed-
ing of glucose resulted in a 10% higher biomass yield than 
that achieved in batch fermentation (Larsson et al. 1991). 
A significant hindrance for a lab-scale reaction calorim-
eter (RC1 Mettler-Toledo) is the inability to measure very 
low heat production rates (< 10 mW/L). Addressing this 
constraint, the calorimeter was modified and rendered 
it suitable for biological applications. Using the modi-
fied calorimeter (bio-RC1) fed-batch cultures of Bacillus 
sphaericus 1593 M was performed to produce parasporal 
insecticidal crystal proteins. The process heat flow (qP) 
was used to calculate the substrate consumption rate and 
a correlation was developed to regulate the substrate feed 
rate based on process heat evolved during the fed-batch 
cultivation (Voisard et al. 2002). Biener et al. (2010), uti-
lized process heat flow to estimate SGR in real-time, as 
presented in Eq. (14), for cultivating a recombinant E. coli 
K12 TB1 strain bearing the plasmid pGLO.

The estimated SGR values were integrated into a feed-
forward-feedback PI controller for regulated feeding. Only 
the feedforward component was engaged in the initial hour 
of fed-batch fermentation, allowing the system to stabilize. 
Subsequently, both controller components were activated 
to maintain the SGR at 0.2  h−1. The applied control strat-
egy produced a notably high biomass concentration, reach-
ing 120 g/L. A similar control strategy has been applied 
to S. cerevisiae, and the SGR was maintained below the 
critical value to prevent the formation of ethanol due to the 
Crabtree effect. With this calorimetric-based control strat-
egy, high biomass concentrations of 110 g/L were obtained 
consistently in a 30L lab-scale biocalorimeter (Biener 
et al. 2012). The SGR estimator used in the previously 
cited literature works well for microbial systems when the 
metabolic heat rate production is lower (< 10 W/L). How-
ever, an alternate SGR estimator becomes essential for 
successful control applications when dealing with micro-
bial systems that exhibit higher heat production. Schuler 
and Marison (2012), introduced an SGR estimator that 
considers the cumulative heat generated during the fer-
mentation as represented in Eq. (15).

where, YQ∕X , biomass heat yield coefficient (kJ/g) and Qt , 
cumulative heat at that time instant (kJ/L) and Q0 is cumu-
lative heat at the end of the batch phase. The developed 
estimator was tested on three different Crabtree-negative 

(14)
dqP

dt
= �qP

(15)�est =
qP

X0V0YQ∕X + (Qt − Q0)
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yeast strains Candida utilis, Kluyveromyces marxianus, and 
P. pastoris. A simple PI feedback strategy, where the SGR 
estimated as presented in Eq. (15) and the error term of the 
controller were looped into the exponential term of the feed 
rate equation as shown in Eq. (16).

The implemented PI controller demonstrated higher 
stability, yielding reduced controller errors across all des-
ignated setpoints when compared to the feedforward con-
troller. The average tracking error did not exceed 0.08  h−1, 
indicating the PI controller’s effectiveness. The issue of 
noisy signals stemming from the SGR estimator, influenced 
by online estimations based on hardware sensor inputs and 
mathematical models, was addressed by applying digital sig-
nal filtering methods. Paulsson et al. (2014), applied filters 
such as moving average and Savitzky-Golay to process the 
raw signal emanating from the SGR estimator. The refined 
signal was then integrated into the PI controller to regulate 
glucose feed in the fed-batch phase on recombinant E. coli 
HMS 174(DE3) strain producing green fluorescence protein 
(GFP). Utilizing a stable input signal resulted in the satis-
factory performance of the PI controller in the fed-batch 
phase, which resulted in 12 g/L of GFP. A novel predictive 
process control strategy employing calorespirometry, which 
involves simultaneous measurements of heat and  CO2 evo-
lution rates, was developed to optimize methanol feeding 
for the production of biopolymer polyhydroxy butyrate on 
methylotrophic bacterium Methlyobacterium extorquens. 
This innovative methodology allowed methanol concentra-
tion to be maintained below the critical limit, and the fed-
batch fermentation was carried out at higher growth rates 
(0.2  h−1), producing 6.5 g/L of polyhydroxy butyrate. More-
over, the calorespirometry control strategy also facilitated 
detection of shifts in microbial metabolism (Rohde et al. 
2016). The heat signal emanating from the biocalorimeter 
is the resultant of substrate consumption by the cells and 
SGR is estimated from this signal by applying derivative 
over heat signal. However, the derivative term is prone to 
noise and ultimately provides noisy estimates if data is not 
pre-treated. To avoid data pre-treatment steps and to cap-
ture the entire dynamics of the fermentation Kottelat et al. 
(2021), designed a novel control strategy based directly on 
heat signal. The study involved modelling time trajectories 
of the heat signal setpoint corresponding to different SGRs. 
The controller was programmed to track this dynamic set-
point during aerobic cultivations of S. cerevisiae. Reliable 
SGR control was achieved within the range of 0.075–0.2  h−1 
and the average root mean square errors were observed to be 
15 ± 3%, demonstrating the accuracy and reliability of this 
novel control strategy. High molecular weight hyaluronic 
acid production requires a tight control of SGR in a very 

(16)FPI(t) = F0e
((�est+KP�(t)+KI∫ t

0
�(t)dt)t)

narrow range. A PID feedback controller with metabolic 
heat rate as an input signal was employed to produce hyalu-
ronic acid in Streptococcus zooepidemicus. The developed 
feedback strategy successfully established a robust control 
system capable of maintaining SGR in close proximity to 
the setpoint with minimal tracking error. Using an exponen-
tial feed rate, executed at the lower SGR value (0.05  h−1), 
enhanced hyaluronic acid’s molecular weight at 2.98 MDa. 
Moreover, calorimetric signal-based SGR control by PID 
controller mitigated adverse effects resulting from the secre-
tion of other end products while consistently maintaining 
regular metabolic activities (Mohan et al. 2022). Therapeutic 
protein production via microbial fermentation poses many 
advantages, yet CPPs must be tightly controlled within a nar-
row operating range to ensure consistent product quality. An 
adaptive PID control was implemented for human interferon 
α2b production in glycoengineered P. pastoris to address 
this need. Metabolic heat rate signal was utilized as input 
signal for SGR estimation and gain scheduling of controller 
tuning parameters ensured that SGR was in the proximity of 
the desired setpoint values for longer duration (> 20 h) with 
a deficient average tracking error (Allampalli et al. 2022).

