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Abstract
Phytases are important enzymes used for eliminating the anti-nutritional properties of phytic acid in food and feed ingre-
dients. Phytic acid is major form of organic phosphorus stored during seed setting. Monogastric animals cannot utilize this 
phytate-phosphorus due to lack of necessary enzymes. Therefore, phytic acid excretion is responsible for mineral deficiency 
and phosphorus pollution. Phytases have been reported from diverse microorganisms, however, fungal phytases are pre-
ferred due to their unique properties. Aspergillus species are the predominant producers of phytases and have been explored 
widely as compared to other fungi. Solid-state fermentation has been studied as an economical process for the production 
of phytases to utilize various agro-industrial residues. Mixed substrate fermentation has also been reported for the produc-
tion of phytases. Physical and chemical parameters including pH, temperature, and concentrations of media components 
have significantly affected the production of phytases in solid state fermentation. Fungi produced high levels of phytases in 
solid state fermentation utilizing economical substrates. Optimization of culture conditions using different approaches has 
significantly improved the production of phytases. Fungal phytases are histidine acid phosphatases exhibiting broad substrate 
specificity, are relatively thermostable and protease-resistant. These phytases have been found effective in dephytinization of 
food and feed samples with concomitant liberation of minerals, sugars and soluble proteins. Additionally, they have improved 
the growth of plants by increasing the availability of phosphorus and other minerals. Furthermore, phytases from fungi have 
played an important roles in bread making, semi-synthesis of peroxidase, biofuel production, production of myo-inositol 
phosphates and management of environmental pollution. This review article describes the production of fungal phytases in 
solid state fermentation and their biotechnological applications.
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Introduction

Phosphorus (P) is a crucial element for animal and plant 
nutrition due to its critical role in their growth and develop-
ment, but it does not have a natural replenishment cycle. All 
living organisms need an adequate amount of phosphorus 
because it is involved in the formation of cell membranes, 
nucleic acids, and enzyme regulation (Singh et al. 2011; 
Vashishth et al. 2023; Priya et al. 2023). As a result, ani-
mal diets must include sufficient inorganic phosphorus (Pi). 
Livestock and poultry are generally administered dicalcium 
phosphate as a part of their dietary intake to ensure the ful-
fillment of their requisite daily nutrient needs. This phos-
phorous and calcium supplement is incorporated into their 
feed to promote optimal growth and development, thereby 
enhancing the overall health and productivity of the animals 
(Jain et al. 2016; Singh et al. 2020).

Phosphorus, an essential mineral, predominantly exists 
in the form of phytic acid (PA), accounting for approxi-
mately 18–88% of the total phosphorus content in vari-
ous plant-based sources. Phytate constitutes 1–5% of the 
weight in certain foodstuffs, including wheat bran, cereals, 
rice bran, legumes, and oilseeds (Singh and Satyanaray-
ana 2011b, 2015; Moreira et al. 2014; Awad et al. 2014; 
Coban and Demirci 2014). Inability of monogastric ani-
mals to break down phytate P necessitates the addition of 
exogenous phosphorus to their diets, increasing the P load 

and resulting in large amounts of P excretion in feces in 
regions with high animal production. This leads to phos-
phorus pollution in the environment. Moreover, the def-
ecation of unprocessed phytate along with inorganic phos-
phorus raises universal environmental concerns related to 
P eutrophication in areas with extensive cattle farming 
(Liu et al. 2022). Excessive phosphorus in the soil can be 
washed away during different weather cycles into various 
water bodies such as rivers and ponds, leading to rapid 
cyanobacterial blooms, growth of phytoplankton, algae, 
lack of oxygen, and the aquatic species death (Vats and 
Banerjee 2005; Singh et al. 2020).

Phytases have been found in mammals, plants, and 
microbes, with microbial phytases being predominantly 
researched for worldwide commercial applications (Singh 
et al. 2011; Singh and Satyanarayana 2011a; Jain et al. 2016; 
Kaur et al. 2017). Fungal phytases are potentially excellent 
candidates for eliminating anti-nutrients from plant-based 
diets due to their natural activity of breaking the phospho-
monoester linkages present in the phytates (Singh et al. 
2020; Kumari and Bansal 2021). Consequently, soil microor-
ganisms have been studied for phytase production, although 
more sources are still required to be identified (Kalsi et al. 
2016). Filamentous fungal species that can produce phytases 
during the fermentation process are Aspergillus oryzae, A. 
fumigatus, Mucor piriformis, A. niger, A. carbonarius, 
Rhizopus oligosporus, and Cladosporium species (Jatuwong 
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et al. 2020). Fungi produce high levels of phytases in solid 
state fermentation as compared to bacteria and other sources.

Phytases break down phytic acid into Pi and myo-inositol, 
effectively excluding their anti-nutritional effects (Sapna 
and Singh 2017a, 2017b; Singh et al. 2011, 2020; Singh 
and Satyanarayana 2011a). Phytic acid, mainly in the form 
of inositol triphosphates, serves as a vital component in 
the regulation of signaling and cellular functions in both 
plant and animal cells (Goyal et al. 2022). The presence 
of inositol phosphates (InsP 3) in signal transduction path-
ways can affect the control of the cell cycle, as well as the 
growth and differentiation of cancerous cells (Pujol et al. 
2023). Phytase reduces the ability of phytic acid to form 
complexes with essential minerals, enzymes, and proteins 
(Fig. 1). Fungi, among microorganisms, are the primary 
producers of phytases, and their unique attributes, such as 
their wide range of substrates specificity, and the ability to 
function effectively across a broad spectrum of pH levels 
and temperatures, make them potentially valuable in multi-
ple domains. This review article narrates the classification, 
fungal sources, and optimization of production process, 
peculiar features, and advanced biotechnological applica-
tions of fungal phytases. It also describes the importance of 
myo inositol triphosphate, an intermediate produced during 
hydrolysis of phytic acid.

Classification of phytases

Based on their optimal pH for activity, phytases have been 
classified as acidic or alkaline. Fungal phytases and certain 
bacterial phytases are acidic, whereas phytases from Bacil-
lus spp. and plants are alkaline in nature (Jain and Singh 
2017; Singh et al. 2020; Pragya et al. 2021). Phytases have 
been categorized into 3-, 5-, and 6-phytases based on their 
selective attack on phosphorus linked to inositol moiety 
(Kumar and Sinha 2018). Only 3-phytases are documented 
in microorganisms, whereas 6-phytases are found in plants. 

Based on their catalytic processes, Phytases can be catego-
rized into four distinct groups, namely HAP (histidine acid 
phosphatases), CP (cysteine phosphatases), BPP (β-propeller 
phytase), and PAP (purple acid phosphatases). This clas-
sification depends on reaction mechanisms, amino acid 
sequences, biochemical properties, and 3D conformations. 
HAP phytases have been reported in microbes as well as 
plants. Natuphos, the earliest commercial phytase, is a HAP 
synthesized by Aspergillus niger var ficuum (Chen et al. 
2015). The enzymes exhibit a shared catalytic site structure 
situated at the junction of the two domains, which includes 
the well-preserved N-terminal active site motif RHGXRXP 
and the C-terminal HD. In the two-step process, the first 
step involves the histidine from the RHGXRXP motif initi-
ating a nucleophilic attack on the phosphorus, resulting in 
the formation of a covalent phosphohistidine intermediate. 
Concurrently, the aspartic acid from the HD motif serves 
as a proton donor to the oxygen atom within the cleavable 
phosphomonoester bond. The necessity for the protonation 
of the aspartate carboxylate group to enable proton donation 
to the departing group explains the preference for an acidic 
pH for the biocatalysis (Fan et al. 2016). During substrate 
hydrolysis, the N- and C-terminal portions of HAPs combine 
to create the catalytic core (Gessler et al. 2018).

