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Abstract
The fungal system holds morphological plasticity and metabolic versatility which makes it unique. Fungal habitat ranges from 
the Arctic region to the fertile mainland, including tropical rainforests, and temperate deserts. They possess a wide range of 
lifestyles behaving as saprophytic, parasitic, opportunistic, and obligate symbionts. These eukaryotic microbes can survive 
any living condition and adapt to behave as extremophiles, mesophiles, thermophiles, or even psychrophile organisms. This 
behaviour has been exploited to yield microbial enzymes which can survive in extreme environments. The cost-effective 
production, stable catalytic behaviour and ease of genetic manipulation make them prominent sources of several industri-
ally important enzymes. Pectinases are a class of pectin-degrading enzymes that show different mechanisms and substrate 
specificities to release end products. The pectinase family of enzymes is produced by microbial sources such as bacteria, 
fungi, actinomycetes, plants, and animals. Fungal pectinases having high specificity for natural sources and higher stabilities 
and catalytic activities make them promising green catalysts for industrial applications. Pectinases from different microbial 
sources have been investigated for their industrial applications. However, their relevance in the food and textile industries is 
remarkable and has been extensively studied. The focus of this review is to provide comprehensive information on the current 
findings on fungal pectinases targeting diverse sources of fungal strains, their production by fermentation techniques, and 
a summary of purification strategies. Studies on pectinases regarding innovations comprising bioreactor-based production, 
immobilization of pectinases, in silico and expression studies, directed evolution, and omics-driven approaches specifically 
by fungal microbiota have been summarized.

Keywords  Pectinases · Microbial enzymes · Fungal enzymes · Purification metagenomics · Omics · Immobilisation · 
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Introduction

The idea of sustainable and innovative bio-economical use 
of science is the basis for scientific advancements. With 
more than 4000 different enzymes reported, an average 
of 200 enzymes has the potential for commercialization, 
although only 10% can be industrially produced. There is 
huge potential in the enzyme market, which was reported 
to be around 6.3 billion dollars in 2017 and has a projection 
of a compound annual growth rate (CAGR) of 6.8% until 
2024. Over the next five years, the food enzyme market is 

expected to grow by 7.5%, the highest rate of any market 
projected in the industry (Food enzyme trend gminsight). 
The thrust to uplift the production of renewable resources 
is greatly impregnated with the requirement of low-cost yet 
highly efficient systems (Joshi et al. 2018; Raveendran et al. 
2018). White biotechnology is dedicated to harnessing bio-
catalysts i.e., enzymes and microorganisms at an industrial 
scale (Meyer et al. 2020, Cairns et al. 2021). The mandate 
of white biotechnology is to provide pure and replenishable 
sources as potential alternatives for industrial acceleration 
resulting in improved, bio-economical, and highly sustain-
able products (Hyde et al. 2019).

The microbial system is the foundation of biotechnologi-
cal applications and innovations. The fungal community is 
a highly exploited eukaryotic system that can be applied 
directly or by acting as the source to produce industrially 
important products (Joshi et al. 2018). Filamentous fungi 
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are efficient decomposers that can feed on and break down 
organic materials and polymeric compounds. Industrial pro-
duction of commercial citric acid marks the stepping stone 
of fungal biology as an important commercial industrial 
product. Enzymes are the backbone of sustainable environ-
ments and harnessed industrially for centuries. The fungal 
system has been a pioneer source of these commercially 
applicable enzymes. Cellulases, amylases, pectinases, lac-
cases proteases, and lipases are secreted by fungal cells 
(Hyde et al. 2019; Meyer 2019). These enzymes hydrolyse 
plant polysaccharides such as cellulose, starch, pectin, pro-
teins, and lipids respectively. Their wide substrate interac-
tion leads to microbial enzymatic intervention in food and 
feed, pulp and paper, detergent, fuel, pharmaceutical, and 
chemical sectors (Ahmed et.al. 2021, Kordi et al. 2022).

Pectin alone constitutes approximately 35% of the plant 
cell wall composition and shows structural complexity and 
diversity. Pectin polysaccharide gives plant tissues their ten-
sile strength and rigidity. Pectin is frequently employed in 
the food sector as a gelling agent, thickening, emulsifier, or 
stabilizer. It can also be used in the pharmaceutical indus-
try as a blood pressure stabilizer, cholesterol controller, and 
detoxifier (Gawkowska et al. 2018). Natural sources of pec-
tin include fruit waste from pomegranate, banana, lemon, 
orange, pineapple, wheat bran, malt sprout, and rice bran. 
Their physiological properties though isolated from different 
sources remain similar and are beneficial to humankind (de 
Souza and Kawaguti 2021).

Pectinases are the group of hydrolases, depolymerase, 
esterases, and lyases enzymes. These act on pectin, proto-
pectin, pectic acid, and galacturonate (Yadav et al. 2009a). 
Based on the mode of action, specificity of the substrate, 
and cleavage mechanism there exists a diverse family of 
pectinolytic microbial enzymes. In this emerging era of 
biotechnological innovations, fungal pectinase accelerates 
its way as a promising natural biotechnological innovative 
agent (Nighojkar et al. 2019; Anand et al. 2020). Micro-
bial pectinases have a broad range of applications and high 
catalytic effectiveness has significantly raised the global 
demand. Microbes are natural sources of pectinases that are 
often employed due to their simplicity of manufacture and 
distinctive physicochemical features. With a 25% share in 
the market for food and beverage enzymes, the pectinases 
family of enzymes is a great part of the biotechnological 
industry. They are on top of the list of industrial enzymes 
made for commercial production. Pectinases of acidic nature 
are preferred for clarification of fruit juices, maceration of 
vegetables in the manufacturing of pastes and purees, and 
winemaking. Alkaline pectinases are often used in the ret-
ting of natural textile fibres, treatment of pectic-rich waste-
water, fermentation of tea, extraction of vegetable oil, and 
treatment of paper and pulp (Kohli and Gupta 2015; Patidar 
et al. 2018; Thakur et al. 2021).

The literature available on microbial pectinases has estab-
lished the importance of the catalyst in industrial sectors. 
The present review is solely inclined towards fungal pecti-
nolytic interventions in enzyme biotechnology. The status of 
fungal pectinases and their cost-effective production strate-
gies, the factors affecting production, the large-scale biore-
actor-based productions and the purification of the enzyme 
have been highlighted in this review. Further, emphasis has 
also been made to include the recent innovations like immo-
bilisation, directed evolution and omics-based approaches 
targeted in fungal pectinases.

Pectin

Pectin is an abundant natural product predominately 
observed in dicotyledonous plants. It is secreted by Golgi 
bodies into the apoplast of cells that are richly methyl-ester-
ified (Sinclair et al. 2018). The committee of the American 
Society in 1944 accepted definitions of pectic substances, 
which include pectin acids, pectic acids, and protopectin 
within the complex class of these macromolecules. The pec-
tinic acids are colloids of galacturonic acids methyl ester 
and pectic acids without methyl ester (Harholt et al. 2010). 
Protopectin is considered the parent molecule of a pectic 
substance and together with pectin and pectic acids was then 
summarised as “pectin” (Mohen 2008, Anderson 2019).

