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Abstract
Nanobodies are the smallest known antigen-binding molecules to date. Their small size, good tissue penetration, high stability 
and solubility, ease of expression, refolding ability, and negligible immunogenicity in the human body have granted them 
excellence over conventional antibodies. Those exceptional attributes of nanobodies make them promising candidates for 
various applications in biotechnology, medicine, protein engineering, structural biology, food, and agriculture. This review 
presents an overview of their structure, development methods, advantages, possible challenges, and applications with special 
emphasis on infectious diseases-related ones. A showcase of how nanobodies can be harnessed for applications including 
neutralization of viruses and combating antibiotic-resistant bacteria is detailed. Overall, the impact of nanobodies in vaccine 
design, rapid diagnostics, and targeted therapies, besides exploring their role in deciphering microbial structures and virulence 
mechanisms are highlighted. Indeed, nanobodies are reshaping the future of infectious disease prevention and treatment.
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Introduction

The discovery of monoclonal antibodies (mAbs) has sig-
nificantly influenced the field of biological industries. This 
was implemented by Orthoclone, the first Food and Drug 
Administration (FDA) approved mAb which has a crucial 
role in preventing rejection in organ transplantation (Starzl 
and Fung 1986). Since then, an enormous number of mAbs 
have been well-established and marketed for their benefi-
cial clinical applications including targeted treatment and 
enhanced therapeutic precision. However, mAbs use was 
restricted owing to the sophisticated structure and large size 
which affect their binding specificity, tissue penetration, 
and clearance time in certain diseases (Buss et al. 2012). 

Additionally, the synthesis and production of mAbs are 
costly and time-consuming.

Coincidence plays a vital role in most of the scientific 
breakthroughs and the same narrative transpired with the 
first observation of a peculiar antibody molecule that later 
became a defining milestone in history, currently known as 
nanobodies (Nbs). In 1993, the Hamers’ lab serendipitously 
discovered naturally occurring heavy-chain antibodies in the 
serum of the camel (Hamers-Casterman et al. 1993). Later 
in 1995, Greenberg and co-workers detected single-domain 
antibodies from nurse sharks (Ginglymostoma cirratum) 
(Greenberg et al. 1995). These molecules differ from their 
conventional ones in their composition which includes only 
the heavy-chain variable dimers while missing their light-
chain counterparts. Nevertheless, they possess an extensive 
antigen-binding repertoire.

Nanobodies (Nbs) “also referred to as single-domain 
antibodies (sdAb)’’ are the antigen-binding molecules engi-
neered from the camelid or sharks heavy chain antigen-bind-
ing domain that are called the camelid variable heavy-chain 
region (VHH) and immunoglobulin new antigen receptor 
(VNAR), respectively (Schrankel et al. 2019). While the 
human IgG immunoglobulin weighs ~ 150 kDa, the heavy-
chain antibody weighs ~ 80 to 90 kDa, and the derived Nbs 
are ~ 12 to 15 kDa (Pillay and Muyldermans 2021; Vincke 
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and Muyldermans 2012). They are one-tenth the size of a 
normal antibody (Schrankel et al. 2019), making their pro-
duction and utilization far more applicable. They also pos-
sess low immunogenicity owing to their small size, which 
is around 110 amino acids (~ 4.4 nm high; ~ 2.5 to 2.8 nm 
diameter) (Cortez-Retamozo et al. 2004; Sánchez-García 
et al. 2021). Moreover, Nbs can bind to embedded epitopes 
that are not accessible to complete antibodies and have a 
greater affinity and selectivity in targeting the active sites of 
enzymes and receptors. It is worth noting that Nbs exhibit 
remarkable stability, demonstrated by their ability to with-
stand some drastic conditions of pH, pressure, and tempera-
ture while maintaining their antigen-binding capacity. They 
can tolerate extreme pHs (pH 3.0–9.0), and high pressure 
(500–750 MPa) (Jovčevska and Muyldermans 2020). Nbs 
are also known to exhibit long shelf-life with high storage 
stability at different temperatures; 4 °C and -20 °C for long 
storage periods (months), and 37°C for shorter ones (weeks). 
Moreover, some studies reported their heat tolerance to 
higher temperatures (60–80 °C). Yet improper Nbs refold-
ing by heat denaturation represents a great concern. Fur-
thermore, Nbs demonstrate high stability against proteolytic 
enzymes and some chemical denaturants like urea (De Vos 
et al. 2013; Jovčevska and Muyldermans 2020). On another 
front, the specificity of the Nb can be generated from cell-
based microbial expression systems such as Escherichia coli, 
yeasts, or cell-free platforms (using ribosomes) (Schrankel 
et al. 2019). This simple yet critical approach can have a 
significant effect on the reduction of Nbs production costs.