Discussion

The industrial paradigm is progressively embracing the QbD 
approach, aimed at integrating quality into the product from 
its inception. Accomplishing this necessitates incorporating 
advanced bioprocess modelling and control, a task achiev-
able only by applying sophisticated process engineering 
tools. Such tools encompass advanced methodologies like 
comprehensive data analysis and intricate process model-
ling. These tools are pivotal in providing a deeper under-
standing of bioprocesses and fostering the development of 
strategies to achieve consistent and optimal product quality. 
Monitoring and controlling SGR within a fed-batch fer-
mentation process is a significant focal point for process 
optimization. Such a CPP significantly impacts metabolic 
rates and influences the volume dynamics within the system. 
When an inhibitory substance, such as organic acids, reaches 
a certain threshold concentration, it can suppress the growth 
of cells and cause a decline in the SGR. By continuously 
monitoring the SGR and notifying the user when there is a 
significant drop from the desired set point value, an alarm 
can be triggered to halt the addition of substrate and initiate 
in-situ product recovery methods, such as membrane filtra-
tion with cell recycle. The area of interest here is an intrigu-
ing subject for review, considering that the control of SGR 
is aided by manipulating substrate feed rate. This versatile 
variable can be employed to achieve multiple objectives in 
bioprocessing scenarios. A comparative analysis (Table 3) 
is provided, evaluating the advantages of different methods 
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against their implementation prerequisites, which aims to 
facilitate decision-making processes during the formula-
tion of control strategies. While the list (Table 3) provided 
might not encompass all available options, it seeks to aid 
decision-making by considering the existing competencies 
regarding accessible process models or historical data. Each 
control strategy outlined in the discussion is categorized 
based on its fundamental underpinning: historical data, a 
process model, or user experience (Table 3). It is impor-
tant to note that while all control strategies require a certain 
level of process experience to establish objectives and the 
methodology, the categorization of various control strate-
gies based on their features intends to highlight the primary 
requirement for each controller type. Notably, probing con-
trol and fuzzy control stand out as valuable options, as they 
don’t necessitate a fully developed model or an extensive 
historical data set for their development, proving adept at 
managing unpredictable process dynamics and disturbances. 
Conversely, MPC becomes highly desirable if a robust pro-
cess model is available, as it embodies various benefits 
noted in the analysis. Leveraging a process model is highly 
advantageous, particularly in developing a flexible control 
strategy that can evolve alongside the model’s development. 
Adaptive control and MPC are well-suited for this purpose. 
Such an approach not only fosters flexibility but also aids in 
identifying areas with inadequate process comprehension, 
consolidating process knowledge effectively (Table 3). MPC 
offers a comprehensive suite of benefits and provides com-
plete autonomy in selecting the objective function for the 
controller. For broader adoption of model-based methods in 
industrial settings, focusing on continuous process model 
refinement and uncertainty analysis is imperative. Ongoing 
effort is crucial to ensure the availability of robust and appli-
cable models suitable for addressing control challenges in 
industrial biological processes. Nevertheless, implementing 
these advanced tools in cultivation processes poses chal-
lenges primarily due to the scarcity of experimental data 
for constructing accurate models. Additionally, the inherent 
uncertainties linked to the dynamics of bioprocesses con-
tribute to this challenge. The absence of dependable and 
cost-effective online sensors capable of monitoring crucial 

process variables further compounds the difficulty in lev-
eraging these advanced tools for comprehensive process 
understanding and effective control.

Current challenges and future perspectives

Despite various control strategies, no universally appli-
cable perfect approach exists due to the diverse nature 
of bioprocesses. Thus, selecting an appropriate control 
method tailored to the specific application is vital for 
optimal results. Integrating advanced control systems in 
industrial fed-batch fermentation poses challenges, with 
most large-scale bioreactors currently employing primary 
control of process parameters such as temperature, pH, 
and DO. This stems from historically lower quality control 
demands, high costs associated with advanced systems, 
and limited industry acceptance. While literature show-
cases sophisticated strategies, practical implementation is 
hindered by the need for frequent readjustments, model 
identification, and maintenance tasks. Outsourcing such 
tasks incurs additional expenses and potential produc-
tion delays. Addressing these challenges is essential for 
the widespread adoption of advanced control systems in 
industrial bioprocessing. Authors opine that securing the 
support of regulators and aligning their stance and direc-
tion on topics such as model validation models and model-
based decision-making is of paramount importance. It will 
significantly influence the trajectory and pace at which the 
bioprocess industry adopts and applies these methodolo-
gies. Relatively simple control algorithms must be imple-
mented to control SGR in microbial and mammalian cell 
cultivations at an industrial scale. It is recommended that 
OUR/CER signals be used in control algorithms because 
of their lower estimation errors. Most industrial bioreac-
tors are equipped with gas analysers and mass flow con-
trollers. To address the potential instability arising from 
SGR estimators based on OUR/CER as an input signal, 
the control of SGR might commence with an open-loop 
control for some hours, followed by applying a feedfor-
ward-feedback control strategy. Furthermore, as previously 
discussed in the biocalorimeter section, it is proposed that 

Table 3  Overview of 
characteristics of various 
controllers

Control method Advantages/features

Nonlinear dynamics Counter distur-
bances/uncertainties

User experience Process insights

Open loop Low Low High Low
P, PI or PID Average Average High Average
Fuzzy logic Low Low High Average
Data-driven High Average Low Low
MPC High High Low High
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any bioreactor can be modified into a fermentation calo-
rimeter by adding a few high-sensitive temperature probes. 
Consequently, the microbial heat generated could be used 
as an input signal for SGR estimation and control.