The solubility behaviour of pectins is categorised as (i) 
pectins soluble in water or diluted solutions, (ii) pectins 
soluble in chelators like EDTA, and (iii) protopectin solu-
ble in alkaline or hot solutions based on this observation. 
The water-soluble and chelator-soluble pectins are derived 
from the middle lamella of the plant cell wall. These are 
composed of galacturonic acid residues with a tenth of neu-
tral sugars and barely 2% rhamnose (Voragen et al. 2009; 
Patidar et al. 2018). The distribution of sugars attached 
with free carboxyl groups gives the classes their nature of 
water and chelator solubility. Pectin of alkaline solubility are 
embedded in part of the cell walls. Alkali-soluble pectins are 
structured with arabinose and galactose sugars. Typically, 
softening during ripening or heating is accompanied by a 
decrease in the proportion of protopectin and an increase in 
water-soluble pectin (Yapo 2011).

Apart from solubility, pectin has variable percentages of 
esterification as (i) High-methoxyl pectins, having esterifi-
cation levels between 40 and 50%, and (ii) Low-methoxyl 
pectins with esterification levels below 40%. The esterifi-
cation level can be controlled by acid, alkali, or enzyme 
treatment of high-methoxyl pectins. This imparts pectin its 
unique characteristics and helps form gels under specific 
conditions. The pectin polysaccharide is made up of distinct 
categories of sugars representing unique structures (Voragen 
et al. 2009; Wusigale et al. 2020). There are 17 different 
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monosaccharides linked with approximately more than 20 
different linkages. These together give pectin a macro-com-
plex structure (Yang and Anderson 2020; Gutierrez-Alva-
rado et al. 2022). These sugars govern the role of pectin in 
cell adhesion and separation, expansions and regulation of 
plant cell walls, and the development of organs and plants.

The complex nature of pectin structure includes com-
ponents like homogalacturonan (HG), xylogalacturonan 
(XGA), homogalacturonan, rhamnogalacturonan I (RGI), 
and rhamnogalacturonan II (RGII) (Yang and Anderson 
2020). The key constituent of the spine is α-1,4-linked galac-
turonic acid (GalA) residues. These residues undergo esteri-
fication at six carboxyl carbon and acylation at the third or 
second oxygen of the chain. This base is alternatively lined 
by rhamnose sugar and galacturonic acid residues having a 
structurally similar side chain of arabinose and galactose 
sugars. Homogalacturonan accounting for 60% of the total 
pectin structure forms the smooth region of sugar residues. 
The neutral sugars together are ramified to form a hairy 
sugar region. Rhamnogalacturonan II (RGII) within HG 
constitutes twelve different types of sugar resides, including 
3-deoxy-lyxo-2-heptulosaric acid (DHA), 3-deoxy-manno-
2-octulosonic acid (KDO), apiose and acetic acid. The repro-
ductive tissues, fruits, and seeds store the xylogalacturonan. 
It forms a single side chain of units of b-D-Xylp-(1 → 3) 
which is commutated with HG molecules (Zdunek et al. 
2021; Shin et al. 2021; Gutierrez-Alvarado et al. 2022).

Pectinases family: an overview

Pectinases act on pectic substances. They possess negative 
charge, high molecular weight glycosidic bond-linked mac-
romolecules with substrate specificities on pectin (Ander-
son 2019). Pectinases are classified in respect of the type of 
modifications of the backbone chain as protopectin, pectic 
acid, pectin acid, and pectin. Pectinases amalgamate together 
lyases, hydrolases, and esterases classes of enzymes to act 
on pectin (Yadav et al. 2009b, Pedrolli et al. 2009). These 
can work endogenously by cleaving glycosidic bonds to 
release residues from the inside or in an exogenous manner 
to cleave residues from the ends. These can be produced 
through extracellular or intracellular modes. Though intra-
cellular secretion is more costly in comparison to extracel-
lular production. The classification of pectinases or pecti-
nolytic enzymes based on the existence of different pectic 
substances, reaction mechanisms, and degradation of the 
hairy and smooth regions has been reported (Kashyap et al. 
2001; Jayani et al. 2005; Favela-Torres et al. 2006).

A discrete collection of two hundred and sixty-nine enzy-
matic families that are similar on grounds of amino acid 
sequence are called the Carbohydrate-modifying enzymes. 
This family is broadly distributed under four classes: 

glycoside hydrolases (GHs), glycosyltransferases (GTs), 
polysaccharide lyases (PLs), and carbohydrate esterases 
(CEs). These classes have subgroups of structurally and 
catalytically related families. This has been listed in the 
carbohydrate-active enzyme (CAZy) database (www.​cazy.​
org) (Cantarel et al. 2009). Pectinases share a diverse group 
of enzymes that distinctively occupy their positions in the 
GH, PL, and CE families (Drula et al. 2022).

Glycoside hydrolases (GH)

Family GH28 is commonly referred to as polygalacturo-
nases, which are glycosidases acting on homogalacturo-
nan and rhamnogalacturonan components of pectin. This 
includes enzymes with hydrolysis mechanisms. They are 
capable of hydrolysing glycosidic linkage between carbo-
hydrates -carbohydrates and a non-carbohydrate moiety. 
GH28 enzymes are also categorized into three distinct cat-
egories acting on homogalacturonan, rhamnogalacturonan 
and xylogalacturonan (Sprockett et  al. 2011; Villarreal 
et al. 2022). It hydrolyses polygalacturonic acid on α-1,4-
glycosidic linkages producing d-galacturonate. Fungal 
polygalacturonase can produce monomeric galacturonic 
acids on its depolymerization. Mode of action distributes 
them as Endo-PG (EC 3.2.1.15) which liberates saturated 
oligogalacturonides and Exo-PG (EC 3.2.1.67) releases satu-
rated galacturonic acid residue. The residue is obtained from 
the non-reducing end of homogalacturonan by hydrolytic 
catalysis (Yang et al. 2018; Anand et al. 2020; Christensen 
2020). Xylogalacturonans (XG) are enzymes responsible 
for cleaving glycosidic linkages in the xylose-substituted 
rhamnogalacturonan chain and the end products are xylose-
galacturonate dimers. Rhamnogalacturonan is hydrolytically 
cleaved by RG galalcturonohydrolase. Its non-reducing end 
produces monogalacturonate (Villarreal et al. 2022).

Polysaccharide lyases (PL)

These enzymes cleave uronic acid-containing polysaccha-
ride chains. They use the β-elimination mechanism to gen-
erate an unsaturated (hexen)uronic acid residue and a new 
reducing end. PLs, can cleave alginate, heparin, hyaluronan, 
pectin, xanthan, and several exopolysaccharides (cazy.org/
Polysaccharide-Lyases; Yadav et al. 2009c, Chakraborty 
et al. 2017). PL family 1, 2, and 9 share distributions of 
lyases degrading pectin. Pectate lyase (PL) results in form-
ing an unsaturated product (α-4,5-d-galacturonate) through a 
trans-elimination reaction on polygalacturonase acids. Endo-
PL (EC 4.2.2.9), acts on a nonreducing end. Pectin lyase 
(PNL) (EC 4.2.2.10) results in the formation of 4,5- unsatu-
rated oligo-galacturonate. PNL performs a β-elimination 
mechanism without affecting the ester content of the poly-
mer chain. This ester content is responsible for the specific 

http://www.cazy.org
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aroma of fruits. Toxic methanol production is limited by 
enzymatic degradation. Henceforth, these are preferred in 
fruit juice clarification industries. Rhamnogalacturonan 
lyases degrade rhamnogalacturonan I and are distributed in 
families 4 and 11 (Zheng et al. 2021).

