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Introduction

The awareness of the adverse effects that endocrine-dis-
rupting compounds (EDCs) can pose on human health and 
the environment has increased in recent years (Magi et al. 
2010; Mondal et al. 2021; Naveira et al. 2021; Alabi et al. 
2021). Bisphenol A (BPA, 4,4-isopropylidenediphenol), a 
typical EDC, is commonly used to produce a wide variety of 
everyday materials, including food and beverage containers, 
kitchen utensils, children’s toys, and reusable plastic bottles 
(Torres-García et al. 2022). Several studies have reported 
that BPA can block the action of natural hormones, impair-
ing normal growth, metabolism, and reproduction (Naveira 
et al. 2021). The chemical properties of BPA, such as low 
water solubility, low octanol-water partition coefficient, 
high soil-water portioning coefficient, and long half-life in 
sediments and soils, contribute to its bioaccumulation and 
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Abstract
The current industrial and human activities scenario has accelerated the widespread use of endocrine-disrupting com-
pounds (EDCs), which can be found in everyday products, including plastic containers, bottles, toys, cosmetics, etc., but 
can pose a severe risk to human health and the environment. In this regard, fungal bioremediation appears as a green 
and cost-effective approach to removing pollutants from water resources. Besides, immobilizing fungal cells onto nano-
fibrous membranes appears as an innovative strategy to improve remediation performance by allowing the adsorption 
and degradation to occur simultaneously. Herein, we developed a novel nanostructured bioremediation platform based on 
polyacrylonitrile nanofibrous membrane (PAN NFM) as supporting material for immobilizing an endophytic fungus to 
remove bisphenol A (BPA), a typical EDC. The endophytic strain was isolated from Handroanthus impetiginosus leaves 
and identified as Phanerochaete sp. H2 by molecular methods. The successful assembly of fungus onto the PAN NFM 
surface was confirmed by scanning electron microscopy (SEM). Compared with free fungus cells, the PAN@H2 NFM 
displayed a high BPA removal efficiency (above 85%) at an initial concentration of 5 ppm, suggesting synergistic removal 
by simultaneous adsorption and biotransformation. Moreover, the biotransformation pathway was investigated, and the 
chemical structures of fungal metabolites of BPA were identified by ultra-high performance liquid chromatography - high-
resolution mass (UHPLC-HRMS) analysis. In general, our results suggest that by combining the advantages of enzymatic 
activity and nanofibrous structure, the novel platform has the potential to be applied in the bioremediation of varied EDCs 
or even other pollutants found in water resources.
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biomagnification along the trophic chains, thereby causing 
long-term adverse effects to human health and the envi-
ronment (Mansilha et al. 2013; Shi et al. 2018; Liao and 
Kannan 2019). Until now, efficient methods for removing 
low-concentration BPA from wastewater are scarce (Zielin-
ska et al. 2019; Oliveira et al. 2020; Dhangar and Kumar 
2020). For instance, conventional physical and chemical 
remediation technologies are usually high-cost and generate 
undesired byproducts (Sharma et al. 2018). Therefore, effi-
cient, reliable, green, and economical approaches for BPA 
removal from water resources are in high demand.

Biological wastewater treatment that takes advantage of 
the natural role of organisms to transform or alter (through 
metabolic or enzymatic action) the structure of hazardous 
contaminants has proven to be a sustainable and cost-effec-
tive way to remediate EDCs (Roccuzzo et al. 2021; Zhuo 
and Fan 2021). Filamentous fungi have been used to bio-
transform several organic compounds by their intra- and 
extracellular enzymes, or through oxidizing radicals produc-
tion (Chen et al. 2023). Therefore, many recalcitrant com-
pounds can be transformed, even those with low solubility 
(Purohit et al. 2018; El-Gendi et al. 2021). More recently, 
processes based on the use of fungi in BPA-contaminated 
areas have been successfully reported (Delius et al. 2022; 
Wang et al. 2022).

Despite the advantages of fungal bioremediation, the 
use of free fungi cells faces challenges since mechanical 
disturbances may disrupt mycelia growth, and the myce-
lia development during the water treatment may also lead 
to operational issues such as clogging, nutrient addition, 
foaming, biomass aging, and microbial contamination (Mir-
Tutusaus et al. 2018; Ahn et al. 2020; George et al. 2022). 
In this regard, fungal immobilization on supports provides 
a potential tool to overcome such drawbacks, as it prevents 
mycelial dispersion, enables easier solid-liquid separation, 
and improves the fungi enzymatic activity, which optimize 
the ability of fungi in any bioremediation process (Beltrán-
Flores et al. 2022; Alam et al. 2023) and even heavy metal 
pollution (Chen et al. 2022).

