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Abstract

The fungal system holds morphological plasticity and metabolic versatility which makes it unique. Fungal habitat ranges from
the Arctic region to the fertile mainland, including tropical rainforests, and temperate deserts. They possess a wide range of
lifestyles behaving as saprophytic, parasitic, opportunistic, and obligate symbionts. These eukaryotic microbes can survive
any living condition and adapt to behave as extremophiles, mesophiles, thermophiles, or even psychrophile organisms. This
behaviour has been exploited to yield microbial enzymes which can survive in extreme environments. The cost-effective
production, stable catalytic behaviour and ease of genetic manipulation make them prominent sources of several industri-
ally important enzymes. Pectinases are a class of pectin-degrading enzymes that show different mechanisms and substrate
specificities to release end products. The pectinase family of enzymes is produced by microbial sources such as bacteria,
fungi, actinomycetes, plants, and animals. Fungal pectinases having high specificity for natural sources and higher stabilities
and catalytic activities make them promising green catalysts for industrial applications. Pectinases from different microbial
sources have been investigated for their industrial applications. However, their relevance in the food and textile industries is
remarkable and has been extensively studied. The focus of this review is to provide comprehensive information on the current
findings on fungal pectinases targeting diverse sources of fungal strains, their production by fermentation techniques, and
a summary of purification strategies. Studies on pectinases regarding innovations comprising bioreactor-based production,
immobilization of pectinases, in silico and expression studies, directed evolution, and omics-driven approaches specifically
by fungal microbiota have been summarized.

Keywords Pectinases - Microbial enzymes - Fungal enzymes - Purification metagenomics - Omics - Immobilisation -
Directed evolution

Introduction

The idea of sustainable and innovative bio-economical use
of science is the basis for scientific advancements. With
more than 4000 different enzymes reported, an average
of 200 enzymes has the potential for commercialization,
although only 10% can be industrially produced. There is
huge potential in the enzyme market, which was reported
to be around 6.3 billion dollars in 2017 and has a projection
of a compound annual growth rate (CAGR) of 6.8% until
2024. Over the next five years, the food enzyme market is

< Dinesh Yadav
dinesh_yad @rediffmail.com

Department of Biotechnology, Deen Dayal Upadhyaya
Gorakhpur University, Gorakhpur, Uttar Pradesh 273009,
India

expected to grow by 7.5%, the highest rate of any market
projected in the industry (Food enzyme trend gminsight).
The thrust to uplift the production of renewable resources
is greatly impregnated with the requirement of low-cost yet
highly efficient systems (Joshi et al. 2018; Raveendran et al.
2018). White biotechnology is dedicated to harnessing bio-
catalysts i.e., enzymes and microorganisms at an industrial
scale (Meyer et al. 2020, Cairns et al. 2021). The mandate
of white biotechnology is to provide pure and replenishable
sources as potential alternatives for industrial acceleration
resulting in improved, bio-economical, and highly sustain-
able products (Hyde et al. 2019).

The microbial system is the foundation of biotechnologi-
cal applications and innovations. The fungal community is
a highly exploited eukaryotic system that can be applied
directly or by acting as the source to produce industrially
important products (Joshi et al. 2018). Filamentous fungi
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are efficient decomposers that can feed on and break down
organic materials and polymeric compounds. Industrial pro-
duction of commercial citric acid marks the stepping stone
of fungal biology as an important commercial industrial
product. Enzymes are the backbone of sustainable environ-
ments and harnessed industrially for centuries. The fungal
system has been a pioneer source of these commercially
applicable enzymes. Cellulases, amylases, pectinases, lac-
cases proteases, and lipases are secreted by fungal cells
(Hyde et al. 2019; Meyer 2019). These enzymes hydrolyse
plant polysaccharides such as cellulose, starch, pectin, pro-
teins, and lipids respectively. Their wide substrate interac-
tion leads to microbial enzymatic intervention in food and
feed, pulp and paper, detergent, fuel, pharmaceutical, and
chemical sectors (Ahmed et.al. 2021, Kordi et al. 2022).

Pectin alone constitutes approximately 35% of the plant
cell wall composition and shows structural complexity and
diversity. Pectin polysaccharide gives plant tissues their ten-
sile strength and rigidity. Pectin is frequently employed in
the food sector as a gelling agent, thickening, emulsifier, or
stabilizer. It can also be used in the pharmaceutical indus-
try as a blood pressure stabilizer, cholesterol controller, and
detoxifier (Gawkowska et al. 2018). Natural sources of pec-
tin include fruit waste from pomegranate, banana, lemon,
orange, pineapple, wheat bran, malt sprout, and rice bran.
Their physiological properties though isolated from different
sources remain similar and are beneficial to humankind (de
Souza and Kawaguti 2021).

Pectinases are the group of hydrolases, depolymerase,
esterases, and lyases enzymes. These act on pectin, proto-
pectin, pectic acid, and galacturonate (Yadav et al. 2009a).
Based on the mode of action, specificity of the substrate,
and cleavage mechanism there exists a diverse family of
pectinolytic microbial enzymes. In this emerging era of
biotechnological innovations, fungal pectinase accelerates
its way as a promising natural biotechnological innovative
agent (Nighojkar et al. 2019; Anand et al. 2020). Micro-
bial pectinases have a broad range of applications and high
catalytic effectiveness has significantly raised the global
demand. Microbes are natural sources of pectinases that are
often employed due to their simplicity of manufacture and
distinctive physicochemical features. With a 25% share in
the market for food and beverage enzymes, the pectinases
family of enzymes is a great part of the biotechnological
industry. They are on top of the list of industrial enzymes
made for commercial production. Pectinases of acidic nature
are preferred for clarification of fruit juices, maceration of
vegetables in the manufacturing of pastes and purees, and
winemaking. Alkaline pectinases are often used in the ret-
ting of natural textile fibres, treatment of pectic-rich waste-
water, fermentation of tea, extraction of vegetable oil, and
treatment of paper and pulp (Kohli and Gupta 2015; Patidar
et al. 2018; Thakur et al. 2021).
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The literature available on microbial pectinases has estab-
lished the importance of the catalyst in industrial sectors.
The present review is solely inclined towards fungal pecti-
nolytic interventions in enzyme biotechnology. The status of
fungal pectinases and their cost-effective production strate-
gies, the factors affecting production, the large-scale biore-
actor-based productions and the purification of the enzyme
have been highlighted in this review. Further, emphasis has
also been made to include the recent innovations like immo-
bilisation, directed evolution and omics-based approaches
targeted in fungal pectinases.

Pectin

Pectin is an abundant natural product predominately
observed in dicotyledonous plants. It is secreted by Golgi
bodies into the apoplast of cells that are richly methyl-ester-
ified (Sinclair et al. 2018). The committee of the American
Society in 1944 accepted definitions of pectic substances,
which include pectin acids, pectic acids, and protopectin
within the complex class of these macromolecules. The pec-
tinic acids are colloids of galacturonic acids methyl ester
and pectic acids without methyl ester (Harholt et al. 2010).
Protopectin is considered the parent molecule of a pectic
substance and together with pectin and pectic acids was then
summarised as “pectin” (Mohen 2008, Anderson 2019).