Carbohydrate esterases (CE)

These enzymes catalyse acylation at the oxygen or nitro-
gen end. The members of this family remove esterified 
modifications from mono-, oligo- and polysaccharides. The 
acylation provides easy access to glycoside hydrolase (cazy.
org/Carbohydrate-Esterases; Wardman et al. 2022). Pectin 
methyl esterases are grouped in CE 8 family and act pref-
erentially on a methyl ester group of galacturonate to pro-
duce methanol and pectic acid. The action of PMEs forms 
pectate gel from homogalacturonan. The action of esterases 
can hinder the action of polygalacturonases (Benen et al. 
2002). Rhamnogalacturonan acetyl esterase is responsible 
for cleaving acetyl groups of the rhamnogalacturonan chain 
that constitutes the major part of the hairy portion of pec-
tin and belongs to the family CE12. Pectin acetyl esterase 
belongs to CE13 and hydrolyses the acetyl ester of pectin. 
They help the formation of pectic acid and acetate and acyla-
tion affects the age and differentiation of plant tissues. It 
even acts as protection from different enzymatic interactions. 
The esterases assist actively in biomass saccharification and 

have diverse biological and biotechnological applications 
(Benen et al. 2002; Bonnin and Pelloux 2020). The diversity 
of pectinases and their potential for industrial application is 
depicted in Fig. 1.

Fungal pectinases

Microorganisms have been in the environment from the 
beginning of time on this planet. In the scientific world, the 
study of the structural, functional, and ecological attributes 
of microorganisms is significant (Prasad et al. 2021). Micro-
bial enzymes particularly from fungi are preferred over other 
sources because: (i) Their content is more predictable. (ii) 
They have a wide range of enzymes; (iii) Bulk production 
generally resin with low costs and reliable raw materials. 
(iv) Their productivity rate is high and they contain a greater 
amount of active ingredients. (v) Fungi can be easily man-
aged to take the desired enzymes, and they can be made in 
large quantities rapidly and inexpensively through existing 
fermentation techniques and sophisticated instrumentation. 
(vi) Enzyme production may be programmable in various 
environments. and (vii) more potentially hazardous compo-
nents like phenolic compounds, endogenous enzyme inhibi-
tors, and proteases are found in plant and animal tissues than 
in microorganisms (Sharma et al. 2013; Singh et al. 2019).

Fig. 1   Pectinases: classification and role as industrial catalyst
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Fungal microbiota cover about 50% of microbial enzyme 
production. Around 35% of the production shared is held by 
bacteria and only 15% is produced from higher organisms 
(Wösten 2019). The fungal system is a popular source of 
enzymes because they provide a cost-effective technology 
with reduced resource consumption and minimal emissions, 
as opposed to animal and plant sources. Fungi and yeast 
alone are a producer of half of the globally used enzymes 
(Lübeck and Lübeck 2022). The secretion of pectinases 
by fungi assists in the breakdown of the middle lamella in 
plants (Prasad et al. 2021). Soil is a diverse and dynamic 
environment that is home to a diverse range of microorgan-
isms, especially fungi. The traditional laboratory culture 
techniques have made the greatest contribution to gaining 
access to microbial diversity. Despite its familiarity and use, 
it is one of the world’s least explored environments. Soil 
microorganisms play a crucial role in plant development and 
carbon and nutrient cycling. The bulk of soil microorgan-
isms, on the other hand, have yet to be isolated, and their 
roles are mostly unknown. These microbial communities are 
exploited as a sustainable source for microbial enzymatic 
production systems (Baldrian 2019; Selvasekaran and Chi-
dambaram 2020).

Fungi generate a plethora of extracellular enzymes capa-
ble of degrading organic materials, one of which is pectino-
lytic enzymes. Commercial enzymes have been produced 
using filamentous fungi for more than 50 years (Haile and 
Ayele 2022). Pectinolytic enzymes are one of the extracellu-
lar enzymes that fungi produce that can break down organic 
molecules. One of the most potent sources of pectinases is 
filamentous fungi, which can be extensively exploited in the 
production of SSF at a low cost. Many different fungal spe-
cies have been reported to produce pectinases. Aspergillus 
niger is the most typical fungus used in the production of 
pectinolytic enzymes for industrial use (Gutiérrez-Correa 
et al. 2012). A. oryzae, A. fumigatus, A. terreus, A. sojoe, A. 
awamori, and other Aspergillus species are also known to 
produce pectinase. A. giganteus was the first species whose 
production of endo-PGL was noted. Additionally, species of 
Penicillium, Fusarium, Mucor, Neurospora crass, Sclero-
tinia sclerotium, and others play a part in the manufacture of 
pectinase (Sharma et al. 2013; Haile and Ayele 2022). Fun-
gal pectinases play a part in the phytopathological process. 
They interact in plant–microbe symbiosis, and the decom-
position of dead plant material, thereby, contributing to the 
natural carbon cycle. In the context of mining fungal pecti-
nolytic sources, soil samples have been indefinitely explored 
for the isolation of novel fungal strains as listed in Table 1.

Production strategies

Fermentation-based production of microbial pectinases is 
facilitated by solid-state fermentation and submerged fer-
mentation industrially and at a small scale. The advantages 
of fermentation-based production of enzymes include low 
costs, low energy consumption, and low waste-water gen-
eration, and it can be exploited to repurpose organic wastes 
into value-added products. Fermentation-based microbial 
enzyme mass production uses either solid-state fermentation 
(SSF) or submerged fermentation (SmF). SmF technology 
is often used to produce microbial enzymes, especially from 
bacterial sources and the major advantage is easy to control 
the process as compared to SSF (Sharma et al. 2013).

Solid State Fermentation uses a solid substrate that acts 
as a natural habitat for fungi to attach. The fermentation 
requires lower to no moisture content occurring in the 
absence or near absence of free water. The sturdy foundation 
offers support, or occasionally both support and sustenance. 
The main benefits of SSF include low capital expenditure, 
reduced levels of catabolite repression and end-product inhi-
bition, low wastewater output, improved productivity, higher 
enzyme yields, and better product recovery. SSF has been 
used predominantly as it triggers the production of various 
enzymes directly from raw materials rich in lignocellulose 
(Kumar and Verma 2020). SSF is highly favourable for fun-
gal microflora as it is like their natural habitat. Some of 
the limitations of the SSF include the need for proper aera-
tion and humidity control and a time-consuming scale-up 
process. Pectinases of fungal origin have been extensively 
reported by using the solid-state fermentation method (Soc-
col et al. 2017; Lizardi-Jiménez and Hernández-Martínez 
2017). The production of fungal pectinases by SSF requires 
optimization of several parameters which can directly affect 
the enzyme production.