Nbs have already been used in diverse fields and par-
ticularly notable is the first Nb approved for a therapeutic 
indication in 2018, named Caplacizumab, which is used for 
acquired thrombotic thrombocytopenic purpura (Duggan 
2018). Nbs are tested in a wide range of prospective inno-
vations, such as investigating the viability of the VHHs in 
phage display, testing its potential in shampoos for dandruff 
reduction and introducing the first evidence of Nbs inhibit-
ing the cell-free and cell-to-cell transmission in hepatitis C 
infection (Dolk et al. 2005; Tarr et al. 2013). In addition, 
Nbs are also tested to serve in identifying tumor cells by 
targeting human growth factor cell receptors (HER2) and 
carbonic anhydrase IX (CAIX) (Keyaerts et al. 2016; Kija-
nka et al. 2016). The wide array of possible revolutionary 
applications offered by these small biomolecules will inevi-
tably boost Nbs utilization. In the current review, the Nbs’ 
structure, methods of production, advantages, disadvantages 
and potential applications will be discussed with emphasis 
on their potential role in infectious diseases.

The structure of different forms of antibodies

To properly understand the distinctiveness of Nbs, a struc-
tural comparative overview of Nbs, conventional antibodies, 

and the parent heavy chain antibodies is presented (Fig. 1) 
and discussed as follows.

The binding specificity of the full-length antibodies is 
determined by variable regions in their heavy (VH) and 
light chains (VL). The two light chains are composed of a 
variable domain (VL) and a constant domain (CL). The VH, 
CH1, hinge, CH2, and CH3 domains make up the two heavy 
chains (VH), with the CH1 domain serving as a key connec-
tion between the heavy and light chains (Muyldermans 2013; 
Wanner et al. 2021). Collectively, they generate a diversity 
of at least  1015 B-cell receptors (BCRs) in humans (Mitchell 
and Colwell 2018). The linkage of the CH2 and the CH3 
makes the crystallizable fragment (Fc) portion of the anti-
body while the antigen-binding (Fab) region is composed 
of the heavy chain's outer domains (CH1 & VH) as well 
as the light chain's variable and constant domains (CL & 
VL). The pairing of the VH-VL by an oligopeptide gener-
ates the smallest functional antigen-binding unit, known as 
the single-chain fragment variable (scFv), with a size of ~ 30 
kDa that can be created from the full-size antibodies (Muyl-
dermans 2013). However, unlike VHHs, scFvs have lower 
affinities, reduced half-life, and stability, as well as lower 
thermostability when compared to their parent antibodies. 
As a result, there is a higher probability of aggregation and 
subsequent risk of immunogenicity (Bates and Power 2019).

The camelid heavy-chain antibodies on the other hand 
lack both the light chains and the CH1, which gives them 
an advantageous small size, with a molecular weight of ~ 90 
kDa. The dromedary heavy-chain antibodies carry only the 
VHH segment, hinge, CH2 and CH3 fragments with a direct 
connection of the rearranged VHH exon to the hinge region 
belonging to one of two types of hinge isotypes: long (IgG2) 
or short (IgG3), referring to the fraction's hinge length. In 
this case, antigen recognition is through the variable domain 
of the heavy chain. Accordingly, the compact design of Nbs 
allows better adaptability for hidden targets (Arbabi-Ghah-
roudi 2017; Muyldermans 2013). Similarly, the antibodies 
devoid of light chains found in cartilaginous fish consist 
of one variable domain followed by five constant domains 
[(V-NAR)-5(C-NAR)] (Deffar et al. 2009; Zielonka et al. 
2015).

The VHHs molecules derived from the camelid heavy 
chains restrict the antigen binding to a single domain of 
about 110 amino acids. These molecules comprise three 
hypervariable sections (HV) that localize the sequence vari-
ation of the variable domains (V) and are surrounded by 
a conserved framework (FR). Nine β-sheet strands (A-B-
C–C'-C'-D-D-E–F-G) make up the folded variable domain, 
which is arranged into four-stranded β-sheets and five-
stranded β-sheets joined by loops and a conserved disulfide 
bond. The HV regions are arranged into three loops (H1, 
H2, and H3) that connect the stranded β-sheets. A continu-
ous surface is formed by the cluster at the N-terminal that 
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is complementary to the surface of the epitopes or antigens 
(paratope) and this area is referred to as the complemen-
tarity-determining region (CDR). The sequence within the 
loops is highly variable, but the extent of the variation is 
limited except for the H3 loop (CDR3) (Muyldermans 2013). 
Controversially, the conventional antibodies were thought to 
have wider diversity compared to Nbs as the latter have para-
topes of smaller size. However, this notion was disproven 
by the large H1 loop (CDR1) that is responsible for antigen 
recognition and was found to be longer than those in the 
variable domain of the conventional antibody’s heavy chain, 
subsequently serving in largening the paratope size and 
exhibiting diverse loop architectures (Nguyen et al. 2000). 
Within the conserved FR2, the highly conserved hydropho-
bic amino acids normally found in the full-size antibodies, 

are replaced in VHHs with more hydrophilic amino acids, 
rendering them more soluble (Asaadi et al. 2021; Muylder-
mans 2013).