The solubility behaviour of pectins is categorised as (i)
pectins soluble in water or diluted solutions, (ii) pectins
soluble in chelators like EDTA, and (iii) protopectin solu-
ble in alkaline or hot solutions based on this observation.
The water-soluble and chelator-soluble pectins are derived
from the middle lamella of the plant cell wall. These are
composed of galacturonic acid residues with a tenth of neu-
tral sugars and barely 2% rhamnose (Voragen et al. 2009;
Patidar et al. 2018). The distribution of sugars attached
with free carboxyl groups gives the classes their nature of
water and chelator solubility. Pectin of alkaline solubility are
embedded in part of the cell walls. Alkali-soluble pectins are
structured with arabinose and galactose sugars. Typically,
softening during ripening or heating is accompanied by a
decrease in the proportion of protopectin and an increase in
water-soluble pectin (Yapo 2011).

Apart from solubility, pectin has variable percentages of
esterification as (i) High-methoxyl pectins, having esterifi-
cation levels between 40 and 50%, and (ii) Low-methoxyl
pectins with esterification levels below 40%. The esterifi-
cation level can be controlled by acid, alkali, or enzyme
treatment of high-methoxyl pectins. This imparts pectin its
unique characteristics and helps form gels under specific
conditions. The pectin polysaccharide is made up of distinct
categories of sugars representing unique structures (Voragen
et al. 2009; Wusigale et al. 2020). There are 17 different
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monosaccharides linked with approximately more than 20
different linkages. These together give pectin a macro-com-
plex structure (Yang and Anderson 2020; Gutierrez-Alva-
rado et al. 2022). These sugars govern the role of pectin in
cell adhesion and separation, expansions and regulation of
plant cell walls, and the development of organs and plants.
The complex nature of pectin structure includes com-
ponents like homogalacturonan (HG), xylogalacturonan
(XGA), homogalacturonan, rhamnogalacturonan I (RGI),
and rhamnogalacturonan II (RGII) (Yang and Anderson
2020). The key constituent of the spine is a-1,4-linked galac-
turonic acid (GalA) residues. These residues undergo esteri-
fication at six carboxyl carbon and acylation at the third or
second oxygen of the chain. This base is alternatively lined
by rhamnose sugar and galacturonic acid residues having a
structurally similar side chain of arabinose and galactose
sugars. Homogalacturonan accounting for 60% of the total
pectin structure forms the smooth region of sugar residues.
The neutral sugars together are ramified to form a hairy
sugar region. Rhamnogalacturonan II (RGII) within HG
constitutes twelve different types of sugar resides, including
3-deoxy-lyxo-2-heptulosaric acid (DHA), 3-deoxy-manno-
2-octulosonic acid (KDO), apiose and acetic acid. The repro-
ductive tissues, fruits, and seeds store the xylogalacturonan.
It forms a single side chain of units of b-D-Xylp-(1 — 3)
which is commutated with HG molecules (Zdunek et al.
2021; Shin et al. 2021; Gutierrez-Alvarado et al. 2022).

Pectinases family: an overview

Pectinases act on pectic substances. They possess negative
charge, high molecular weight glycosidic bond-linked mac-
romolecules with substrate specificities on pectin (Ander-
son 2019). Pectinases are classified in respect of the type of
modifications of the backbone chain as protopectin, pectic
acid, pectin acid, and pectin. Pectinases amalgamate together
lyases, hydrolases, and esterases classes of enzymes to act
on pectin (Yadav et al. 2009b, Pedrolli et al. 2009). These
can work endogenously by cleaving glycosidic bonds to
release residues from the inside or in an exogenous manner
to cleave residues from the ends. These can be produced
through extracellular or intracellular modes. Though intra-
cellular secretion is more costly in comparison to extracel-
lular production. The classification of pectinases or pecti-
nolytic enzymes based on the existence of different pectic
substances, reaction mechanisms, and degradation of the
hairy and smooth regions has been reported (Kashyap et al.
2001; Jayani et al. 2005; Favela-Torres et al. 2006).

A discrete collection of two hundred and sixty-nine enzy-
matic families that are similar on grounds of amino acid
sequence are called the Carbohydrate-modifying enzymes.
This family is broadly distributed under four classes:

glycoside hydrolases (GHs), glycosyltransferases (GTs),
polysaccharide lyases (PLs), and carbohydrate esterases
(CEs). These classes have subgroups of structurally and
catalytically related families. This has been listed in the
carbohydrate-active enzyme (CAZy) database (www.cazy.
org) (Cantarel et al. 2009). Pectinases share a diverse group
of enzymes that distinctively occupy their positions in the
GH, PL, and CE families (Drula et al. 2022).

Glycoside hydrolases (GH)

Family GH28 is commonly referred to as polygalacturo-
nases, which are glycosidases acting on homogalacturo-
nan and rhamnogalacturonan components of pectin. This
includes enzymes with hydrolysis mechanisms. They are
capable of hydrolysing glycosidic linkage between carbo-
hydrates -carbohydrates and a non-carbohydrate moiety.
GH28 enzymes are also categorized into three distinct cat-
egories acting on homogalacturonan, rhamnogalacturonan
and xylogalacturonan (Sprockett et al. 2011; Villarreal
et al. 2022). It hydrolyses polygalacturonic acid on a-1,4-
glycosidic linkages producing p-galacturonate. Fungal
polygalacturonase can produce monomeric galacturonic
acids on its depolymerization. Mode of action distributes
them as Endo-PG (EC 3.2.1.15) which liberates saturated
oligogalacturonides and Exo-PG (EC 3.2.1.67) releases satu-
rated galacturonic acid residue. The residue is obtained from
the non-reducing end of homogalacturonan by hydrolytic
catalysis (Yang et al. 2018; Anand et al. 2020; Christensen
2020). Xylogalacturonans (XG) are enzymes responsible
for cleaving glycosidic linkages in the xylose-substituted
rhamnogalacturonan chain and the end products are xylose-
galacturonate dimers. Rhamnogalacturonan is hydrolytically
cleaved by RG galalcturonohydrolase. Its non-reducing end
produces monogalacturonate (Villarreal et al. 2022).

Polysaccharide lyases (PL)

These enzymes cleave uronic acid-containing polysaccha-
ride chains. They use the p-elimination mechanism to gen-
erate an unsaturated (hexen)uronic acid residue and a new
reducing end. PLs, can cleave alginate, heparin, hyaluronan,
pectin, xanthan, and several exopolysaccharides (cazy.org/
Polysaccharide-Lyases; Yadav et al. 2009c, Chakraborty
et al. 2017). PL family 1, 2, and 9 share distributions of
lyases degrading pectin. Pectate lyase (PL) results in form-
ing an unsaturated product (a-4,5-p-galacturonate) through a
trans-elimination reaction on polygalacturonase acids. Endo-
PL (EC 4.2.2.9), acts on a nonreducing end. Pectin lyase
(PNL) (EC 4.2.2.10) results in the formation of 4,5- unsatu-
rated oligo-galacturonate. PNL performs a f-elimination
mechanism without affecting the ester content of the poly-
mer chain. This ester content is responsible for the specific
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aroma of fruits. Toxic methanol production is limited by
enzymatic degradation. Henceforth, these are preferred in
fruit juice clarification industries. Rhamnogalacturonan
lyases degrade rhamnogalacturonan I and are distributed in
families 4 and 11 (Zheng et al. 2021).