Factors influencing the production of pectinases 
by SSF

The process of fermentation is dependent on biological and 
physio-chemical parameters that greatly affect the kinet-
ics of the microbial enzymes. To improve the efficiency of 
the enzymes, these parameters need to be optimised and 
microbes, the size of the inoculum, and substrates are some 
of the important biological parameters. Further, incubation 
temperatures, pH specificities, moisture content, aerations, 
rotations, and heat transfer affect the performance of the 
enzymes (Soccol et al. 2017).

Fungal spores can directly be added as inocula and have 
a very fast production rate. These can grow over a range of 
temperature conditions between 24 and 30 °C. Thermophilic 
fungi can also grow optimally in this range. The pH range 
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Table 1   Fungal strains isolated from different soil samples with potential for pectinase production using fermentation methods

S. no. Fungal strains Soil samples Pectinase type Mode of 
produc-
tion

References

1. Penicillium  Pectin industry waste soil PG SSF Patil and Chaudhari (2010)
2. Penicillium chrysogenum Municipal solid waste soil PG SmF Banu et al. (2010)
3. Saccharomyces sp. Cold soils of fruit yards PG SmF Naga Padma et al. (2011)
4. Aspergillus awamori Pectin-rich wastes and waste dump 

yard soils
PG SmF Padma et al. (2012)

5. Aspergillus niger, A. flavus, A. 
japonicus, and Chaetomium 
globosum

Agricultural and non-agricultural 
soils

Pectinase SmF Reddy and Sreeramulu (2012)

6. Paecilomyces variotii Pectin industry waste soil Exo-PG SmF Patil et al. (2012)
7. Aspergillus niger, A. terrus, A. 

stellatus, A. flavus, A. fumigatus
Simipal Bioreserve Forest soil Pectinase SSF Panda et al. (2012)

8. Penicillium atrovenetum, Aspergil-
lus flavus

and Aspergillus oryzae

Decaying orange peels and soil 
sample

PG SSF Adeleke et al. (2012)

9. Aspergillus, Fusarium, Penicil-
lium, Rhizopus, Syncephalastium

Soil of composts, organic fertiliz-
ers and agro-industrial wastes

PG SmF Dhital et al. (2014)

10. Rhizomucor pusillus Fruit and vegetable markets PG SSF Mohd et al. (2013)
11. Aspergillus niger Soil under fruit trees pectinase SSF Islam et al. (2013)
12. Mortierella sp., Aspergillus 

fumigatus, Trichosporiella
Organic soil sample Exo-PG SmF Banakar and Thippeswamy (2014)

13. Penicillium chrysogenum Garden soil PG SmF Sarkar (2014)
14. Aspergillus species Vegetative field soil PG SmF Khan et al. (2014)
15. Species of Aspergillus, Penicil-

lium, trichoderma
Soil sample from manure fields PNL SmF Usha et al. (2014)

16. Penicillium chrysogenum Garden soil samples PG SmF Laha et al. (2014)
17. Thermomucor indicae-seudaticae Soil PG SSF Martin et al. (2010)
18. Truncatella angustata Soil PE SSF Singh et al. (2012a)
19. Aureobasidium pullulans Saharan soil of Algeria PG SSF Garlapati (2015)
20. Rhizomucor pusillus Soil Exo-PG SmF Trindade et al. (2016)
21. Cystofilobasidium infirmomin-

iatum, Cryptococcus adelien-
sis and G. pullulans

Soil from island PG SmF Cavello et al. (2017)

22. Penicillium and Aspergillus Mangrove soil samples PG SSF Mukunda et al. (2013)
23. Aspergillus Niger Soil samples collected from local 

fruit market waste
Pectinase Bezawada and Raju (2018)

24. Aspergillus niger Soil sample Pectinase SmF Abdullah et al. (2018b)
25. Aspergillus oryzae Mangrove soils PG SSF Ketipally and Ram (2018)
26. Apergillus niger Samples of soil, fruits and 

vegetables were collected from 
agricultural fields

Pectinase SSF Abdullah et al. (2018a)

27. Apergillus Citrus dump waste soil PG and PNL SmF Davanso et al. (2019)
28. Fusarium oxysporum Agriculture soil samples Pectinase SmF Ibrahim et al. (2019), Ketipally 

et al. (2019)
29. Aspergillus nomius Mangrove soils PG SSF Ketipally et al. (2019)
30. Aspergillus tubingensis Soil of vineyards Pectinase SmF Huang et al. (2019)
31. Aspergillus sp. Soil of agro-industrial wastes, fruit 

pulp, composts,
decaying leaves, spoiled fruits, and 

organic fertilizers

Pectinase SmF KC et al. (2020)

32. A. niger Soil from fruit processing sites, 
decaying matter, compost

PG SSF Patidar et al. (2020)

33. Aspergillus niger Botanical garden soil Pectinase SmF Abd El-Rahim et al. (2020)
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may change according to the substrate used, however, for the 
best growth, fungi strains prefer an acidic to a neutral range 
(Prado Barragán et al. 2016). Optimizations of moisture con-
tent have resulted in more stress-resistant pectinase produc-
tion. The rotation and agitation affect microbial growth and 
contamination. Production of fungal pectinase is severely 
constrained by bacterial contamination (Prado Barragán 
et al. 2016; Chen and Wang 2017).

The mesophilic and thermophilic fungal pectinase pro-
duction during SSF is also affected by heat transfer during 
the process. The gases produced by the fungal inoculum 
and moisture vaporization regulate the heat of the system 
(Kumar et al. 2021; Chilakamarry et al. 2022).

Substrates used for the production of fungal 
pectinase

Higher fungi have well-tuned enzymes, spores, and metabo-
lites for development on solid, moist substrates. For instance, 
fungus spores produced by SSF display greater stability, are 
more resistant to drying, and have higher germination rates 
for longer periods (Arun et al. 2020). The substrate acts as 
structural ed support rich in nitrogen and carbon for the 
growth of microorganisms. The nutritional composition and 
quality problems may affect the fermentation batches. This 
variation could lead to decreased production. The choice of 
substrate will determine how much heterogeneity is intro-
duced during the process. The most often utilised substrates 
for SSF include agricultural and food processing wastes 
such as wheat bran, sawdust, apple pomace, cassava, sugar 
beetroot pulp, citrus waste, maize cob and banana waste. 
Innovations in the production of pectinases using different 
agro-wastes like peels and pulps of citrus, orange, coffee, 
grapefruit, and banana using both SSF and SmF have been 
reported recently (Bharathiraja et al. 2017; Chilakamarry 
et al. 2022).

Fruits and vegetable peels are rapidly utilized nowadays 
as they are environment-friendly and immensely nutritious 
for microbes. Peels of citrus fruits, bananas, sweet potatoes, 
and mango are being vigorously studied. The pomace of 
apple, kiwi, peach, and grapes are pectin-rich biomass for 
valorisation via fermentation. Other agro-industrial resi-
dues such as oil cakes of pumpkin, sesame, groundnut, and 

sunflower oil have also been used as substrates (Lopes and 
Ligabue-Braun 2021). Additionally, pectinolytic enzyme 
production has been reported by the use of sugarcane 
bagasse, corn cobs, soybean hulls, sugar beetroot pulp, 
barley husks and straws as sources of carbon. Tea extract 
serves as an important source of nitrogen. In addition to 
these, brewery waste, sewage wastewater, drainage effluents, 
tobacco stalks, molasses, and vegetable and fruit juices work 
excellently as liquid substrates for the fermentation of fungal 
pectinases (Sadh et al. 2018; Cano et al. 2020; Chukwuma 
et al. 2020).

