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Abstract
α-Amylases are essential biocatalysts representing a billion-dollar market with significant long-term global demand. They 
have varied applications ranging from detergent, textile, and food sectors such as bakery to, more recently, biofuel industries. 
Microbial α-amylases have distinct advantages over their plant and animal counterparts owing to generally good activities and 
better stability at temperature and pH extremes. With the scope of applications expanding, the need for new and improved 
α-amylases is ever-growing. However, scaling up microbial α-amylase technology from the laboratory to industry for practical 
applications is impeded by several issues, ranging from mass transfer limitations, low enzyme yields, and energy-intensive 
product recovery that adds to high production costs. This review highlights the major challenges and prospects for the pro-
duction of microbial α-amylases, considering the various avenues of industrial bioprocessing such as culture-independent 
approaches, nutrient optimization, bioreactor operations with design improvements, and product down-streaming approaches 
towards developing efficient α-amylases with high activity and recyclability. Since the sequence and structure of the enzyme 
play a crucial role in modulating its functional properties, we have also tried to analyze the structural composition of microbial 
α-amylase as a guide to its thermodynamic properties to identify the areas that can be targeted for enhancing the catalytic 
activity and thermostability of the enzyme through varied immobilization or selective enzyme engineering approaches. Also, 
the utilization of inexpensive and renewable substrates for enzyme production to isolate α-amylases with non-conventional 
applications has been briefly discussed.
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Introduction

α-Amylases are the oldest carbohydrases that can replace 
chemical starch liquefaction in various sectors by the selec-
tive breaking of α-1,4 glycosidic bonds (Abraham et al. 
2013; Aleem et al. 2018; Egbune et al. 2022). This class of 
amylases represents almost ~ 25% of the global market share 
of total enzymes with deployment into the textile, detergent, 

beverage, paper, pharma, bakery, and biofuel industries 
(Abd-Elhalem et al. 2015; Kaur et al. 2021; Hallol et al. 
2022). The global market size was valued at USD 278.2 
million in 2018 and is expected to increase to USD 353 mil-
lion by 2026 (Niego et al. 2023). α-Amylases for bakery 
applications will witness the fastest geographical volume 
gains in the Asia Pacific at a CAGR of 5.9% (https://​www.​
grand​viewr​esear​ch.​com), underpinned by end-user demand 
to improve the texture of the dough and the color, aroma, 
and softness of the final bakery products. Also, rising 
demand from the animal feed industry and discerning con-
sumer needs for products with nutritional value, efficiency, 
and environmental impact considerations in the pulp and 
paper industry have helped ramp up global requirements of 
the enzyme with Novozymes (Denmark), Royal DSM N.V. 
(Netherlands), AB Enzymes (Germany), and DuPont (USA) 
being among the major market players (https://​menafn.​com; 
https://​gmins​ights.​com) (Ahuja and Malkani 2019).
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In the realm of biological taxonomy, a multitude of organ-
isms spanning the plant kingdom (including soybeans, sweet 
potatoes, barley, wheat, and maize) as well as the animal 
kingdom (encompassing Homo sapiens, canines, and avian 
species) exhibit the capacity to synthesize α-amylases (El-
Gendi et al. (2022). However, when it comes to the produc-
tion of enzymes, microorganisms are widely regarded as the 
most exemplary cellular factories due to their remarkable 
catalytic activity, stability, simplicity of production, and 
ability to optimize various parameters, as elucidated by 
Dakhmouche Djekrif et al. (2021).

α-Amylase, a canonical metalloenzyme, crucially relies 
on the presence of calcium ions (Ca2+) to attain its opera-
tional efficacy, stability, and overall structural integrity, as 
outlined by Nandi et al. (2022). This enzyme, through its 
interaction with starch, undertakes the conversion of the 
said polysaccharide into glucose, maltose, and dextrins, as 
discerned from the findings of Arnau et al. (2020). Nota-
bly, α-amylase (EC 3.2.1.1) functions as an endo-amylase, 
while β-amylase (EC 3.2.1.2) acts as an exo-amylase, and 
γ-amylase (EC 3.2.1.3) exists as another noteworthy class 
of amylases. These enzymes exhibit distinct mechanisms 
of action, executing diverse approaches in their cleav-
age of starch molecules. Particularly, α-amylase disrupts 
α-glycosidic linkages at random locations within the starch 
substrate, a characteristic distinguishing it from its counter-
parts resulting in maltose, dextrins, and oligosaccharides 
(depicted in Fig. 1). Conversely, β-amylase selectively tar-
gets the maltose-producing α-1,4 glycosidic linkage at the 
nonreducing end, thereby yielding maltose (Pan 2021). This 
enzyme is predominantly prevalent in plants and microor-
ganisms (Lahiri et al. 2021). On the other hand, γ-amylase, 
known for its ability to break both α-1,4 and α-1,6 glyco-
sidic linkages from the non-reducing end, exhibits a broader 
spectrum of cleavage activity directed towards glucose as the 
major product (Tong et al. 2021). Of the three classes above 
of amylases, α-amylases are favored in industrial applica-
tions due to their superior kinetic properties. However, their 
relatively lower selectivity than β and γ-amylases represents 
a potential trade-off.

This review provides an in-depth detail of the structural 
attributes of α-amylase, shedding light on various thermo-
dynamic parameters that govern its functional properties 
and functional stability. It also provides a comprehensive 
understanding of the challenges associated with scale-up for 
different industrial applications of the enzyme with possi-
ble strategies to combat/mitigate the issues by considering 
the various factors governing the bioprocess, protein engi-
neering, or enzyme immobilization, for which hardly any 
literature is available. To the best of our knowledge, this is 
the first review encompassing almost all the critical factors 
associated with α-amylase production for industrial applica-
tion. The scope of α-amylase for possible application as a 

bioremediating agent as a non-conventional application has 
also been discussed.

α‑Amylase: an insight into its structure

Genome sequencing projects have elucidated the sequence 
of several microbial amylases, enabling scientists to solve 
and model their 3D structures (Fig. 1). Conformationally, 
α-amylase generally has three domains. The catalytic or 
central domain, A, is the largest and consists of an eight-
stranded α/β barrel referred to as the TIM barrel, first dis-
covered in chicken muscle triphosphate isomerase—hence 
the name (MacGregor 1988). This region carries three active 
site residues (two Asp and one Glu residue) that are crucial 
in enabling substrate binding (Fig. 1) (Brayer et al. 1995). 
One Aspartate residue helps to maintain the integrity of the 
active site by interacting with the neighboring conserved 
Arginine through H-bonds. The other Aspartate molecule 
interacts directly with the substrate (such as starch), result-
ing in substrate distortion and elevating the pKa of the Glu-
tamate, which acts as the proton donor to the glycosylated 
oxygen moiety and thereby enables hydrolysis through the 
formation of a beta-linked glycosyl-enzyme intermediate 
(Mehta and Satyanarayana 2016). Domain A is present in 
all α-amylases, whether obtained from bacteria, fungi, or 
animals.

On the other hand, domain B (a protrusion from domain 
A) has non-uniform β-sheets compared to the TIM barrel 
of domain A. It constitutes a significant portion of the sub-
strate binding pocket of various α-amylases and differs sig-
nificantly in conformation (Li et al. 2017a, b). It appears 
as an insertion between the C and A domains and remains 
attached to the latter through a disulfide linkage. Interest-
ingly, the B domain is absent in liquefying α-amylases of 
B. subtilis, whereas the region remains slightly elongated 
and has distinct features in most thermostable bacterial 
amylases. It is assumed that the rigidity of the B domain 
enables substantial improvement in thermostability and 
plays a crucial part in imparting substrate specificity 
(Zeng et al. 2020). Domain C, the most variable domain, 
accounts for the C- terminal sequence assembled into a 
globular unit forming a Greek key motif. It remains loosely 
bound to the TIM barrel compared to the B domain and 
at its opposite end. The C terminal domain is structured 
with β sheets and connects to domain A by simple poly-
peptide linkage. This region shows significant irregulari-
ties in sequence and length between different α-amylases. 
Though its function is not entirely understood, some 
researchers have shown that this variable region can play 
an essential role in enzymatic activity and stability. Fort 
et al. (2021) indicated that domain C in Bacillus stearo-
thermophilus plays a vital role in its enzymatic activity. 
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Using C-terminal domain truncated mutants (CTDM) 
of Geobacillus thermoleovorans (Zeng et al. 2020), the 
researchers noted that although the wild type α-amylase 
could successfully bind the corn starch, the CTDM amyl-
ase could not attach to the substrate under identical con-
ditions. Also, its kcat and half-life were reduced by 22.1% 

and by 1 h, respectively, which indicated that the CTD 
probably played a part in starch binding and enabled it 
to prolong the thermostability. The conserved calcium-
binding groove is localized in central domain A towards 
the C terminal region. Mehta and Satyanarayana (2014) 
confirmed the function of domain C in starch binding by 

Fig. 1   3-D structure of α-amylase with different domains and mechanistic action of α-amylase from Bacillus sp. The single letters indicate stand-
ard amino acid codes



	 World Journal of Microbiology and Biotechnology (2024) 40:44

1 3

44  Page 4 of 28

carrying out truncation analysis; α-amylase produced by 
G. thermoleovorans mutant could not bind the raw starch.