Fungal and bacterial HAPs exhibit comparable archi-
tectures, although with certain distinct features. Among 
these enzymes, the main detection of BPP phytases is 
predominantly observed in Bacillus species and similar 
types of bacteria. These particular phytases are occasion-
ally referred to as alkaline phytases owing to their highest 
catalytic efficiency within the pH range of 7.5 to 8.0. The 
three-dimensional configuration of BPP phytases com-
prises a hexameric assembly resembling a six-bladed pro-
peller, providing a rationale for their nomenclature (San-
angelantoni et al. 2018). The phytases under consideration 
exhibit distinctive catalytic characteristics, demonstrating 
both resistance to proteases and specificity towards phytate 
substrates (Jain and Singh 2017). BPPs are characterized 

Fig. 1   Product liberation by the 
action of phytase on phytic acid
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by their remarkable thermostability, dependence on Ca2+ 
ions, and an optimal enzymatic activity observed within 
the pH range of neutrality to alkalinity (Kaur et al. 2017; 
Jain and Singh 2017). In contrast, phytase from B. licheni-
formis required low Ca2+ for their catalytic activity (Borgi 
et al. 2014).

Purple acid phosphatases have been identified in mam-
mals, plants, and fungi. These enzymes, referred to as pur-
ple or pink phytases, derive their name from the presence 
of Fe2+, Fe3+, Mn2+, and Zn2+ in their catalytic centers. 
Found predominantly within plant structures, they exhibit 
resemblance to other plant PAPs. One specific PAP, known 
as GmPhy, is discovered in the developing cotyledons 
of sprouting soybean (Glycine max L. Merr.) and bears 
a structural resemblance to a kidney bean. This enzyme, 
described by Xiao et al. (2005), demonstrates comparable 
characteristics to other plant PAPs highlighted by Singh and 
Satyanarayana (2015). This specific phytase assembly has 
a limited range of catalytic activity. Notably, all PAPs in 
this group include five conserved blocks of metal-ligating 
residues, which are recognized as distinguishing features of 
GmPhy (Feder et al. 2020; Langeroudi et al. 2023). It is 
worth noting, however, that MtPHY1, a phytase produced 
from Medicago truncatula, lacks the entire set of all five 
blocks, separating it from other members of the group 
(Ma et al. 2012). In a recent study, a bacterium capable of 

producing PAP has been identified in earthworm castings 
(Ghorbani et al. 2018).

The CPs are phytases that belong to a new subfamily and 
share a catalytic mechanism with protein tyrosine phos-
phatases (Puhl et al. 2008; Gontia-Mishra and Tiwari 2013; 
Gruninger et al. 2014). They exhibit notable phytase activity 
in acidic environment and are selective for tyrosine phos-
phates. Selenomonas ruminantium, a ruminal bacterium, 
was the first organism to have this type of phytase identified 
(Mullaney and Ullah 2006). Figure 2 presents a comprehen-
sive classification of phytases based on different criteria.

Sources and production of fungal phytases 
in solid state fermentation

Phytases have been identified in mammals, plants, and 
microbes, although microbial phytases have been largely 
studied for commercial uses globally (Jain and Singh 2017; 
Puppala et al. 2019; Pragya et al. 2023). Therefore, soil 
microorganisms have been extensively screened as sources 
of phytases; nonetheless, it is required to uncover novel 
sources (Kalsi et al. 2016). Phytases have been reported from 
microorganisms including fungi, yeasts and bacteria (Abd-
ElAziem et al. 2015; Gaind and Singh 2015; Hellström et al. 
2015; Singh et al. 2015; Jain et al. 2016). Fungal phytases 

Fig. 2   Classification of phytases
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are favored over bacterial phytases due to their desirable 
characteristics, including protease resistance, high activity/
yield and extracellular nature (Song et al. 2019; Priya et al. 
2023). Unlike unicellular fungi, most filamentous fungi are 
well-suited for both submerged and solid-state fermentations 
because of their filamentous growth, which covers a larger 
surface area and allows them to penetrate solid substrates 
(Rizwanuddin et al. 2023a).

Over a century ago, phytase activity in microbes was 
first discovered in Aspergillus niger. Since then, there have 
been numerous scientific reports on fungal phytases, with a 
particular focus on those derived from the species of Peni-
cillium, Rhizopus, Aspergillus, Thermomyces, Mucor, and 
Trichoderma. Both mesophilic and thermophilic fungi are 
known to secrete phytases. Fungi, such as Aspergillus oryzae 
(Sapna and Singh 2014; Pragya et al. 2023), Humicola nigre-
scens (Bala et al. 2014), Aspergillus flavus (Haind and Singh 
2015), Sporotrichum thermophile (Singh and Satyanaray-
ana 2011a; Kumari et al. 2016), Penicillium purpurogenum 
(Awad et al. 2014)d niger (Kumari and Bansal 2021) have 
been recorded for their ability to degrade phytate. Fungi 
have certain advantages in phytate degradation, including 
their ability to extract P proficiently from soil, easy main-
tenance of culture, and high enzyme yields. Additionally, 
fungi exhale high concentrations of organic acids that func-
tions as a chelator and play a significant role in Pi solubi-
lization. Microbial phytases are safe biofertilizers and do 
not involve the use or release any harmful substances, mak-
ing them beneficial for farmers practicing organic farming 
(Gessler et al. 2018; Shahryari et al. 2018; Jatuwong et al. 
2020; Singh et al. 2020; Rizwanuddin et al. 2023).

Mesophilic microorganisms are recognized for producing 
more potent phytases when operating within the temperature 
range of 28 to 35 °C, which aligns with the optimal condi-
tions for their growth and development (Sapna and Singh 
2014; Kumari and Bansal 2021; Rizwanuddin et al. 2023). 
The temperature plays a critical role in regulating factors 
like water activity and humidity, affecting processes such 
as transport across cell membranes and cellular metabolism 
(Suresh and Radha 2015). Similarly, many filamentous fungi 
including R. oligosporus (Suresh and Radha 2015), A.niger 
and N. sitophila (Kanti et al. 2020), A. aculeatus (Saxena 
et al. 2020), A. oryzae (Sapna and Singh 2014), A. flavus 
(Onibokun et al. 2022), A. niger (Nascimento et al. 2022), 
and A.oryzae (Pragya et al. 2023) also secreted phytases 
maximally at 30 °C.