The VNAR domains, on the other hand, are members of 
the immunoglobulin’s superfamily and hence they have a 
β-sandwich structure. The VNARs lack the hinge region yet 
there is a wide space for interacting with multiple epitopes 
which is enhanced by the dimerization between C1 and C3 
domains. Unlike the mammalian variable domain coun-
terpart, the β-sandwich fold in the VNAR only has eight 
strands instead of ten. With a size of roughly 11–12 kDa, the 
VNARs are believed to be the smallest antibody-like anti-
gen-binding domains known in the animal kingdom (Stan-
field et al. 2004; Zielonka et al. 2015). This structure results 
in fewer antigen-binding loops (CDR1 & CDR3) compared 

Fig. 1  Comparison of Nbs’ structure to other antigen-binding moie-
ties. A schematic diagram showing the difference between Nbs and 
other antigen-binding moieties. A Conventional antibody with its 
heavy chain (VH) (pink color) and light chain (VL) (gray color). B 
Single chain fragment variable (scFv), which contains a pair of VH 
and VL domains connected by an oligopeptide bond. C Three differ-
ent heavy chain antibodies; the camelid heavy chains contain VHH 

segment, hinge, CH2 and CH3 with long (IgG2) or short hinge 
(IgG3), and the shark heavy chain containing one variable domain 
and five constant domains. The three heavy chains exhibit single 
domain antibody (sdAb). The sdAb is formed of three hypervariable 
sections surrounded by nine β-sheet strands connected by disulfide 
bond



 World Journal of Microbiology and Biotechnology (2024) 40:209209 Page 4 of 20

to antibodies, but the elongated CDR3 compensates for 
this (Feige et al. 2014; Könning et al. 2017; Zielonka et al. 
2015). Still, the VNARs' diversity, like that of the VHHs, is 
predominantly seen in the CDR3 sequences. Two cysteines 
in FR1 and FR3 form a stabilizing disulfide bond, and addi-
tional ones in CDR3 can provide extra stability (English 
et al. 2020; Feige et al. 2014; Feng et al. 2019).

In conclusion, compared to the standard antibody bind-
ing sites, antigen-binding sites in VHHs and the VNARs 
are smaller in terms of molecular surface area and diam-
eters. They differ from the typical canonical structures of 
the full-length antibody in their non-canonical CDR1 and 
CDR2 structures, as well as an elongated CDR3 loop length 
distribution. However, they have similar amino acid com-
positions and as a group they appear to be no longer in the 
distance measured from the CDR base to the tip than the 
conventional antibodies (Henry and MacKenzie 2018). For 
protein-binding, rather than operating six-loop configura-
tions like typical antibodies, Nbs only use their three CDR 
loops. They exert their expanded CDR3 loop to penetrate 
the active site or the CDR2 loop in circumstances where the 
Nb's standard CDR3 loop is insufficient to protrude to the 
antigen. (Desmyter et al. 2002; Henry and MacKenzie 2018; 
Sela-Culang et al. 2013).

Production of nanobodies

The production of sdAb fragments traditionally entails the 
amplification of VHH or VNAR gene segments at an afford-
able low cost. They are then cloned into a display system, 
whether it is a bacteria, yeast, phage, or ribosome, followed 
by the generation of a large collection of clones "library" 
accompanied by biopanning of the high-affinity antigen-
specific clones and their retrieval (Fig. 2).

Inherently, for immune library generation, the stages 
of Nbs production generally commence by immunizing 
healthy young adults including dromedaries, camels, lla-
mas, alpacas, or sharks with a protein cocktail to gener-
ate a library of at least  106–108 individual clones (Müller 
et al. 2012; Muyldermans 2021b). Over the course of a few 
months, the animals can be routinely injected with the target 
immunogen. Since the used animals are outbred, it is recom-
mended that more than one is immunized at this early stage. 
Each animal is thought to elicit a different immune response, 
with a subsequent large repertoire of Nbs from which the 
best-performing clone is selected (Muyldermans 2021b). 
Affinity maturation and class switch recombination are 
induced by deliberate repeated immunization which leads 
to boosting the odds of detecting VHHs with the targeted 
functional features that may not be existent in naïve libraries 
(Ingram et al. 2018). Extraction of mRNA is done from the 
blood acquired after the immunization step, then the mRNA 

is transformed into cDNA and utilized to amplify the VHH 
gene segments (Muyldermans 2021b). Constructing libraries 
through animal immunization has some limitations such as 
being time-consuming and costly, and it may also generate 
redundant subpopulations of certain antigens. Additionally, 
when it comes to non-immunogenic molecules like RNA or 
DNA, which fail to elicit an immune response, they are not 
the best choice (Muyldermans 2021b; Sabir et al. 2014).