Industry 4.0 is spurred by the emergence of artificial 
intelligence and various other digitalization (machine 
learning) techniques. The digitalization of bioprocesses is 
fostered by enabling real-time measurement, monitoring, 
modelling, and control of multiple CPPs with the aid of 
big data emerging from the industries. Data-driven mod-
els, which rely on the data derived from diverse sources 
such as omics data, state variables obtained from various 
online sensors, and information curated from public data-
bases, are leveraged to construct models that encapsulate 
the input–output relationships. The utilization of big data 
from a multitude of sources allows data-driven models 
to discern patterns and correlations that may elude con-
ventional, time-consuming, and labour-intensive analyti-
cal approaches. Grounded in empirical observations and 
historical data, these models enable operators to make 
informed decisions and adjustments to enhance large-scale 
fermentation operations’ efficiency and overall perfor-
mance. The application of these models in industrial fer-
mentation underscores their capacity to translate data-rich 
information into actionable strategies, thereby contributing 
to automation and precision biomanufacturing.

Conclusion

Robust control of SGR in fed-batch bioprocesses is crucial 
for optimizing overall productivity. While various control 
strategies exist, there is no universal solution, emphasizing 
the need for tailored approaches. Despite sophisticated con-
trol systems demonstrated in simulations, industrial adop-
tion remains limited due to cost and managerial hesitancy. 
Simple soft-sensor-based control algorithms using OUR/
CER signals are recommended for SGR control at an indus-
trial scale, as industrial gas analysers are embedded with gas 
pressure compensators, ensuring good accuracy and preci-
sion of the measurements. Metabolic heat rate-based input 
signal for SGR control is another potential soft-sensor-based 
control at the industrial scale since the existing bioreactors 
do not require any modifications apart from installing highly 
sensitive temperature probes, which could track the tempera-
ture differences accurately.

Acknowledgements Not applicable

Author contributions SSP: Conceptualization, Writing—Original 
draft, Writing—review & editing, Visualization. SS: Conceptualiza-
tion, Resources, Supervision, Writing—review & editing.

Funding The authors gratefully acknowledge the financial support 
(fellowship) from the Department of Science and Technology-Science 
and Engineering Research Board (DST-SERB), Government of India, 
for the successful accomplishment of this work (CRG/2019/002882).

Data Availability No datasets were generated or analysed during the 
current study.

Declarations 

Competing interests The authors declare that they have no known 
competing financial interests or personal relationships that could have 
appeared to influence the work reported in this manuscript.

Ethics approval Not applicable.

Consent for publication Not applicable.

References

Abiodun OI, Jantan A, Omolara AE et al (2018) State-of-the-art in 
artificial neural network applications: a survey. Heliyon 4:e00938. 
https:// doi. org/ 10. 1016/j. heliy on. 2018. e00938

Aehle M, Bork K, Schaepe S et al (2012) Increasing batch-to-batch 
reproducibility of CHO-cell cultures using a model predictive 
control approach. Cytotechnology 64:623–634

Aehle M, Kuprijanov A, Schaepe S et al (2011a) Increasing batch-
to-batch reproducibility of CHO cultures by robust open-loop 
control. Cytotechnology 63:41–47. https:// doi. org/ 10. 1007/ 
s10616- 010- 9320-y

Aehle M, Schaepe S, Kuprijanov A et al (2011b) Simple and efficient 
control of CHO cell cultures. J Biotechnol 153:56–61. https:// doi. 
org/ 10. 1016/j. jbiot ec. 2011. 03. 006

Allampalli P, Rathinavelu S, Mohan N, Sivaprakasam S (2022) Deploy-
ment of metabolic heat rate based soft sensor for estimation and 
control of specific growth rate in glycoengineered Pichia pastoris 
for human interferon alpha 2b production. J Biotechnol 359:194–
206. https:// doi. org/ 10. 1016/j. jbiot ec. 2022. 10. 006

Beiroti A, Hosseini SN, Aghasadeghi MR, Norouzian D (2019) Com-
parative study of μ -stat methanol feeding control in fed-batch 
fermentation of Pichia pastoris producing HBsAg: an open-loop 
control versus recurrent artificial neural network-based feedback 
control. J Chem Technol Biotechnol 94:3924–3931. https:// doi. 
org/ 10. 1002/ jctb. 6192

Biener R, Steinkämper A, Hofmann J (2010) Calorimetric control for 
high cell density cultivation of a recombinant Escherichia coli 
strain. J Biotechnol 146:45–53. https:// doi. org/ 10. 1016/j. jbiot ec. 
2010. 01. 004

Biener R, Steinkämper A, Horn T (2012) Calorimetric control of the 
specific growth rate during fed-batch cultures of Saccharomyces 
cerevisiae. J Biotechnol 160:195–201. https:// doi. org/ 10. 1016/j. 
jbiot ec. 2012. 03. 006

Butkus M, Repšytė J, Galvanauskas V (2020) Fuzzy logic-based adap-
tive control of specific growth rate in fed-batch biotechnological 
processes. A simulation study. Appl Sci 10:6818. https:// doi. org/ 
10. 3390/ app10 196818

Cheng Y, Bi X, Xu Y et al (2023) Artificial intelligence technolo-
gies in bioprocess: opportunities and challenges. Biores Technol 
369:128451. https:// doi. org/ 10. 1016/j. biort ech. 2022. 128451

Chenikher S, Guez JS, Coutte F et al (2010) Control of the specific 
growth rate of Bacillus subtilis for the production of biosurfactant 

https://doi.org/10.1016/j.heliyon.2018.e00938
https://doi.org/10.1007/s10616-010-9320-y
https://doi.org/10.1007/s10616-010-9320-y
https://doi.org/10.1016/j.jbiotec.2011.03.006
https://doi.org/10.1016/j.jbiotec.2011.03.006
https://doi.org/10.1016/j.jbiotec.2022.10.006
https://doi.org/10.1002/jctb.6192
https://doi.org/10.1002/jctb.6192
https://doi.org/10.1016/j.jbiotec.2010.01.004
https://doi.org/10.1016/j.jbiotec.2010.01.004
https://doi.org/10.1016/j.jbiotec.2012.03.006
https://doi.org/10.1016/j.jbiotec.2012.03.006
https://doi.org/10.3390/app10196818
https://doi.org/10.3390/app10196818
https://doi.org/10.1016/j.biortech.2022.128451