Most enzymatic activity and the transit of various com-
ponents through cell membranes are influenced by the pH 
of the culture medium. High phytase secretion has been 
recorded in all filamentous fungi cultivated in SSF under 
acidic conditions (Singh and Satyanarayana 2008; Sapna 
and Singh 2014; Gupta et al. 2015; Tian and Yuan 2016; 
Kumari and Bansal 2021). Among all the pH tested, pH 5.0 

supported high phytase production by Aspergillus sp. (Tian 
and Yuan 2016), A. niger (Gupta et al. 2015), A. oryzae 
(Sapna and Singh 2014; Pragya et al. 2023), and A. niger 
NT7 (Kumari and Bansal 2021). The extracellular pH influ-
encing microbial production of phytase were pH 6.0 and 5.5 
for high phytase production (Elkhateeb and Fadel 2022). In 
contrast, all the five fungi tested (A. niger, A. fumigatus, A. 
flavus, Mucor rouxii, and P. purourogenum), exhibited high 
phytase production at pH 7.0 (Sadaf et al. 2022). Produc-
tion and properties of fungal phytases in SSF using various 
substrates are summarized in Table 1.

Solid state fermentation (SSF) presents the ability to use 
economical agro-industrial residues as substrate for the culti-
vation of fungi (Pragya et al. 2023). This bioprocess involves 
a minimal amount of free water within the interstitial space 
of the solid particles (Li et al. 2023). Nonetheless, the pro-
cess provides sufficient moisture to sustain the growth and 
metabolism of microorganisms (Prado Barragán et al. 2016). 
The SSF approach has led to a reduction in operational costs 
associated with the regulation of temperature, agitation, 
pH, and aeration (Soccol et al. 2017; Srivastava et al. 2019; 
Piecha et al. 2023). Nowadays, a variety of fermentation 
techniques are often used in solid-state and submerged fer-
mentation procedures to enhance the synthesis of enzymes 
generated by fungi (Mahendran et al. 2022; Dixit and Shukla 
2023). The SSF system offers a number of advantages due to 
its low water, low aeration, easy fermentation medium, and 
low energy requirements (Kassim et al. 2022). Additionally, 
aeration is simple because an improved oxygen diffusion rate 
into wet solid substrate to assist microbial development pre-
vents oxygen restriction from happening (Sapna and Singh 
2014). Selecting the right substrate is a vital factor in ensur-
ing the success of SSF process, as various factors such as 
substrate characteristics and the growth of microorganisms 
can have an impact on the SSF process (Kumar et al. 2021).

Fungi like Aspergillus tubingensis, A. niger, A. flavus, 
A. ficuum, and Rhizopus oryzae, which are filamentous in 
nature, are typically grown using SSF. However, SSF faces 
challenges such as inadequate nutrient utilization and limited 
biomass growth, resulting from a lack of free water content 
and the buildup of heat and moisture loss throughout the 
process. Essential substrates for fostering fungal growth and 
their metabolism include, wheat bran, rice bran, soybean 
meal, corn cobs, and citrus peels (Dahiya and Singh 2019; 
Rizwanuddin et al. 2023a). Triticale, containing grains like 
bali and barley, serves as a substrate for A. niger phytase 
production (Soccol et al. 2017; Rizwanuddin et al. 2023a), 
while corn bran and maize cob were employed for phytase 
production by P. purpurogenum (Awad et al. 2014). Natural 
substrate mixtures supply appropriate nutrients when com-
pared to individual substrates and act as a support for micro-
bial growth and development (Kumari et al. 2016). This is 
because the mixed substrate contains adequate nutrients 
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and inducers for phytase synthesis. Higher PA concentra-
tion in wheat bran has previously been described as the 
primary inducer of phytase synthesis by microorganisms in 
SSF (Gupta et al. 2014; Tanruean et al. 2021). Lignocel-
lulosic components (cellulose and hemicellulose) of plant 
residues supply carbohydrates/sugars for rapid development 
and metabolism of fungi (Miao et al. 2019). Similarly, the 
increased PA content of wheat bran and mustard oil cake 
allowed Rhizopus oligosporus MTCC556 to produce the 
most phytase in SSF (Suresh and Radha 2015). A. oryzae 
used mixed agri- industrial substrate (Wheat bran + rice 
straw) for phytase production (Pragya et al. 2023). The 
use of mixed substrates in phytase production by fungi 
offers several advantages. Firstly, by combining various 
substrates such as agricultural residues, oilseed cakes, and 
organic waste materials, a rich nutrient composition can be 
achieved, promoting fungal growth and enzyme produc-
tion (Kumari et al. 2016). Additionally, mixed substrates 
can provide a cost-effective alternative compared to single 
substrates, as they utilize readily available and potentially 
inexpensive feedstocks (Kanti et al. 2020). The utilization of 
mixed substrates also contributes to waste management and 
sustainability efforts, by converting organic waste materials 
into valuable products (de Oliveira Ornela and Souza Gui-
marães 2019). This method is favored by the fermentation 
industry due to its reduced time consumption, simplicity, 

cost-effectiveness, and the ease of enzyme extraction with 
water (Srivastava et al. 2019).

Optimization of phytase production 
in solid‑state fermentation

The process of optimizing conditions in experiments con-
ventionally involves using a method called one variable at a 
time (OVAT) optimization, where only one factor is altered 
at a time while the others remain constant to optimize the 
process/conditions (Sagar Verma et al. 2022). The OVAT 
optimization, also known as single factorial optimization, 
is a traditional experimental approach to optimize the entire 
system by altering one factor at a time. This approach helps 
to identify critical parameters, improve manufacturing 
yield, and is easy to understand and apply (Sagar Verma 
et al. 2022).

Statistical experiment design is an efficient approach for 
optimization, particularly in predicting interactions between 
variables and identifying significant components affecting 
phytase production. Using factorial design and response 
surface methodology, a combination of factors starting at a 
certain optimum factor response can be determined, leading 
to an increase in phytase production (Kumari and Bansal 
2021, Pragya et al. 2023). Statistical optimization techniques 

Table 1   Production and properties of fungal phytases in solid-state fermentation

Fungal source Substrate Culture conditions Phytase produc-
tion
(U/g)

Catalytic properties References

pH Temp. (oC) Incuba-
tion time 
(d)

pH Temp. (oC) Km/Vmax

Penicillium 
oxalicum 
EUFR-3

Wheat bran 6 35 5 12.8 U/g 7 40 Kaur et al. (2017)

Aspergillus acu-
leatus APF1

Wheat bran 6 30 4 3 50 3.21 mM and 
3.78 U/mg 
protein

Saxena et al. ( 
2020)

Aspergillus 
niger NT7

wheat bran 5 35 5 208.30 ± 0.22 
U/gds

Broad 
pH 
range

60 Kumari and 
Bansal (2021)

Pholiota adi-
pose

Water hyacinth 6.5 30 7 17.02 ± 0.92 U/
gds

5 42 Jatuwong et al. ( 
2020)

Acremonium 
zeae

Corn meal 4 28 7 0.3 U day−1 7 50 Pires et al. (2019)

Aspergillus 
flavus ITCC 
6720

Mustard oil 
cake

6 37 6 112.25 U g−1 7 45 Gaind and Singh( 
2015)

Aspergillus ory-
zae SBS50

Wheat bran and 
rice straw

5 30 5 1161.49 ± 27.23 
U/g DMR

5 50 0.20mM and 
416.5 nmol/
sec

Pragya et al. 
(2021)

Rhizopus 
oligosporus 
MTCC 556

Rice bran 5.5 30 4 31.3 U/gds 5.5 50 Suresh and Radha  
(2015)
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offer optimum media with minimal experiments in a short 
period, taking into account the interaction between selected 
components, which is crucial for enhancing the synthesis 
of phytases (Bhavsar et al. 2013; Sapna and Singh 2014; 
Kumari et al. 2016; Shahryari et al. 2018). The use of statis-
tical methods in diverse bioprocessing procedures, particu-
larly in the selection of main ingredients in the medium, has 
drawn considerable attention. In comparison to conventional 
methods, previous research has demonstrated that statisti-
cal methodology significantly enhanced phytase synthesis in 
SSF (Jatuwong et al. 2020; Kanti et al. 2020; Ahmed et al. 
2021; Kumari and Bansal 2021) and is therefore, a preferred 
method for optimizing production of phytase (Ahmed et al. 
2021).