An ideal support for fungal immobilization should be 
stable and provide a good surface for the fungus attachment 
and growth, along with large surface area/porosity, which 
can potentially benefit the cells immobilization and the mass 
transfer between media and entrapped cells (Rodríguez 
Couto 2009; Yang et al. 2022). In this scenario, electros-
pun nanofibrous membranes (NFMs) stand out as flexible 
and free-standing substrates for microbial cell immobiliza-
tion due to their appealing properties such as large specific 
surface area, high porosity, large liquid permeability, cost-
effectiveness, and easily adjustable properties (Balusamy et 
al. 2019; Mercante et al. 2021). Moreover, the fungal immo-
bilization onto NFMs may further enhance the removal of 

recalcitrant compounds from contaminated areas by associ-
ating the adsorption potential of NFMs with the enzymatic 
degradation ability of fungi. Electrospun NFMs have been 
successfully applied as support for drug delivery, filtration, 
enzyme immobilization, and biosensors, among other appli-
cations. However, their use as support for fungal immobi-
lization to enhance EDCs degradation has not been fully 
explored yet.

Herein, we demonstrate the feasibility of using an 
endophytic fungus immobilized on NFM as a nanohybrid 
platform for BPA bioremoval, as illustrated in Scheme 1. 
Specifically, polyacrylonitrile (PAN) electrospun NFM was 
used as supporting material to immobilize the endophytic 
fungus Phanerochaete sp. H2 isolated from Handroanthus 
impetiginosus leaves. The performance of the PAN@H2 
NFM for BPA removal was characterized, and UHPLC-
HRMS analysis allowed the chemical characterization of 
the BPA fungal metabolites. Our results contribute to eluci-
dating the biotransformation pathway of BPA by endophytic 
fungus strain.

Materials and methods

Achievement and molecular identification of 
endophytic fungus

The endophytic fungus was recovered, as previously 
described by our group (do Nascimento et al. 2020), from 
Handroanthus impetiginosus (Mart. ex DC.) Mattos leaves, 
which were collected in Alfenas, Minas Gerais, Brazil 
(S21°18’49.15”, W45°57’28.53”) and identified by Dr. 
Lúcia G. Lohmann (Botanical Department of the Bioscience 
Institute of the University of São Paulo). The study with the 
isolated fungus was registered in the Brazilian System for 
the Management of Genetic Heritage and Associated Tradi-
tional Knowledge (SisGen) under code A6F76F0.

The endophytic fungus with promising features in the 
bioremediation screening was identified by sequencing 
the ITS (Internal Transcribed Spacer) region. Glass micro-
spheres (425–600 μm in diameter, Sigma) were used for the 
extraction of DNA of the endophytic strain through physi-
cal lysis of the mycelium (Aamir et al. 2015). The ITS1-
5.8 S-ITS2 region was amplified using ITS1 (5′-CCG TAG 
GTG AAC CTG CGG − 3′) and ITS4 primers (5′-TCC 
TCC GCT TAT TGA TAT GC-3′) (White et al. 1990). The 
amplification primers using the Big Dye Kit (Life Technolo-
gies) in the ABI 3500 Genetic Analyzer XL system carried 
out DNA fragments sequencing. Amplification of the D1/
D2 domain of the LSU rRNA gene was achieved using 
the primers ITS1-F (TCCGTAGGTGAACCTGCGG) and 
NL-4 (5′-TCCTCCGCTTATTGATATGC-3′).
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The editor BioEdit software assembled the forward and 
reverse sequences of fungus in contigs (Hall 1999). The 
BLAST program (National Center for Biotechnology Infor-
mation) compared the sequences obtained with reference 
sequences from GenBank (Altschul et al. 1990). GenBank 
database received our sequence under the accession num-
ber MK737061. Based on the identity score, the closest 
reference sequence of endophytic fungus was obtained and 
used for further phylogeny analysis. CLUSTALX function 
aligned the sequences (Thompson et al. 1997), and the phy-
logenetic tree was constructed using the MEGA (Molecular 
Evolutionary Genetics Analysis) 4.0 software (Tamura et al. 
2007).