World Journal of Microbiology and Biotechnology (2024) 40:196 Page 17 of 19 196

lipopeptides in bioreactors with foam overflow. Process Biochem 
45:1800–1807. https:// doi. org/ 10. 1016/j. procb io. 2010. 06. 001

Dabros M, Schuler MM, Marison IW (2010) Simple control of spe-
cific growth rate in biotechnological fed-batch processes based on 
enhanced online measurements of biomass. Bioprocess Biosyst 
Eng 33:1109–1118. https:// doi. org/ 10. 1007/ s00449- 010- 0438-2

De Battista H, Picó J, Picó-Marco E (2012) Nonlinear PI control of 
fed-batch processes for growth rate regulation. J Process Control 
22:789–797. https:// doi. org/ 10. 1016/j. jproc ont. 2012. 02. 011

De Battista H, Picó J, Picó-Marco E, Mazzone V (2007) Adaptive slid-
ing mode control of fed-batch processes using specific growth rate 
estimation feedback. IFAC Proc Vol 40:127–132. https:// doi. org/ 
10. 3182/ 20070 604-3- MX- 2914. 00023

Duan S, Shi Z, Feng H et al (2006) An on-line adaptive control based 
on DO/pH measurements and ANN pattern recognition model for 
fed-batch cultivation. Biochem Eng J 30:88–96. https:// doi. org/ 10. 
1016/j. bej. 2006. 02. 007

Ehgartner D, Hartmann T, Heinzl S et al (2017) Controlling the spe-
cific growth rate via biomass trend regulation in filamentous fungi 
bioprocesses. Chem Eng Sci 172:32–41. https:// doi. org/ 10. 1016/j. 
ces. 2017. 06. 020

Escalante-Sánchez A, Barrera-Cortés J, Poggi-Varaldo HM et al (2018) 
A soft sensor based on online biomass measurements for the glu-
cose estimation and control of fed-batch cultures of Bacillus thur-
ingiensis. Bioprocess Biosyst Eng 41:1471–1484. https:// doi. org/ 
10. 1007/ s00449- 018- 1975-3

Fonseca RR, Franco IC, Da Silva FV. Bioreactor temperature con-
trol using a generic fuzzy feedforward control system. In: 15th 
IASTED international conference intelligent systems and control 
(ISC 2016)

Fonseca RR, Sencio RR, Franco IC, Da Silva FV (2018) An adaptive 
fuzzy feedforward-feedback control system applied to a sacchari-
fication process. Chem Prod Process Model. https:// doi. org/ 10. 
1515/ cppm- 2018- 0014

Forbes MG, Patwardhan RS, Hamadah H, Gopaluni RB (2015) Model 
predictive control in industry: challenges and opportunities. IFAC-
PapersOnLine 48:531–538. https:// doi. org/ 10. 1016/j. ifacol. 2015. 
09. 022

Galvanauskas V, Simutis R, Levišauskas D, Urniežius R (2019a) Prac-
tical solutions for specific growth rate control systems in industrial 
bioreactors. Processes 7:693. https:// doi. org/ 10. 3390/ pr710 0693

Galvanauskas V, Simutis R, Vaitkus V (2019b) Adaptive control of 
biomass specific growth rate in fed-batch biotechnological pro-
cesses. A comparative study. Processes 7:810. https:// doi. org/ 10. 
3390/ pr711 0810

Gautam A, Sahai V, Mishra S (2021) Development of a dual specific 
growth rate-based fed-batch process for production of recombi-
nant human granulocyte colony-stimulating factor in Pichia pasto-
ris. Bioprocess Biosyst Eng 44:103–112. https:// doi. org/ 10. 1007/ 
s00449- 020- 02427-0

Glassey J (2013) Multivariate data analysis for advancing the interpre-
tation of bioprocess measurement and monitoring data: measure-
ment, monitoring, modelling and control of bioprocesses. Adv 
Biochem Eng Biotechnol 132:167–191

Gnoth S, Jenzsch M, Simutis R, Lübbert A (2008) Control of culti-
vation processes for recombinant protein production: a review. 
Bioprocess Biosyst Eng 31:21–39. https:// doi. org/ 10. 1007/ 
s00449- 007- 0163-7

Haack MB, Lantz AE, Mortensen PP, Olsson L (2007) Chemometric 
analysis of in-line multi-wavelength fluorescence measurements 
obtained during cultivations with a lipase producing Aspergillus 
oryzae strain. Biotechnol Bioeng 96:904–913. https:// doi. org/ 10. 
1002/ bit. 21170

Habegger L, Rodrigues Crespo K, Dabros M (2018) Preventing over-
flow metabolism in crabtree-positive microorganisms through 

on-line monitoring and control of fed-batch fermentations. Fer-
mentation 4:79. https:// doi. org/ 10. 3390/ ferme ntati on403 0079

Henes B, Sonnleitner B (2007) Controlled fed-batch by tracking the 
maximal culture capacity. J Biotechnol 132:118–126. https:// doi. 
org/ 10. 1016/j. jbiot ec. 2007. 04. 021

Hisbullah MH, Ramachandran K (2002) Comparative evaluation 
of various control schemes for fed-batch fermentation. Bio-
process Biosyst Eng 24:309–318. https:// doi. org/ 10. 1007/ 
s00449- 001- 0272-7

Hu R, Cui R, Xu Q et al (2022) Controlling specific growth rate for 
recombinant protein production by Pichia pastoris under oxida-
tion stress in fed-batch fermentation. Appl Biochem Biotechnol 
194:6179–6193. https:// doi. org/ 10. 1007/ s12010- 022- 04022-3

Ibáñez F, Saa PA, Bárzaga L et al (2021) Robust control of fed-batch 
high-cell density cultures: a simulation-based assessment. Comput 
Chem Eng 155:107545. https:// doi. org/ 10. 1016/j. compc hemeng. 
2021. 107545

Jacobs PP, Inan M, Festjens N et al (2010) Fed-batch fermentation of 
GM-CSF-producing glycoengineered Pichia pastoris under con-
trolled specific growth rate. Microb Cell Fact 9:93. https:// doi. org/ 
10. 1186/ 1475- 2859-9- 93