α-Amylases from Aspergillus awamori showed the pres-
ence of an additional domain (CBM), i.e., a carbohydrate-
binding module. Also referred to as an ancillary module 
comprising 40–200 amino acid residues that facilitate the 
binding of various polysaccharides (Singh et al. 2021), an 
α-amylase starch binding domain (SBD) is such a CBM 
with specificity toward starch (Baroroh et al. 2019). SBD 
contains a β-sandwich fold and is categorized under fam-
ily CBM20. A linker region facilitates the binding of CBM 
with the catalytic domain. It enhances the hydrolysis rate 
by increasing the concentration of raw starch at the site by 
adsorption (Cripwell et al. 2020). The amino acid residues 
W543, W590, W616, and W662 play crucial roles in the 
binding starch granule. The CAZY database contains ~ 2704 
SBD entries (out of 292,679 hits) in amylases produced by 
Bacillus cereus, Bacillus circulans, and Aspergillus niger 
(http://​www.​cazy.​org/). α-Amylase from Saccharomycopsis 
fibuligera R64 showed lower adsorption of raw starch due 
to a lack of a carbohydrate-binding domain (CBD) (Baroroh 
et al. 2019). α-Amylase from Bacillus aryabhattai showed 
the presence of CBM similar to amylase from soybean and 
other plants (Duan et al. 2021). SBD is present in various 
amylases, having the capability to degrade raw starch. These 
are additional domains apart from the specific domains 
found in different α-amylases (Mehta and Satyanarayana 
2014).

Calcium: an inherent cofactor

Calcium plays a significant role in α-amylase activity. The 
number of bound metals typically varies from one to ten 
within the protein molecule (Navjot et al. 2022). On the other 
hand, Gopinath et al. (2017) reported seventeen binding sites 
for calcium in Bacillus amyloliquefaciens. Although the 
functions of α-amylases from various origins have changed 
due to evolution, catalytic residues, and calcium bind-
ing pockets are still conserved (Posoongnoen et al. 2021; 
Marengo et al. 2022). Calcium ions have proven to func-
tion critically in α-amylases, resulting in structure, activity, 
and stability improvement, especially in thermophilic ones 
(Yadav 2012). It has been noted that the potential residues 
binding to Calcium are conserved. The metal ions are nec-
essary to maintain protein shape in their functional confor-
mations (by stabilizing the interface of domains A and B) 
and resist enzymes' thermal inactivation (Liao et al. 2019). 
The authors reported that with loss of Calcium ions in ther-
mophilic Anoxybacillus sp. GXS-BL, the denaturation tem-
perature of the enzyme was substantially reduced by 10 °C, 
similar to those reported with Aspergillus oryzae. Calcium 
removal from the protein led to increased susceptibility to 

proteolytic degradation and loss of structural integrity. As 
an interesting fact, sequence analysis has revealed the pres-
ence of a metal triad at the interface of domains A and B, 
i.e., calcium–sodium–calcium (Ca–Na–Ca) (Machius et al. 
1998; Lee et al. 2022) in certain Bacillus amylases, which 
probably account for their increased thermostabilities. The 
structured presence of sodium and calcium creates a unique 
arrangement surrounded by negatively charged residues. Ca 
and Na in the metal triad are responsible for the stability of 
thermophilic α-amylases (Yi et al. 2018). However, there 
are one or two reports that calcium ions also negatively 
impact the enzyme activity in some species. For example, 
α-amylase from A. oryzae is found to be inactivated in the 
presence of Calcium ions (Ng et al. 2021). The Calcium-
binding site exhibits secondary interactions with Asp, Glu, 
and Asp catalytic residues, leading to the inactivation of the 
active site. Despite these exceptions, Calcium is an essential 
component of the enzyme that significantly enhances the 
catalytic efficiency of α-amylase through stable interactions 
with various amino acid residues within the protein mol-
ecule (Marengo et al. 2022).

Amino acid composition: a key determinant 
of stability

The amino acid composition within the α-amylases, apart 
from the catalytic activity, can also significantly influence 
the enzyme stability. It has been observed that elevated lev-
els of non-polar amino acids, particularly those with hydro-
phobic properties, result in a reduction of charged amino 
acids, specifically Arginine and Glutamate residues. The 
charged amino acids, however, play a crucial role in ionic 
interactions, salt bridges, and H bondings within the proteins 
which promote stability. For example, an increase in aro-
matic amino acids, especially Tyrosine residues, enhances 
cation–pi interactions. George et al. (2020) performed an in-
silico sequence analysis of several α-amylases and observed 
that certain charged amino acid residues such as Lysine, 
Arginine, Glutamate, and their corresponding dipeptides 
occur at a higher frequency in the thermostable versions 
of the enzyme compared to their mesophilic counterparts. 
Statistical data analysis has also shown that amino acid sub-
stitutions such as Glycine to Alanine and Lysine to Arginine 
in thermophilic α-amylases are favored. Whereas a decrease 
in Methionine residues promotes thermostability within a 
particular protein. It is assumed that thermodynamically, the 
distinctive compositions of amino acids are closely linked 
to specific characteristics, notably the shape and Gibbs 
free energy change of hydration for native enzymes. It is 
assumed that amino acid composition disparities can be a 
pivotal determinant of protein thermostability. However, to 
ascertain the intricate relationship between structure and 

http://www.cazy.org/
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function in α-amylases, further exploration of protein activ-
ity and stability needs to be carried out and modeled as a 
function of amino acid composition (across a larger extent 
in the database) using the advanced machine learning or AI-
based) computational tools at the micro level.

Thermodynamics of α‑amylase

The thermodynamic parameters for starch hydrolysis using 
α-amylases have been derived from the transition state the-
ory by Eyring and Stearn.

where,

where h = Planck’s constant (6.63 × 10−34), R = gas constant 
(8.314 J/K mol), T = absolute temperature, ∆S* = change in 
entrophy, ∆H* = change in enthalpy, k = Boltzmann constant 
(1.38 × 10−23).

The change in enthalpy provides valuable information 
for the effectiveness of the transition state. In contrast, a 
change in entropy suggests the affinity of the substrate for 
the enzyme and the stability of the transition state. On the 
other hand, the change in Gibb's free energy (ΔG) is an 
indicator of the spontaneous reaction. The protein structure 
strictly regulates both parameters.

Shukla and Singh (2015) performed deactivation stud-
ies varying from 50 to 100 °C to analyze the thermostable 
amylase from an actinobacteria Laceyella sacchari TSI-2. 
The change in entropy was estimated at around − 126.45 J/
mol/K, which indicated that α-amylase binds with high affin-
ity with its substrate, soluble starch. Also, the enzyme had 
a high energy of deactivation (21.16 kJ/mol), which cor-
roborated its stability at elevated temperatures. Nwagu et al. 
(2020) discovered a high change entropy (~ -180 J/mol/K) 
by α-amylase from Paecilomyces variotii ATHUM 8891 
while binding with starch. The enthalpy change was around 
34.09 kJ/mol, which highlighted that higher free energies 
were necessary to inactivate the enzyme. In another report, 
Samanta et al. (2014) described an α-amylase derived from 
Bacillus licheniformis SKB4, which is highly thermostable 
with an optimum temperature of 90 °C. The free energy for 
substrate binding (∆G E–S) and transition state at 90 °C 
were found to be 5.53 and − 17.4 kJ/mol, respectively. Yan-
dri et al. (2020) reported a thermostable enzyme from Bacil-
lus subtilis ITBCCB148 with an optimum working tempera-
ture of 65 °C. Native α-amylase had a half-life (t1/2) of 1.89 h 
with a ΔG value of 107.3 kJ/mol.
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Interestingly, immobilizing the α-amylase using chitin 
enhanced its half-life by ~ 12-fold and improved the ΔG 
value to 115.51 kJ/mol (Yandri et al. 2021). Table 1 high-
lights the thermodynamic properties of different α-amylases 
isolated from various bacterial and fungal species. The 
mesophilic α-amylase counterparts have significantly lower 
enthalpy and Gibb’s free energy values. Based on the ther-
modynamic parameters, the enzyme performance can be 
easily deduced.

Production methods

α-Amylase production has been attempted through different 
fermentation techniques. However, commercially only two 
production methods, (a) solid-state fermentation (SSF) and 
(b) submerged fermentation (SMF), have been successful 
(Elyasi et al. 2020) (Table 2). The conventional fermentation 
technique SMF employs a free-flowing liquid to grow the 
culture in an aerobic or anaerobic environment (Bakri et al. 
2020). As a homogeneous medium, the substrate is utilized 
rapidly, and the α-amylase can be efficiently secreted in the 
liquid broth. This easily enables the recovery and purifica-
tion of the enzyme for downstream applications. Besides, the 
physical parameters such as aeration, pH, and temperature 
can be smoothly regulated, which dictates the enzyme kinet-
ics (Sharma et al. 2016).

SSF, on the other hand, employs a solid substrate such as 
bran, pulp, leave, peels, or raw biomass that is biodegrad-
able for the growth of microbe at a solid–liquid interface 
(Cuadrado-Osorio et al. 2022). Unlike SMF, the substrates 
are utilized slowly but steadily in this method. The process 
does not require specialized equipment, resulting in a high 
concentration of products with minimal effluent generation 
(Ramachandran et al. 2010; Srivastava et al. 2019). How-
ever, yeast and fungi were considered most appropriate for 
SSF compared to bacterial cultures with their substantial 
water requirements (Prabhu et al. 2022). Also, bacterial 
cultures can be well maintained and exploited for SSF pro-
cesses, as shown by recent research (Tsegaye and Gessesse 
2014). A comparison of the two methods has shown that 
SSF is more appropriate for developing countries because of 
its cost-effectiveness with relatively little energy expenditure 
as compared to SMF.