Bioreactors for the production of fungal 
pectinases

For large-scale bulk production, bioreactors have been used. 
These bioreactors or fermenters are designed for processing 
biological products under a specifically controlled environ-
ment. Bioreactors for fungal pectinases have used ligno-
cellulosic wastes, and agricultural wastes as substrates for 
industry efficient scaled production of enzymes (Cerda et al. 
2019). Bioreactors prefer solid state-based fermentation 
methods for the production of fungal pectinases. In the light 
of fungal pectinases, Aspergillus niger has been extensively 
utilized for pectinases production by solid-state fermenta-
tion using the packed bed, and bench scale rotating-drum 
reactors (Finkler et al. 2017; Poletto et al. 2017; Reginatto 
et al. 2022). A 40 cm high packed bed bioreactor yielded 
productivity of 1840 U/g pectinases using Aspergillus niger 
(Pitol et al. 2016). Raimbault columns, packed-bed biore-
actors, Erlenmeyer flasks, perforated trays, and other static 
bioreactors have been used to produce pectinases (Yang and 
Sha 2019). These bioreactors are chosen because of their 
usability and simplicity. A. niger on sugarcane bagasse and 
orange pomace has been utilized as solid-state substrates 
for production using a tray and rotating drum bioreactors 
(Mahmoodi et al. 2019). Agitated bioreactors utilise inter-
mittent or continuous mixing to homogenise substrate using 
solid-state fermentation. It is possible to construct agitated 
bioreactors with or without a water jacket to regulate temper-
ature (Mitchell and Krieger 2019). This type of reactor may 
be continuously or intermittently agitated. Shear problems 

PG polygalacturonases, PNL pectin lyases, PL pectate lyase, Exo-PG exo-polygalacturonases

Table 1   (continued)

S. no. Fungal strains Soil samples Pectinase type Mode of 
produc-
tion

References

34. Aspergillus fumigatus Agricultural fields Pectinase SSF Mondal et al. (2020)
35. Aspergillus Crops soil Pectinase SSF El-Ghomary et al. (2021)
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and damage to the fungal mycelium’s structural integrity 
may occur, depending on the degree of agitation (Shan-
mugam et al. 2022). Large fermenters are commonly built of 
stainless steel in the food and beverage industries because of 
their ability to resist corrosion. A bioreactor’s design incor-
porates numerous essential engineering elements that are 
regularly updated and modernised to increase the final prod-
uct’s productivity and quality (Kaur and Kaur 2019). Basal 
stirred tank fermenters utilised A. foetidus strain for opti-
mization and evaluation of pH effect on microbial enzymes 
including pectinases (Li et al. 2018). Innovative forms of 
bioreactor-based fermentation largely depend on aeration 
techniques. These reactors have been modernised with the 
inclusion of steam traps, valves, mechanical foam breakers, 
pH temperature and pO2 monitors, micro-spargers for self-
cleaning, and other sampling ports. Connecting to computers 
is a crucial advancement for novel bioreactors since it speeds 
up data processing and calculation and facilitates operational 
optimisation (Mitchell et al. 2019; John et al. 2020; Leite 
et al. 2021).

Response surface methodology (RSM) utilisation for bio-
reactor-based production using shake flasks has been utilised 
recently to produce pectinases at a concentration of 380 U/
ml by A. sojoe (Fratebianchi et al. 2017). Similarly, an indig-
enous Aspergillus sp. isolated from coffee waste was used 
in response surface methodology designed on an SSF-based 
tan ray bioreactor to yield 29.9 IU/g of pectinases (Núñez 
Pérez et al. 2022).

Purification of fungal pectinases

Enzyme purification can be achieved by using a variety of 
conventional and modern techniques. The choice of the best 
treatment stage is a prerequisite for the enzyme purification 
process to be successful. Depending on the intended usage 
of the enzyme, the degree of purification may vary. Purifi-
cation of microbial pectinases has been attained by simple 
centrifugation, sedimentation, or precipitation (Holm et al. 
2018). The removal of inorganic and organic impurities is 
highly feasible by salting out using ammonium sulphate 
salts. This method of purification or partial purification has 
yielded a stable protein with better activity. Solvent pre-
cipitation using acetone, ethanol, and methanol, based on 
the solubility of protein is a cost-effective method for the 
removal of organic and inorganic impurities. The salt-based 
precipitation has been preferred as other solvent methods for 
pectinase. This is generally followed by dialysis to yield salt 
unbound proteins which are dissolved in buffers for optimal 
activities. Purification using counter solvents like butanol 
or octanol or by ultrafiltration facilitates the generation of 
aqueous pectinase. This eliminates the need for precipitation 

with dialysis of salt-based methods (Patel et al. 2017; Raina 
et al. 2022).

Purification of pectin lyases produced from Penicillium 
oxalicum, P. citrinum, Aspergillus flavus, A. ficuum, A. ter-
ricola, Fusarium decemcellulare, and F. lateritum has been 
performed simply by using ammonium sulphate precipita-
tion and column chromatography method (Yadav and Shastri 
2007; Yadav et al. 2008, 2009a, c, 2013, 2014, 2017b). Exo-
polygalacturonase from Aspergillus flavus has been puri-
fied using solvent-based acetone purification, followed by 
cellulose column and gel filtration chromatography (Anand 
et al. 2017a).

Ion exchange, gel filtration, and affinity-based chromato-
graphic methods are used to produce samples with a com-
paratively greater level of purity. The form, size, charge, 
hydrophobicity, or binding ability of the stationary phase 
are criteria used in chromatographic procedures to purify 
microbial pectinases. The molecular properties and interac-
tions that underlie ion exchange, surface adsorption, parti-
tion, and size exclusion are also important considerations 
(Coskun 2016). Pectinolytic purification has been predomi-
nately accomplished by column chromatography (Smith 
2005; Ullah 2012; Bassim Atta and Ruiz-Larrea 2022). Ion 
exchange or gel filtration, which gives rise to purer fractions 
of pectinases, along with a significant increase in its specific 
activity has also been reported. Anion exchange column-
based purification for polygalacturonase from Calonectria 
pteridis utilized eucalyptus leaves in submerged fermenta-
tion (Ladeira Ázar et al. 2020). An indigenously isolated 
soil-borne Aspergillus japonicus yielded 2.9-fold purified 
polygalacturonase using two chromatographic techniques 
simultaneously (Cavalieri de Alencar Guimarães et al. 2022). 
A repertoire of purification strategies has been adopted for 
the purification of fungal pectinases from different fungal 
strains as shown in Table 2.