Jae-Ho L, Choi Y-H, Kang S-K et al (1989) Production of human leu-
kocyte interferon in Escherichia coli by control of growth rate in 
fed-batch fermentation. Biotech Lett 11:695–698

Jenzsch M, Gnoth S, Beck M et al (2006a) Open-loop control of the 
biomass concentration within the growth phase of recombinant 
protein production processes. J Biotechnol 127:84–94. https:// doi. 
org/ 10. 1016/j. jbiot ec. 2006. 06. 004

Jenzsch M, Gnoth S, Kleinschmidt M et al (2006b) Improving the 
batch-to-batch reproducibility in microbial cultures during recom-
binant protein production by guiding the process along a prede-
fined total biomass profile. Bioprocess Biosyst Eng 29:315–321. 
https:// doi. org/ 10. 1007/ s00449- 006- 0080-1

Jenzsch M, Simutis R, Luebbert A (2006c) Generic model control of 
the specific growth rate in recombinant Escherichia coli cultiva-
tions. J Biotechnol 122:483–493

Jia L, Rao S, Li H et al (2022) Enhancing HSA-GCSFm fusion protein 
production by Pichia pastoris with an on-line model-based expo-
nential and DO-stat control modes. Biochem Eng J 177:108262. 
https:// doi. org/ 10. 1016/j. bej. 2021. 108262

Johnsson O, Andersson J, Lidén G et al (2013) Feed rate control in 
fed-batch fermentations based on frequency content analysis. 
Biotechnol Prog 29:817–824. https:// doi. org/ 10. 1002/ btpr. 1727

Justice C, Brix A, Freimark D et al (2011) Process control in cell cul-
ture technology using dielectric spectroscopy. Biotechnol Adv 
29:391–401. https:// doi. org/ 10. 1016/j. biote chadv. 2011. 03. 002

Kager J, Tuveri A, Ulonska S et al (2020) Experimental verification 
and comparison of model predictive, PID and model inversion 
control in a Penicillium chrysogenum fed-batch process. Process 
Biochem 90:1–11. https:// doi. org/ 10. 1016/j. procb io. 2019. 11. 023

Katla S, Mohan N, Pavan SS et al (2019) Control of specific growth 
rate for the enhanced production of human interferon α2b in 
glycoengineered Pichia pastoris : process analytical technology 
guided approach. J of Chemical Tech Biotech 94:3111–3123. 
https:// doi. org/ 10. 1002/ jctb. 6118

Kottelat J, Freeland B, Dabros M (2021) Novel strategy for the calo-
rimetry-based control of fed-batch cultivations of Saccharomyces 
cerevisiae. Processes 9:723. https:// doi. org/ 10. 3390/ pr904 0723

Kuprijanov A, Schaepe S, Simutis R, Lübbert A (2013) Model predic-
tive control made accessible to professional automation systems 
in fermentation technology. Biosyst Inf Technol 2:26–31

Landau ID, Lozano R, M’Saad M, Karimi A (2011) Adaptive control: 
algorithms, analysis and applications. Springer London, London

https://doi.org/10.1016/j.procbio.2010.06.001
https://doi.org/10.1007/s00449-010-0438-2
https://doi.org/10.1016/j.jprocont.2012.02.011
https://doi.org/10.3182/20070604-3-MX-2914.00023
https://doi.org/10.3182/20070604-3-MX-2914.00023
https://doi.org/10.1016/j.bej.2006.02.007
https://doi.org/10.1016/j.bej.2006.02.007
https://doi.org/10.1016/j.ces.2017.06.020
https://doi.org/10.1016/j.ces.2017.06.020
https://doi.org/10.1007/s00449-018-1975-3
https://doi.org/10.1007/s00449-018-1975-3
https://doi.org/10.1515/cppm-2018-0014
https://doi.org/10.1515/cppm-2018-0014
https://doi.org/10.1016/j.ifacol.2015.09.022
https://doi.org/10.1016/j.ifacol.2015.09.022
https://doi.org/10.3390/pr7100693
https://doi.org/10.3390/pr7110810
https://doi.org/10.3390/pr7110810
https://doi.org/10.1007/s00449-020-02427-0
https://doi.org/10.1007/s00449-020-02427-0
https://doi.org/10.1007/s00449-007-0163-7
https://doi.org/10.1007/s00449-007-0163-7
https://doi.org/10.1002/bit.21170
https://doi.org/10.1002/bit.21170
https://doi.org/10.3390/fermentation4030079
https://doi.org/10.1016/j.jbiotec.2007.04.021
https://doi.org/10.1016/j.jbiotec.2007.04.021
https://doi.org/10.1007/s00449-001-0272-7
https://doi.org/10.1007/s00449-001-0272-7
https://doi.org/10.1007/s12010-022-04022-3
https://doi.org/10.1016/j.compchemeng.2021.107545
https://doi.org/10.1016/j.compchemeng.2021.107545
https://doi.org/10.1186/1475-2859-9-93
https://doi.org/10.1186/1475-2859-9-93
https://doi.org/10.1016/j.jbiotec.2006.06.004
https://doi.org/10.1016/j.jbiotec.2006.06.004
https://doi.org/10.1007/s00449-006-0080-1
https://doi.org/10.1016/j.bej.2021.108262
https://doi.org/10.1002/btpr.1727
https://doi.org/10.1016/j.biotechadv.2011.03.002
https://doi.org/10.1016/j.procbio.2019.11.023
https://doi.org/10.1002/jctb.6118
https://doi.org/10.3390/pr9040723


 World Journal of Microbiology and Biotechnology (2024) 40:196196 Page 18 of 19

Landau RN (1996) Expanding the role of reaction calorimetry. Ther-
mochim Acta 289:101–126. https:// doi. org/ 10. 1016/ S0040- 
6031(96) 03081-X

Larsson C, Lidn G, Niklasson C, Gustafsson L (1991) Calorimetric 
control of fed-batch cultures of Saccharomyces cerevisiae. Bio-
process Eng 7:151–155. https:// doi. org/ 10. 1007/ BF003 87410