Although the cost of α-amylase production is the most 
crucial factor for any process development with the enzyme, 
it is usually not taken into serious consideration. Very little 
information is available on α-amylase production costs, and 
the authors mostly provide an estimated price (US $3/kg to 
US $50/kg) without giving detailed information about the 
source or the models (Sóti et al. 2018). Among a few hand-
fuls of reports available, Castro et al. (2010) estimated the 
cost of α-amylase production from A awamori using SSF of 
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Babassu cake. The initial cost of production was estimated 
to be very high. With much optimization and strategic plan-
ning, the authors brought down the cost to US$ 10.4 kg of 
the enzyme (by selling the fermented cake as a co-product). 
In a more recent study, Balakrishnan et al. (2021) performed 
the production of α-amylase with scale-up (in a 600 L fer-
menter) from A oryzae using solid-state fermentation of 
edible cakes. Using statistical design and optimization tools, 
the production could be enhanced by ~ 12%. The economic 
analysis demonstrated that the partially purified enzyme had 
a tentative production cost of ~ US$ 7.59/L of the enzyme 
with very high activity (9868.12 U/g dry substrate). In an 
interesting study, reported by authors from Bangladesh, an 
in-house α-amylase could be produced through SSF at a pro-
duction cost of US$ 0.54/L the enzyme which was ~ 10 times 
lower compared to the conventional α-amylase (Khalid-Bin-
Ferdaus et al. 2018). Such a low-cost enzyme, if success-
fully scaled up, would be an instant hit for application in the 
textile and apparel industry.

α‑Amylase: a host of endless opportunities

Starch conversion

The α-amylases are essential enzymes with vital applications 
in starch liquefaction (Paul 2016). The process of starch deg-
radation involves three steps, namely a) Gelatinization, b) 
Liquefaction, and c) Saccharification (El-Fallal et al. 2012). 
During gelatinization, starch feedstock, corn, wheat, or cas-
sava undergoes thorough cleansing and pulverization, yield-
ing a fine powder. This meticulous step augments the surface 
area of the starch particles, ensuring enhanced accessibility 
for subsequent enzymatic actions. The solid starch slurry 
is next treated at high temperatures (> 100 °C) to ensure 
the removal of lipid-starch complexes. This step results in a 
dense suspension of starch dissolved in water, which enables 
the α-amylases to partially hydrolyze the polymer into short-
chain dextrin, significantly reducing the solution viscosity. 
This is followed by the enzyme's breakdown of the oligo-
meric dextrin into reducing monomeric sugars D-glucose 
and D-fructose. The incubation period and the enzyme load-
ing predominantly govern starch hydrolysis efficacy. Since 
the current industrial amylases cannot sustain such high tem-
peratures, the gelatinization and liquefaction steps must be 
performed separately (Silano et al. 2018). The liquefaction 
process after gelatinization commences with a heat-intensive 
step, wherein the starch slurry, accompanied by water, is 
subjected to elevated temperatures. Simultaneously, thermo-
stable α-amylase enzymes are introduced into the mixture. 
These enzymes catalyze the hydrolysis of α-1,4 glycosidic 
bonds, effectively deconstructing the starch molecules into 
shorter dextrin chains. Operating within the 95–105 °C 

temperature range, this phase facilitates optimal enzymatic 
activity. After the liquefaction stage, the temperature of the 
starch slurry is carefully decreased, accompanied by the 
introduction of additional enzymes. This crucial step encom-
passes the synergistic action of glucoamylase and α-amylase 
enzymes. Their concerted effort progressively disintegrates 
the dextrin chains into individual glucose molecules. The 
glucoamylase enzyme contributes to the hydrolysis of both 
α-1,4 and α-1,6 glycosidic bonds within the dextrins, lib-
erating glucose. Saccharification predominantly transpires 
within a temperature range of 55–65 °C.

Once the desired glucose concentration is attained, metic-
ulous control over the enzymatic activity is exercised by 
either elevating the temperature or adjusting the pH of the 
slurry. This serves the dual purpose of halting further enzy-
matic degradation of the starch and preserving the glucose 
for subsequent fermentation endeavors. However, there is a 
search for an enzyme that can sustain even higher tempera-
tures and low pH so that the gelatinization and liquefaction 
steps may be performed simultaneously (which is still a 
great challenge in the industry to date).

Detergent industry

α-Amylases are the most used enzyme after proteases in 
the liquid detergent industry (Dakhmouche Djekrif et al. 
2021). They are supplemented explicitly to the laundry and 
dishwashing detergents for the liquefaction of starch and 
breakdown of starchy stains from different food prepara-
tions and gravies. It principally breaks down the starch 
into tiny sugar molecules lifted from the clothes during the 
detergent wash. Additionally, the enzyme prevents swollen 
starch from adhering to the surface of laundry and glass-
ware (Gürkök 2019). They are generally used in combi-
nation with proteases, which boost cleaning (in different 
industrial sectors) and restore the whiteness of clothes. 
The amylases that can function at low temperatures and in 
an alkaline pH range are significant in the detergent indus-
try (Hamid et al. 2022). The Novozyme-developed Stain-
zyme Plus Evity 24T® and Amplify Prime 100 L® perform 
exceptionally well in cold washes and even in the presence 
of strong chelators (https://​bioso​lutio​ns.​novoz​ymes.​com). 
One of the significant issues of α-amylase in the detergent 
industry is its oxidant sensitivity and calcium dependency 
(Samanta 2022). Genetic engineering has been tried to 
overcome the limiting issues with pH/temperature stabil-
ity and calcium dependency. Yang et al. (2017) mutated 
α-amylase obtained from ciliated protozoan by introducing 
proline residues in the surface loop and changing valine 
to threonine near the catalytic site. It increased half-life 
(t1/2) by twofold at 50 °C compared to the wild type. Gai 
et al. (2018) created a double mutant α-amylase by delet-
ing 179R and 180G from Bacillus stearothermophilus. 

https://biosolutions.novozymes.com
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Half-life was increased by 1.375 fold, and the mutant 
was stable at a lower pH than the wild type. Farooq et al. 
(2021) prepared an oxidant-resistant amylase by replac-
ing methionine with leucine at 197 in (B. licheniformis 
α-amylase) BLA, resulting in better oxidative stability. 
Mutation of oxidation-prone M residues with I, A, and T 
resulted in improved catalytic activity and oxidative sta-
bility. Oxidative stability was increased by 5.4-fold due to 
mutant α-amylase (M145I-214A-229 T-247 T-47I) (Yang 
et al. 2013). Natalase® and Termamyl® are some of the 
amylases available commercially and widely used in the 
liquid detergent industry (Mehta and Satyanarayana 2016). 
B. licheniformis derived Termamyl®300L is a thermally 
stable α-amylase that hydrolyses starch at 95 °C (Guer-
rero-Navarro et al. 2019). Guerrero-Navarro et al. (2022) 
described an enzyme formulation having two commercial 
enzymes, Savinase® and Termamyl® Ultra 300 L, which 
could efficiently remove (~ 75%) fouling in a spray dryer 
and pilot-scale plate heat exchanger in a dairy industry, 
which was comparable to the chemical cleaning methods 
used conventionally in industries based on 1.2 mL/L pro-
tease and 1 ml/L Termamyl®300L. α-Amylase and pro-
tease are used to remove dirt from household streams and 
various industrial waste streams. Nowadays, oxidation 
resistant α-amylases are essential for application in the 
detergent industry as native α-amylases are sensitive to 
oxidation (https://​www.​creat​ive-​enzym​es.​com).

Bioethanol production

The rapid decline of fossil fuels (due to the increasing 
population) coupled with the issue of climate change has 
prompted the scientific fraternity to develop clean and 
renewable biofuels such as ethanol (Khan et al. 2021; Pham 
et al. 2022). Starch is the preferred carbon source for pro-
ducing 1G ethanol due to its global availability. α-Amylases 
readily break down the starch (after liquefaction) into its 
constituent monomers, which are then rapidly converted by 
a fermenting yeast such as Saccharomyces cerevisiae (Singh 
et al. 2022) (Fig. 2). Kumar and Singh (2016) reported effi-
cient ethanol production from corn-based starch using a 
novel vacuum-assisted fermentation method through SSF. 
Using commercial α-amylases with high enzyme activ-
ity (6400 µmol maltose/min mL) and a superior industrial 
fermenting yeast termed "ethanol red" (S. cerevisiae yeast, 
Lesaffre Advance Fermentation), 18% v/v ethanol titers were 
achieved. The vacuum-assisted SSF technique enabled rapid 
ethanol recovery within the system, allowing the yeast to fer-
ment with high productivity without any toxic effects of the 
product alcohol at higher concentrations (Kumar and Singh 
2016). Krajang et al. (2021) reported ethanol production in a 
single step by combining starch hydrolysis and fermentation 
plus scale-up studies (3000 L fermenter) from raw Cassava. 
Using a commercial α-amylase Stargen TM002®, 80.19% of 
raw Cassava starch was hydrolyzed by yielding ~ 176.4 g/L 
fermentable D-glucose. The “baker’s yeast” successfully 

Fig. 2   1G ethanol production process involving α-amylase

https://www.creative-enzymes.com
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fermented the broth with a high yield (8.97% v/v) and 
productivity (0.98 g/L/h). Since starch hydrolysis requires 
high-temperature hydrolysis followed by fermentation by 
mesophilic yeasts, a significant amount of cooling water is 
needed to lower the temperatures, which consumes energy, 
thereby increasing process costs. Yeasts with high-temper-
ature ethanol fermenting capability, such as Kluyveromyces, 
would be a promising candidate for such conversions (Bilal 
et al. 2022). However, their ethanol fermenting capabilities 
need further improvement to be at par with the industrial 
Saccharomyces sp. Apart from the aforementioned points, 
bioethanol production faces several challenges: feedstock 
availability and cost, energy and water requirements, feed-
stock conversion efficiency, policy, and market factors. Etha-
nol production also needs to factor in environmental impact 
issues, such as increased water usage, emissions of green-
house gases, and potential competition for land with food 
production. Mitigating these environmental impact elements 
and ensuring sustainable practices throughout the ethanol 
production lifecycle is essential for this sector.