Carbohydrate esterases (CE)

These enzymes catalyse acylation at the oxygen or nitro-
gen end. The members of this family remove esterified
modifications from mono-, oligo- and polysaccharides. The
acylation provides easy access to glycoside hydrolase (cazy.
org/Carbohydrate-Esterases; Wardman et al. 2022). Pectin
methyl esterases are grouped in CE 8 family and act pref-
erentially on a methyl ester group of galacturonate to pro-
duce methanol and pectic acid. The action of PMEs forms
pectate gel from homogalacturonan. The action of esterases
can hinder the action of polygalacturonases (Benen et al.
2002). Rhamnogalacturonan acetyl esterase is responsible
for cleaving acetyl groups of the rhamnogalacturonan chain
that constitutes the major part of the hairy portion of pec-
tin and belongs to the family CE12. Pectin acetyl esterase
belongs to CE13 and hydrolyses the acetyl ester of pectin.
They help the formation of pectic acid and acetate and acyla-
tion affects the age and differentiation of plant tissues. It
even acts as protection from different enzymatic interactions.
The esterases assist actively in biomass saccharification and

have diverse biological and biotechnological applications
(Benen et al. 2002; Bonnin and Pelloux 2020). The diversity
of pectinases and their potential for industrial application is
depicted in Fig. 1.

Fungal pectinases

Microorganisms have been in the environment from the
beginning of time on this planet. In the scientific world, the
study of the structural, functional, and ecological attributes
of microorganisms is significant (Prasad et al. 2021). Micro-
bial enzymes particularly from fungi are preferred over other
sources because: (i) Their content is more predictable. (ii)
They have a wide range of enzymes; (iii) Bulk production
generally resin with low costs and reliable raw materials.
(iv) Their productivity rate is high and they contain a greater
amount of active ingredients. (v) Fungi can be easily man-
aged to take the desired enzymes, and they can be made in
large quantities rapidly and inexpensively through existing
fermentation techniques and sophisticated instrumentation.
(vi) Enzyme production may be programmable in various
environments. and (vii) more potentially hazardous compo-
nents like phenolic compounds, endogenous enzyme inhibi-
tors, and proteases are found in plant and animal tissues than
in microorganisms (Sharma et al. 2013; Singh et al. 2019).
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Fig. 1 Pectinases: classification and role as industrial catalyst
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Fungal microbiota cover about 50% of microbial enzyme
production. Around 35% of the production shared is held by
bacteria and only 15% is produced from higher organisms
(Wosten 2019). The fungal system is a popular source of
enzymes because they provide a cost-effective technology
with reduced resource consumption and minimal emissions,
as opposed to animal and plant sources. Fungi and yeast
alone are a producer of half of the globally used enzymes
(Liibeck and Liibeck 2022). The secretion of pectinases
by fungi assists in the breakdown of the middle lamella in
plants (Prasad et al. 2021). Soil is a diverse and dynamic
environment that is home to a diverse range of microorgan-
isms, especially fungi. The traditional laboratory culture
techniques have made the greatest contribution to gaining
access to microbial diversity. Despite its familiarity and use,
it is one of the world’s least explored environments. Soil
microorganisms play a crucial role in plant development and
carbon and nutrient cycling. The bulk of soil microorgan-
isms, on the other hand, have yet to be isolated, and their
roles are mostly unknown. These microbial communities are
exploited as a sustainable source for microbial enzymatic
production systems (Baldrian 2019; Selvasekaran and Chi-
dambaram 2020).

Fungi generate a plethora of extracellular enzymes capa-
ble of degrading organic materials, one of which is pectino-
lytic enzymes. Commercial enzymes have been produced
using filamentous fungi for more than 50 years (Haile and
Ayele 2022). Pectinolytic enzymes are one of the extracellu-
lar enzymes that fungi produce that can break down organic
molecules. One of the most potent sources of pectinases is
filamentous fungi, which can be extensively exploited in the
production of SSF at a low cost. Many different fungal spe-
cies have been reported to produce pectinases. Aspergillus
niger is the most typical fungus used in the production of
pectinolytic enzymes for industrial use (Gutiérrez-Correa
et al. 2012). A. oryzae, A. fumigatus, A. terreus, A. sojoe, A.
awamori, and other Aspergillus species are also known to
produce pectinase. A. giganteus was the first species whose
production of endo-PGL was noted. Additionally, species of
Penicillium, Fusarium, Mucor, Neurospora crass, Sclero-
tinia sclerotium, and others play a part in the manufacture of
pectinase (Sharma et al. 2013; Haile and Ayele 2022). Fun-
gal pectinases play a part in the phytopathological process.
They interact in plant-microbe symbiosis, and the decom-
position of dead plant material, thereby, contributing to the
natural carbon cycle. In the context of mining fungal pecti-
nolytic sources, soil samples have been indefinitely explored
for the isolation of novel fungal strains as listed in Table 1.

Production strategies

Fermentation-based production of microbial pectinases is
facilitated by solid-state fermentation and submerged fer-
mentation industrially and at a small scale. The advantages
of fermentation-based production of enzymes include low
costs, low energy consumption, and low waste-water gen-
eration, and it can be exploited to repurpose organic wastes
into value-added products. Fermentation-based microbial
enzyme mass production uses either solid-state fermentation
(SSF) or submerged fermentation (SmF). SmF technology
is often used to produce microbial enzymes, especially from
bacterial sources and the major advantage is easy to control
the process as compared to SSF (Sharma et al. 2013).

Solid State Fermentation uses a solid substrate that acts
as a natural habitat for fungi to attach. The fermentation
requires lower to no moisture content occurring in the
absence or near absence of free water. The sturdy foundation
offers support, or occasionally both support and sustenance.
The main benefits of SSF include low capital expenditure,
reduced levels of catabolite repression and end-product inhi-
bition, low wastewater output, improved productivity, higher
enzyme yields, and better product recovery. SSF has been
used predominantly as it triggers the production of various
enzymes directly from raw materials rich in lignocellulose
(Kumar and Verma 2020). SSF is highly favourable for fun-
gal microflora as it is like their natural habitat. Some of
the limitations of the SSF include the need for proper aera-
tion and humidity control and a time-consuming scale-up
process. Pectinases of fungal origin have been extensively
reported by using the solid-state fermentation method (Soc-
col et al. 2017; Lizardi-Jiménez and Hernandez-Martinez
2017). The production of fungal pectinases by SSF requires
optimization of several parameters which can directly affect
the enzyme production.

Factors influencing the production of pectinases
by SSF

The process of fermentation is dependent on biological and
physio-chemical parameters that greatly affect the kinet-
ics of the microbial enzymes. To improve the efficiency of
the enzymes, these parameters need to be optimised and
microbes, the size of the inoculum, and substrates are some
of the important biological parameters. Further, incubation
temperatures, pH specificities, moisture content, aerations,
rotations, and heat transfer affect the performance of the
enzymes (Soccol et al. 2017).