Lee J, Lee SY, Park S, Middelberg APJ (1999) Control of fed-batch 
fermentations. Biotechnol Adv 17:29–48. https:// doi. org/ 10. 1016/ 
S0734- 9750(98) 00015-9

Levisauskas D (2001) Inferential control of the specific growth rate 
in fed-batch cultivation processes. Biotech Lett 23:1189–1195. 
https:// doi. org/ 10. 1023/A: 10105 28915 228

Li M, Ebel B, Blanchard F et al (2019) Control of IgG glycosylation 
by in situ and real-time estimation of specific growth rate of CHO 
cells cultured in bioreactor. Biotechnol Bioeng 116:985–993. 
https:// doi. org/ 10. 1002/ bit. 26914

Liu W, Xiang H, Zhang T et al (2020) Development of a new high-cell 
density fermentation strategy for enhanced production of a fungus 
β-glucosidase in Pichia pastoris. Front Microbiol 11:1988. https:// 
doi. org/ 10. 3389/ fmicb. 2020. 01988

Mahmoodi M, Nassireslami E (2022) Control algorithms and strate-
gies of feeding for fed-batch fermentation of Escherichia coli : 
a review of 40 years of experience. Prep Biochem Biotechnol 
52:823–834. https:// doi. org/ 10. 1080/ 10826 068. 2021. 19981 12

Mandenius C-F (2004) Recent developments in the monitoring, mod-
eling and control of biological production systems. Bioprocess 
Biosyst Eng 26:347–351

Maskow T, Harms H (2006) Real time insights into bioprocesses using 
calorimetry: state of the art and potential. Eng Life Sci 6:266–277. 
https:// doi. org/ 10. 1002/ elsc. 20052 0123

Maskow T, Kemp R, Buchholz F et al (2010) What heat is telling us 
about microbial conversions in nature and technology: from chip- 
to megacalorimetry. Microb Biotechnol 3:269–284. https:// doi. 
org/ 10. 1111/j. 1751- 7915. 2009. 00121.x

Mears L, Stocks SM, Albaek MO et al (2017a) Mechanistic fermenta-
tion models for process design, monitoring, and control. Trends 
Biotechnol 35:914–924. https:// doi. org/ 10. 1016/j. tibte ch. 2017. 
07. 002

Mears L, Stocks SM, Sin G, Gernaey KV (2017b) A review of control 
strategies for manipulating the feed rate in fed-batch fermentation 
processes. J Biotechnol 245:34–46. https:// doi. org/ 10. 1016/j. jbiot 
ec. 2017. 01. 008

Mitra S, Murthy GS (2022) Bioreactor control systems in the biop-
harmaceutical industry: a critical perspective. Syst Microbiol 
Biomanuf 2:91–112. https:// doi. org/ 10. 1007/ s43393- 021- 00048-6

Mohan N, Pavan SS, Jayakumar A et al (2022) Real-time metabolic 
heat-based specific growth rate soft sensor for monitoring and 
control of high molecular weight hyaluronic acid production 
by Streptococcus zooepidemicus. Appl Microbiol Biotechnol 
106:1079–1095. https:// doi. org/ 10. 1007/ s00253- 022- 11760-1

Mondal PP, Galodha A, Verma VK et al (2023) Review on machine 
learning-based bioprocess optimization, monitoring, and control 
systems. Biores Technol 370:128523. https:// doi. org/ 10. 1016/j. 
biort ech. 2022. 128523

Moore B, Sanford R, Zhang A (2019) Case study: The characterization 
and implementation of dielectric spectroscopy (biocapacitance) 
for process control in a commercial GMP CHO manufacturing 
process. Biotechnol Prog 35:e2782. https:// doi. org/ 10. 1002/ btpr. 
2782

Murugan C, Natarajan P (2019) Estimation of fungal biomass using 
multiphase artificial neural network based dynamic soft sensor. 
J Microbiol Methods 159:5–11. https:// doi. org/ 10. 1016/j. mimet. 
2019. 02. 002

Narayanan H, Luna MF, Von Stosch M et  al (2020) Bioprocess-
ing in the digital age: the role of process models. Biotechnol J 
15:1900172. https:// doi. org/ 10. 1002/ biot. 20190 0172

Nielsen K, Gall D, Jolley M et al (1996) A homogeneous fluorescence 
polarization assay for detection of antibody to Brucella abortus. 
J Immunol Methods 195:161–168

Ödman P, Johansen CL, Olsson L et al (2009) On-line estimation of 
biomass, glucose and ethanol in Saccharomyces cerevisiae culti-
vations using in-situ multi-wavelength fluorescence and software 
sensors. J Biotechnol 144:102–112

Oliveira R, Simutis R, Feyo De Azevedo S (2004) Design of a stable 
adaptive controller for driving aerobic fermentation processes near 
maximum oxygen transfer capacity. J Process Control 14:617–
626. https:// doi. org/ 10. 1016/j. jproc ont. 2004. 01. 003

Paulsson D, Gustavsson R, Mandenius C-F (2014) A soft sensor for 
bioprocess control based on sequential filtering of metabolic heat 
signals. Sensors 14:17864–17882. https:// doi. org/ 10. 3390/ s1410 
17864

Peng J, Meng F, Ai Y (2013) Time-dependent fermentation control 
strategies for enhancing synthesis of marine bacteriocin 1701 
using artificial neural network and genetic algorithm. Biores 
Technol 138:345–352

Pinsach J, De Mas C, López-Santín J (2006) A simple feedback control 
of Escherichia coli growth for recombinant aldolase production 
in fed-batch mode. Biochem Eng J 29:235–242. https:// doi. org/ 
10. 1016/j. bej. 2006. 01. 001

Rathore AS, Mishra S, Nikita S, Priyanka P (2021) Bioprocess control: 
current progress and future perspectives. Life 11:557. https:// doi. 
org/ 10. 3390/ life1 10605 57

Rathore AS, Winkle H (2009) Quality by design for biopharmaceu-
ticals. Nat Biotechnol 27:26–34. https:// doi. org/ 10. 1038/ nbt01 
09- 26

Reichelt WN, Thurrold P, Brillmann M et al (2016) Generic biomass 
estimation methods targeting physiologic process control in 
induced bacterial cultures. Eng Life Sci 16:720–730. https:// doi. 
org/ 10. 1002/ elsc. 20150 0182