Textile industry

α-Amylases are employed in the textile industry for design-
ing and finishing fabric. Starch is applied to yarn before 
fabric generation as a strengthening agent (to avert splitting 
of a warp thread during the weaving procedure), typically 
ensuring a rapid and effective procedure. A wet treatment 
process later eliminates it from the fabric. The traditional 
processes of desizing involved using acid or alkali as the 
desizing material. This damages the cellulose fibers and low-
ers the cloth's tensile strength (Vaibav et al. 2022). The harsh 
chemical treatments involve colossal energy expenditure and 
cause environmental concerns in the textile industry, pro-
moting the utilization of enzymatic desizing. The α-amylases 
penetrate the space between fibers and selectively remove 
the starch without adversely affecting the fabric (Al-bedak 
et al. 2022). The α-amylases from Bacillus sp. are nowa-
days widely used in the textile industries. Enzyme solu-
tions such as Aquazyme 210L® and Termamyl® typically 
operate between 30 °C-60°C and efficiently remove starch 
with colossal water and energy savings within a pH range 
of 5.5–6.5 (https://​bioso​lutio​ns.​novoz​ymes.​com). Another 
commercial enzyme, SuperLIQ™®, has been developed by 
the Bestzyme® Corporation to operate across a broad range 
of pH and temperatures, functioning on all starch-based 
sizes (https://​www.​bestz​yme.​com/).

Paper industry

α-Amylases are applied in the paper factory to modify the 
starch-layered paper. Starch is one of the cheapest and most 
crucial wet-end additives used in the paper industry. The 

coating or overlaying process makes the exterior of the paper 
polished, glossy, and robust (Paul 2016; Xu et al. 2018). 
Also, as a sizing agent, starch adds to the reusability and 
enhances paper quality. The cohesiveness of natural starch 
makes it unsuitable for direct application in the paper indus-
try as a sizing agent. α-Amylases are employed for partially 
degrading starch-coating of paper to improve the viscosity 
and concentration to achieve the desired consistency (Gan-
gadharan et al. 2020). Specific modifications in α-amylase 
can increase the viscosity, film-forming properties, and 
adhesion of the starch-based coating. Deinking is the pro-
cess of removing ink from recycled paper fibers to produce 
high-quality recycled paper. Genetically modified amylases 
can be utilized to enhance the deinking process by breaking 
down the starch and carbohydrate-based components of ink 
and improving the efficiency of ink removal. Genetically 
modified amylases can also be used to modify the surface 
properties of paper fibers. By targeting the starch compo-
nents present in the fibers, amylases can alter their structure, 
making them more receptive to various treatments such as 
sizing, coating, and dyeing. This modification improves the 
overall quality and performance of the paper. Bleaching is 
a crucial step in paper production to achieve the desired 
brightness and whiteness. Genetically modified amylases 
can assist in pulp bleaching by degrading starch residues 
that may interfere with the bleaching process. This ensures 
better penetration of bleaching agents, leading to improved 
color removal and brightness. α-Amylase G995® (Enzyme 
Biosystems, USA), BAN® (Novozymes), and Termamyl® 
are the few commercial amylases used in the paper and pulp 
industry (Mehta and Satyanarayana 2016). They also provide 
stiffness and strength.

Challenges and opportunities

α-Amylase holds great significance in various industrial sec-
tors due to its versatile applications. However, the pursuit 
of advancements in this field is driven by the challenges 
posed by specific industrial demands and the opportuni-
ties to overcome them. Challenges include ensuring stabil-
ity under harsh chemical conditions, optimizing substrate 
specificity, achieving cost-effective production, and address-
ing limitations in immobilization techniques. On the other 
hand, opportunities lie in enhancing reactivity and stability 
through genetic and protein engineering, tailoring enzymes 
for specific applications through advanced screening meth-
ods, exploring sustainable production methods, and lever-
aging immobilization for process optimization (Madhavan 
et al. 2021). By addressing these challenges and capitalizing 
on the opportunities, the field of α-amylase can evolve and 
offer improved performance, stability, and cost-effectiveness 

https://biosolutions.novozymes.com
https://www.bestzyme.com/
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for a wide range of industrial applications. The following are 
the challenges in α-amylase:

Strain selection and culture‑independent 
approaches

Selection of a suitable micro-organism with high α-amylase 
production capability is an essential yet challenging task 
(Elyasi et al. 2020). This is due to the significant variations 
that exist in enzyme production capabilities, yields, and pro-
ductivities among different microbial species and strains. 
Screening a large pool of strains is often necessary to iden-
tify the most suitable one for efficient α-amylase produc-
tion (Pranay et al. 2019) which makes it time, resource, and 
labor-intensive. Also, for scale-up and industrial applica-
tions, the desired strain should be fast-growing, easily cul-
turable, and less prone to contamination. Recent research 
has emphasized the importance of using advanced screening 
methods, such as metagenomics and high-throughput screen-
ing techniques, to rapidly identify novel microbial strains 
with potential α-amylase production capabilities (Delavat 
et  al. 2012; Motahar et  al. 2021). For example, a cold-
active α-amylase gene was found using the metagenomic 
approach, which showed a pH optimum of 8–9 and tempera-
ture optimum at 10–15 °C (Vester et al. 2015) which could 
be potentially used in the detergent industry. In another 
report, Motahar et al. (2020) screened sheep rumen meta-
gee to find the thermostable and acidic amylolytic genes. In 
another interesting study, Nair et al. (2017) exploited marine 
sediments to discover potential microbes with substantial 
α-amylase activity with a view that the isolated enzyme may 
be able to withstand the typically harsh chemical conditions 
encountered in the industry. They created a metagenomic 
library in pUC19 from the marine sediments of the Arabian 
Sea obtained at a depth below 96 m, and the clone showed 
considerable amylolytic activity. The geothermal springs 
are believed to harbor an extensive array of undiscovered 
microorganisms. A thermostable amylase was isolated from 
the Odisha geothermal spring through metagenomics-based 
techniques, unveiling a gene comprising 1503 base pairs. 
This gene encodes a protein consisting of 469 amino acids, 
with a molecular weight of 53,895.05 Da and a pI of 7.78. 
Sequence analysis revealed a remarkable 98.95% identity 
with the α-amylase gene of B. licheniformis (Chauhan et al. 
2023). The functional metagenomics approach in the Ethio-
pian soda lake led to the finding of various carbohydrate-
degrading enzyme sequences (Jeilu et al. 2022). In cold envi-
ronments, Proteobacteria and actinobacteria are widespread. 
Singh et al. (2022) in a similar study, reported careful exami-
nation of the metagenomic data from these environments to 
identify α-amylase enzymes with promising applications in 
the detergent industry.

One of the major challenges in the industry working 
under ambient operating conditions is that they are prone 
to contamination, resulting in product inconsistency and, at 
times, huge financial losses (Yassin et al. 2021). This is the 
primary reason that starch industries operate at high tem-
peratures. But, at times, it leads to denaturation of the hydro-
lyzing enzymes. Thus, there is a need for a suitable strain/
enzyme that can not only withstand severe operating condi-
tions but also work effectively. To combat this issue, M/s 
Novozymes has developed an enzyme sold under the name 
of Termamyl Ultra from that can degrade cooked (gelati-
nized) starch with high efficiency at a temperature close to 
90 °C with a working pH between 7 and 11 (https://​www.​
ncbe.​readi​ng.​ac.​uk). Another challenge in strain selection for 
α-amylase production relates to regulatory and intellectual 
property considerations. Accessing and utilizing microbial 
strains may be restricted due to patent rights, biosafety regu-
lations, or intellectual property conflicts. Recent discussions 
and developments in the field have emphasized the impor-
tance of open access to microbial resources, collaboration, 
and clear regulatory frameworks to overcome these chal-
lenges and promote innovation (O'Connor 2021).