The neighbor-Joining algorithm was used to establish 
the evolutionary relationship, and distances were calculated 
with the Kimura 2-parameter model (Kimura 1980). The 
statistical support of nodes was estimated by bootstrap anal-
ysis with 1000 replications (Felsenstein 1985). The analysis 
involved 32 nucleotide sequences. All positions containing 
gaps and missing data were eliminated. There was a total of 
380 positions in the final dataset. The Maximum Composite 

Likelihood method computed the evolutionary distances. 
The rate variation among sites was modeled with a gamma 
distribution (shape parameter = 1). The obtained sequence 
was documented on the GenBank database under the acces-
sion number MK737061.

Polyacrylonitrile nanofibrous membrane 
preparation and fungus immobilization

Polyacrylonitrile (PAN, Mw = 120,000 g mol− 1) and N,N-
dimethylformamide (DMF, anhydrous, 99.8%) were pur-
chased from Sigma-Aldrich.

PAN electrospun nanofiber was obtained according to 
previously reported (Facure et al. 2022). The electrospin-
ning solution was prepared by dissolving PAN (10% w/v) 
in DMF and stirring for 6 h at room temperature. The nano-
fibrous membrane was obtained using an electrospinning 
apparatus at an applied voltage of 12 kV, a feed rate of 0.5 
mL h− 1, and a working distance of 12 cm. The nanofibrous 
membrane was collected in an aluminum foil, from which 

Scheme 1 Schematic illustration of (A) isolation of the Phanerochaete 
sp. H2 from Handroanthus impetiginosus leaves; (B) preparation of 
the PAN NFM by electrospinning; (C) immobilization of Phanero-

chaete sp. H2 onto PAN NFM; (D) application of the PAN@H2 NFM 
for BPA removal
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dissolved in methanol for their analysis by TLC (Merck, 
Darmstadt, Germany). The mobile phase consisted of 
hexane/ethyl acetate 40:60 (v/v), and ultraviolet radiation 
(254 nm) was employed to observe the plates.

The crude extracts were also analyzed by ultra-high per-
formance liquid chromatography - high-resolution mass 
(UHPLC-HRMS). UHPLC-HRMS apparatus contained an 
electrospray ionization (ESI) source and an Orbitrap tech-
nology analyzer. The flow rate was 400 µL.min-1, and the 
gradient elution system was 5 to 100% methanol (HPLC 
grade Tedia, Rio de Janeiro, Brazil) in water for over 30 min. 
A C18 column (ACE 150 mm×4.6 mm×3 μm) was used 
at a spectrometer operating at both positive and negative 
modes. The column temperature was set at 30ºC. The fol-
lowing parameters were used: scanning range of 120–1200 
m/z to full MS, ESI MS resolution of 70.000 with lock mass, 
microbeam of 1, and maximum injection time of 250 ms. 
The parameters of the ESI ionization source were as fol-
lows: gas flow rate of 30 L/min; auxiliary gas flow rate of 
10 L/min; positive voltage spray mode of 3.6 kV; negative 
voltage spray mode of 3.2 kV; and Slens level of 55. Nitro-
gen gas was used as a nebulizer in the collision cell. The 
mass spectra were obtained and processed using Xcalibur 
software (Thermo Fisher Scientific). The BPA metabolites 
were identified based on the accurate masses and analysis of 
their fragmentation patterns, shown in the MS/MS spectra.

Results

Endophytic fungi isolated from Handroanthus impetigino-
sus leaves (do Nascimento et al. 2020) were assayed for their 
abilities in the degradation of BPA. The endophytic fungus 
(H2) that displayed the best results in the biotransforma-
tion screening was identified through molecular techniques. 
The phylogenetic tree generated by the Neighbor-Joining 
approach based on ITS sequences of H2 and related species 
is shown in Figure S1 (Online Resource). The endophyte 
H2 clustered with sequences of Phanerochaete species, and 
it was identified as Phanerochaete sp. H2. Additionally, the 
identification of the strain was confirmed by analysis of its 
morphology.

After identifying the selected endophytic strain, a poly-
acrylonitrile electrospun nanofiber (PAN NFM) produced 
by electrospinning was employed as support for Phanero-
chaete sp. H2 immobilization. The formation of the fungus 
biofilm onto PAN NFM was analyzed by scanning electron 
microscopy (SEM), whose images are shown in Fig. 1. The 
PAN NFM (Fig. 1A) presented a bead-free and smooth 
fibrous nature with an average diameter of 202 ± 32 nm. 
Figure 1B reveals the biofilm’s formation after the fungus 
growth (PAN@H2 NFM).

it could be easily removed after the completion of the elec-
trospinning process.