Plackett-Burman design, a screening technique, efficiently 
identifies critical factors affecting phytase production. It 
allows for the screening of numerous factors in a relatively 
small number of experiments (Kumari and Bansal 2021). 
By assessing the main effects of factors, Plackett-Burman 
design (PBD) helps in selecting influential variables for 
subsequent optimization using other experimental designs 
(Ahmed et al. 2021). Factors such as pH, temperature, car-
bon and nitrogen sources, inducers, and trace elements have 
been identified as key variables influencing phytase produc-
tion. Response surface methodology is a powerful statistical 
tool that combines mathematical models and experimental 
design to optimize process variables and their interactions 
(Wang et al. 2017). RSM helps to understand the complex 
relationships between factors and responses, enabling the 
identification of optimum conditions for phytase production. 
RSM also provides insights into the interactions between 
variables, enabling fine-tuning of the process for enhanced 
enzyme production (Shahryari et al. 2018). The combina-
tion of PBD and RSM offer a comprehensive approach for 
phytase production optimization (Wang et al. 2017) When 
compared to unoptimized conditions, phytase production 
has increased dramatically due to OVAT and statistical 
approaches (Table 2).

Peculiar features of fungal phytases

Phytases from distinct sources display different character-
istics. Their qualities include glycoprotein nature, thermal 
stability, substrate specificity, enzyme levels, and protease-
resistance (Singh and Satyanarayana 2015; Singh et  al. 
2020). Fungal phytases are mostly monomeric proteins 
with molecular weights in the range of 38 to 500 kDa and 
are secreted in larger quantities as compared to bacterial 
and other sources. For usage in the feed and food sectors, 
phytases that can tolerate protease action and acidic condi-
tions are mostly preferable. Fungal and bacterial phytases 
respond differently to pepsin and trypsin (Singh et al. 2020). 

Fungal phytases are acidic phytases and have been studied in 
more depth than alkaline phytases due to their multifarious 
applications. Fungal phytases are highly useful in improving 
soil fertility and in aquaculture, where lower temperature 
conditions favour their activity and suitability under these 
conditions (Pragya et al. 2023; Priya et al. 2023).

Acidic phytases

Acidic phytases have been studied in more depth than alka-
line phytases due to their roles in enhancing nutritional qual-
ity of food and feed ingredients. Fungal phytases are acidic 
phytases as compared to neutral and alkaline phytases from 
bacteria. The optimum pH of fungal phytases plays a critical 
role in determining their efficacy in catalyzing the break-
down of phytic acid. The search of an ideal phytase involves 
evaluating its efficacy within the stomachs of both humans 
and animals during the digestive process, where the pH lev-
els typically range from 1.5 to 3.5. Phytases that remain 
active under acidic conditions can significantly enhance 
their applicability in the food industry. According to Saxena 
et al. (2020), the partially purified phytase obtained from 
Aspergillus aculeatus APF1 exhibited its highest level of 
activity at an acidic pH of 3.0. Furthermore, the purified 
phytase from Aspergillus niger BIONCL8 demonstrated 
a wide range of pH stability, reaching its peak activity at 
pH 2.1 (Bhandari et al. 2023). While a general pH range 
of 3.0 to 5.0 is commonly observed among many fungal 
phytases, variability exists among different fungal species 
(Filippovich et al. 2023). Phytase of P. oxalicum PJ3 (Lee 
et al. 2014), A. niger CFR335 (Shivanna and Venkateswaran 
2014), A.oryzae SBS50 (Pragya et al. 2023) and A. niger 
(Neira-Vielma et al. 2018) were optimally active between 
pH 4.0–5.3. The maximum activity of phytase was obtained 
from T. purpureogenus NSA20 (Ahmed et al. 2021)d poloni-
cum MF82 (Kalkan et al. 2020) at pH 5.5. Phytase of Asper-
gillus flavus showed optimal activity at pH 6.0 (Onibokun 
et al. 2022). The crude phytase from A. niger NT7 displayed 
activity under acidic conditions (Kumari and Bansal 2021). 
Recent advances in biotechnology and enzyme engineering 
have allowed for the manipulation of pH activity profile of 
fungal phytases (Zhou et al. 2022).

Thermostable phytases

Temperature is a significant parameter that influence the 
activity of fungal phytases (Priya et al. 2023; Pragya et al. 
2023). The optimum temperature of fungal phytases can 
vary depending on the fungal species. However, the optimal 
temperature for phytase activity typically ranges from 40 to 
60 °C, depending on the sources of the enzymes (Goyal et al. 



	 World Journal of Microbiology and Biotechnology (2024) 40:22

1 3

22  Page 8 of 19

2022). The purified phytases from A. fumigatus (Sanni et al. 
2019) and A. niger S2 (Sandhya et al. 2019) had temperature 
optima at 40 °C (Sanni et al. 2019). The ideal temperature 
for phytase derived from Yersinia intermedia (Lahiji et al. 
2021) and A. oryzae (Pragya et al. 2023) was determined as 
50 °C. Phytase from P. polonicum MF82 had optimal activ-
ity at 60 °C (Kalkan et al. 2020).

The pH and thermo-stability of phytases are critical fac-
tors that significantly influence their catalytic efficiency, 
functionality, and applicability in various industries (Pragya 
et al. 2021). In the feed and food processing industry, the 

feed is treated at a high temperature and this is the phase 
where phytases are typically added to the feed before pel-
letization. Therefore, the thermal stability of phytase is 
critical and required for this treatment (Coutinho et  al. 
2020). Phytase from A. niger displayed high thermostabil-
ity, maintaining 70% of its activity at 80 °C (Neira-Vielma 
et al. 2018). Phytases derived from A. fumigatus and A. 
niger experienced denaturation at 50 and 70 °C, respectively 
(Wyss et al. 1998), while Thermomyces lanuginosus TL-7 
phytase demonstrated high tolerance at 70 °C by maintain-
ing 70% of its activity (Gulati et al. 2007). Phytase from 

Table 2   Effect of different optimization strategies and substrates on phytase production by fungi in solid state fermentation

*PBD  plackett-burman design, RSM response surface methodology, OVAT one variable at a time