Reyes SJ, Durocher Y, Pham PL, Henry O (2022) Modern sensor tools 
and techniques for monitoring, controlling, and improving cell 
culture processes. Processes 10:189. https:// doi. org/ 10. 3390/ pr100 
20189

Rohde M, Paufler S, Harms H, Maskow T (2016) Calorespirometric 
feeding control enhances bioproduction from toxic feedstocks—
demonstration for biopolymer production out of methanol. Bio-
tech Bioeng 113:2113–2121. https:// doi. org/ 10. 1002/ bit. 25986

Rómoli S, Serrano M, Rossomando F et al (2017) Neural network-
based state estimation for a closed-loop control strategy applied 
to a fed-batch bioreactor. Complexity 2017:1–16. https:// doi. org/ 
10. 1155/ 2017/ 93918 79

Schaepe S, Kuprijanov A, Simutis R, Lübbert A (2014) Avoiding over-
feeding in high cell density fed-batch cultures of E. coli during the 
production of heterologous proteins. J Biotechnol 192:146–153. 
https:// doi. org/ 10. 1016/j. jbiot ec. 2014. 09. 002

Schuler MM, Marison IW (2012) Real-time monitoring and control of 
microbial bioprocesses with focus on the specific growth rate: cur-
rent state and perspectives. Appl Microbiol Biotechnol 94:1469–
1482. https:// doi. org/ 10. 1007/ s00253- 012- 4095-z

Seborg DE, Edgar TF, Mellichamp DA, Doyle FJ III (2016) Process 
dynamics and control. John Wiley & Sons

Simutis R, Lübbert A (2015) Bioreactor control improves bioprocess 
performance. Biotechnol J 10:1115–1130. https:// doi. org/ 10. 1002/ 
biot. 20150 0016

Sinner P, Stiegler M, Herwig C, Kager J (2021) Noninvasive online 
monitoring of Corynebacterium glutamicum fed-batch bio-
processes subject to spent sulfite liquor raw material uncertainty. 
Biores Technol 321:124395. https:// doi. org/ 10. 1016/j. biort ech. 
2020. 124395

Sommeregger W, Sissolak B, Kandra K et al (2017) Quality by con-
trol: towards model predictive control of mammalian cell culture 

https://doi.org/10.1016/S0040-6031(96)03081-X
https://doi.org/10.1016/S0040-6031(96)03081-X
https://doi.org/10.1007/BF00387410
https://doi.org/10.1016/S0734-9750(98)00015-9
https://doi.org/10.1016/S0734-9750(98)00015-9
https://doi.org/10.1023/A:1010528915228
https://doi.org/10.1002/bit.26914
https://doi.org/10.3389/fmicb.2020.01988
https://doi.org/10.3389/fmicb.2020.01988
https://doi.org/10.1080/10826068.2021.1998112
https://doi.org/10.1002/elsc.200520123
https://doi.org/10.1111/j.1751-7915.2009.00121.x
https://doi.org/10.1111/j.1751-7915.2009.00121.x
https://doi.org/10.1016/j.tibtech.2017.07.002
https://doi.org/10.1016/j.tibtech.2017.07.002
https://doi.org/10.1016/j.jbiotec.2017.01.008
https://doi.org/10.1016/j.jbiotec.2017.01.008
https://doi.org/10.1007/s43393-021-00048-6
https://doi.org/10.1007/s00253-022-11760-1
https://doi.org/10.1016/j.biortech.2022.128523
https://doi.org/10.1016/j.biortech.2022.128523
https://doi.org/10.1002/btpr.2782
https://doi.org/10.1002/btpr.2782
https://doi.org/10.1016/j.mimet.2019.02.002
https://doi.org/10.1016/j.mimet.2019.02.002
https://doi.org/10.1002/biot.201900172
https://doi.org/10.1016/j.jprocont.2004.01.003
https://doi.org/10.3390/s141017864
https://doi.org/10.3390/s141017864
https://doi.org/10.1016/j.bej.2006.01.001
https://doi.org/10.1016/j.bej.2006.01.001
https://doi.org/10.3390/life11060557
https://doi.org/10.3390/life11060557
https://doi.org/10.1038/nbt0109-26
https://doi.org/10.1038/nbt0109-26
https://doi.org/10.1002/elsc.201500182
https://doi.org/10.1002/elsc.201500182
https://doi.org/10.3390/pr10020189
https://doi.org/10.3390/pr10020189
https://doi.org/10.1002/bit.25986
https://doi.org/10.1155/2017/9391879
https://doi.org/10.1155/2017/9391879
https://doi.org/10.1016/j.jbiotec.2014.09.002
https://doi.org/10.1007/s00253-012-4095-z
https://doi.org/10.1002/biot.201500016
https://doi.org/10.1002/biot.201500016
https://doi.org/10.1016/j.biortech.2020.124395
https://doi.org/10.1016/j.biortech.2020.124395


World Journal of Microbiology and Biotechnology (2024) 40:196 Page 19 of 19 196

bioprocesses. Biotechnol J 12:1600546. https:// doi. org/ 10. 1002/ 
biot. 20160 0546

Soons ZITA, Streefland M, Van Straten G, Van Boxtel AJB (2008) 
Assessment of near infrared and “software sensor” for biomass 
monitoring and control. Chemom Intell Lab Syst 94:166–174. 
https:// doi. org/ 10. 1016/j. chemo lab. 2008. 07. 009

Soons ZITA, Voogt JA, Van Straten G, Van Boxtel AJB (2006) Con-
stant specific growth rate in fed-batch cultivation of Bordetella 
pertussis using adaptive control. J Biotechnol 125:252–268. 
https:// doi. org/ 10. 1016/j. jbiot ec. 2006. 03. 005

Survyla A, Levisauskas D, Urniezius R, Simutis R (2021) An oxygen-
uptake-rate-based estimator of the specific growth rate in Escheri-
chia coli BL21 strains cultivation processes. Comput Struct Bio-
technol J 19:5856–5863. https:// doi. org/ 10. 1016/j. csbj. 2021. 10. 
015