Fungal spores can directly be added as inocula and have
a very fast production rate. These can grow over a range of
temperature conditions between 24 and 30 °C. Thermophilic
fungi can also grow optimally in this range. The pH range
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Table 1 Fungal strains isolated from different soil samples with potential for pectinase production using fermentation methods

S.no. Fungal strains Soil samples Pectinase type Mode of  References
produc-
tion
1. Penicillium Pectin industry waste soil PG SSF Patil and Chaudhari (2010)
2. Penicillium chrysogenum Municipal solid waste soil PG SmF Banu et al. (2010)
3. Saccharomyces sp. Cold soils of fruit yards PG SmF Naga Padma et al. (2011)
4. Aspergillus awamori Pectin-rich wastes and waste dump PG SmF Padma et al. (2012)
yard soils
5. Aspergillus niger, A. flavus, A. Agricultural and non-agricultural ~ Pectinase SmF Reddy and Sreeramulu (2012)
Jjaponicus, and Chaetomium soils
globosum
6. Paecilomyces variotii Pectin industry waste soil Exo-PG SmF Patil et al. (2012)
7. Aspergillus niger, A. terrus, A. Simipal Bioreserve Forest soil Pectinase SSF Panda et al. (2012)
stellatus, A. flavus, A. fumigatus
8. Penicillium atrovenetum, Aspergil- Decaying orange peels and soil PG SSF Adeleke et al. (2012)
lus flavus sample
and Aspergillus oryzae
9. Aspergillus, Fusarium, Penicil- Soil of composts, organic fertiliz- PG SmF Dhital et al. (2014)
lium, Rhizopus, Syncephalastium  ers and agro-industrial wastes
10. Rhizomucor pusillus Fruit and vegetable markets PG SSF Mohd et al. (2013)
11. Aspergillus niger Soil under fruit trees pectinase SSF Islam et al. (2013)
12. Mortierella sp., Aspergillus Organic soil sample Exo-PG SmF Banakar and Thippeswamy (2014)
fumigatus, Trichosporiella
13. Penicillium chrysogenum Garden soil PG SmF Sarkar (2014)
14. Aspergillus species Vegetative field soil PG SmF Khan et al. (2014)
15. Species of Aspergillus, Penicil- Soil sample from manure fields PNL SmF Usha et al. (2014)
lium, trichoderma
16. Penicillium chrysogenum Garden soil samples PG SmF Laha et al. (2014)
17. Thermomucor indicae-seudaticae  Soil PG SSF Martin et al. (2010)
18. Truncatella angustata Soil PE SSF Singh et al. (2012a)
19. Aureobasidium pullulans Saharan soil of Algeria PG SSF Garlapati (2015)
20. Rhizomucor pusillus Soil Exo-PG SmF Trindade et al. (2016)
21. Cystofilobasidium infirmomin- Soil from island PG SmF Cavello et al. (2017)
iatum, Cryptococcus adelien-
sis and G. pullulans
22. Penicillium and Aspergillus Mangrove soil samples PG SSF Mukunda et al. (2013)
23. Aspergillus Niger Soil samples collected from local ~ Pectinase Bezawada and Raju (2018)
fruit market waste
24. Aspergillus niger Soil sample Pectinase SmF Abdullah et al. (2018b)
25. Aspergillus oryzae Mangrove soils PG SSF Ketipally and Ram (2018)
26. Apergillus niger Samples of soil, fruits and Pectinase SSF Abdullah et al. (2018a)
vegetables were collected from
agricultural fields
27. Apergillus Citrus dump waste soil PGand PNL SmF Davanso et al. (2019)
28. Fusarium oxysporum Agriculture soil samples Pectinase SmF Ibrahim et al. (2019), Ketipally
et al. (2019)
29. Aspergillus nomius Mangrove soils PG SSF Ketipally et al. (2019)
30. Aspergillus tubingensis Soil of vineyards Pectinase SmF Huang et al. (2019)
31. Aspergillus sp. Soil of agro-industrial wastes, fruit Pectinase SmF KC et al. (2020)
pulp, composts,
decaying leaves, spoiled fruits, and
organic fertilizers
32. A. niger Soil from fruit processing sites, PG SSF Patidar et al. (2020)
decaying matter, compost
33. Aspergillus niger Botanical garden soil Pectinase SmF Abd El-Rahim et al. (2020)
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Table 1 (continued)

S.no. Fungal strains Soil samples Pectinase type Mode of  References
produc-
tion
34, Aspergillus fumigatus Agricultural fields Pectinase SSF Mondal et al. (2020)
35. Aspergillus Crops soil Pectinase SSF El-Ghomary et al. (2021)

PG polygalacturonases, PNL pectin lyases, PL pectate lyase, Exo-PG exo-polygalacturonases

may change according to the substrate used, however, for the
best growth, fungi strains prefer an acidic to a neutral range
(Prado Barragan et al. 2016). Optimizations of moisture con-
tent have resulted in more stress-resistant pectinase produc-
tion. The rotation and agitation affect microbial growth and
contamination. Production of fungal pectinase is severely
constrained by bacterial contamination (Prado Barragén
et al. 2016; Chen and Wang 2017).

The mesophilic and thermophilic fungal pectinase pro-
duction during SSF is also affected by heat transfer during
the process. The gases produced by the fungal inoculum
and moisture vaporization regulate the heat of the system
(Kumar et al. 2021; Chilakamarry et al. 2022).

Substrates used for the production of fungal
pectinase

Higher fungi have well-tuned enzymes, spores, and metabo-
lites for development on solid, moist substrates. For instance,
fungus spores produced by SSF display greater stability, are
more resistant to drying, and have higher germination rates
for longer periods (Arun et al. 2020). The substrate acts as
structural ed support rich in nitrogen and carbon for the
growth of microorganisms. The nutritional composition and
quality problems may affect the fermentation batches. This
variation could lead to decreased production. The choice of
substrate will determine how much heterogeneity is intro-
duced during the process. The most often utilised substrates
for SSF include agricultural and food processing wastes
such as wheat bran, sawdust, apple pomace, cassava, sugar
beetroot pulp, citrus waste, maize cob and banana waste.
Innovations in the production of pectinases using different
agro-wastes like peels and pulps of citrus, orange, coffee,
grapefruit, and banana using both SSF and SmF have been
reported recently (Bharathiraja et al. 2017; Chilakamarry
et al. 2022).

Fruits and vegetable peels are rapidly utilized nowadays
as they are environment-friendly and immensely nutritious
for microbes. Peels of citrus fruits, bananas, sweet potatoes,
and mango are being vigorously studied. The pomace of
apple, kiwi, peach, and grapes are pectin-rich biomass for
valorisation via fermentation. Other agro-industrial resi-
dues such as oil cakes of pumpkin, sesame, groundnut, and

sunflower oil have also been used as substrates (Lopes and
Ligabue-Braun 2021). Additionally, pectinolytic enzyme
production has been reported by the use of sugarcane
bagasse, corn cobs, soybean hulls, sugar beetroot pulp,
barley husks and straws as sources of carbon. Tea extract
serves as an important source of nitrogen. In addition to
these, brewery waste, sewage wastewater, drainage effluents,
tobacco stalks, molasses, and vegetable and fruit juices work
excellently as liquid substrates for the fermentation of fungal
pectinases (Sadh et al. 2018; Cano et al. 2020; Chukwuma
et al. 2020).