Microorganism Substrate (s) Optimization
strategy*

Fold increase in 
phytase produc-
tion

References

Aspergillus oryzae SBS50 Wheat bran PBD &
RSM

3.35 Sapna and Singh (2015)

Aspergillus oryzae SBS50 Wheat bran + Rice straw PBD &
RSM

2.29 Pragya et al. (2023)

Aspergillus niger Groundnut oil cake PBD &
RSM

36.67 Buddhiwant et al. (2016)

Aspergillus niger Wheat bran OVAT &
RSM

6.8 Kumari and Bansal (2021)

Sporotrichum thermophile Sugarcane bagasse + wheat bran PBD &
RSM

11.6 Kumari et al. (2016)

Aspergillus ficuum Wheat straw OFAT &
RSM

22.24 Shahryari et al. (2018)

Pholiota adipose Water hyacinth PBD &
RSM

3.15 Jatuwong et al. (2020)

Thermomyces lanuginosus Rice bran OFAT &
RSM

10.83 Berikten and Kivanc (2014)

Aspergillus niger Wheat bran RSM 2.9 Gupta et al. (2014)
Aspergillus ficuum Waste vinegar residue PBD &

RSM
7.34 Wang et al. (2017)

Aspergillus oryzae Soybean meal RSM Chen et al. (2013)
Aspergillus niger NCIM563 Wheat bran PBD &

RSM
3.08 Bhavsar et al. (2011)

Rhizopus oligosporus MTCC​
556

Wheat bran + Mustard oil cake OVAT 1.8 Suresh and Radha (2015)

Aspergillus niger Str3 Coconut oil cake + Rice bran OVAT 8.9 Kanti et al. (2020)
Neurospora sitophila Coconut oil cake + Rice bran OVAT 11.8 Kanti et al. (2020)
Penicillium purpurogenum GE1 Corn cob + Corn bran OVAT

RSM
2.9 Awad et al. (2014)

Aspergillus ficuum PTCC5288 Wheat bran PBD &
RSM

20 Jafari-Tapeh et al. (2012)

Sporotrichum thermophile 
BJTLR50

Sesame oil cake PBD &
RSM

2.6 Singh and Satyanarayana (2008)

Talaromyces purpureogenus 
NSA20

Potato peel waste RSM 1.57 Ahmed et al. (2021)

Aspergillus niger CFR 335 and 
Aspergillus ficuum SGA 01

Wheat bran, rice bran, and ground-
nut cake

OVAT 3–5 Shivanna and Venkateswaran 
(2014)

Thermoascus aurantiacus Rice bran OVAT Tanruean et al. (2021)
A. awamori NRC- F18 Wheat bran OVAT Elkhateeb and Fadel (2022)
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Aspergillus aculeatus APF1 showed high activity at 55 
°C (Saxena et al. 2020) and from A. niger NT7 at 60 °C 
(Kumari and Bansal 2021). Phytase derived from A. niger 
remained stable even at 80 °C and retained 30% of its activ-
ity (Bhandari et al. 2023). Partially purified phytase from A. 
oryzae was thermostable upto 60 °C (Pragya et al. 2023).

Protease‑insensitive phytases

Proteases are naturally present in the digestive systems of 
all living organisms. Therefore, the ability to withstand 
protease activity is highly esteemed among feed enzymes 
and is essential for their effectiveness as additives in animal 
feed (Gordeeva et al. 2023). Proteolysis, the enzymatic deg-
radation of proteins, is a common challenge that enzymes 
face, especially during industrial applications and gastro-
intestinal transit. Fungal phytases are no exception, as they 
are exposed to proteolytic enzymes in animal digestive sys-
tems, food processing conditions, and various biotechno-
logical processes (Jatuwong et al. 2020). The susceptibility 
of phytases to proteolytic degradation can reduce their effi-
cacy and limit their applications. Fungal phytases exhibit 
significant diversity unlike bacterial ones in their ability to 
withstand the actions of pepsin and trypsin (Yu et al. 2015). 
A. niger phytase showed noticeable protease resistance (Ush-
asree et al. 2014). The protease susceptibility test revealed 
that the enzyme maintained 80% of its activity following 
exposure to pepsin. The enzyme retained 60% of its activity 
after treatment with higher levels of pepsin (Ushasree et al. 
2014). Recombinant phytase of S. thermophile also showed 
resistance to proteases, as it retained 95% of its initial activ-
ity against pepsin and trypsin (Ranjan et al. 2015). The 
phytase from P. polonicum MF82 maintained its full activity 
after exposure to trypsin (Kalkan et al. 2020). Phytases from 
A. oryzae SBS50 (Sapna and Singh 2017a), A. aculeatus 
APF1 (Saxena et al. 2020)d tubingensis TEM 37 (Çalışkan-
Özdemir et al. 2021) also observed high resistance to pro-
teases. When subjected to trypsin, phytases from A. niger, R. 
mucilaginosa, and A. oryzae retained 10%, 75%, and 84% of 
their respective activities (Yu et al. 2015). Phytase from P. 
polonicum MF82 maintained 100% activity after exposure 
to trypsin (Kalkan et al. 2020).

Broad substrate specificity

Substrate specificity refers to the ability of an enzyme to 
recognize and bind specific substrates, initiating the enzy-
matic reaction. Fungal phytases possessing a wide range of 
substrate compatibility can efficiently break down phytate 
into myo-inositol monophosphate without significant 
buildup of intermediate compounds. Conversely, bacterial 

phytases with a limited substrate range lead to the accumula-
tion of myoinositol tris- and bisphosphate as intermediates 
during the degradation of phytate (Singh et al. 2018; Kaur 
et al. 2021). Phytases from fungi showed broad-substrate 
specificity in contrast to bacterial phytases that are phytate-
specific (Singh et al. 2011; Singh and Satyanarayana 2015; 
Jain et al. 2016; Jatuwong et al. 2020). The purified phytase 
from A.niger dephosphorylated various substrates such as, 
1- naphthyl phosphate, phenyl phosphate and 2-naphthyl 
phosphate in addition to sodium phytate (Neira-Vielma 
et al. 2018). The purified recombinant phytase from Myce-
liophthora thermophila (syn. Sporotrichum thermophile) 
effectively hydrolyzed various organic phosphates besides 
phytic acid (Ranjan and Satyanarayana 2016). Moreover, 
the process of molecular docking of phytase with different 
substrates revealed distinct binding patterns (Singh et al. 
2018). The docking simulations demonstrated a high binding 
affinity with phytic acid and ATP, while phosphoenol pyru-
vate and AMP exhibited the lowest binding affinity (Singh 
et al. 2018). The phytase from Sporotrichum thermophile 
possesses a larger catalytic pocket, contributing to its wide 
substrate specificity. This larger pocket of fungal phytases 
enables them to hydrolyze a diverse range of organic phos-
phates as compared to bacterial phytases (Kumari et al. 
2016; Singh et al. 2018).