To prepare the PAN@H2 membranes, 15.6 mg of PAN 
NFM was added to a Petri dish at the same time as the endo-
phytic strain, which was cultured in Petri dishes contain-
ing potato dextrose agar (PDA, Kasvi, Curitiba, Brazil) at 
28ºC for seven days. The successful immobilization of fun-
gus onto PAN NFM was confirmed by scanning electron 
microscopy analysis (SEM, JOEL JSM-6510).

Biotransformation procedures

H2 free cells and PAN@H2 NFM were used in the bio-
transformation of BPA (Sigma Aldrich, ≥ 99%). 100 mL-
Erlenmeyer flasks containing 50 mL of medium consisting 
of 0.18% glucose (Synth, São Paulo, Brazil), 0.06% peptone 
(Merck, Darmstadt, Germany), and 0.04% yeast extract 
(Acumedia, Baltimore, USA), pH 6.0, received five disks 
(5 mm) of H2 or PAN@H2 and BPA as a solution in dimeth-
ylsulfoxide (Synth, São Paulo, Brazil). Three controls were 
used with the following compositions: (i) culture medium, 
tetrahydrofuran, and fungus, with no substrate (BPA); (ii) 
culture medium and substrate but no fungus; and (iii) cul-
ture medium only.

The biotransformation assays were carried out at 28 °C 
using three different BPA concentrations: 5, 10, and 20 
ppm. The absorbance of the supernatant withdrawn at dif-
ferent time intervals (0, 4, 12, 16, 20, and 24 h) was mea-
sured at the maximum absorbance wavelength for the BPA 
(λmax = 266 nm) using a Quimis Model Q780U. The experi-
ments were carried out in triplicate and the results were 
reported as average with standard deviation. The percent-
age of biotransformation was calculated from the differ-
ence between initial and final values using the following 
equation:

Removal (%) =
A0 −At

A0
× 100

where A0 is the absorbance at 0 h, and At is the absorbance 
at t hour.

Metabolite identification by UHPLC-HRMS

The monitoring of the biotransformation of BPA into its 
derivatives, as well as the comparison of the extracts of 
biotransformation and controls, were initially analyzed 
by Thin-layer chromatography (TLC). Previously, H2 and 
PAN@H2 were separated by filtration, and the fermentation 
broths were extracted with ethyl acetate (Synth, São Paulo, 
Brazil). Crude extracts of biotransformation and control 
experiments were achieved after solvent evaporation and 
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m/z 93. All the fragmentations were proposed according to 
previously reported studies that employed labeled bisphe-
nols (Magi et al. 2010; Zhao et al. 2016). The fragmentation 
mechanism for alkylphenols, such as BPA, is charge-remote 
fragmentation, a type of gas phase dissociation where the 
bond cleavage occurs far from the charge site because of the 
charge stability. Therefore, it does not move into the frag-
menting portion of the ion (Magi et al. 2010). The proposi-
tion of the chemical structure of the diagnostic ion at m/z 
149 confirmed the transformation at the phenolic ring of 
BPA by Phanerochaete sp. H2.

At the same rationale for mass data analysis of derivative 
3, the chemical structures of derivatives 1 and 2 were pro-
posed. The MS/MS spectra of 1 (Fig. 4A) and 2 (Fig. 4B) 
showed base peaks at m/z 229.0857 [M-H]− (calculated for 
[M-H]− 229.0870) and m/z 241.0857 [M-H]− (calculated for 
[M-H]− 241.0870), respectively. In the proposed fragmenta-
tion mechanism of 1 and 2, the radical ions at m/z 214 and 
226, respectively, are formed by the loss of methyl radical. 
The fragments at m/z 135 and 133, which have been seen at 
spectra of 1 and 2, respectively, are due to the loss of phe-
nol from 1 or ortho-benzoquinone from 2. Cleavages of the 
hydroxyphenyl-alkyl bonds of the ions at m/z 135 and 133 
generated the ion at m/z 109 and 93, respectively.

Based on the above results, the biotransformation of BPA 
by Phanerochaete sp. H2 led to three metabolites, whose 
chemical structures are depicted in Scheme 3.