Another significant limitation of the immunization librar-
ies is the limited target space for sensitive proteins. Targets, 
such as many human membrane transporters, easily unfold 
upon injection primarily due to the adjuvants used and the 
dromedary's high body temperature. Additionally, unless 
their affinities are extremely high, non-covalent ligands dis-
sociate from the protein shortly after injection, making it dif-
ficult to promote target conformations (Zimmermann et al. 
2018). It is worth noting that immunization requires access 
to animal facilities, and this may not always be feasible. 
On another front, and from an ethical point of view, animal 
usage to that end is strongly discouraged for compounds 
that are poisonous, contagious, or harmful to both animals 
and environment. Hence, steering directions are currently 
implemented towards the use of other Nb repertoires such 
as naïve and synthetic libraries which do not require animals 
to be immunized against bacteria, viruses, or toxoids (Gray 
et al. 2016).

As for the construction of a naïve library, a pool of blood 
from multiple non-immunized animals is required. This 
method has the advantage of being rapid and the ability to 
recover a VHH repertoire that should at least acquire the size 
of  109–1011 clones, with the added benefit of being more 
diversified (Muyldermans 2021b; Sabir et al. 2014). On the 
other hand, taking up to 10 L of blood to build a diversified 
naïve Nb library with around  1010 different VHH clones is 
tedious (Muyldermans 2021b). However, the procedure has 
been found to yield over-adequate Nb libraries of a size of 
 107 with as little as 23 mL, from which high-affinity Nbs can 
be extracted (Sabir et al. 2014).

Synthetic libraries are the third source for Nbs and 
they can provide access to bigger repertoires without the 
benefits of target immunization and affinity maturation 
(Ingram et al. 2018). A stable and well-expressed Nb scaf-
fold, preferably with a crystal structure, is usually chosen 
for the construction of a synthetic library without the need 
to draw blood from animals (Muyldermans 2021b). Syn-
thetic libraries have a diverse clone size of  109–1015 and 
often exhibit a single shape and are randomized in only 
one region of their surface (Muyldermans 2021b; Zim-
mermann et al. 2018). A single or a few Nbs with desir-
able biochemical features are randomly selected and their 
sequences are amplified by PCR (Muyldermans 2021b). 
Following that, the PCR products are ligated into phage or 
ribosome display, or both and three synthetic Nbs selection 
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platforms tailored to membrane protein targets are then 
engineered with varying CDR3 loop lengths and configu-
rations. The Nb library is displayed using both phage and 
ribosome systems and created by analyzing many depos-
ited camelids VHHs structures (Zimmermann et al. 2018).

It is also worth noting that Nb libraries can be developed 
from human origins through phage-display technology under 
the hypothesis that certain VH framework sites can compen-
sate for the loss of the light chain, resulting in soluble human 
Nbs (Wu et al. 2020). A previous study reported cloning of 

Fig. 2  Nanobodies generation process. A schematic diagram for the different generation approaches of Nbs including immune, naïve, and syn-
thetic libraries. The diagram is partially generated using BioRender
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17 human germline immunoglobulin heavy chain variable 
region (IGHV) alleles, and expressing them in E. coli, and 
then characterizing their properties, along with a camelid Nb 
as a control. Another previously experimented approach is 
that fully human single-domain antibodies were obtained by 
grafting the complementarity determining regions (CDR1, 
CDR2, and CDR3) from naïve libraries into the FR regions 
of a human germline immunoglobulin VH variable region 
allele (Wu et al. 2020). This technology promises antibodies 
derived entirely from human sequences which exhibit less 
immunogenicity compared to camelid or humanized Nbs, 
leading to improved safety and efficacy for human use.

Nbs can be expressed in both prokaryotic and eukaryotic 
systems, such as E. coli, S. cerevisiae, and Pichia pastoris. 
The most common approach for generating Nbs is to pro-
mote their secretion in the P. pastoris or the E. coli peri-
plasm (Chen et al. 2019; de Marco 2020). The periplasm's 
oxidizing conditions promote the formation of disulfide 
bonds, which help in stabilizing the Nb structure. After 
an osmotic shock step to permeabilize the bacterial outer 
membrane, the folded binders are normally recovered in the 
supernatant and affinity purification is used to recover the 
Nbs (de Marco 2020). It is also noted that upon precipita-
tion of the highly temperature-sensitive E. coli proteins, heat 
incubation of the supernatant has been successfully used to 
purify the comparatively thermal-resistant VHHs (Olichon 
et al. 2007). Although periplasmic extraction has its benefits 
in terms of protein folding, it also has limitations, such as 
aggregation and low yields of proteins. The latter could be 
due to a number of reasons, including the secretion system 
saturation, the absence of adequate chaperone machinery 
that can inhibit improper folding at high expression rates, 
high proteolytic activity, and a lengthy-expression technique 
(Pleiner et al. 2015).