Products of phytate degradation

Phytases work by cleaving the phosphate groups from the 
inositol ring of phytate, leading to the formation of lower 
inositol phosphates, including inositol pentakisphosphate 
(InsP5), inositol tetrakisphosphate (InsP4), and ultimately 
inositol trisphosphate (InsP3) or even inositol bisphosphate 
(InsP2) (Gupta et al. 2014). Phytate degradation products 
using fungal phytases are mentioned in Table 3. The break-
down of phytate into these lower-phosphate forms not only 
improves the nutritional value of food and feed but also has 
positive environmental implications. The combination of A. 
fumigatus phytase and A. niger acid phosphatase success-
fully released all six phosphate groups results in production 
of myo-inositol 1-monophosphate (Wyss et al. 1999). Stud-
ies have also demonstrated that fungal phytases can effec-
tively hydrolyze phytate and liberate phosphorus in the form 
of inorganic phosphate, reducing sugars and soluble proteins 
(Sapna Singh 2017). Aspergillus oryzae SBS50 phytase sup-
plementation enhanced the release of inorganic phosphate, 
reducing sugars and soluble proteins from the flours (Pragya 
et al. 2023). The products of phytate degradation play a vital 
role in enhancing phosphorus availability for monogastric 
animals, such as poultry and swine, in their diets (Priya et al. 
2023).
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Biotechnological applications of fungal phytases

Phytases are widely used in many sectors, including the 
food industry. Their function in the production of ani-
mal feed, human food, the production of bread, and the 
processing of various cereal grains has been investigated 
(Nadeem et al. 2023). Numerous studies have shown that 
the uses for microbial phytases in food and feed are the 
most promising. In addition, recent advancements in bio-
technological research have led to the creation of microbial 
phytases that may aid in the promotion of plant growth 
and the reduction of environmental phosphorus pollution 
(Singh and Satyanarayana 2011a, 2015; Bhavsar et al. 
2013). Fungal phytases have been tested for multifarious 

applications (Fig. 3). Phytases are predominantly sourced 
from genetically modified strains due to the limited pro-
tein production by wild-type strains in comparison to the 
commercial demand. The leading product in the market 
is Natuphos, which contains a phytase derived from A. 
niger var. ficuum. In 2016, BASF introduced an improved 
version of Natuphos known as Natuphos E (Correa et al. 
2020). This upgraded version exhibits enhanced resist-
ance to pepsin, tolerance to adverse pH conditions, sus-
tained activity under high processing temperatures, and 
an extended shelf life. The possible microbial strains that 
have the ability to produce phytase, along with their poten-
tial functions, are outlined in Table 4.

Table 3   Phytic acid hydrolysis products using fungal phytases

Fungal source Substrate Hydrolysis product References

A.niger Soyabean meal-based diets InsP5 Zeller et al. (2015)
 A. fumigatus Sodium phytate myo-inositol 2-monophosphate Wyss et al. (1999)
 A. niger Sodium phytate myo-inositol 2-monophosphate Wyss et al. (1999)
3-phytase (Commercial phytase) Malt myo-inositol Dulinski et al. (2020)
6-phytase (Commercial phytase) Malt myo-inositol Dulinski et al. (2020)

Fig. 3   Biotechnological applications of phytases
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Improving monogastric nutrition

Most of the monogastric animals (poultry, piggery, fish) and 
humans use the plant-based foods to meet their nutritional 
requirements. However, many of nutritious components are 
not available for absorption during digestion owing to their 
interactions with the phytates (Kebreab et al. 2012; Priya 
et al. 2023). Therefore, phytase treatment is necessary in 
order to increase the bioavailability of minerals and nutri-
ents with simultaneous reduction of anti-nutritional factor. 
Therefore, phytases used in food and feed industries must 
retain their activities in digestive tracts of monogastric ani-
mals (Bhandari et al. 2023). This is a requisite to ensure the 
successful biodegradation of phytate present in plant-based 
diets. Intestinal simulation studies have been conducted to 
study the efficacy of fungal phytases (Rodriguez et al. 2018; 
Lopes et al. 2021). Coutinho et al. (2020) observed simi-
lar action of immobilized and free phytase under simulated 
conditions. However, immobilized phytase exhibited high 
action at lower pH values than the free-phytase. In fishes, 
empty stomach pH varies from 5 to 7.0 that become highly 
acidic during digestion (Rodriguez et al. 2018). Therefore, 
highly acidic and acid-stable phytases are highly suitable 
for application in aquaculture (Moriarty 1973; Lopes et al. 
2021; Priya et al. 2023).

The addition of phytase with citric acid to granulated feed 
has the potential to benefit the environment in carp farming, 
as it can reduce the phosphorus excretion from fish, thereby 
mitigating its environmental impact (Maly et al. 2023). 
The research findings indicated that using phytase as a feed 
additive for Tilapia sp. offers numerous advantages with 
no adverse effects. Among various fungal species tested, 
Aspergillus tubingensis demonstrated the highest yield of 
phytase (Mahendran et al. 2022). Mahmood et al. (2023) 
reported that supplementation of A. niger phytase to poultry 
diets improves the growth rate of broiler chickens, leading 

to increased body weight gain. Aspergillus niger BIONCL8 
strain demonstrated a substantial reduction in phytate con-
tent in six poultry feed ingredients, making it a potential 
supplement for improving poultry feed (Bhandari et al. 
2023). Because phytase has a specific target application, it 
cannot be considered universally ideal for both in vivo and 
in vitro use in all situations. For instance, in poultry, neu-
tral phytases perform better, while acidic phytases are more 
effective in piggery. Additionally, the temperature optima 
for swine or poultry diets differ from those in aquaculture, 
leading to the use of distinct microbial phytases for various 
applications (Rizwanuddin et al. 2023a).

Bread making

The enzyme phytase is employed more prevalently in the 
food industry as compared to the feed industry, a preference 
mainly attributed to its unique property of complexing with 
crucial minerals like iron, zinc, and calcium in the human 
body (Longin et al. 2023). This distinctive characteristic of 
phytase facilitates its extensive utilization in the food sec-
tor, emphasizing its role in enhancing the bioavailability of 
these essential minerals, thereby contributing significantly 
to human health. This binding reduces mineral deficien-
cies and increases the bioavailability of essential minerals, 
ultimately improving the health of individuals who lack 
sufficient minerals (Handa et al. 2020; Rizwanuddin et al. 
2023a). Addition of fungal phytase to whole wheat breads 
resulted in improved bread making (Goyal et al. 2022). 
Phytase of P. anomala effectively dephytinized whole wheat 
unleavened flat Indian breads like naan and tandoori (Joshi 
and Satyanarayana 2015). Phytase of S. thermophile has 
effectively reduced phytic acid in breads with concomitant 
amelioration of nutrition (Singh et al. 2011). Recombinant 
phytase of S. thermophile resulted in dephytinization of roti, 

Table 4   Phytase producing 
fungi and their potential 
applications

Fungi Applications References

Aspergillus oryzae SBS50 Dephytinization of Wheat bran Sapna and Singh (2014)
Sporotrichum thermophile Dephytinization of poultry feed Kumari et al. (2016)
Aspergillus awamori Growth and seed germination Kour et al. (2019)
Aspergillus flavus Application in marine and poultry feed. Gaind and Singh (2015)
Aspergillus niger Solubilization of the rock phosphate and 

makin it available to plants
Din et al. (2019)

Humicola nigrescens Dephytinization of flours Bala et al. (2014)
Mucor indicus Dephytinization of wheat and rice bran Venkataraman and Vaidy-

anathan (2023)
Acremonium zeae Dephytinization of Piglet diets Pires et al. (2019)
Rhizopus arrhizus KB-2 Plant growth promotion Evstatieva et al. (2020)
Aspergillus niger NT7 Dephytinization of cattle feed Kumari and Bansal (2021)
Aspergillus niger As poultry feed additive Mahmood et al. (2023)
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naan, tandoori and bread with improved nutritional proper-
ties (Ranjan and Satyanarayana 2016).