Bioreactors for the production of fungal
pectinases

For large-scale bulk production, bioreactors have been used.
These bioreactors or fermenters are designed for processing
biological products under a specifically controlled environ-
ment. Bioreactors for fungal pectinases have used ligno-
cellulosic wastes, and agricultural wastes as substrates for
industry efficient scaled production of enzymes (Cerda et al.
2019). Bioreactors prefer solid state-based fermentation
methods for the production of fungal pectinases. In the light
of fungal pectinases, Aspergillus niger has been extensively
utilized for pectinases production by solid-state fermenta-
tion using the packed bed, and bench scale rotating-drum
reactors (Finkler et al. 2017; Poletto et al. 2017; Reginatto
et al. 2022). A 40 cm high packed bed bioreactor yielded
productivity of 1840 U/g pectinases using Aspergillus niger
(Pitol et al. 2016). Raimbault columns, packed-bed biore-
actors, Erlenmeyer flasks, perforated trays, and other static
bioreactors have been used to produce pectinases (Yang and
Sha 2019). These bioreactors are chosen because of their
usability and simplicity. A. niger on sugarcane bagasse and
orange pomace has been utilized as solid-state substrates
for production using a tray and rotating drum bioreactors
(Mahmoodi et al. 2019). Agitated bioreactors utilise inter-
mittent or continuous mixing to homogenise substrate using
solid-state fermentation. It is possible to construct agitated
bioreactors with or without a water jacket to regulate temper-
ature (Mitchell and Krieger 2019). This type of reactor may
be continuously or intermittently agitated. Shear problems
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and damage to the fungal mycelium’s structural integrity
may occur, depending on the degree of agitation (Shan-
mugam et al. 2022). Large fermenters are commonly built of
stainless steel in the food and beverage industries because of
their ability to resist corrosion. A bioreactor’s design incor-
porates numerous essential engineering elements that are
regularly updated and modernised to increase the final prod-
uct’s productivity and quality (Kaur and Kaur 2019). Basal
stirred tank fermenters utilised A. foetidus strain for opti-
mization and evaluation of pH effect on microbial enzymes
including pectinases (Li et al. 2018). Innovative forms of
bioreactor-based fermentation largely depend on aeration
techniques. These reactors have been modernised with the
inclusion of steam traps, valves, mechanical foam breakers,
pH temperature and pO, monitors, micro-spargers for self-
cleaning, and other sampling ports. Connecting to computers
is a crucial advancement for novel bioreactors since it speeds
up data processing and calculation and facilitates operational
optimisation (Mitchell et al. 2019; John et al. 2020; Leite
et al. 2021).

Response surface methodology (RSM) utilisation for bio-
reactor-based production using shake flasks has been utilised
recently to produce pectinases at a concentration of 380 U/
ml by A. sojoe (Fratebianchi et al. 2017). Similarly, an indig-
enous Aspergillus sp. isolated from coffee waste was used
in response surface methodology designed on an SSF-based
tan ray bioreactor to yield 29.9 IU/g of pectinases (Nufiez
Pérez et al. 2022).

Purification of fungal pectinases

Enzyme purification can be achieved by using a variety of
conventional and modern techniques. The choice of the best
treatment stage is a prerequisite for the enzyme purification
process to be successful. Depending on the intended usage
of the enzyme, the degree of purification may vary. Purifi-
cation of microbial pectinases has been attained by simple
centrifugation, sedimentation, or precipitation (Holm et al.
2018). The removal of inorganic and organic impurities is
highly feasible by salting out using ammonium sulphate
salts. This method of purification or partial purification has
yielded a stable protein with better activity. Solvent pre-
cipitation using acetone, ethanol, and methanol, based on
the solubility of protein is a cost-effective method for the
removal of organic and inorganic impurities. The salt-based
precipitation has been preferred as other solvent methods for
pectinase. This is generally followed by dialysis to yield salt
unbound proteins which are dissolved in buffers for optimal
activities. Purification using counter solvents like butanol
or octanol or by ultrafiltration facilitates the generation of
aqueous pectinase. This eliminates the need for precipitation

@ Springer

with dialysis of salt-based methods (Patel et al. 2017; Raina
et al. 2022).

Purification of pectin lyases produced from Penicillium
oxalicum, P. citrinum, Aspergillus flavus, A. ficuum, A. ter-
ricola, Fusarium decemcellulare, and F. lateritum has been
performed simply by using ammonium sulphate precipita-
tion and column chromatography method (Yadav and Shastri
2007; Yadav et al. 2008, 2009a, c, 2013, 2014, 2017b). Exo-
polygalacturonase from Aspergillus flavus has been puri-
fied using solvent-based acetone purification, followed by
cellulose column and gel filtration chromatography (Anand
et al. 2017a).

Ion exchange, gel filtration, and affinity-based chromato-
graphic methods are used to produce samples with a com-
paratively greater level of purity. The form, size, charge,
hydrophobicity, or binding ability of the stationary phase
are criteria used in chromatographic procedures to purify
microbial pectinases. The molecular properties and interac-
tions that underlie ion exchange, surface adsorption, parti-
tion, and size exclusion are also important considerations
(Coskun 2016). Pectinolytic purification has been predomi-
nately accomplished by column chromatography (Smith
2005; Ullah 2012; Bassim Atta and Ruiz-Larrea 2022). Ion
exchange or gel filtration, which gives rise to purer fractions
of pectinases, along with a significant increase in its specific
activity has also been reported. Anion exchange column-
based purification for polygalacturonase from Calonectria
pteridis utilized eucalyptus leaves in submerged fermenta-
tion (Ladeira Azar et al. 2020). An indigenously isolated
soil-borne Aspergillus japonicus yielded 2.9-fold purified
polygalacturonase using two chromatographic techniques
simultaneously (Cavalieri de Alencar Guimaraes et al. 2022).
A repertoire of purification strategies has been adopted for
the purification of fungal pectinases from different fungal
strains as shown in Table 2.

Innovations: diverse approaches
Immobilisation

The pectinolytic industrial intervention is disrupted due
to their recovery rates, and low stability. Immobilization
of enzymes enhances storage, reduces product contamina-
tion, and simplifies the separation of products, which in
their free form is challenging. It improvises the catalytic
properties of enzymes and enhances their functioning in
adverse conditions (Bashir et al. 2020). Thereby, facilitat-
ing the recovery and reuse of enzymes in the medium and
enhancing the economic feasibility of the enzymes. Suitable
immobilization protocols and supportive environments are
required for enzyme biocatalysts with high enzymatic activ-
ity (Patel et al. 2022). Pectinases have been immobilized
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using diverse supports by membrane adsorption, covalent
binding, and cross-linking mechanisms. A variety of sup-
ports, including beads, microspheres, pulp fibre, matrix,
resins, capsules, nanoparticles pumice, and magnetic beads
have been deployed (Martin et al. 2019; Karatas et al. 2021).
The magnetic core of magnetic particles as beads makes it
simple, rapid, and effective to separate the enzyme from the
reaction mixture using an external magnetic field, making
them suitable support for enzyme immobilization. Addition-
ally, the size of the particle can be adjusted to give a large
surface area and high enzyme activity (Soozanipour et al.
2019; Trindade Ximenes et al. 2021). Direct crosslinking of
different enzyme preparations is the most typical technique
for producing cross-linked enzyme aggregates (CLEAs). The
advantages of this approach are highly concentrated enzyme
activity, greater stability, and the absence of an extra car-
rier’s associated production costs (Nouri and Khodaiyan
2020).