Tavasoli T, Arjmand S, Ranaei Siadat SO et al (2019) A robust feeding 
control strategy adjusted and optimized by a neural network for 
enhancing of alpha 1-antitrypsin production in Pichia pastoris. 
Biochem Eng J 144:18–27. https:// doi. org/ 10. 1016/j. bej. 2019. 
01. 005

Ulonska S, Waldschitz D, Kager J, Herwig C (2018) Model predictive 
control in comparison to elemental balance control in an E. coli 
fed-batch. Chem Eng Sci 191:459–467. https:// doi. org/ 10. 1016/j. 
ces. 2018. 06. 074

Voisard D, Von Stockar U, Marison IW (2002) Quantitative calori-
metric investigation of fed-batch cultures of Bacillus sphaericus 
1593M. Thermochim Acta 394:99–111. https:// doi. org/ 10. 1016/ 
S0040- 6031(02) 00243-5

Von Stockar U, Maskow T, Liu J et al (2006) Thermodynamics of 
microbial growth and metabolism: an analysis of the current situ-
ation. J Biotechnol 121:517–533. https:// doi. org/ 10. 1016/j. jbiot 
ec. 2005. 08. 012

Wainaina S, Taherzadeh MJ (2023) Automation and artificial intelli-
gence in filamentous fungi-based bioprocesses: a review. Biores 
Technol 369:128421. https:// doi. org/ 10. 1016/j. biort ech. 2022. 
128421

Wang F, Du G, Li Y, Chen J (2006) Regulation of CCR in the γ-CGTase 
production from Bacillus macorous by the specific cell growth 

rate control. Enzyme Microb Technol 39:1279–1285. https:// doi. 
org/ 10. 1016/j. enzmi ctec. 2006. 03. 014

Warth B, Rajkai G, Mandenius C-F (2010) Evaluation of software sen-
sors for on-line estimation of culture conditions in an Escherichia 
coli cultivation expressing a recombinant protein. J Biotechnol 
147:37–45. https:// doi. org/ 10. 1016/j. jbiot ec. 2010. 02. 023

Wechselberger P, Sagmeister P, Herwig C (2013) Real-time estima-
tion of biomass and specific growth rate in physiologically vari-
able recombinant fed-batch processes. Bioprocess Biosyst Eng 
36:1205–1218. https:// doi. org/ 10. 1007/ s00449- 012- 0848-4

Yamuna Rani K, Ramachandra Rao V (1999) Control of fermenters—a 
review. Bioprocess Eng 21:77–88

Ye K, Jin S, Shimizu K (1994) Fuzzy neural network for the control 
of high cell density cultivation of recombinant Escherichia coli. 
J Ferment Bioeng 77:663–673. https:// doi. org/ 10. 1016/ 0922- 
338X(94) 90151-1

Yoon SK, Kang WK, Park TH (1994) Fed-batch operation of recom-
binant Escherichia coli containing trp promoter with controlled 
specific growth rate. Biotechnol Bioeng 43:995–999

Yüzgeç U, Türker M, Hocalar A (2009) On-line evolutionary opti-
mization of an industrial fed-batch yeast fermentation process. 
ISA Trans 48:79–92. https:// doi. org/ 10. 1016/j. isatra. 2008. 09. 001

Zhang X-C, Visala A, Halme A, Linko P (1994) Functional state mod-
eling and fuzzy control of fed-batch aerobic baker’s yeast process. 
J Biotechnol 37:1–10. https:// doi. org/ 10. 1016/ 0168- 1656(94) 
90196-1

Zitzmann J, Weidner T, Eichner G et al (2018) Dielectric spectroscopy 
and optical density measurement for the online monitoring and 
control of recombinant protein production in stably transformed 
Drosophila melanogaster S2 cells. Sensors 18:900. https:// doi. 
org/ 10. 3390/ s1803 0900

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

https://doi.org/10.1002/biot.201600546
https://doi.org/10.1002/biot.201600546
https://doi.org/10.1016/j.chemolab.2008.07.009
https://doi.org/10.1016/j.jbiotec.2006.03.005
https://doi.org/10.1016/j.csbj.2021.10.015
https://doi.org/10.1016/j.csbj.2021.10.015
https://doi.org/10.1016/j.bej.2019.01.005
https://doi.org/10.1016/j.bej.2019.01.005
https://doi.org/10.1016/j.ces.2018.06.074
https://doi.org/10.1016/j.ces.2018.06.074
https://doi.org/10.1016/S0040-6031(02)00243-5
https://doi.org/10.1016/S0040-6031(02)00243-5
https://doi.org/10.1016/j.jbiotec.2005.08.012
https://doi.org/10.1016/j.jbiotec.2005.08.012
https://doi.org/10.1016/j.biortech.2022.128421
https://doi.org/10.1016/j.biortech.2022.128421
https://doi.org/10.1016/j.enzmictec.2006.03.014
https://doi.org/10.1016/j.enzmictec.2006.03.014
https://doi.org/10.1016/j.jbiotec.2010.02.023
https://doi.org/10.1007/s00449-012-0848-4
https://doi.org/10.1016/0922-338X(94)90151-1
https://doi.org/10.1016/0922-338X(94)90151-1
https://doi.org/10.1016/j.isatra.2008.09.001
https://doi.org/10.1016/0168-1656(94)90196-1
https://doi.org/10.1016/0168-1656(94)90196-1
https://doi.org/10.3390/s18030900
https://doi.org/10.3390/s18030900

	Unveiling the potential of specific growth rate control in fed-batch fermentation: bridging the gap between product quantity and quality
	Abstract
	Introduction
	Control strategies for SGR control
	Open loop control
	Closed loop control with PIPID controllers
	Fuzzy control
	Adaptive control
	Model Predictive Control (MPC)
	ANN-based control
	Soft sensors for SGR estimation and control strategies
	Soft sensor based on off-gas analysis for SGR estimation and control
	SGR control based on DO concentration
	Soft sensor based on dielectric spectroscopy for SGR estimation and control
	Soft sensor based on metabolic heat rate production for SGR estimation and control

	Discussion
	Current challenges and future perspectives
	Conclusion
	Acknowledgements 
	References