Synthesis of peroxidases

Vanadium is an inhibitor of acid phosphatases due to simi-
larity with phosphate. Vanadate-treated acid phosphatase 
demonstrated the activity of a peroxidase (Tanaka et al. 
2005; Sharma et al. 2020). Histidine acid phosphatases 
(HAP-phytases) showed similarities with vanadium haloper-
oxidases by substitution of phosphate with vanadate (Renirie 
et al. 2003). These haloperoxidases have great potential as 
catalysts in oxidative reactions/processes. Fungal phytases 
are HAP-phytases, therefore, can easily be converted into 
peroxidases due to incorporation of vanadate in their active 
sites (Velde et al. 2000). Phytase was synthesized as a CLEA 
and vanadium-haloperoxidase activity due to incorporation 
of vanadate into active site of HAP-phytase was employed 
in thioanisolesulfoxidation in the presence of hydrogen 
peroxide. This enzyme showed selectivity, and recyclabil-
ity with high conversion rate (Correia et al. 2008). Vana-
date ion incorporated into the P. anomala and S. thermo-
phile phytases converted into haloperoxidases (Joshi and 
Satyanarayana 2015; Singh et al. 2018). Molecular dock-
ing studies also supported the sharing of binding site by 
vanadate with phytic acid (Joshi and Satyanarayana 2015; 
Singh et al. 2018). A notable increase in peroxidase activ-
ity was detected in the case of A.oryzae phytase when it 
was exposed to ammonium metavanadate as compared to 
sodium metavanadate. Additionally, there was increase in 
haloperoxidase activity with concomitant decline in phytase 
activity (Pragya et al. 2023).

Plant growth promotion

In many regions of the globe, phosphorus is a crucial macro-
nutrient for agricultural crops that restricts plant develop-
ment and crop yield (Singh et al. 2020). In the soil, phos-
phorus and other chemicals combine to create insoluble 
complexes. Soil P exists in two forms viz. organic and inor-
ganic. The organic form predominantly comprises phytates, 
which account for approximately 50–80% of the total soil 
phosphorus pool (Singh et al. 2020). The specific propor-
tion depends on the particular soil type and this form of 
phosphorus is often derived from plant residues and compost 
materials. Conversely, the inorganic form, often denoted as 
Pi, primarily consists of apatite that is complexed with other 
elements such as calcium, iron, and aluminum phosphate. 
Additionally, phosphorus can also be adsorbed onto clay 
particles in the soil matrix, enhancing its retention in the soil 
environment. Recent empirical investigations suggest poten-
tial strategies for optimizing the acquisition of phosphorus 
from soil phytate by plants (Rizwanuddin et al. 2023b). One 

such approach entails the inoculation of soil with a specific 
microbial strain known to produce the enzyme phytase. An 
alternate strategy involves the direct addition of phytase to 
the soil. Both methods aim to enhance the bioavailability 
of phosphorus from phytates, thereby potentially improv-
ing nutrient uptake and plant productivity (Ige et al. 2011). 
Phialocephala fortinii DSE2 demonstrated the capacity to 
colonize the roots of Vaccinium macrocarpon, a different 
plant species. This colonization resulted in an increase in the 
plant’s phosphorus content and overall biomass. Addition-
ally, the fungus exhibited the ability to hydrolyze phytates 
and accumulate polyphosphates (Mikheev et al. 2022). Out 
of the fungi examined, Chaetomium globosum displayed the 
most effective extracellular phytase, facilitating the mobili-
zation of soil organic phosphorus for plant nutrition (Dha-
riwal et al. 2023).

Biofuel production

Phytic acid a prevalent compound in grain-derived raw 
materials has an inherent propensity to form complexes with 
multivalent cations including zinc, iron, calcium, and mag-
nesium as well as proteins and starch (Mikulski et al. 2015). 
This complexation hampers its availability to yeast during 
the alcohol fermentation sequence. The chelation with pol-
ysaccharides confers a degree of resistance to enzymatic 
degradation, consequently reducing the quantity of sugars 
eligible for fermentation. The interaction with starch could 
occur directly via hydrogen bonds or indirectly through affil-
iated proteins. A feasible mitigation strategy to this issue 35 
involves the hydrolysis of phytic acid utilizing phytase. The 
liberation of inositol from phytic acid has the potential to 
augment the ethanol endurance of yeast, thereby facilitating 
enhanced ethanol generation (Khullar et al. 2011; Mrudula 
Vasudevan et al. 2019). Moreover, the utilization of phytase 
serves to enhance the accessibility of liberated phosphorus, 
minerals, and vitamins to fermenting yeast. This, in turn, 
increases the production of ethanol and prevents the interfer-
ence of phytic acid with minerals like Ca2+, Mg2+, Zn2+, and 
Fe2+. These minerals have a destabilizing effect on amylases, 
particularly those sourced from Bacillus sp. and A. niger, 
which are commonly employed in ethanol manufacturing 
(He et al. 2017). In another study, a heat and acid-resistant 
phytase obtained from the thermophilic mold Thermomyces 
lanuginosus SSBP was utilized to enhance the production 
of bioethanol from Colocasia esculenta. By reducing the 
phytate content in the starch of Colocasia esculenta from 
1.43 mg/g to 0.05 mg/g, this enzyme increased the number 
of fermentable sugars available and decreased the viscosity, 
resulting in a significant 1.59-fold increase in ethanol yield 
(Makolomakwa et al. 2017). A cell-bound phytase from Wil-
liopsis saturnus NCIM 3298 was utilized in the sacchari-
fication of corn. It was observed that the saccharification 
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of phytase-treated corn resulted in enhanced production of 
reducing sugars. Furthermore, the bioethanol production was 
also increased 18 % using phytase-treated corn hydrolysate 
(Pable et al. 2019). Further studies need to be carried out 
on the role of fungal phytases in biofuel production from 
lignocellulosic substrates.

Environmental pollution management

Phosphorus is a crucial element for both plant and animal 
nutrition, as it plays a significant role in growth and devel-
opment processes (Kumar et al. 2016; Mir et al. 2022). 
However, the indiscriminate and persistent use of P can 
lead to various environmental issues. By increasing the bio-
availability of phosphorus in animal feed, the addition of 
fungal phytases helps in reducing aquatic P pollution and 
hence, representing an essential strategy to address envi-
ronmental pollution (Zhou et al. 2022). Phosphorus is vital 
for metabolic and regulatory functions in living organ-
isms, including animals and humans, and is required for 
proper growth and development. PA, a primary source of 
phosphorus in food, can bind with metal ions and form an 
undigested, insoluble complex called phytate. This com-
plex lower phosphorus bioavailability due to the limited 
activity of phytases in monogastric animals and humans, 
highlighting the importance of phytases in these organisms. 
Fungal phytases exhibit significant potential for sustainable 
phosphorus management through efficient utilization of soil 
phytate (Vashishth et al. 2023).