Innovations: diverse approaches

Immobilisation

The pectinolytic industrial intervention is disrupted due 
to their recovery rates, and low stability. Immobilization 
of enzymes enhances storage, reduces product contamina-
tion, and simplifies the separation of products, which in 
their free form is challenging. It improvises the catalytic 
properties of enzymes and enhances their functioning in 
adverse conditions (Bashir et al. 2020). Thereby, facilitat-
ing the recovery and reuse of enzymes in the medium and 
enhancing the economic feasibility of the enzymes. Suitable 
immobilization protocols and supportive environments are 
required for enzyme biocatalysts with high enzymatic activ-
ity (Patel et al. 2022). Pectinases have been immobilized 
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using diverse supports by membrane adsorption, covalent 
binding, and cross-linking mechanisms. A variety of sup-
ports, including beads, microspheres, pulp fibre, matrix, 
resins, capsules, nanoparticles pumice, and magnetic beads 
have been deployed (Martín et al. 2019; Karataş et al. 2021). 
The magnetic core of magnetic particles as beads makes it 
simple, rapid, and effective to separate the enzyme from the 
reaction mixture using an external magnetic field, making 
them suitable support for enzyme immobilization. Addition-
ally, the size of the particle can be adjusted to give a large 
surface area and high enzyme activity (Soozanipour et al. 
2019; Trindade Ximenes et al. 2021). Direct crosslinking of 
different enzyme preparations is the most typical technique 
for producing cross-linked enzyme aggregates (CLEAs). The 
advantages of this approach are highly concentrated enzyme 
activity, greater stability, and the absence of an extra car-
rier’s associated production costs (Nouri and Khodaiyan 
2020).

Adsorption, covalent binding, and entrapment are just 
a few of the methods utilised to keep enzymes inside the 
membrane. Enzymes are frequently attached to membranes 
by chemical bonds and adsorption. Pectinase is frequently 
bound to membranes using adsorption techniques. Chemi-
cal enzyme binders including glutaraldehyde, glycidyl meth-
acrylate, and carbonyl diimidazole are used to adsorb mem-
branes. It has been observed that membrane-bound enzyme 
exhibits enhanced thermal stability and temperature optima. 
Among the different methods of immobilising enzymes, 
covalent immobilisation is frequently preferred. This is so 
that it won’t allow the enzyme to desorb from the support 
during the process (Nadar and Rathod 2019).

A scale bioreactor used in stainless steel bases matrix 
was immobilized to get a titre of 307.5 and 242.6 U/ml of 
exo and endo PG respectively from Rhizopus oryzae (Zheng 
et al. 2017). Beads of alginate-montmorillonite were used 
to immobilize pectinase from A. aculeatus recovering 53% 
of its initial activity (Mohammadi et al. 2019). Gel-based 
beads of alginate and agar facilitate the immobilization of 
pectinase from A. awamori. This retained initial activity 
even after 8 cycles of reaction (Abdel Wahab et al. 2018). 
An indigenously isolated pectinolytic yeast strain, Geotri-
chum candidum was immobilized retaining 70% of its initial 
activity using corn cob matrix (Ejaz et al. 2018). Similarly, 
beads of sodium alginate were used in different strains of 
Geotrichum candidum to immobilize pectinase enhancing 
its activity from 0.046 to 0.115 IU mL−1 (Ejaz et al. 2020). 
Pectinases have also been immobilized using magnetic chi-
tosan particles by direct extraction from fruit juices without 
the intervention of microbes (Dal Magro et al. 2018, 2019; 
Soozanipour et al. 2019). Efforts on the immobilization of 
pectinases from fungal strains have been summarized in 
Table 3.
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Directed evolution

The state-of-the-art technology of directed evolution for 
the desired manipulation of enzymes for industrial appli-
cation has been attempted for pectinases. Mutation using a 
UV range of 254 nm has been used for the enhancement of 
polygalacturonases production of Aspergillus and Penicil-
lium species (Heerd et al. 2014; Kamalambigeswari et al. 
2018; Nawaz et al. 2019). Mutated strains have also been 
used to study evolutionary relationships between PEL and 
PL subclasses of pectinases (Yang et al. 2020). Mutation 
of gaaX and gaaR allowed A. niger to express pectinases 
without an inducer (Alazi et al. 2019). The approach of 
directed evolution combined with computational technolo-
gies has been used to access different metabolic pathways 
of fungal pectinases (Wang et al. 2021). For fungal pec-
tinases, artificial environments can be simulated through 
strain mutation, recombination, and gene overexpression. 
With this modification, the pectinolytic mechanism can be 
accelerated to catalyse chemical reactions in an entirely 
new environment employing a newer substrate, resulting 
in increased catalytic activity. Chromosomal mapping was 
used to analyse S. bayanus var. uvarum strains, and the 
results revealed three divergent genes, PGU1b, PGU2b, 
and PGU3b, which are situated on chromosomes X, I, and 

XIV, respectively. As a result, it was demonstrated that 
these yeasts’ strong pectinolytic activity might be caused 
by the existence of many PGU polymeric genes in their 
genomes (Naumova et al. 2019). Heterologous expression 
of fungal pectinase targeting expression using microbes 
with a high capacity for protein production and enzyme 
secretion has been performed. It is a good alternative to 
the fermentation technique for the desired production of 
enzymes by targeting the relevant genes. The expression of 
pectinolytic genes has been summarized in Table 4.

Omics interventions

The omics-driven approach is the current trend in enzyme 
research which aims to analyse the potential of fungal spe-
cies in terms of enzyme production by targeting the whole 
genome or proteome. Over 50% of the currently available 
eukaryotic genome sequences are from the kingdom of 
Fungi. Several fungal genome sequences have been tar-
geted to decipher the diversity of pectinases. Recently 
using a shotgun proteomics approach two pectin lyase and 
one pectate lyase from Saccharomyces cerevisiae produced 
using passion fruit flour by solid-state fermentation has 
been reported (Takeyama et al. 2022). Two-dimensional 
electrophoresis-based proteomic analysis of Aspergillus 

Table 3   Reports on immobilisation of Fungal Pectinases

PG polygalacturonases, PNL pectin lyases, PL pectate lyase, Exo-PG exo-polygalacturonases, Acidic endo-PG acidic endo polygalacturonases

S. no. Fungal strains Enzyme Immobilisation method Immobilised matrix Functions altered References

1. Aspergillus niger Pectinase Entrapment Polyvinyl alcohol 
(PVA) sponge

Reusability = 12 times
Loss of activity = 9% of 

original

Esawy et al. (2013)

2. Rhizopus oryzae Exo-PG Matrix immobilisation Matrix of stainless-
steel wire with cotton 
fibre

Enzyme activity 2.8 t 
times increased

Zheng et al. (2017)

3. Mucor hiemalis Pectinase Covalent immobiliza-
tion

Alginate beads Enzyme recovery 
-80–83%

Hassan et al. (2020b)

4. Sporothrix schenckii Exo-PG Adsorption Silica yolk, shell 
spheres with mag-
netic property

The stability of the 
enzyme increased 
from 3 to 3.7 folds

Karataş et al. (2021)

5. Aspergillus niger PG Microsphere entrap-
ment

Calcium alginate beads Retained 63% of the 
original activity

Deng et al. (2019)

6. Aspergillus niger Pectinase Functionalized mag-
netic nanoparticles

Cyanuric chloride-
functionalized

chitosan grafted mag-
netic nanoparticles

Retained 60% of its 
initial activity and 
increased storage sta-
bility after 75 days

Soozanipour et al. (2019)