Adsorption, covalent binding, and entrapment are just
a few of the methods utilised to keep enzymes inside the
membrane. Enzymes are frequently attached to membranes
by chemical bonds and adsorption. Pectinase is frequently
bound to membranes using adsorption techniques. Chemi-
cal enzyme binders including glutaraldehyde, glycidyl meth-
acrylate, and carbonyl diimidazole are used to adsorb mem-
branes. It has been observed that membrane-bound enzyme
exhibits enhanced thermal stability and temperature optima.
Among the different methods of immobilising enzymes,
covalent immobilisation is frequently preferred. This is so
that it won’t allow the enzyme to desorb from the support
during the process (Nadar and Rathod 2019).

A scale bioreactor used in stainless steel bases matrix
was immobilized to get a titre of 307.5 and 242.6 U/ml of
exo and endo PG respectively from Rhizopus oryzae (Zheng
et al. 2017). Beads of alginate-montmorillonite were used
to immobilize pectinase from A. aculeatus recovering 53%
of its initial activity (Mohammadi et al. 2019). Gel-based
beads of alginate and agar facilitate the immobilization of
pectinase from A. awamori. This retained initial activity
even after 8 cycles of reaction (Abdel Wahab et al. 2018).
An indigenously isolated pectinolytic yeast strain, Geotri-
chum candidum was immobilized retaining 70% of its initial
activity using corn cob matrix (Ejaz et al. 2018). Similarly,
beads of sodium alginate were used in different strains of
Geotrichum candidum to immobilize pectinase enhancing
its activity from 0.046 to 0.115 TU mL™" (Ejaz et al. 2020).
Pectinases have also been immobilized using magnetic chi-
tosan particles by direct extraction from fruit juices without
the intervention of microbes (Dal Magro et al. 2018, 2019;
Soozanipour et al. 2019). Efforts on the immobilization of
pectinases from fungal strains have been summarized in
Table 3.

Almowallad et al. (2022)
Esawy et al. (2022)
Lodhi et al. (2022)

References

0.67 mg/
=28,

=57%
=29%

ml, purification fold
activity

yield

Purification folds =632, specific
40 U/ml
yield

Purification folds ~ tenfold,

Kinetic properties

Km and Vmax

umn chromatography
based affinity chroma-

to Sephahdex G 200
tography

column
Magnetic nano-particle-

Ammonium sulphate
followed by acetone

Cold ethanol followed
by sepahdex-50 col-

Purification methods

Sugar beet pulp

Substrate used
Citrus pectin

Production methods
Culture broth

SmF

Fungal strains
Penicillium oxalicum
Aspergillus niger
Aspergillus flavus

Pectinase
Pectinase
Exo-PG

PG polygalacturonases, PNL pectin lyases, PL pectate lyase, Exo-PG exo-polygalacturonases, Acidic endo-PG acidic endo polygalacturonases

Table 2 (continued)
S.no. Enzyme

21
22.
23
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Table 3 Reports on immobilisation of Fungal Pectinases

S.no. Fungal strains Enzyme Immobilisation method Immobilised matrix Functions altered References
1. Aspergillus niger Pectinase Entrapment Polyvinyl alcohol Reusability=12 times ~ Esawy et al. (2013)
(PVA) sponge Loss of activity =9% of
original
2. Rhizopus oryzae Exo-PG  Matrix immobilisation  Matrix of stainless- Enzyme activity 2.8t  Zheng et al. (2017)
steel wire with cotton  times increased
fibre
3. Mucor hiemalis Pectinase Covalent immobiliza-  Alginate beads Enzyme recovery Hassan et al. (2020b)
tion -80-83%
4. Sporothrix schenckii  Exo-PG  Adsorption Silica yolk, shell The stability of the Karatas et al. (2021)
spheres with mag- enzyme increased
netic property from 3 to 3.7 folds
5. Aspergillus niger PG Microsphere entrap- Calcium alginate beads Retained 63% of the Deng et al. (2019)
ment original activity
6. Aspergillus niger Pectinase Functionalized mag- Cyanuric chloride- Retained 60% of its Soozanipour et al. (2019)
netic nanoparticles functionalized initial activity and
chitosan grafted mag- increased storage sta-
netic nanoparticles bility after 75 days
7. Aspergillus aculeatus Pectinase Entrapment Calcium alginate beads Retained 80% of initial De Oliveira et al. (2018)
activity
8. Aspergillus Pectinase Solid support based Zeolite Socony activity 247% higher Liu et al. (2021)
niger Mobil-5 (ZSM-5) than free enzyme
9. Aspergillus aculeatus Pectinase Covalent binding Amino-silane retaining 60% of its Mohammadi et al. (2020)

modified montmoril-
lonite clay (MMC)

initial activity

PG polygalacturonases, PNL pectin lyases, PL pectate lyase, Exo-PG exo-polygalacturonases, Acidic endo-PG acidic endo polygalacturonases

Directed evolution

The state-of-the-art technology of directed evolution for
the desired manipulation of enzymes for industrial appli-
cation has been attempted for pectinases. Mutation using a
UV range of 254 nm has been used for the enhancement of
polygalacturonases production of Aspergillus and Penicil-
lium species (Heerd et al. 2014; Kamalambigeswari et al.
2018; Nawaz et al. 2019). Mutated strains have also been
used to study evolutionary relationships between PEL and
PL subclasses of pectinases (Yang et al. 2020). Mutation
of gaaX and gaaR allowed A. niger to express pectinases
without an inducer (Alazi et al. 2019). The approach of
directed evolution combined with computational technolo-
gies has been used to access different metabolic pathways
of fungal pectinases (Wang et al. 2021). For fungal pec-
tinases, artificial environments can be simulated through
strain mutation, recombination, and gene overexpression.
With this modification, the pectinolytic mechanism can be
accelerated to catalyse chemical reactions in an entirely
new environment employing a newer substrate, resulting
in increased catalytic activity. Chromosomal mapping was
used to analyse S. bayanus var. uvarum strains, and the
results revealed three divergent genes, PGU1b, PGU2b,
and PGU3b, which are situated on chromosomes X, I, and

@ Springer

X1V, respectively. As a result, it was demonstrated that
these yeasts’ strong pectinolytic activity might be caused
by the existence of many PGU polymeric genes in their
genomes (Naumova et al. 2019). Heterologous expression
of fungal pectinase targeting expression using microbes
with a high capacity for protein production and enzyme
secretion has been performed. It is a good alternative to
the fermentation technique for the desired production of
enzymes by targeting the relevant genes. The expression of
pectinolytic genes has been summarized in Table 4.