Organophosphate pesticides are commonly used in agri-
culture for inhibiting the growth of insects and pests. These 
pesticides remain in soil for prolonged duration due to poor 
degradation and hence, result in biomagnification in food 
chain. These pesticides are highly toxic to animals and 
humans due to adverse effects on nervous system. Fungal 
phytases have been shown effective in degradation of these 
organic phosphorus pesticides (Shah et al. 2017). Phytase 
from Aspergillus niger NCIM 563 degraded 72% of chlorpy-
rifos at pH 7.0 and 35 °C. Phytase also degraded monocro-
tophos and methyl parathion up to 53 and 77%, respectively. 
Chlorpyrifos was degraded up to 91% at 50 °C (Shah et al. 
2017).

Role of phytase in nano‑drug delivery

Recently, nanoparticles-loaded protein drug carriers are con-
sidered as promising materials for cancer and other thera-
pies. The current development of a nanoscale drug delivery 
system harnesses the enzymatic properties of phytase, cou-
pled with a platinum coating, presenting a novel therapeutic 
approach for the treatment of various cancer cell lines, spe-
cifically THP-1, Hep-G2, and MCF-7 (Sodhi et al. 2022). 
Materials from biological sources hold a distinct advantage 

for developing novel materials with potential applications 
(Wang et al. 2008). Unique structural characteristics of pro-
teins make them naturally compatible with biological sys-
tems. These attributes enable proteins to effectively encap-
sulate diverse substances, including drugs, food components, 
and nutrients, in aqueous solutions, positioning them as 
robust delivery carriers (Hermenson et al. 2007). Soni et al. 
(2015) devised a method to create self-assembled nano-
spheres of the phytase, which significantly enhanced their 
effectiveness by incorporating platinum nanoparticles and 
the anticancer drug curcumin. The process of self-assem-
bly involving the phytase within the ionic liquid,1-butyl-
3-methylimidazolium tetrafluoroborate, leads to the creation 
of functionally active phytase nanospheres. A remarkable 
increase in anticancer effect was observed with phytase 
nanosphere (25%), platinum-phytase nanosphere (37%), 
phytase curcumin (78%) and platinum-phytase-curcumin 
nanosphere (90%). This innovative methodology poten-
tially introduces a new paradigm in targeted cancer therapy 
to bridge the gap between nanotechnology and oncology 
(Sodhi et al. 2022).

Synthesis of myo‑inositol phosphates

Fungal phytases catalyze the hydrolysis of phytic acid and 
generate myo-inositol phosphates intermediates. Lower myo-
inositol phosphate derivatives have an important role in cell 
signaling pathways and mobilization of calcium ions from 
intracellular spaces (Jain et al. 2016). Plant-based materials 
are rich in inositol polyphosphates, primarily in the form 
of phytic acid or its salt (Gonzalez-Uarquin et al. 2020). 
Super-dosing effects of phytases have shown improvements 
in weight gain and overall performance as compared to the 
standard phytase dosage (Cowieson et al. 2011). This high 
dose of phytase facilitates almost complete degradation of 
phytate and increases the levels of inositol and intermedi-
ates (Walk et al. 2014). It is important to note that lower 
inositol polyphosphate esters exhibit greater solubility with 
lesser anti-nutritional effect (Schlemmer et al. 2001). Fun-
gal phytases play a role in the gradual release of phosphate 
groups from phytate, generating intermediate products such 
as penta- (IP5), tetra- (IP4), tri- (IP3), di- (IP2), and mono- 
(IP1) phosphate esters of inositol (Table 3). When exogenous 
phytase is add to the animal diet, it initiates the hydrolysis of 
phytate in the acidic conditions of the stomach or gizzard, 
thereby releasing these lower esters into the intestinal tract 
(Lee et al. 2018). The animal’s own alkaline phosphatase 
then completes the process by hydrolyzing IP1, resulting in 
the release of free inositol (Pirgozliev et al. 2017).

Release of Ins (1,4,5)P3 triggers the release of Ca2+ from 
internal stores (Irvine et al. 1984). Inositol plays a funda-
mental role in signal transduction in various tissues, includ-
ing the brain, kidneys, reproductive organs, and others, 
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responding to neurotransmitters, hormones, and growth fac-
tors. Multiple genes are involved in inositol metabolism and 
related pathways (Kiani et al. 2021). Partial degradation of 
dietary InsP is carried out by phosphatases, phytases, micro-
bial phytases, and pancreatic phospholipases in the diges-
tive tract (Walk et al. 2018). In humans, nearly all (99.8%) 
of the myo-inositol is absorbed by the gastrointestinal tract 
(Kiani et al. 2021). Cowieson et al. (2015) demonstrated that 
plasma inositol levels increased in broiler chickens when 
they were fed with phytase-supplemented diets. These find-
ings imply that dietary phytases leads to increased dephos-
phorylation of phytate, resulting in enhanced release of ino-
sitol phosphates, which play important role in cell signaling 
pathways (Lee et al. 2018).

Conclusions

This article discusses the production of phytases by fungi 
in solid state fermentation and their industrial applications. 
Fungal phytases are secreted in large amounts using eco-
nomical substrates in SSF. Fungal phytases have features of 
ideal phytases, which are suitable for applications in food 
and feed industries. Fungal phytases are acidic, thermostable 
and protease-resistant. These properties make them suitable 
for improving nutrition of monogastric animals including 
humans, pigs, poultry and fishes. Fungal phytases have 
garnered significant interest in food production and feed 
industries, aiming to enhance nutrition quality and reduce 
phosphorus pollution. Investigating various biological prop-
erties of fungal phytases is essential to enhance their activity 
and stability for both nutritional and industrial purposes. 
However, only a limited number of fungal strains have been 
studied for phytase production, necessitating the identifica-
tion of novel fungal species with advanced phytase charac-
teristics and stability levels. Among fungi, Aspergillus niger 
and Aspergillus oryzae are classified as ‘Generally Recog-
nized as Safe’ (GRAS) status by the FDA. Plants-based food 
and feed materials have been employed in poultry, piggery 
and aquaculture for economical production at large scale. 
The price of this commodity has increased due to growing 
demand for fishmeal in aquaculture, the livestock and poul-
try industries, and piggery production. It has been proven 
both in-vitro and in-vivo that addition of phytase to diets 
has improved the bioavailability of nutrients including phos-
phorus, sugars, minerals and proteins for absorption by the 
body. Phytase supplementation has reduced the excretion of 
phytic acid significantly and hence, resulting in mitigation 
of environmental phosphorus pollution. Thermophilic fungi 
have been explored as a potential source for phytases that 
are highly stable as compared to mesophilic fungi. There-
fore, there is need to explore more natural resources for 
the isolation of thermophilic fungi for phytase production. 

Furthermore, cloning and protein engineering of potential 
phytase-producing fungi can provide valuable advantages. 
The growing demand for phytases offers opportunities for 
discovering catalysts with improved properties suitable for 
industrial implementation.
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