Nutrient optimization

α-Amylase production relies on specific nutrients for 
bacterial growth and efficient enzyme synthesis. Identi-
fying the optimal blend of carbon and nitrogen sources, 
trace elements, and other physical factors is not a sim-
ple task. Nutrient optimization studies are often required 
to maximize the yield of the enzyme (Kothakota, et al. 
2021). Recent studies have investigated the effect of dif-
ferent carbon and nitrogen sources, on α-amylase pro-
duction (Kamer et al. 2023) using statistical modeling 
and optimization strategies, such as Response Surface 
Methodology (RSM). By using the different techniques 
in RSM, such as the Box Behnken Design (BBD) and 
Central Composite Design (CCD), researchers have been 
able to study the intricate interactions between the differ-
ent variables associated with α-amylase production and 
their influence on the response in the form of a non-linear 
regression model. By analyzing this model, researchers 
can identify optimal conditions that lead to the desired 
outcome, thereby improving efficiency, reducing costs, 
and enhancing product quality. A thermo-alkali stable 
α-amylase from Bacillus sp. was optimized using Box-
Behnken design (BBD) by considering the physical fac-
tors such as pH, temperature, agitation speed, and incu-
bation time. It was observed that the optimum conditions 
for α-amylase production were observed to be at more 
or less the central values of the variables. The variables 
pH, temperature, and incubation time showed both main 
effects as well as interaction effects with positive effects 

https://www.ncbe.reading.ac.uk
https://www.ncbe.reading.ac.uk
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on the system response, enhancing the α-amylase activ-
ity by ~ 1.5 folds (Khusro et al. 2017). In a similar study, 
optimizing α-amylase production in Bacillus cereus 
using a rotatable central composite design enhanced 
the enzyme activity by 3.9 fold (Ojha et al. 2020). The 
authors reported that the temperature and pH of the pro-
duction medium significantly influenced the enzyme pro-
duction. An increase in temperature beyond 30 °C or a 
reducing pH below 6.3 (which were identified as optimal 
conditions) reduced the enzymatic activity by 20–40%. 
Both the factors displayed main as well as interaction 
effects within the system. In another study, Saad et al. 
(2021) optimized α-amylase production from starch using 
CCD from B. licheniformis sp. It was observed that the 
enzyme productivity was enhanced by ~ 90% compared 
to the traditional OVAT optimization technique. The 
3-D surface plots showed that starch concentration, pH, 
and incubation period displayed positive effects on the 
response (α-amylase activity) up to their optimal levels 
(10.5 g/L, 6.0, and 45 h, respectively), beyond which the 
values resulted in α-amylase repression. These studiese-
lucidated that the micronutrients and growth factors either 
individually or with interaction effects play vital roles 
as cofactors or regulators of the enzyme (Fatoki et al. 
2023). An inducer and signal molecules such as influenc-
ers can affect α-amylase production by regulating gene 
expression and signal transduction pathways. However, 
identifying suitable inducers and understanding their opti-
mal concentrations and timing pose challenges. Recent 
approaches such as transcriptome and proteome analysis 
have explored the effects of different inducers and signal 
peptides on α-amylase production and investigated their 
underlying mechanisms (Huang et al. 2022).

Simair et al. (2017) stated that the high cost of fermen-
tation media for amylase production is a major challenge 
to looking for agro-waste as a cheap substitute for fermen-
tation media to reduce the overall cost. Substrate cost is a 
significant challenge in α-amylase production, account-
ing for 30–40% of the process (Niyomukiza et al. 2022). 
Cassava starch is cheaper than soluble starch and showed 
170 times better results than soluble starch, which can 
be used for reducing fermentation costs (Ayansina et al. 
2017) for large-scale industrial applications. Address-
ing the challenges in nutrient optimization for α-amylase 
production requires a multidisciplinary approach, encom-
passing metabolic engineering, systems biology, and pro-
cess optimization. Recent advancements in next-genera-
tion sequencing technologies, computational modeling, 
and high-throughput screening methods have offered 
opportunities to gain a deeper understanding of nutrient 
requirements and develop tailored strategies for enhanced 
α-amylase production.

Oxygen transfer

Oxygen availability in liquid broth is a crucial factor influ-
encing α-amylase production. Ensuring appropriate aeration 
and agitation to meet the oxygen requirements of the microbe 
is a must (Zhou et al. 2018). Microbial cells consume oxygen 
for different parallel pathways functioning inside cells, thus 
reducing the available dissolved oxygen in the fermentation 
broth, which may negatively impact α-amylase production. 
Recent research has focused on understanding and control-
ling the oxygen uptake rate through process optimization 
and oxygen supply strategies (Wang et al. 2020). Strategies 
such as intermittent aeration, oxygen feedback control, and 
metabolic engineering approaches have been explored to 
regulate oxygen uptake and improve enzyme production. 
In addition, the role of oxygen carriers such as n-dodecane 
and biosurfactants have been investigated to enhance oxygen 
solubility within the system (Wang et al. 2023). Mass trans-
fer limitations can sometimes arise due to inadequate oxygen 
transfer from the gas phase to the bulk liquid and limita-
tions in oxygen diffusion within the culture broth. The issues 
can be mitigated by optimizing bioreactor design, impeller 
configurations, and aeration strategies (Puiman et al. 2022). 
The use of oxygen-enriched air or pure oxygen, along with 
advanced oxygen delivery methods, has been observed to 
improve oxygen transfer efficiency considerably during 
α-amylase production (Mostafa et al. 2021).

Foam formation in bioreactors can also hinder oxygen 
transfer by reducing the effective gas–liquid contact area. 
The foam can accumulate at the liquid surface, impeding 
oxygen transfer and causing reactor instability. Blaga et al. 
(2022) investigated foam control strategies, including using 
antifoam agents, foam level control systems, and improved 
bioreactor designs, to minimize the adverse effects of foam 
on oxygen transfer and enhance α-amylase production. It 
has been well observed that oxygen transfer issues become 
more pronounced during the scale-up of α-amylase produc-
tion processes. As the fermentation volume increases, main-
taining an efficient oxygen supply becomes challenging due 
to increased agitation power requirements, oxygen demand, 
and limitations in oxygen supply. de Souza Vandenberghe 
et al. (2022) crucially looked into these facts and reported 
addressing the scale-up challenges by optimizing bioreactor 
geometries, aeration strategies, and process control param-
eters. In addition, Computational modeling and advanced 
monitoring techniques have been employed to study the fluid 
dynamics and the gas holdup within the system to under-
stand and optimize the oxygen transfer at larger scales. Over-
coming the challenges in α-amylase oxygen transfer requires 
a comprehensive approach that combines engineering, bio-
process optimization, and microbial physiology. Recent 
advancements in bioreactor design, oxygen delivery sys-
tems, and process control strategies offer opportunities for 
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improved oxygen transfer efficiency and enhanced α-amylase 
production.

Downstream processing

The purification of α-amylase from the fermentation broth 
can present certain challenges such as the presence of vari-
ous cellular components and contaminants, low enzyme 
stability, and high viscosity of the fermentation broth which 
complicate and hinder the recovery process (Elyasi et al. 
2020). For example, a high concentration of starch often 
leads to poor activity of α-amylase due to substrate inhi-
bition (Božić et al. 2017). In such cases, recovery of the 
enzyme to achieve the desired purity in the industry becomes 
a demanding task (Wiltschi et al. 2020). Also, purification 
cost is an important consideration for the development of 
any α-amylase technology (Witazora et al. 2021). With the 
advent of technological advancements and the development 
of sophisticated purification methods, high-end purification 
of the enzyme may be possible but would also contribute 
significantly to the final production cost of the enzyme, 
increase the overall OPEX, and reduce the profit margin 
(Boodhoo et al. 2022).

Alternatively, to mitigate this issue, different purification 
techniques have been explored which include a combination 
of centrifugation, filtration, ultrafiltration, and chromatog-
raphy to develop an efficient and cost-effective technology 
for enzyme recovery (Chen et al. 2022). In addition, chro-
matographic methods such as ion exchange chromatography, 
size exclusion chromatography, affinity chromatography, etc. 
have also been tried, to achieve high purity of α-amylase 
(Lim et al. 2020). In a more recent study, the use of novel 
materials, such as magnetic nanoparticles and molecularly 
imprinted polymers, has been explored for selective purifi-
cation of α-amylase (Eivazzadeh-Keihan et al. 2021), with 
claims of 49.8% recovery.

Maintaining the stability of α-amylase during down-
stream processing is extremely crucial to preserve its activity 
and prolong its shelf life. However, α-amylase is suscepti-
ble to denaturation and degradation under certain process-
ing conditions, such as high temperatures and extreme pH. 
Developing stabilization strategies, such as immobilization, 
encapsulation, formulation with stabilizing agents, and the 
use of additives and surfactants have been observed to con-
siderably enhance enzyme stability and resistance to pro-
teases (Li et al. 2022). In general, the recovery of α-amylase 
is cost-intensive due to the requirement for specialized 
equipment, consumables, and purification steps. The devel-
opment of cost-effective downstream processing strategies 
is therefore extremely essential to make α-amylase produc-
tion economically viable. Recent studies have explored pro-
cess optimization, such as process intensification, process 
integration, and the use of novel separation techniques to 

reduce the overall cost of downstream processing (Meyer 
et al. 2021). Also, the utilization of renewable and low-cost 
raw materials for enzyme recovery and purification through 
innovative approaches needs to be investigated to obtain 
purity high-purity enzymes with substantial activities (Raina 
et al. 2022).