Omics interventions

The omics-driven approach is the current trend in enzyme
research which aims to analyse the potential of fungal spe-
cies in terms of enzyme production by targeting the whole
genome or proteome. Over 50% of the currently available
eukaryotic genome sequences are from the kingdom of
Fungi. Several fungal genome sequences have been tar-
geted to decipher the diversity of pectinases. Recently
using a shotgun proteomics approach two pectin lyase and
one pectate lyase from Saccharomyces cerevisiae produced
using passion fruit flour by solid-state fermentation has
been reported (Takeyama et al. 2022). Two-dimensional
electrophoresis-based proteomic analysis of Aspergillus
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Table 4 List of pectinase gene studies

S.no. Fungal strains Pectinase type Gene Sequence-based/ Host for expres-  Accession no. References
clone/recombi- sion
nant
1. Aspergillus sojae PG AspecA Cloned and Aspergillus - Yoshino-Yasuda
expressed oryzae etal. (2011)
2. Fusarium Exo-PG PGC2 Cloned and Pichia pastoris ~ GI:281372497 Dong and Wang
oxXysporum expressed (2011)
3. Fusarium PG Two PGC3 Cloned and Pichia pastoris ~ KP768396 and Dong and Wang
oxysporum expressed KP768397 (2015)
4. Pseudothermo-  GH28 PG TtGH28 Cloned and Escherichia coli  EH50492.1 Wagschal et al.
toga ther- expressed (2016)
marum
5. Aspergillus niger Endo-PG pga-zjSa Clone and Pichia pastoris ~ KU896780 Wang et al. (2017)
expressed
6. Penicillium endo-PG PoxaEnPG28A Cloned and Pichia pastoris KU366356 Cheng et al.
oxalicum expressed (2017)
7. Aspergillus. Endo-PG gene endoPG Expressed and Pichia pastoris - Abdulrachman
aculeatus recombi- recombinant et al. (2017)
nant=pPIC- protein
PG1
8. Pectobacterium PG Peh 28 Cloned and over- Escherichia coli AA03624.1 Ibrahim et al.
carotovorum expressed (2017)
subsp. caroto-
vorum (Pcc)
9. Aspergillus niger Exo-PG pexB Mutant - 4980661 Liu et al. (2017a)
10. Aspergillus niger PNL pel A-F Clone and over-  Aspergillus. An14g04370, He et al. (2018)
expressed niger An03g00190,
Anl1g04030,
An19g00270
An15g07160,
11. Rhizoctonia PG RsPG3 Clone and Pichia pastoris ~ KP896520 Chen et al. (2018)
solani RsPG4 expressed KP896521
12. Fomitopsis Endo-PG - cDNA Clone, - - Tanaka et al.
palustris Insilico study (2019)
and enzyme
characterisation
13. P. polymyxa PL PL9 Cloned and Escherichia coli — Yuan et al. (2019)
expressed
14. Aspergillus luch- PG PgaB Clone and over-  Pichia pastoris ~ BCWF01000021.1 Tan et al. (2020)
uensis expressed
15. Penicillium Rec.PoxaEn- Endo -PG c- DNA cloning  Pichia pastoris ~ EPS29213 Cheng et al.
oxalicum PG28B-Pp and expression GSI115 and (2020)
PoxaEnPG28B- Escherichia
Ec coli BL21
16. Aspergillus Endo-PG AnEPG Clone and Pichia pastoris ~ AN8327.2 Xu et al. (2020)
nidulans expressed
17. Fusarium oxypo- Pgc4 MT385837 and Dong et al. (2020)
rum MT385838
18. Aspergillus para- PL ApPell Cloned and Pichia pastoris ~ — Yang et al. (2020)
siticus expressed
19. A. oryzae PME Aopmel-5 Cloned and Escherichia coli BAE61126 Yamada et al.
expressed BAE60873 (2021)
BAES58553
BAE63101
BAE63594
20. Verticillium PG, PME VdPG2 Cloned and Pichia pastoris 20,706,440 Safran et al.
dahliae VdPME1 expressed 20,707,262 (2021)
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Table 4 (continued)

S.no. Fungal strains Pectinase type Gene

Sequence-based/

Host for expres-  Accession no. References

clone/recombi- sion

nant

21. Penicillium PG
oxalium

Eno-PGase
Recombi-
nant =PoxaEn-
PG28C
FpPG

22. F. virguliforme GH28 PGs

23. Clonostachys exo-PL Pel 1-17

rosea

Cloned and
expressed

Insilico based - -

Insilico based -

Pichia pastoris - Lu et al. (2022)

Chang et al.
(2016)

Atanasova et al.
(2018)

BN869_
T00008859
BN869_
T00000002
BN869_
T00000920
BN869_
T00008472
BN869_
T00010915
BN869_
T00006080
BN869_
T00010737
BN869_
T00008735
BN869_
T00007710
BN869_
T00005779
BN869_
T00006915
BN869_
T00007653
BN869_
T00008627
BN869_
T00002081
BN869_
T00010228
BN869_
T00007566

PG polygalacturonases, PNL pectin lyases, PL pectate lyase, Exo-PG exo-polygalacturonases, endo-PG endo polygalacturonases, PME Pectin

Methyl esterases, GH28 PG glycoside hydrolase -28 Polygalacturonase

niger EIMU2 has been attempted. It revealed that the
mutant EIMU2’s multiple enzyme systems used for the
degradation of pectin included the main-chain cleaving
enzymes polygalacturonase, pectate lyase, and pectin
esterase, as well as some accessory enzymes rhamnoga-
lacturonan lyase (Lin et al. 2021). Studying the interac-
tion of wood rotting fungi, pectinases proteomics profil-
ing helped analysed other proteins secreted which might
have a significant role in degrading wood (Presley et al.
2020). CRISPR/Cas9 system generated three chimeric
GaaR-XInR induces by D-galacturonic acid from Aspergil-
lus niger. Their proteomics investigation verified that the
gaaR mutants carrying the chimeric transcription factor
produced several pectinolytic enzymes (Kun et al. 2021).

@ Springer

The PL7 and PL8 enzymes required for the breakdown of
laminarin, cellulose, lipids, and peptides, were found to
be abundantly secreted by Paradendryphiella salina cul-
tured on brown algae using proteomic analysis (Pilgaard
et al. 2019). However, a significant issue with the existing
fungal pectinases proteomics is to fully understand the
expression, operation, and regulation of the entire set of
fungus-genome-encoded proteins. Moreover, the sequenc-
ing of several fungal proteomes is in progress (Sudhakar
etal. 2018).

Meta-omics approach collects total environmental DNA
which is targeted for metagenomic studies. A metagenomic
system can be any arbitrary environmental sample defining
the collection of microbes. Soil, water, air, cow rumen, and
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composts are such systems, thus, opening doors for uncultur-
able and novel sources for catalytic enzymes. metagenomic
approach for pectinase enzyme mining from soil resulted in
the isolation of thermostable pectinase (Singh et al. 2012a,
b). This approach has been used for identifying novel fungal
sources for pectinases (Tanveer et al. 2016; Pilgaard et al.
2019; Ahmad et al. 2021). The metagenomic studies exclu-
sively for fungal pectinases are summarized in Table 5.

Industrial applications

Pectin in plant cells is degraded by pectinases. They were
first used commercially in the 1930s, and since then, they
govern 25% of industrial applications. Wide-ranging
industrial uses for pectin-degrading enzymes include deg-
umming and retting of plant fibres, oil extraction, fruit
juice clarification, wine production, fermentation of tea
and coffee, bioconversion of wastes, and protoplast fusion
technology (Singhania et al. 2015). Since 40% of the dry
weight of plant cambium cells is made up of pectin, pec-
tinases are essential for digesting natural fibres. With
the aid of pectinases, the bast fibres of jute, flax, hemp,
ramie, banana, pineapple leaf, and bamboo can be suc-
cessfully degummed, macerated, and retted because they
break down the pectin in the middle lamella and primary
cell walls. Their wide applicability in the textile industry
makes their study essential. Microbial pectinases-based
natural fibre retting and extraction is biodegradable, recy-
clable, cuts production costs and is energy sustainable
(Kumari et al. 2021). The fibres produced are reported
with higher strength, shinier, easy to obtain and light
weighted. The increasing demands on enzyme applications
are growing as replacements for traditional harsh chemical
processes. Fungal pectinases are also used for degumming
natural fibres, bio scouring, bio bleaching and in wastewa-
ter treatment of textile power plants (Sharma et al. 2017).