Advantages of nanobodies

In terms of size, the single variable segment of the heavy 
chain antibodies is the smallest functional antigen-binding 
domain natively created by the adaptive immune system 
(Muyldermans 2013). The myriad uses of Nbs can be attrib-
uted to their exceptionally small and structurally convenient 
nature that in turn accounts for their fast tissue penetration 
and short half-life. In terms of antigen-binding capabilities, 
the diversity in the VHHs and VNAR loop structures dra-
matically expands the repertoire of the antigen-binding sites. 
This diversity also significantly affect their access to and 
interaction with more antigen’s clefts and buried epitopes, 
known as cryptic antigenic regions which are not usually 
accessible by conventional antibodies (Desmyter et  al. 
1996; Stanfield et al. 2004; Stijlemans et al. 2004). Another 
remarkable feature of Nbs’ antigen-binding paratopes is 
their ability to adopt flat, concave and convex configurations 

which easily favors their use against folded proteins and 
recessed epitopes (Chaikuad et al. 2014; Custódio et al. 
2020; De Genst et al. 2006; Henry and MacKenzie 2018; 
Muyldermans and Smider 2016). Furthermore, it is assumed 
that sdAbs can access holed sites on membrane proteins 
including ion channels and G protein-coupled receptors 
(Henry and MacKenzie 2018; Wei et al. 2011).

With regard to their autonomous behavior, Nbs serve 
as effective building blocks for multi-domain composi-
tions, such as bivalent or multivalent to improve affinity, or 
bispecific to cross-link independent antigens (Muyldermans 
2021a). Since VHHs are monomeric in nature, they do not 
cluster in multimers like scFv molecules. Furthermore, con-
sidering their high solubility and stability, Nbs can be easily 
fused to each other without the mispairing and solubility 
challenges that face the scFv dimers and multimers (Ban-
nas et al. 2017). Moreover, varying the valency of the Nb 
domains that target tumors can strengthen the cell-killing 
and downregulation effect on certain tumor cells (Bannas 
et al. 2017; Oliveira et al. 2010; Sadeghnezhad et al. 2019). 
To achieve this, linkers can be used to create multivalent 
or multispecific configurations of Nbs. Also, fusion with 
albumin or short peptide tags can be used to extend the 
half-life or facilitate their purification and detection (Ban-
nas et al. 2017; Beirnaert et al. 2017; Zupancic et al. 2021a, 
b). Moreover, Nbs have been successfully fused with larger 
proteins called megabodies. The subsequent binding of these 
megabodies to smaller proteins, guided by the Nb specific-
ity, could convert them into larger protein complexes. This 
allows their structural analysis by cryo-electron microscopy, 
which is otherwise not the best strategy for solving the struc-
ture of low-molecular weight proteins (Masiulis et al. 2019).

From the crystallization ability perspective, Nbs are easy 
to crystallize due to their small size. They also have several 
properties that aid in the crystallization of harsh proteins 
including;(i) the ability to block domain movement, (ii) the 
ability to hide mobile polysaccharides bounded proteins, and 
(iii) the ability to insert in clefts or between interfaces. Those 
properties stabilize loops or large complexes and assist in 
the solubilization of proteins with limited solubility or even 
provide beneficial crystal contacts for membrane proteins 
(Desmyter et al. 2015). Practically, Nbs significantly helped 
in the stabilization of G protein-coupled receptors in their 
active-state conformations (Steyaert and Kobilka 2011).

Finally, an attractive advantage of Nbs is their ability to 
cross the blood–brain barrier (BBB), unlike regular anti-
bodies. This makes them unique potential diagnostic and 
therapeutic tools for the central nervous system (Li et al. 
2012). Nbs are also showing potential as screening tools via 
genetic modifications that links them to fluorescent proteins 
and thus could be used as biosensors or to trace target anti-
gens intracellularly in living cells (Rothbauer et al. 2006). 
They also present a detailed depiction of immune specificity 
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in-display libraries and are easily adaptable to high-through-
put screening (Gonzalez-Sapienza et al. 2017; Rahbarizadeh 
et al. 2011). Being an efficient diagnostic tool, Nbs became 
among the best tracers for non-invasive imaging for either 
positron emission tomography/computerized tomography 
(PET/CT) or single-photon emission computerized tomog-
raphy (SPECT) imaging.

Since the original patent on Nbs expired in 2013 for 
Europe and 2017 for the US (Arbabi-Ghahroudi 2017), the 
biotechnological, academic, industrial, and therapeutics 
communities have been pushing to commercialize Nbs. 
Currently, the number of studies on unique and inventive 
compositions and applications of Nbs is rapidly increasing.

Applications of Nbs in infectious diseases

Among the broad spectrum of applications in which Nbs 
have been successfully involved, the infectious disease 
domain comes with a big and impactful share. The devel-
oped Nbs for this purpose could be categorized into three 
main groups: therapeutic/prophylactic, diagnostic, and func-
tional and structural elucidation tools.