Scale‑up considerations

Scaling up of α-amylase production presents significant 
challenges as it is extremely difficult to assess the most 
critical factors influencing the scale-up during fermenta-
tion due to a drastic change in environment (Crater and 
Lievense 2018). The transition from laboratory-scale to 
commercial-scale production requires careful consideration 
of several factors to ensure efficient and cost-effective pro-
cessing for achieving the desired enzyme production levels 
(Deljou et al. 2018). Choosing the appropriate bioreactor 
design and mode of operation is of paramount importance. 
For example, impeller flooding is a condition that is often 
observed during α-amylase production, where the air stream 
along the stirrer shaft increases, which leads to poor mix-
ing and low oxygen diffusion inside the medium (Mostafa 
et al. 2021). This typically occurs in industrial bioreactors 
where the pumping speed of the impellor is lower than the 
gas volume being introduced in the system. This issue can 
be mitigated by designing a broad blade impeller (within 
the bioreactor system) with a higher aeration number with-
out compromising the aeration rates. This can efficiently 
prevent the microbial cells from settling down and ensure 
intimate contact between the air and the liquid medium with 
air dispersion and enhanced oxygen transfer rates. Besides 
oxygen transfer, other variables such as mixing efficiency 
and heat transfer effects must be carefully considered to 
ensure optimal growth and productivity of the microbial 
culture producing α-amylase. A few literature reports have 
even suggested the use of multiple bioreactors as a scale-up 
strategy for large-scale α-amylase production (Balakrishnan 
et al. 2021). Scaling up the downstream processing steps, 
such as harvesting, purification, and processing, is a complex 
task. Efficient separation and purification techniques need to 
be developed to handle larger volumes of the fermentation 
broth which requires both specialized facilities and skilled 
manpower. Additionally, optimizing the purification steps to 
achieve consistent enzyme quality is critical for successful 
scale-up. Robust quality control measures, including enzyme 
activity assays, purity analysis, and stability assessments, 
must be established and validated to ensure the product's 
quality meets the required specifications. Also, scaling up 
α-amylase production must consider cost optimization. 
Factors such as raw material sourcing, energy consump-
tion, and process efficiency need to be carefully evaluated 
to achieve cost-effective production at a larger scale. Process 
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modifications and optimization can help reduce overall pro-
duction costs without compromising the quality and activity 
of the enzyme. Successful scale-up of α-amylase production 
requires a comprehensive understanding of the fermenta-
tion process, efficient bioreactor design, robust downstream 
processing techniques, rigorous quality control, and careful 
cost optimization. Collaborative efforts between scientists, 
engineers, and industry experts are essential to overcome 
these challenges and ensure a smooth transition from lab-
oratory-scale to commercial-scale production (Crater and 
Lievense 2018).

Strategy for α‑amylase improvement

Although α-amylase has widespread applications occupy-
ing most of the world’s enzyme market, it is still far from 
the ideal enzyme. The extremely high temperatures in the 
starch conversion industry limit the application of wild-type 
α-amylase (Gangadharan et al. 2020). Also, the oxidative 
environment of the detergent industry denatures the natural 
enzyme (Lim and Oslan (2021; Samanta 2022). Likewise, 
wild type α-amylase does not function well in an acidic 
environment; hence, raw juice clarification in the beverage 
industry is challenging (Liu et al. 2017; Bamigboye et al. 
2022). Conventionally, it requires increasing the pH of the 
juice for optimum functioning of wild α-amylases, which 
ultimately leads to a change in the physicochemical charac-
teristics of natural raw juice.

Additionally, the essential requirement of calcium for the 
functioning of the α-amylase typically restricts its action 
in a Calcium-deficient environment (Marengo et al. 2022). 
To overcome these limitations, extensive research has been 
focused on modifying the existing amylases and improv-
ing their activity/stability for effective functioning per the 
industrial requirements (Elyasi et al. 2020). As an option, 
chemical methods for amylase improvement have been tried. 
Yandri et al. (2012) attempted a chemical modification of 
Bacillus subtilis derived α-amylase using citraconic anhy-
dride, which enhanced the thermal stability in contrast to 
the native enzyme. Similarly, Abdella et al. (2020) reported 
immobilization on chitosan magnetic nano-particles through 
physical adsorption and covalent binding, which improved 
its activity by ~ 2.3-fold (Abdella et al. 2020). Although 
initial observations suggest that the chemical treatments 
enhance the enzyme properties, in the long run, they have 
not been effective. Also, in some instances, the chemicals 
applied have been reported to threaten the environment and 
are ill-advised for large-scale applications (Li et al. 2022). 
Hence, protein engineering is the most preferred choice to 
generate more active and stable mutants in an eco-friendly 
manner compared to the chemical process. Genetic trans-
formation can be done in two significant ways, namely, a) 

Directed evolution and b) Site-directed mutagenesis (Rab-
bani et al. 2011).

Directed evolution

The directed evolution method involves productive protein-
sequence substitutions through mutagenesis followed by 
natural selection for generating a library of enzyme variants 
(Wang et al. 2021). Ruan et al. (2022) created a random 
mutation library of maltogenic amylase from B. licheni-
formis R-53 using error-prone PCR and successfully selected 
mutations with enhanced activity and thermal stability. The 
mutant V296F/K418I showed 2.16 times higher specific 
activity compared to the native one with optimum tempera-
ture enhanced by 5 °C from 60 °C. The authors observed 
that apart from improvement in dough recrystallization, 
the mutant α-amylase demonstrated reduced hardness and 
improved elasticity during bread storage compared to the 
native one. In another report, the pH stability of α-amylase 
from B. licheniformis was amplified by directed evolution 
with the help of error-prone PCR, resulting in mutant G81R. 
It was selected by high throughput screening, retaining 10% 
of its initial activity at pH 4.5 after 40 min in contrast to the 
native one, which was inactive in similar conditions. This 
enhanced stability might be due to increased electrostatic 
interaction, helix propensity, and hydrophilicity (Huang 
et al. 2019). Wang et al. (2012) developed a focused mutant 
library using a modified method, i.e., coevolving site satura-
tion mutagenesis (CCSM) in directed evolution to improve 
the thermostability of α-amylase from Bacillus subtilis CN7 
(Amy7C). Co-evolution is the correlated variation of protein 
sites selected by various interactions like allosteric, hydro-
phobic, and synergistic effects. Correlated variation sites of 
protein were chosen as hotspots (H100, D144, T147, G89, 
D95, and N197) to prepare a focused mutant library, and a 
high throughput screening screened the hot spot residues 
through starch-iodine and DNS method. The novel mutation 
sites improved the thermal stability of wild-type amylase 
by 8 °C (Wang et al. 2012). The directed evolution method 
is in popular demand as it does not necessitate any require-
ment regarding the molecule's structure. Functional enzymes 
with desired properties can be easily attained by simply cre-
ating a mutant library of coding enzymes through random 
mutagenesis and selecting the desired mutant through high 
throughput screening, which can be extremely beneficial for 
industrial applications. For example, patent US10563186B2 
(Andersen et al. 2017) describes random mutagenesis of 
a Termamyl-like α-amylase from M/s Novozymes. The 
mutation was targeted to enhance substrate specificity with 
enhanced thermal stability for application as a dishwash-
ing detergent. The patent US10066222B2 (Callen et al. 
2017) assigned to M/s BASF enzymes LLC, on the other 
hand, describes the involvement of random mutagenesis 
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for the improvement of α-amylase to remove starch from 
oil during the steeping process of corn. Another US patent 
US8828460B2 (Cherry et al. 2013) from M/s Novozymes 
describes the preparation of maltogenic α-amylases through 
random mutagenesis. The variants had altered pH enhanced 
thermostability, with an increased ability to reduce bread 
staling in the baking industry.

Site‑directed mutagenesis

The site-directed mutagenesis method involves creating spe-
cific and intentional changes in the gene's DNA sequence 
of interest by targeted mutation of particular amino acids 
that alter or modify the intramolecular bonding within 

the protein or intermolecular interactions with a substrate 
(Fig. 3) Zhang et al. 2021a, b). Torktaz et al. (2018) carried 
out a series of point mutations in Geobacillus stearothermo-
philus to enhance its thermostability for potential industrial 
application. With the help of a prediction algorithm, 13 dif-
ferent sites were selected for point mutations, and the folding 
free energy was calculated after each modification. Although 
these amino acids are not part of the catalytic site, their alter-
ation significantly affected the active site cavity by changes 
in substrate binding area and, thus, in binding affinity. The 
authors reported that four-point mutations D137V, G243V, 
E244I, and E244Y contributed significantly to making the 
Geobacillus stearothermophilus α-amylase more thermotol-
erant with higher ligand binding avidity. Industrial amylases, 

Fig. 3   Pictorial representation of a random and b site-directed mutation
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generally produced by Bacillus sp., have been extensively 
modified to incorporate desired properties such as secretion 
and enzymatic stability. For example, methionine residues 
within the protein have been determined as the most oxida-
tion-prone residue and mutated to get oxidatively stabilized 
amylases for the detergent industry. Methionine mutation 
also enhanced the thermostability of enzymes. Declerck 
et al. (2003) aimed to enhance enzyme thermostability by 
targeting residues of hydrophobic packing of surface inden-
tation of B. licheniformis α-amylase. It was reported that the 
point mutations aimed towards increasing thermostability by 
targeting residues of hydrophobic packing of surface inden-
tation of B. licheniformis α-amylase. The mutations A209V 
and H133V enhanced the ligand binding and hydrophobic-
ity responsible for protecting the secondary structure. Also, 
it was observed that N190F is the most thermo-stabilizing 
single mutation that could be achieved in B. licheniformis. 
The double mutants N190F and N265Y extended complex 
aromatic interaction with hydrogen bonds around the Ca-
Na-Ca. This interaction reduced the enzyme's flexibility 
and stopped the escape of metal ions. On the contrary, the 
point mutation N192A made α-amylase more thermolabile 
by disrupting the hydrogen bonds, leading to helix to coil 
transition (Fort et al. 2021).