They are also used to produce effective viral prepara-
tion from plant tissues, in the treatment of wastewater and
for the isolation of protoplasts. Protoplasts are isolated
from the mycelia of Pleurotuseous and Pleurotus flabel-
latus using enzymes comprising commercial cellulases,
crude pectinases, and crude chitinases (Eyini et al. 2006;
Ruiz et al. 2017). Pectinases are also applied in animal
feeds as it helps in the efficient absorption of nutrients by
animals by degrading the fibres that entrap them. These
groups of enzymes have been used for biofuel production
like bioethanol. The rate of ethanol generation rises when
pectinaceous structures in the feedstock are destroyed and
hydrolyzed by pectinases. Biomass enzymatic hydrolysis
is a cost-effective and efficient treatment method that pro-
duces no hazardous waste (Samanta 2019). Sugar becomes
more accessible and sensitive to hydrolytic enzymes after

@ Springer

being treated with liquid hot water. Alkaline pectinases
both from fungal and bacterial sources are also applied in
the fermentation of coffee and tea. Degrading pectin, pec-
tinase increases the pace of tea fermentation and reduces
the foaming ability of instant tea granules (Tatta et al.
2022).

The fruit and food processing industries have wide
applicability of pectinases. Fruits have a complicated pec-
tin structure, making it challenging to extract juice from
this very viscous, jellified pulp (Pagnonceli et al. 2019).
The pectinase enzyme acts on the pectin of fruit peels and
dissolves the glycosidic linkages between the galacturonic
acid monomers, reducing the amount of water that may be
held by pectin enzymatic treatment is the most frequently
used method for juice extraction and clarity (Anand et al.
2017b). The enzymatic hydrolysis of cell walls enhances
the extraction yield, soluble dry matter content, galactu-
ronic acid content, and titratable acidity of the products.
The amount of waste pomace decreased and the resulting
pulp had a lower viscosity. The biomaterial is enzymati-
cally degraded depending on the type of enzyme, incu-
bation period, temperature, concentration, agitation, pH,
and the use of various enzyme combinations. The wine
industry chooses pectinases as they increase wine qual-
ity, and facilitate extraction, filtering, and taste and colour
intensification (Gunjal et al. 2020). Pectinases were also
used in extracting essential oils from a variety of sources
like olives, flaxseed oil, dates, and other fruits and vegeta-
bles (Nagpal et al. 2021). These enzymes help to enhance
the fatty acids, peroxide value, and colour intensity as
compared to chemical treatment. In the paper industry,
pectinases along with xylanases are preferred as a bio-
bleaching agent. Enzymatic intervention is eco-friendly,
less abrasive, and effective in improving paper quality
(Nagpal et al. 2020). Biological bleaching with pectinases
and xylanases brightens the paper and improves its physi-
cal characteristics, as well as lowers the kappa number and
permanganate number of the pulp. In comparison to those
chemical alternative solutions, the substitution of pecti-
nases contributes to a reduction in chlorine discharge into
the environment (Nagpal et al. 2020; Tatta et al. 2022).
The diverse industrial application of pectinases has been
summarized in Table 6.

The bottom line and future prospects

Pectinases represent an important group of enzymes with
immense potential for diverse industrial applications. Sub-
stantial efforts have been made to explore the possibility
of diverse approaches for enhancing pectinases produc-
tion, manipulation and elucidating industrial applica-
tions, exclusively from fungal sources. The cost-effective
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Table 6 (continued)

Substrate used Application References

Production mode

Fungal strain

Pectinase type

Industry

S. no.

Compatibility of alkaline Mehmood et al. (2019)

Mausami peels

SSF

Schizophyllum commune

Others

34.

enzyme
with different locally

available detergents,
clarification of apple

juice

Mondal et al. (2020)

Proficient saccharifica-

Wheat bran + sugar-

SSF

Aspergillus fumigatus

Pectinase

3s.

tion of
plant bioresources

cane + orange peel

Azzaz et al. (2019)
Szabo et al. (2015)

Feed product of buffalo

Penicillium chrysogenum SSF

Pectinase

PG

36.
37.

Bio-bleaching of the

Flax fibre

Trichoderma virens

linen fabrics

Makky and Yusoff (2014)

Biofertilizer for
Zea mays

Sugar-cane bagasse

SSF

Thermomyceslanugi-

PNL
PG

38.

(SCB)
Soyabean hull

nosus

Li et al. (2020)

Processing of soy

SSF

Pectinase Aspergillus niger

39.

PG polygalacturonases, PNL pectin lyases, PL pectate lyase, Exo-PG exo-polygalacturonases, endo-PG endo polygalacturonases, PME Pectin Methyl esterases, GH28 PG glycoside hydrolase

-28 Polygalacturonase

production of fungal pectinases using agro-wastes is an
eco-friendly approach that has immense potential for con-
verting waste biomass. It also results in the production
of different value-added products. This is also added to
the saccharification potential of pectinases. Efforts have
been made to optimize growth conditions as a precursor
to enhanced fungal bioproduct production. Utilising waste
valorisation techniques, it is possible to take advantage
of the diversity of fungi by using contaminated items as
a source of fungi. The fungus system offers many advan-
tages and benefits, but it also poses a hazard due to its
pathogenicity and ability to mitigate spoilage and damage.
Recombinant and mutagenic approaches can be used to
change the pathogenicity of native fungus hosts. Accord-
ing to industrial needs, the fusion of traditional and mod-
ern state-of-the-art technology has enormous potential.
Over the years, several fungal genera have been targeted
for the production of pectinases and efforts have been made
to enhance the catalytic activity, specificity, and applicabil-
ity for industrial applications. Dual culture inoculums for
fermentation-based manufacturing have been employed to
increase enzyme productivity. These involve using more than
one fungal species for the production of the same biocata-
lyst. But they strictly demand more comprehension of how
various hosts interact with one another. The metagenomics
approach has resulted in the deciphering of novel microbes
with enhanced pectinase activity, thereby giving the world
new industrially potent species. Despite metagenomics incli-
nation in microbial studies, fungal metagenomic library con-
struction and diversity studies are minimal. Though purity
of metagenomic DNA from humic acid contamination and
the easy extraction of prokaryotic diversity in metagenomics
DNA limits the studies of pectinases of fungal metagenomic
origin from s potential. The directed evolution approach for
altered pectinases activity and specificity has resulted in
diverse industrial applications predominately in the textile
and food industries. Omics-driven approaches including
genomics, proteomics, and metabolomics have been used
for understanding the production and expression of pectinase
genes. Sequencing of fungal strains, genome-wide mining of
pectinases using a bioinformatics approach, and expression
of the identified pectinases are intensely investigated areas
of research in fungal pectinases. Immobilisation of fungal
pectinases using novel approaches for enhancing stability
and reuse for industrial application has also been attempted.
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