Nbs as therapeutic and/or prophylactic tools in infectious 
diseases.

This is the largest category in which multiple Nbs have been 
tested and evaluated against different types of pathogens. For 
example, many Nbs have been tested to act as neutralizing 
agents for viral infections including foot & mouth disease 
virus (FMDV) (Harmsen et al. 2008), human immunode-
ficiency virus (HIV-1) (Forsman et al. 2008; Lutje Hulsik 
et al. 2013; McCoy et al. 2012), influenza A virus (Wei et al. 
2011), the Middle-East respiratory syndrome coronavirus 
(MERS-CoV) (Wrapp et al. 2020), poliovirus (Strauss et al. 
2016), rabies virus (Terryn et al. 2016), respiratory syncytial 
virus (RSV) (Rossey et al. 2017), rotavirus (Maffey et al. 
2016), and lately the Covid-19 causing virus (SARS-CoV-2) 
(Chen et al. 2021; Schoof et al. 2020; Yang et al. 2023).

Among the strategies through which Nbs were used to 
treat infections is to target key moieties within the patho-
gen to block its pathogenesis. For example, to interfere with 
the ability of Campylobacter to colonize the host, Nbs were 
tested by targeting an outer membrane protein and the fla-
gella (Vanmarsenille et al. 2018). Other Nbs targeted the F4 
fimbriae of E. coli (Harmsen et al. 2005), the Salmonella 
enterica FilC flagellin (Huen et al. 2019), and the Strepto-
coccus mutans adhesin (Krüger et al. 2006). Another group 
of Nbs were developed to target the toxins produced by 
some pathogens so that they block their toxic effects on the 
host’s cells. This category included Nbs against the Bacillus 
anthracis toxin (Shali et al. 2018), the Clostridium botuli-
num neurotoxin (Dong et al. 2010; Mukherjee et al. 2012), 

the C. difficile toxin (Hussack et al. 2018), the E. coli heat-
labile toxin (Harmsen et al. 2009a, b) and the Staphylococ-
cus aureus Toxic-Shock Syndrome Toxin (TSST-1) (Adams 
et al. 2009). Moreover, Nbs were generated to target other 
virulence factors such as the type III secretion system of 
Pseudomonas aeruginosa accordingly blocking the transfer 
of toxins to the host’s cell (De Tavernier et al. 2016), the 
urease enzyme of Helicobacter pylori inhibiting this key 
enzyme for the survival of the pathogen within the host 
(Fouladi et al. 2019), and the internalin B (InlB) of Lis-
teria monocytogenes blocking bacterial invasion (King et al. 
2018).

In viral pathogens, Nbs targeted surface structures to 
block entry to the host cell such as the Ebola envelope glyco-
protein (Liu et al. 2017), the hepatitis B virus envelope pro-
tein S (Serruys et al. 2009), the hepatitis C E2 glycoprotein 
(Tarr et al. 2013), and others. Also for the viral pathogens, 
Nbs targeted viral replication as in the case of the Ebola 
nucleoprotein (Darling et al. 2017), the HCV RNA-depend-
ent RNA polymerase (NS5B) (Thueng-in et al. 2012), and 
the nucleoproteins of the influenza A (Hanke et al. 2016) and 
the Marburg virus (Darling et al. 2017).

Among the therapeutic applications of Nbs in infectious 
diseases is their use for targeted drug delivery as has been 
demonstrated against Herpes simplex virus 2, where Nbs 
against glycoprotein D conjugated to the cytotoxic domain of 
the P. aeruginosa exotoxin acted as immunotoxins and were 
very effective in killing the virus-infected cells (Geoghegan 
et al. 2015). Also, Nbs directed against β-lactamases such as 
TEM-1 and BclI successfully inhibited the enzymatic activ-
ity of these enzymes and rendered the resistant pathogen 
susceptible to β-lactam antibiotics (Conrath et al. 2001).

Nbs as diagnostic tools in infectious diseases.

Another area in which Nbs are used actively is in the diagno-
sis of infectious diseases. Many Nbs targeted against moie-
ties in the pathogens have been considered for diagnostics 
purposes. For example, the type 2 NS1 protein of the Den-
gue virus (Fatima et al. 2014), ORF2 of the hepatitis E virus 
(Arce et al. 2023), HIV capsid proteins (Helma et al. 2012), 
and other viral targets. In addition, Nbs are also used for 
the diagnosis of bacterial pathogens including Acinetobacter 
baumannii (Rasoulinejad and Gargari 2016), Brucella spp. 
(Abbady et al. 2011), E. coli (Salhi et al. 2020), S. aureus 
(Hu et al. 2021), and Vibrio cholerae (Goldman et al. 2006).

Nbs as structural and functional elucidation tools 
in infectious diseases.