Literature reports suggest that the catalytic cleft in B. 
licheniformis contains conserved residues D206, E230, and 
D297 between domains A and B. Like B. licheniformis, 
other species have similar conserved residue profiles. H122 
and H296 have been reported to assist in substrate binding. 
Pijning et al. (2021) Reported that alteration in conserved 
residues aspartate 206 and 297, glutamate 230, and histi-
dine 122 and 296 in BLA enhanced the thermostability of 
the α-amylase. Deletion of Gly179 and Lys180 resulted in 
improved thermal stability due to reduced flexibility. Li et al. 
(2017a, b) carried out SDM of selected amino acid residues 
and showed that the mutation N188T and N188S enhanced 
the non-bond interactions, such as hydrogen bonds and salt 
bridges with the substrate. Also, the mutations A269K/
S187D and A269K/S187D/N188T resulted in 25% less Km 
and 30% more Kcat than the wild type α-amylase. The triple 
mutant showed a half-life of 270 min (at 95 °C) at pH 5.5 
and played an active role in the starch industry. α-Amylase 
obtained by the fusion of Bacillus acidicola with Geobacil-
lus thermoleovorans had a melting temperature higher than 
the native one (Parashar and Satyanarayana 2016). Changes 
in N75, S76, and H77 of Bacillus megaterium resulted in 
better thermostability. α-Amylase from B. licheniformis 
(BLA) was mutated to increase its stability. It was observed 
that the Asparagines and Glutamines are prone to deami-
dation, which is accountable for thermal instability. Seven 
Asparagine residues were mutated at positions 172, 192, 
190, 264, 265, 204, and 237. The authors reported that 
the Asparginine mutations at the positions enhanced the 

enzyme's stability. They further observed that N190F is the 
best mutation, even with different combinations, compared 
to other stabilizing mutations.

Bacillus licheniformis and Bacillus amyloliquefaciens are 
strains of industrial interest. Zhang et al. (2021a, b) focused 
on improving autolysis issues during amylase production. 
They found genes responsible for peptidoglycan hydrolase 
by transcriptomic profile during log and stationary phases. 
lytd, lytE and sig D were detected and mutated, resulting in 
a sharp reduction in hydrolyzed cells and a 48.4% increase 
in amylase activity. Deng et al. (2014) stated that the best 
mutated AmyK (The alkaline α-amylase gene AmyK) had a 
5.4 °C increase in Tm and more than sixfold thermostability 
compared to the native type when four residues were simul-
taneously mutated. The hydrophobic and electrostatic inter-
actions improved specific activity and thermostability (Li 
et al. 2017a, b). For example, Silano et al. (2020) reported 
an industrial α-amylase produced through genetic modifica-
tion of a B amyloliquefaciens strain by M/s DuPont Danisco. 
The enzyme could be extensively used as a food amylase 
for the production of glucose syrups from starch (up to a 
recommended level of 45 mg TOS/kg) without any adverse 
toxicological effects. In a similar report, M/s Novozymes 
produced a recombinant maltogenic α-amylase using sub-
merged fed-batch fermentation. The enzyme demonstrated 
very high activity (19,000 IU/g) and could be used in bak-
ing, brewing, and other cereal-based. Various examples of 
directed evolution and site-directed mutagenesis are given 
in Table 3.

A few industrial reports have demonstrated that SDM of 
α-amylases has significantly enhanced the functional prop-
erties of the enzyme for varied applications. For example, 
SDM of α-amylase in B. licheniformis (at M15L, from M/s 
GENENCOR) considerably enhanced the pH stability, oxi-
dation, and heat stability, which are considered the most crit-
ical factors for application in the suitable industry. Another 
study from M/s Novozymes illustrates that alteration of the 
amino acid residue methionine (in Bacillus sp. at either 
197th or 200th position) with a Leu, Ile, Asn, Ser, Gln, Asp 
or Glu enhanced the oxidation stability of the enzyme by 
many folds which can be used as a detergent additive. Like-
wise, US11248193B2 (Andersen and Fevre 2019) describes 
a SDM strategy for improvement of α-amylase for potential 
detergent applications in the industry.

Immobilization: an effective recycling strategy

Immobilization of α-amylase is a worthwhile strategy for 
improving stability alongside its reusability (Beltagy et al. 
2022). The method employs retaining or binding enzymes 
over an insoluble matrix (through entrapment, adsorption, or 
covalent and cross-linking), enabling easy separation from 
the reaction mixture for successive recycling (Pervez et al. 



	 World Journal of Microbiology and Biotechnology (2024) 40:44

1 3

44  Page 18 of 28

Ta
bl

e 
3  

G
en

et
ic

 e
ng

in
ee

rin
g 

str
at

eg
ie

s f
or

 a
ct

iv
ity

 a
nd

 st
ab

ili
ty

 im
pr

ov
em

en
t o

f α
-a

m
yl

as
es

Sr
. n

o.
M

ic
ro

-o
rg

an
is

m
M

ut
at

io
n 

te
ch

ni
qu

e/
m

ut
at

ed
 

re
si

du
es

Eff
ec

t
Re

m
ar

ks
A

pp
lic

at
io

n
Re

fe
re

nc
es

R
an

do
m

 m
ut

ag
en

es
is

1.
B.

 li
ch

en
ifo

rm
is

 R
-5

3
Er

ro
r-p

ro
ne

 P
C

R
A

 2
.1

6-
fo

ld
 in

cr
ea

se
 in

 a
 sp

ec
ifi

c 
ac

tiv
ity

In
cr

ea
se

 in
 te

m
pe

ra
tu

re
 st

ab
ili

ty
 

by
 5

 °C
. M

ut
at

ed
 re

si
du

es
 w

er
e 

V
29

6F
/ K

41
8I

B
re

ad
 b

ak
in

g 
in

du
str

y
Ru

an
 e

t a
l. 

(2
02

2)

2.
B.

 li
ch

en
ifo

rm
is

D
ire

ct
ed

 e
vo

lu
tio

n
M

ut
an

t a
m

yl
as

e 
re

ta
in

ed
 1

0%
 o

f 
th

e 
ac

tiv
ity

 c
om

pa
re

d 
to

 o
pt

i-
m

um
 a

ct
iv

ity
, w

he
re

as
 th

e 
w

ild
 

ty
pe

 w
as

 in
ac

tiv
e 

at
 p

H
 4

.5

M
ut

at
io

n 
of

 G
81

R
 a

m
yl

as
e 

re
su

lte
d 

in
 a

 m
or

e 
hy

dr
op

hi
lic

 
m

em
br

an
e 

co
m

pa
re

d 
to

 w
ild

-
ty

pe

St
ar

ch
 p

ro
ce

ss
in

g 
in

du
str

y
H

ua
ng

 e
t a

l. 
(2

01
9)

3.
A.

 fl
av

us
 N

SH
9

Et
hi

di
um

 b
ro

m
id

e 
tre

at
m

en
t

1.
7-

fo
ld

 in
cr

ea
se

 in
 a

ct
iv

ity
5 

µg
/m

L 
Et

B
r g

av
e 

m
ax

im
um

 
am

yl
as

e 
ac

tiv
ity

St
ar

ch
 p

ro
ce

ss
in

g 
in

du
str

y
Ru

ai
da

 (2
02

1)

4.
As

pe
rg

ill
us

 sp
.

N
itr

ou
s A

ci
d 

(H
N

O
2)

A
m

yl
as

e 
ac

tiv
ity

 in
cr

ea
se

d 
by

 
60

.8
5%

D
ea

m
in

at
io

n 
of

 a
de

ni
ne

 o
r 

cy
to

si
ne

W
as

te
 d

eg
ra

da
tio

n
O

sh
om

a 
et

 a
l. 

(2
02

2)

Si
te

-d
ire

ct
ed

 m
ut

ag
en

es
is

1.
B.

 li
ch

en
ifo

rm
is

S1
87

D
, N

18
8T

, A
26

9K
In

cr
ea

se
d 

ha
lf-

lif
e 

ni
ne

fo
ld

 a
t 

95
 °C

Re
du

ct
io

n 
in

 th
e 

m
ob

ili
ty

 o
f t

he
 

lo
op

 c
on

ta
in

in
g 

th
es

e 
m

ut
at

io
ns

St
ar

ch
 p

ro
ce

ss
in

g 
in

du
str

y
Li

 e
t a

l. 
(2

01
7a

, b
)

2.
B.

 su
bt

ili
s C

N
7

V
26

0I
In

cr
ea

se
 in

 th
er

m
al

 st
ab

ili
ty

 b
y 

7.
1 

°C
M

ut
at

io
n 

in
 a

 b
et

a-
str

an
d 

of
 th

e 
TI

M
 b

ar
re

l
St

ar
ch

 p
ro

ce
ss

in
g 

in
du

str
y

W
an

g 
et

 a
l. 

(2
02

0)

3.
E.

 si
bi

ri
cu

m
A

10
9P

/S
13

0P
/E

17
6P

11
.7

-fo
ld

 in
cr

ea
se

 in
 h

al
f-

lif
e 

at
 

45
 °C

Pr
ol

in
e 

in
cr

ea
se

s t
he

 ri
gi

di
ty

 o
f 

am
yl

as
e

D
et

er
ge

nt
 in

du
str

y
B

er
lin

a 
et

 a
l. 

(2
02

1)

4.
B.

 li
ch

en
ifo

rm
is

Q
36

0C
3-

fo
ld

 in
cr

ea
se

 in
 a

ct
iv

ity
 d

ue
 to

In
cr

ea
se

d 
hy

dr
op

ho
bi

c 
in

te
ra

ct
io

n 
at

 7
0 

°C
 fo

r 3
0 

m
in

Te
xt

ile
 in

du
str

y
C

ui
 e

t a
l. 