7. Aspergillus aculeatus Pectinase Entrapment Calcium alginate beads Retained 80% of initial 
activity

De Oliveira et al. (2018)

8. Aspergillus
niger

Pectinase Solid support based Zeolite Socony 
Mobil–5 (ZSM-5)

activity 247% higher 
than free enzyme

Liu et al. (2021)

9. Aspergillus aculeatus Pectinase Covalent binding Amino-silane
modified montmoril-

lonite clay (MMC)

retaining 60% of its 
initial activity

Mohammadi et al. (2020)
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Table 4   List of pectinase gene studies

S. no. Fungal strains Pectinase type Gene Sequence-based/
clone/recombi-
nant

Host for expres-
sion

Accession no. References

1. Aspergillus sojae PG AspecA Cloned and 
expressed

Aspergillus 
oryzae

– Yoshino-Yasuda 
et al. (2011)

2. Fusarium 
oxysporum

Exo-PG PGC2 Cloned and 
expressed

Pichia pastoris GI:281372497 Dong and Wang 
(2011)

3. Fusarium 
oxysporum

PG Two PGC3 Cloned and 
expressed

Pichia pastoris KP768396 and 
KP768397

Dong and Wang 
(2015)

4. Pseudothermo-
toga ther-
marum

GH28 PG TtGH28 Cloned and 
expressed

Escherichia coli EH50492.1 Wagschal et al. 
(2016)

5. Aspergillus niger Endo-PG pga-zj5a Clone and 
expressed

Pichia pastoris KU896780 Wang et al. (2017)

6. Penicillium 
oxalicum

endo-PG PoxaEnPG28A Cloned and 
expressed

Pichia pastoris KU366356 Cheng et al. 
(2017)

7. Aspergillus. 
aculeatus

Endo-PG gene endoPG
recombi-

nant = pPIC-
PG1

Expressed and 
recombinant 
protein

Pichia pastoris – Abdulrachman 
et al. (2017)

8. Pectobacterium 
carotovorum 
subsp. caroto-
vorum (Pcc)

PG Peh 28 Cloned and over-
expressed

Escherichia coli AA03624.1 Ibrahim et al. 
(2017)

9. Aspergillus niger Exo-PG pgxB Mutant – 4980661 Liu et al. (2017a)
10. Aspergillus niger PNL pel A-F Clone and over-

expressed
Aspergillus. 

niger
An14g04370, 

An03g00190, 
An11g04030, 
An19g00270 
An15g07160,

He et al. (2018)

11. Rhizoctonia 
solani

PG RsPG3
RsPG4

Clone and 
expressed

Pichia pastoris KP896520
KP896521

Chen et al. (2018)

12. Fomitopsis 
palustris

Endo-PG - cDNA Clone, 
Insilico study 
and enzyme 
characterisation

– – Tanaka et al. 
(2019)

13. P. polymyxa PL PL9 Cloned and 
expressed

Escherichia coli – Yuan et al. (2019)

14. Aspergillus luch-
uensis

PG PgaB Clone and over-
expressed

Pichia pastoris BCWF01000021.1 Tan et al. (2020)

15. Penicillium 
oxalicum

Rec.PoxaEn-
PG28B-Pp

PoxaEnPG28B-
Ec

Endo –PG c- DNA cloning 
and expression

Pichia pastoris 
GS115 and 
Escherichia 
coli BL21

EPS29213 Cheng et al. 
(2020)

16. Aspergillus 
nidulans

Endo-PG AnEPG Clone and 
expressed

Pichia pastoris AN8327.2 Xu et al. (2020)

17. Fusarium oxypo-
rum

Pgc4 MT385837 and 
MT385838

Dong et al. (2020)

18. Aspergillus para-
siticus

PL ApPel1 Cloned and 
expressed

Pichia pastoris – Yang et al. (2020)

19. A. oryzae PME Aopme1-5 Cloned and 
expressed

Escherichia coli BAE61126
BAE60873
BAE58553
BAE63101
BAE63594

Yamada et al. 
(2021)

20. Verticillium 
dahliae

PG, PME VdPG2
VdPME1

Cloned and 
expressed

Pichia pastoris 20,706,440
20,707,262

Safran et al. 
(2021)
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niger EIMU2 has been attempted. It revealed that the 
mutant EIMU2’s multiple enzyme systems used for the 
degradation of pectin included the main-chain cleaving 
enzymes polygalacturonase, pectate lyase, and pectin 
esterase, as well as some accessory enzymes rhamnoga-
lacturonan lyase (Lin et al. 2021). Studying the interac-
tion of wood rotting fungi, pectinases proteomics profil-
ing helped analysed other proteins secreted which might 
have a significant role in degrading wood (Presley et al. 
2020). CRISPR/Cas9 system generated three chimeric 
GaaR-XlnR induces by D-galacturonic acid from Aspergil-
lus niger. Their proteomics investigation verified that the 
gaaR mutants carrying the chimeric transcription factor 
produced several pectinolytic enzymes (Kun et al. 2021). 

The PL7 and PL8 enzymes required for the breakdown of 
laminarin, cellulose, lipids, and peptides, were found to 
be abundantly secreted by Paradendryphiella salina cul-
tured on brown algae using proteomic analysis (Pilgaard 
et al. 2019). However, a significant issue with the existing 
fungal pectinases proteomics is to fully understand the 
expression, operation, and regulation of the entire set of 
fungus-genome-encoded proteins. Moreover, the sequenc-
ing of several fungal proteomes is in progress (Sudhakar 
et al. 2018).

Meta-omics approach collects total environmental DNA 
which is targeted for metagenomic studies. A metagenomic 
system can be any arbitrary environmental sample defining 
the collection of microbes. Soil, water, air, cow rumen, and 

PG polygalacturonases, PNL pectin lyases, PL pectate lyase, Exo-PG exo-polygalacturonases, endo-PG endo polygalacturonases, PME Pectin 
Methyl esterases, GH28 PG glycoside hydrolase -28 Polygalacturonase

Table 4   (continued)

S. no. Fungal strains Pectinase type Gene Sequence-based/
clone/recombi-
nant

Host for expres-
sion

Accession no. References

21. Penicillium 
oxalium

PG Eno-PGase
Recombi-

nant = PoxaEn-
PG28C

Cloned and 
expressed

Pichia pastoris – Lu et al. (2022)

22. F. virguliforme GH28 PGs FpPG Insilico based – – Chang et al. 
(2016)

23. Clonostachys 
rosea

exo-PL Pel 1–17 Insilico based – BN869_
T00008859

BN869_
T00000002

BN869_
T00000920

BN869_
T00008472

BN869_
T00010915

BN869_
T00006080

BN869_
T00010737

BN869_
T00008735

BN869_
T00007710

BN869_
T00005779

BN869_
T00006915

BN869_
T00007653

BN869_
T00008627

BN869_
T00002081

BN869_
T00010228

BN869_
T00007566

Atanasova et al. 
(2018)
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composts are such systems, thus, opening doors for uncultur-
able and novel sources for catalytic enzymes. metagenomic 
approach for pectinase enzyme mining from soil resulted in 
the isolation of thermostable pectinase (Singh et al. 2012a, 
b). This approach has been used for identifying novel fungal 
sources for pectinases (Tanveer et al. 2016; Pilgaard et al. 
2019; Ahmad et al. 2021). The metagenomic studies exclu-
sively for fungal pectinases are summarized in Table 5.