Another application of Nbs in infectious diseases is the 
use as tools to elucidate the crystal structure of a patho-
gen-related protein or investigate its function. To this end, 
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multiple Nbs have been developed. For instance, Nbs against 
the gp120 of HIV-1 were used to elucidate both its function 
and structure (Chen et al. 2010), while the function of the 
Nef protein of the same virus was studied using another Nb 
(Bouchet et al. 2011). In the case of bacterial pathogens, Nbs 
were used for structural biology studies of the MazEF toxin/
antitoxin of E. coli (Lah et al. 2003), and that of the EpsJ 
pseudopillin of V. vulnificus (Lam et al. 2009).

An updated comprehensive list of the diverse applica-
tions of Nbs against viral and bacterial infectious diseases 
is presented in Tables 1 and 2, respectively.

The majority of the reported Nbs that are listed in Table 1 
are directed towards viral targets, which could be attributed 
to the Nbs advantages discussed earlier, especially their high 
accessibility and penetration capabilities. With the global 
concerns associated with the SARS-CoV-2 pandemic in the 
previous three years, there was a plethora of attempts to face 
this threat using Nbs platforms. Over fifteen studies, targeted 
engineered Nbs showed promising results in neutralizing 
the SARS-CoV-2 virus and suppressing mutational escape 
in different pre-clinical animal models. In addition, several 
Nbs studies have contributed to the ongoing efforts to find a 
cure for HIV infections using multiple approaches.

Compared to viral antigens, the application of Nbs in 
dealing with bacterial pathogens is still limited (Table 2). 
Up to date, the applications of using multiple Nbs have been 
directed to the neutralization of the botulinum neurotoxin. It 
is an attractive target for the development of monospecific 
antibodies owing to its extreme lethality and having the least 
 LD50 value among known toxins. It is worth mentioning that 
the only currently FDA-approved treatment for botulism is 
an equine-driven polyclonal antibody cocktail shot (Tomic 
et al. 2021). Additionally, E. coli with its diverse pathogenic 
potentials attracted attention for the development of thera-
peutic Nbs either for blocking attachment (Harmsen et al. 
2005) or toxin neutralization (Harmsen et al. 2009a, b).

On another front, very few attempts have been imple-
mented in the production of anti-fungal Nbs. Most of the 
studies aimed at detecting food product contamination with 
mycotoxins, specifically the aflatoxin  B1 (He et al. 2022; 
Salvador et al. 2022). Recently, Liu et al (2023) designated 
Nb-natamycin conjugates that were specific to the Asper-
gillus fumigatus β-glucan. A. fumigatus is known to be a 
common causative agent of fungal keratitis, an inflammatory 
eye disease affecting the cornea. These conjugates success-
fully attenuated the virulence of A. fumigatus, and favorably 
modulated the inflammatory responses in fungal keratitis 
(Liu et al. 2023). Earlier, the same group described another 
Nb that is specific to the mammalian pattern-recognition 
receptor for fungi dectin 1. The anti-dectin 1 Nb alleviated 
the clinical symptoms of fungal keratitis in a mouse model, 
and this was attributed to the reduced expression of inflam-
matory cytokines IL-1β and IL-6 (Liu et al. 2022).

Disadvantages of nanobodies

The Nbs technology has become successively incorporated 
in a lot of therapeutic and diagnostic applications due to its 
small size. However, Nb's small size accounts for its short 
half-life by being rapidly eliminated by kidneys. This is 
attributed to their low molecular weight (~ 15 kDa) which 
is below the renal threshold for glomerular filtration (~ 50 
kDa) (Ruggiero et al. 2010). Hence, their diminutive size 
and thereby their short half-life accounts for some chal-
lenges or limitations for using Nbs in different therapeutic 
fields such as screening and in vivo diagnosis applications. 
One of these challenges is the high uptake and accumula-
tion of Nbs in the kidneys while being eliminated, which 
in turn limits their use as in vivo imaging probes for kid-
ney screening along with some vicinity organs like the 
pancreas (Schoonooghe et al. 2012). In addition, the bind-
ing capacity of some Nbs is altered after being conjugated 
with either fluorophore or radioactive probes, for exam-
ple, the Nbs conjugated with chelators having gallium-68 
(68Ga) or zirconium-89 (89Zr) for immuno-positron emis-
sion tomography (immunoPET) imaging. These radiola-
beled nanobodies may exhibit different features, including 
affinity, size, structure, and pharmacokinetics. However, 
site-directed conjugation and nanobody-engineering strat-
egies have been recently applied to demonstrate the effec-
tiveness, reliability, and safety of their use as molecular 
imaging probes (Yang et al. 2022). Another challenge is 
the low persistence of Nbs within the bloodstream due to 
their rapid clearance which in turn hampers their uptake. 
As a result, only a negligible fraction of the administered 
nanobody reaches the target sites, thereby hindering their 
efficacy. This may account for the frequent administration 
of Nbs along with using higher doses to maintain their 
therapeutic level, however, this is not recommended for an 
efficient therapeutic application. Further approaches seek 
different strategies to prolong Nbs half-life by enhancing 
their accumulation and pharmacokinetics either by Nbs 
multimerization approach or by Nb-serum albumin con-
jugation approach (Jovčevska and Muyldermans 2020).