Discussion

Our research group has previously studied different fungi 
strains’ capabilities in transforming compounds (Silva Con-
ceição et al. 2021; Pereira dos Santos et al. 2022). A wide 
variety of microorganisms are helpful in biocatalysis as 
they can transform several chemicals, providing many cata-
lysts in small volumes and high turnover rates of enzymes 
and cofactors (Wu et al. 2021). Endophytic microorgan-
isms asymptomatically occur in the internal vegetal tis-
sues (Bacon and White 2000). Specialized studies have 
provided evidence that the interaction between endophytic 

The potential of PAN@H2 NFM was then evaluated 
for bioremoval of BPA. For this, BPA solutions at differ-
ent concentrations (5, 10, and 20 ppm) were subjected to 
bioassays at various time durations, and the resulting solu-
tions were subjected to UV absorbance measurements. The 
performance of both free and immobilized cells regarding 
BPA percentage removal was compared, as shown in Fig. 2. 
As can be seen, in the first 4 h, free and immobilized cells 
practically showed the same removal efficiency. However, 
after 24 h, the removal rates of the PAN@H2 NFM were 
generally higher than that of the free cells. The BPA removal 
rates of PAN@H2 NFM reached at 192 h the maximum of 
88, 79, and 74% at 5, 10, and 20 ppm of BPA, respectively.

At sequence, comparative analysis of the TLC chemi-
cal profiles of the ethyl acetate extracts obtained from the 
biotransformation and control experiments showed that free 
Phanerochaete sp. H2 cells can transform BPA after eight 
days of incubation. No variation was detected in the pH of the 
culture media, which was maintained at 6.5 throughout the 
biotransformation. To characterize the chemical structures 
of the derivatives produced from the BPA biotransforma-
tion by the PAN@H2 NFM, the ethyl acetate crude extract 
was analyzed by UHPLC-HRMS. As shown in Fig. 3, the 
peak related to BPA appears as a broad peak of low intensity 
at around 24 min. In addition, three peaks related to more 
polar fungal BPA metabolites were also detected.

Critical analysis of the ESI mass spectra (Fig. 4) of 
fungal metabolites of BPA allowed the chemical charac-
terization of the biotransformation process. The ESI mass 
spectrum (Fig. 4C) of the main derivative of BPA (3) con-
tained a base peak at m/z 243.1012 [M-H]− (calculated for 
[M-H]− 243.1027) that corroborates with the molecular for-
mula C15H16O3. The MS/MS spectrum of the compound 3 
shows some main fragments displayed in Scheme 2. The ion 
at m/z 227 resulted from the loss of CH4. The ion at m/z 149 
was due to the loss of phenol. Subsequent cleavage of the 
hydroxyphenyl-alkyl bond of the ion at m/z 149 generated 
the ion at m/z 109. Alternatively, if initial ionization occurs 
at the mono-hydroxylated ring, the ion at m/z 133 can be 
formed after the loss of catechol. Cleavage of the hydroxy-
phenyl-alkyl bond of the ion at m/z 133 generated the ion at 

Fig. 1 SEM images of (A) PAN 
and (B) PAN@T2 NFMs. The 
inset in (B) shows the porous 
structure of the fungal biofilm
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community members can play a significant role in the onset 
of enzymes (Qi-he et al. 2009). Endophytes are an unex-
plored and least studied group of microbes (Elango et al. 
2020), and their employment as enzymatic sources for 
bioremediation processes are very promising for discover-
ing new enzymes (dos Santos and de Oliveira Silva 2019; 
Pietro-Souza et al. 2020).

Herein, we assayed endophytic fungi isolated from Han-
droanthus impetiginosus leaves as potential biocatalyst 
capable of efficiently removing BPA from aqueous media. 
The endophyte Phanerochaete sp. H2 has been selected and 
identified through sequencing of its ITS region, which has 
been chosen as the official barcode for molecular identifica-
tion of fungi due to its ease of amplification, widespread 
use, and appropriately large barcode gap (Raja et al. 2017). 
Fungi from the Phanerochaete genus belong to the Basid-
iomycota phylum, and they have been used for direct BPA 
degradation or through the application of their extracellular 
enzymes (Cajthaml et al. 2009; Gassara et al. 2013; Wang et 
al. 2014). The Basidiomycota phylum includes ligninolytic 
species, also known as white-rot fungi, of great importance 
due to their different applications in the biodegradation of 
phenolic compounds (Martínková et al. 2016). A recent 
survey highlighted some Basidiomycota fungi used in BPA 
degradation (Torres-García et al. 2022).