Industrial applications

Pectin in plant cells is degraded by pectinases. They were 
first used commercially in the 1930s, and since then, they 
govern 25% of industrial applications. Wide-ranging 
industrial uses for pectin-degrading enzymes include deg-
umming and retting of plant fibres, oil extraction, fruit 
juice clarification, wine production, fermentation of tea 
and coffee, bioconversion of wastes, and protoplast fusion 
technology (Singhania et al. 2015). Since 40% of the dry 
weight of plant cambium cells is made up of pectin, pec-
tinases are essential for digesting natural fibres. With 
the aid of pectinases, the bast fibres of jute, flax, hemp, 
ramie, banana, pineapple leaf, and bamboo can be suc-
cessfully degummed, macerated, and retted because they 
break down the pectin in the middle lamella and primary 
cell walls. Their wide applicability in the textile industry 
makes their study essential. Microbial pectinases-based 
natural fibre retting and extraction is biodegradable, recy-
clable, cuts production costs and is energy sustainable 
(Kumari et al. 2021). The fibres produced are reported 
with higher strength, shinier, easy to obtain and light 
weighted. The increasing demands on enzyme applications 
are growing as replacements for traditional harsh chemical 
processes. Fungal pectinases are also used for degumming 
natural fibres, bio scouring, bio bleaching and in wastewa-
ter treatment of textile power plants (Sharma et al. 2017).

They are also used to produce effective viral prepara-
tion from plant tissues, in the treatment of wastewater and 
for the isolation of protoplasts. Protoplasts are isolated 
from the mycelia of Pleurotuseous and Pleurotus flabel-
latus using enzymes comprising commercial cellulases, 
crude pectinases, and crude chitinases (Eyini et al. 2006; 
Ruiz et al. 2017). Pectinases are also applied in animal 
feeds as it helps in the efficient absorption of nutrients by 
animals by degrading the fibres that entrap them. These 
groups of enzymes have been used for biofuel production 
like bioethanol. The rate of ethanol generation rises when 
pectinaceous structures in the feedstock are destroyed and 
hydrolyzed by pectinases. Biomass enzymatic hydrolysis 
is a cost-effective and efficient treatment method that pro-
duces no hazardous waste (Samanta 2019). Sugar becomes 
more accessible and sensitive to hydrolytic enzymes after 

being treated with liquid hot water. Alkaline pectinases 
both from fungal and bacterial sources are also applied in 
the fermentation of coffee and tea. Degrading pectin, pec-
tinase increases the pace of tea fermentation and reduces 
the foaming ability of instant tea granules (Tatta et al. 
2022).

The fruit and food processing industries have wide 
applicability of pectinases. Fruits have a complicated pec-
tin structure, making it challenging to extract juice from 
this very viscous, jellified pulp (Pagnonceli et al. 2019). 
The pectinase enzyme acts on the pectin of fruit peels and 
dissolves the glycosidic linkages between the galacturonic 
acid monomers, reducing the amount of water that may be 
held by pectin enzymatic treatment is the most frequently 
used method for juice extraction and clarity (Anand et al. 
2017b). The enzymatic hydrolysis of cell walls enhances 
the extraction yield, soluble dry matter content, galactu-
ronic acid content, and titratable acidity of the products. 
The amount of waste pomace decreased and the resulting 
pulp had a lower viscosity. The biomaterial is enzymati-
cally degraded depending on the type of enzyme, incu-
bation period, temperature, concentration, agitation, pH, 
and the use of various enzyme combinations. The wine 
industry chooses pectinases as they increase wine qual-
ity, and facilitate extraction, filtering, and taste and colour 
intensification (Gunjal et al. 2020). Pectinases were also 
used in extracting essential oils from a variety of sources 
like olives, flaxseed oil, dates, and other fruits and vegeta-
bles (Nagpal et al. 2021). These enzymes help to enhance 
the fatty acids, peroxide value, and colour intensity as 
compared to chemical treatment. In the paper industry, 
pectinases along with xylanases are preferred as a bio-
bleaching agent. Enzymatic intervention is eco-friendly, 
less abrasive, and effective in improving paper quality 
(Nagpal et al. 2020). Biological bleaching with pectinases 
and xylanases brightens the paper and improves its physi-
cal characteristics, as well as lowers the kappa number and 
permanganate number of the pulp. In comparison to those 
chemical alternative solutions, the substitution of pecti-
nases contributes to a reduction in chlorine discharge into 
the environment (Nagpal et al. 2020; Tatta et al. 2022). 
The diverse industrial application of pectinases has been 
summarized in Table 6.

The bottom line and future prospects

Pectinases represent an important group of enzymes with 
immense potential for diverse industrial applications. Sub-
stantial efforts have been made to explore the possibility 
of diverse approaches for enhancing pectinases produc-
tion, manipulation and elucidating industrial applica-
tions, exclusively from fungal sources. The cost-effective 
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production of fungal pectinases using agro-wastes is an 
eco-friendly approach that has immense potential for con-
verting waste biomass. It also results in the production 
of different value-added products. This is also added to 
the saccharification potential of pectinases. Efforts have 
been made to optimize growth conditions as a precursor 
to enhanced fungal bioproduct production. Utilising waste 
valorisation techniques, it is possible to take advantage 
of the diversity of fungi by using contaminated items as 
a source of fungi. The fungus system offers many advan-
tages and benefits, but it also poses a hazard due to its 
pathogenicity and ability to mitigate spoilage and damage. 
Recombinant and mutagenic approaches can be used to 
change the pathogenicity of native fungus hosts. Accord-
ing to industrial needs, the fusion of traditional and mod-
ern state-of-the-art technology has enormous potential.

Over the years, several fungal genera have been targeted 
for the production of pectinases and efforts have been made 
to enhance the catalytic activity, specificity, and applicabil-
ity for industrial applications. Dual culture inoculums for 
fermentation-based manufacturing have been employed to 
increase enzyme productivity. These involve using more than 
one fungal species for the production of the same biocata-
lyst. But they strictly demand more comprehension of how 
various hosts interact with one another. The metagenomics 
approach has resulted in the deciphering of novel microbes 
with enhanced pectinase activity, thereby giving the world 
new industrially potent species. Despite metagenomics incli-
nation in microbial studies, fungal metagenomic library con-
struction and diversity studies are minimal. Though purity 
of metagenomic DNA from humic acid contamination and 
the easy extraction of prokaryotic diversity in metagenomics 
DNA limits the studies of pectinases of fungal metagenomic 
origin from s potential. The directed evolution approach for 
altered pectinases activity and specificity has resulted in 
diverse industrial applications predominately in the textile 
and food industries. Omics-driven approaches including 
genomics, proteomics, and metabolomics have been used 
for understanding the production and expression of pectinase 
genes. Sequencing of fungal strains, genome-wide mining of 
pectinases using a bioinformatics approach, and expression 
of the identified pectinases are intensely investigated areas 
of research in fungal pectinases. Immobilisation of fungal 
pectinases using novel approaches for enhancing stability 
and reuse for industrial application has also been attempted.
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