(2
02

2)

5.
B.

 li
ch

en
ifo

rm
is

H
29

3R
/H

31
6R

/H
32

7R
31

%
 o

f r
es

id
ua

l a
ct

iv
ity

 a
t 7

0 
°C

 
co

m
pa

re
d 

to
 in

ac
tiv

e 
w

ild
 ty

pe
In

cr
ea

se
 in

 e
le

ct
ro

st
at

ic
 in

te
ra

c-
tio

n 
hy

dr
og

en
 b

on
di

ng
 a

nd
 

hy
dr

op
hi

lic
 in

te
ra

ct
io

n

St
ar

ch
 p

ro
ce

ss
in

g 
in

du
str

y
Y

ih
an

 e
t a

l. 
(2

01
7)



World Journal of Microbiology and Biotechnology (2024) 40:44	

1 3

Page 19 of 28  44

2019). This is particularly important in large-scale produc-
tion systems where production and processing cost is of 
paramount importance. The different methods for enzyme 
immobilization and their advantages are highlighted in 
Table 4.

For successful immobilization, it is necessary to choose 
a carrier with reasonable cost, and availability, and that has 
a good affinity towards the enzyme. The physicochemical 
parameters of the carrier including particle size, type of 
functional groups placed on the surface, surface area, and 
pore structure are governing factors for the immobilization 
step. Also, the support material should be insoluble and 
rigid. This reduces the chance of product inhibition by reduc-
ing non-specific interactions. A host of matrices have been 
investigated for α-amylase immobilization which may be 
organic, inorganic, or composite (Sharma et al. 2021). How-
ever, recently, hybrid matrices have become more popular 
owing to the advantages of high overall surface area, excel-
lent ion exchange capability, environmentally friendly, and 
chemically inert with ease of activation. Yandri et al. (2022a, 
b) immobilized an α-amylase produced by A. fumigatus over 
a chitin-bentonite (CB) hybrid matrix and tested it for up to 
six cycles. The hybrid matrix displayed superior thermal 
stability in contrast to the classical matrices. The thermal 
inactivation rate constant (ki) at 60 °C for the free and immo-
bilized α-amylases were 0.0171 min−1 and 0.0045 min−1, 
respectively. Reduced ki indicated a decrease in denaturation 
due to higher flexibility in the water. The half-life (t1/2) of the 
immobilized α-amylases was evaluated as 154 min, ~ 4-fold 
more elevated than the free enzyme (40.53 min). The free 
energy change due to denaturation ( ΔG

i
 ) was 104.47 kJ/mol 

for free enzyme, whereas 108.17 kJ/mol for the immobilized 
enzyme. The increased ΔG

i
 was due to increased folding 

conformations in the tertiary structure. The free α-amylases 
wasted ~ 72% of their original activity, whereas immobilized 
ones showed less than 30% loss. Immobilized α-amylase 
on CB hybrid can be used for up to six cycles by retaining 
38% residual activity. Zhouquan et al. (2022) immobilized 
α-amylase on cellulose-chitosan hybrid gel macro sphere 
(CCMs) prepared by a sol–gel method having a high specific 
surface area (235.4–325.3 m2/g), overcoming the limitation 
of the low specific surface area of cellulose. The Immobi-
lized α-amylases displayed improved stability compared to 
free enzymes and reusability up to 10 cycles with 77.55% 
residual activity. The stability of α-amylase was improved 
by Karaca Açarı et al. (2022) due to the immobilization of 
carbon and graphene quantum dots (QDs). QD was prepared 
from Hypericum perforatum L flowers (QD-1) and Hyperi-
cum capitatum seeds (QD-2). Immobilization of α-amylase 
on QD-1 and QD-2 displayed activity efficiency of 71.15% 
and 81.51%. The difference in the activity efficiency was due 
to variation in the porosity of both Q.D.s. The free activation 
energy (Ea) was assessed to be 9.61 kJ/mol, 3.20 kJ/mol, 

and 4.81 kJ/mol for QD-1/α-amylase, QD-2/α-amylase, and 
free enzyme, respectively. Enhancement in the restriction 
of mobility of secondary structure resulted in more stability 
in the QD-1/amylase and QD-2/amylase in contrast to free 
α-amylase. Morais et al. (2013) immobilized α-amylase on 
Luffa operculate fibres. It was used in kitchen grease traps 
and showed 30% activity after 30 days. α-Amylase from 
R. solani AG-4 strain ZB-34 was immobilized on chitosan 
covalently. It retained 81% residual activity when used with 
Persil® detergent (for solid laundry). When tested for desiz-
ing ability, the immobilized enzyme demonstrated 31% 
desizing at 40 °C at pH 4.5 (Uzun and Akatin 2019).

Alternatively, immobilization of α-amylases on mag-
netic nanoparticles has been shown to improve the stability 
and activity of the enzyme under different operating con-
ditions. In addition, these support materials have proven 
to offer extensive reusability by enabling simple recovery 
with negligible enzyme losses. Salem et al. (2021) immo-
bilized α-amylase from Bacillus subtilis on Iron oxide 
magnetic nanoparticles (IO-MNP) by electrostatic bonds. 
The authors reported that the immobilized enzyme could 
work for ~ 15 cycles, retaining ~ 82% of the initial activity. 
In a similar study, Abouelkheir et al. (2023) created IOM-
NPs using Bacillus subtilis SE05, which showed very high 
α-amylase activity (592.92 U/mg) during starch hydrolysis 
for bio-ethanol production. The enzyme could be recycled 
up to 9 batches for starch hydrolysis with ~ 50% activ-
ity retained. Desai et al. (2021) alternatively immobilized 
α-amylases on graphene oxide-magnetite nanoparticles 
through covalent bonding. The immobilization enhanced 
the enzyme's half-life to ~ 20 h (from 13 h) at 50 °C with 
a marked increase in alkali tolerance. The immobilized 
enzyme could be used for up to 11 cycles and showed poten-
tial application in the production of high maltose contain-
ing syrup. Chitosan-coated Fe3O4 magnetic nanoparticles 
were used for α-amylase immobilization by Dhavaler et al. 
(2018). The immobilized enzyme showed no loss in activity 
up to 20 cycles and retained 66% activity after 3 weeks as 
compared to 18% activity of the free enzyme. α-Amylase 
immobilized on Magnesium ferrite nanoparticles function-
alized with silane displayed catalytic activity even after 12 
cycles of reaction (Rana et al. 2022). A more recent report 
by Hallol et al. (2022) produced chitosan-loaded barium 
ferrite nano-particles (CLBFNPs). α-Amylase derived from 
soil isolates was immobilized on them. The specific activity 
of nano-particle bound α-amylases was increased to 246.85 
U/mg in contrast to the free enzyme (177.12 U/mg). The 
immobilized enzyme retained more than 90% activity even 
after five recycles. The authors concluded that the magnetic 
nano-particles were suitable enzyme carriers owing to their 
high surface area (SA) to volume (V) ratio, super magnetic 
characteristics, and biocompatibility. The outcome of immo-
bilization has pointed out that the activity and the stability of 
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the α-amylase could be significantly enhanced through the 
different immobilization methods and demonstrate excellent 
advantages from an industrial viewpoint.

Summary and future recommendations

α-Amylases are pivotal enzymes and have prevailed in the 
chemical industry for many decades with applications in 
the food, detergent, textile, and paper industries. The ever-
expanding global market with diverse application areas has 
prompted both the industry and academia in this field to iso-
late and develop new and improved versions of the enzyme. 
However, there exist a few technological and economic 
challenges in the successful scale-up of these laboratory-
based processes to industrial/commercial production scales. 
Designing a suitable bioreactor by considering the fermen-
tation broth's hydrodynamics, mixing effects, and heat and 
mass transfer effects can enable maximum enzyme yield by 
lowering process energy requirements. Similarly, the utili-
zation of inexpensive and renewable substrates for enzyme 
production can lead to significant cost reduction. For exam-
ple, Litchee seeds, which are primarily considered as waste 
(after the consumption of pulp) and generally thrown away, 
contain ~ 40% starch and pose an excellent renewable feed-
stock for the cultivation of α-amylases (Aqilah et al. 2023). 
Recently, we have been able to isolate 5 thermophilic novel 
bacterial strains from the soil below the Litchi tree with con-
siderable α-amylase activity (data unpublished). Likewise, 
bakery wastes such as stale bread, bread rolls, and cookies, 
and vegetable and fruit wastes from local mandis/markets 
may also serve as a low-cost feedstock for the production 
of these enzymes.

One interesting application of the α-amylase could be in 
the field of bioremediation, particularly for the breakdown 
of petroleum-derived compounds (PDC). A few recent stud-
ies have shown that these enzymes (like bacterial P450s) 
are capable of degrading hydrocarbons such as n-alkanes 
(ranging from C10 to C14 carbon atoms) and in some cases 
low-density polyethylene (LDPE) (Karimi and Biria 2019). 
The addition of starch to the medium has been observed to 
accelerate the breakdown of PDCs by enabling some kind 
of surfactant activity, which reduces the issue of hydrocar-
bon mass transfer thereby enabling better uptake. This could 
have immense applications in the areas where oil spillage 
occurs or in the case of petroleum refineries where petro-
leum sludge is an issue with millions of dollars spent on 
its disposal. Site-specific mutagenesis may further enable 
the synthesis of tailored α-amylases with enhanced reactiv-
ity and durability which may be capable of degradation of 
polyaromatic hydrocarbons from PDCs. With the advent of 
new immobilization techniques using different carriers, the 
recyclability of the enzyme may be further improved for a 

stretch of 6–10 cycles without affecting its performance and 
stability. A perfect combination of the approaches would 
enable addressing the existing challenges for successfully 
deploying large-scale α-amylase technologies.
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