Lastly, due to the high homology between the camelid 
germline IgV gene repertoire and its human counterparts, 
with up to 95% in the case of the camelid IGHV family 
III and its human FR counterpart, Nbs inherently pose a 
low immunogenic profile, which allows for prolonged and 
repeated administrations of Nbs in patients (Klarenbeek 
et al. 2015). However, the generation of antibodies against 
administered Nbs is possible and can be problematic, as 
demonstrated in the aborted clinical trial with an anti-DR5 
receptor nanobody (Papadopoulos et al. 2015). This sug-
gests that moderate humanization of Nbs sequences may 
be beneficial in some cases.
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Despite of these challenges and limitations, the Nb tech-
nology still shows significant advantages over the conven-
tional antibody as an effective immunotherapy.

Conclusions

Nbs represent a very promising tool for a vast array of 
biomedical applications owing to their superiority in terms 
of small molecular size, modulative specificity, and their 
physico-chemical properties that allow for easier down-
stream processing. The majority of current Nb applications 

are focused on the fields of diagnostics, and structural biol-
ogy, being used as structural aids for troublesome proteins. 
The recent surge in anti-viral development accelerated the 
expansion in therapeutic Nb research, with many promis-
ing candidates designed to target viral infections. Anti-
bacterial and anti-fungal Nb candidates are still limited in 
numbers and targets, which calls for future investigation 
of their potential applications for this purpose. This could 
be especially warranted in the post-antibiotic era, where 
available antibiotics are failing to suppress extremely 
resistant microbes.

Table 2  Nanobodies directed against bacterial antigens

Bacteria Target Potential application of produced 
Nb

References

Acinetobacter baumannii Biofilm associated protein (Bap) Immunoassay Rasoulinejad and Gargari (2016)
Bacillus anthracis Protective antigen (PA) toxin Neutralization Shali et al. (2018)
β-lactam resistant pathogens βeta-Lactamase (TEM-1 & BcII) β-lactamases inhibitor Conrath et al. (2001)
Brucella abortus Strain NalR Therapeutic, prophylactic, and/or 

diagnostic purposes
Abbady et al. (2011)

Brucella melitensis Strain Riv.1 Therapeutic, prophylactic, and/or 
diagnostic purposes

Abbady et al. (2011)

Campylobacter Flagella Reducing colonization Riazi et al. (2013)
Major outer membrane protein 

(MOMP)
Reducing colonization Vanmarsenille et al. (2017)

MOMP & flagella Immunoprophylactic Vanmarsenille et al. (2018)
Clostridium botulinum Botulinum neurotoxin Neurotoxin neutralization and/or 

diagnostic purpose
Conway et al. (2010), Dong et al. 

(2010), Goldman et al. (2008), 
Mukherjee et al. (2012), Thanong-
saksrikul et al. (2010), and Trem-
blay et al. (2010)

Clostridium difficile TcdA & TcdB toxins Neutralization Andersen et al. (2016), Hussack et al. 
(2018), and Yang et al. (2014)

Clostridium tetani Tetanus toxoid & lysozyme Nb functional studies Arbabi Ghahroudi et al. (1997)
Escherichia coli F4 fimbriae Immunotherapeutic Inhibiting adhe-

sion to intestinal brush
Harmsen et al. (2005)

Surface antigens Diagnostic & therapeutic purposes Salhi et al. (2020)
Heat-labile toxin Toxin neutralization Harmsen et al. (2009a, b)
MazEF toxin/antitoxin system Structural biology & crystallogra-

phy
Lah et al. (2003)

Helicobacter pylori Urease Enzyme inhibition Fouladi et al. (2019)
Listeria monocytogenes Internalin B (InlB) Prevention of bacterial invasion King et al. (2018)
Neisseria meningitidis Lipopolysaccharide Therapeutic purpose against sepsis El Khattabi et al. (2006)
Pseudomonas aeruginosa PcrV of Type III secretion system 

T3SS
Blocking host cytotoxicity De Tavernier et al. (2016)

Salmonella enterica FliC Flagellin Therapeutic purposes Huen et al. (2019)
Staphylococcus aureus Toxic-Shock Syndrome toxin-

1(TSST-1)
Toxin neutralization Adams et al. (2009)

Enterotoxin B Immunoassay Hu et al. 2021 and Sun et al. (2020)
Streptococcus mutans Streptococcal antigen I/II adhesin Prophylaxis against dental caries Krüger et al. (2006)
Vibrio cholerae Cholera toxin Immunoassay Goldman et al. (2006)
Vibrio vulnificus EpsJ pseudopilin Structural biology & crystallogra-

phy
Lam et al. (2009)
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