Fungal immobilization on nanostructured platforms such 
as the ones proposed here holds the potential to make bio-
remediation processes more robust due to the prevention of 
foaming, biomass aging, and microbial contamination and 
may enhance the enzymatic activity (Spina et al. 2018). To 
improve the BPA bioremoval efficiency, Phanerochaete sp. 
H2 was immobilized onto PAN NFM. SEM images con-
firmed the biofilm formation. The formed biofilm was inter-
locked with nanofibers forming a cohesive structure typical 
of this type of structure (Hu et al. 2019). Moreover, it was 
possible to observe the presence of porosity in the fungal 
biofilm, which contributes to the increase of surface area 
and mass transfer (Hu et al. 2019; Madadi and Bester 2021).

The performance of both free and immobilized cells 
regarding BPA percentage removal was compared. The 
results showed that the PAN@H2 had superior removal 
properties, which can be ascribed to the adsorption-catalysis 
synergy. The enhanced performance of the PAN@H2 NFM 
could be attributed to the synergistic adsorption/biotransfor-
mation of BPA. Decreased removal efficiency with increas-
ing BPA concentration may be related to the partial blocking 
of the membrane pores, thereby reducing the liquid perme-
ability and the removal rates (Zdarta et al. 2022).

Despite the exceptional fungal ability to flourish in the 
presence of recalcitrant compounds, the mechanism of bio-
degradation by fungi remains poorly understood. Elucidat-
ing the metabolic pathway that fungi employ to transform 

Fig. 2 Percentage removal of BPA using free (orange bar) and immobi-
lized (green bar) Phanerochaete sp. H2 vs. initial BPA concentration: 
(A) 5 ppm, (B) 10 pmm, and (C) 20 ppm of BPA
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The results showed that the PAN@H2 had superior removal 
properties compared to the free cells, which can be ascribed 
to the adsorption-catalysis synergy. The chemical structures 
of the three BPA derivatives (1–3) were identified based on 
the proposed fragmentation pathways and accurate mass 
data. Modifications at the phenolic and alkyl chains were 
verified at the transformation of the BPA scaffold by fun-
gus. The characterization of BPA derivatives contributed to 
understanding the chemistry involved in its biodegradation 
process, which is mandatory for rational planning of its bio-
remediation, prediction of the end products, and guidance 
of future application of the methodology developed herein.

a hazardous compound into an environmentally friendly 
one helps to rationalize the directions of a bioremediation 
procedure. Therefore, for future applications, evaluating 
the mechanisms of biodegradation that microorganisms use 
during the remediation is essential (Sosa-Martínez et al. 
2020). Negative ESI spectra of three BPA derivatives (1–3) 
and their respective MS/MS spectra were interpreted.The 
fragmentation pathways were proposed, which permitted 
the characterization of the chemical structures. Modifica-
tions at the phenolic and alkyl chains were verified at the 
transformation of the BPA scaffold by fungus.

The Ecological Structure Activity Relationships (ECO-
SAR) program based on quantitative structure-activity 
relationship (QSAR) has been widely applied to evaluate 
the toxicity of degradation products (Khan et al. 2019). A 
recent study reported the removal of bisphenol E (an ana-
log of BPA) by ferrate(VI) in water (Tian et al. 2022). In 
sequence, the acute and chronic toxicity of its degradation 
products to three aquatic species (fish, daphnia, and green 
algae) were evaluated by the ECOSAR program. Among the 
derivatives of bisphenol E, the authors reported one with the 
same chemical structure we identified as the BPA derivative 
1, which was formed after the oxidation of bisphenol com-
pounds to produce di-hydroxylated products. Interestingly, 
the toxicity of product 1 was decreased compared with the 
parent BPE molecule (Tian et al. 2022).

Conclusions

In the present study, an endophytic fungus (Panerochaete 
sp. H2) isolated from H. impetiginosus leaves was screened 
as a potential biocatalyst capable of efficient bioremediation 
of BPA from aqueous media. To improve the bioremediation 
efficiency, the fungus was immobilized onto PAN NFM. 

Fig. 3 Total Ion Chromatogram 
(TIC) from UPLC-HRMS analy-
sis, SCAN mode, of the ethyl 
acetate extract of the biotransfor-
mation of bisphenol A (BPA) by 
PAN@H2 NFM
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Fig. 4 MS/MS spectra of fungal 
metabolites 1–3 of BPA in nega-
tive ion mode: (A) metabolite 1, 
[M-H]− at m/z 229.0857 as the 
precursor ion; (B) metabolite 2, 
[M-H]− at m/z 241.0857 as the 
precursor ion; and (C) metabolite 
3, [M-H]− at m/z 227.0699 as the 
precursor ion
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Scheme 3 Chemical structures 
of bisphenol A and its three 
derivatives (1–3) detected in the 
biotransformation assay with 
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