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Abstract
α-l-rhamnosidase [EC 3.2.1.40] belongs to glycoside hydrolase (GH) families (GH13, GH78, and GH106 families) in 
the carbohydrate-active enzymes (CAZy) database, which specifically hydrolyzes the non-reducing end of α-l-rhamnose. 
Αccording to the sites of catalytic hydrolysis, α-l-rhamnosidase can be divided into α-1, 2-rhamnosidase, α-1, 3-rhamnosi-
dase, α-1, 4-rhamnosidase and α-1, 6-rhamnosidase. α-l-rhamnosidase is an important enzyme for various biotechnological 
applications, especially in food, beverage, and pharmaceutical industries. α-l-rhamnosidase has a wide range of sources and 
is commonly found in animals, plants, and microorganisms, and its microbial source includes a variety of bacteria, molds and 
yeasts (such as Lactobacillus sp., Aspergillus sp., Pichia angusta and Saccharomyces cerevisiae). In recent years, a series 
of advances have been achieved in various aspects of α-validates the above-described-rhamnosidase research. A number 
of α-l-rhamnosidases have been successfully recombinant expressed in prokaryotic systems as well as eukaryotic systems 
which involve Pichia pastoris, Saccharomyces cerevisiae and Aspergillus niger, and the catalytic properties of the recombi-
nant enzymes have been improved by enzyme modification techniques. In this review, the sources and production methods, 
general and catalytic properties and biotechnological applications of α-l-rhamnosidase in different fields are summarized 
and discussed, concluding with the directions for further in-depth research on α-l-rhamnosidase.
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Introduction

α-l-rhamnosidase (EC 3.2.1.40) is a glycoside hydrolase 
that can hydrolyze terminal l-rhamnose of various natural 
glycosides, such as naringin, hesperidin, and rutin (Table 1). 
The enzyme is ubiquitous in nature and is found in ani-
mals, plants and microorganisms. Based on amino acid 
sequence similarity, α-l-rhamnosidases of microbial origin 
can be classified into GH13, GH78 and GH106 glycoside 
hydrolase families in the CAZy database. The analysis of 
the protein structure and reaction mechanism of different 
α-l-rhamnosidase species revealed that they have some 
differences: GH78 family α-l-rhamnosidase contains five 
structural domains and reacts through the substrate bind-
ing to the catalytic domain of the barrel structure of (α/α)6; 

GH106 family α-l-rhamnosidase has a (β/α)8-barrel struc-
ture containing five structural domains; GH13 family α-l-
rhamnosidase crystal structure has not yet been resolved, 
and its properties are highly similar to the sequence of amyl-
ase but cannot hydrolyze soluble starch (Cui et al. 2007; 
Terry et al. 2020; Ndeh et al. 2017; Liu et al. 2012a, b). 
The main production mode of α-l-rhamnosidase is micro-
bial fermentation. However, the current production level of 
microbial α-l-rhamnosidase needs to be improved, and the 
α-l-rhamnosidase produced by wild-type strains has prob-
lems such as the need for inducers and the difficulty of isola-
tion and purification in the later stage. Although companies 
have realized the industrial production of this enzyme, the 
high price of commercial enzymes severely restricts the 
wide application of α-l-rhamnosidase. Therefore, so many 
researchers have been involved in the construction and 
modification of high-yielding α-l-rhamnosidase engineered 
strains.

α-l-rhamnosidase is one of the important enzymes for 
various biotechnology applications, especially in the food 
and pharmaceutical industries. As an enzyme with a natu-
ral glycosidic bond hydrolysis function, α-l-Rhamnosidase 
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acts to cleave the α-L-rhamnosyl portion of flavonoids to 
specifically hydrolyze the α-1,2, α-1,3, α-1,4, α-1, and α-1,6 
glycosidic bonds at the ends of glycans or glycosides, releas-
ing L-rhamnose and producing new glycans or glycosides 
(Slámová et al. 2018). For instance, it is used to remove 
bitter substances in citrus juice (Li et  al. 2018b, 2019; 
Bodakowska-Boczniewicz and Garncarek 2019); improve 
the taste and aroma of fresh juice and tea (Fang et al. 2019; 
Peng et al. 2021a). Prunin, hesperetin 7-O-glucoside, and 
isoquercitrin with higher bioavailability and bioactivity 
are prepared using naringin, hesperidin and rutin as sub-
strates (Carceller et al. 2019; Kumar et al. 2019; Wang 
et al. 2020). Although there have been review articles on 
α-l-rhamnosidase, many advances have been made in the 
research related to this enzyme in recent years. The purpose 
of this review is to summarize and discuss the progress in 
the sources, production, properties and applications of α-l-
rhamnosidase so far, so as to further grasp the key research 
directions of α-l-rhamnosidase in the future.

Source and production

Animal and plant sources

Naringinase, which has both α-l-rhamnosidase and β-d-
glucosidase activities, was first isolated from celery seeds 

by Hall (1938). Twenty years later, Ting (1958) and Thomas 
et al. (1958) also discovered naringinase in grape leaves. 
Since then some scholars have also studied naringinase in 
buckwheat seeds and the genus Rhamnus (Suzuki 1962; 
Bourbouze et al. 1975). Liver is the primary location of ɑ-d-
rhamnosidase in animals. Qian et al. (2005) first isolated and 
purified the ɑ-l-rhamnosidase from pig liver, and they found 
that the enzyme could hydrolyze the terminal rhamnose of 
dioscin. Later, this dioscin-α-d-rhamnosidase was also iden-
tified and purified from bovine liver (Qian et al. 2013).

Microbial sources and production

Molds

The sources of mold include Penicillium, Aspergillus, and 
Rhizopus genera. By adding corn cob or naringin to the liq-
uid medium, the researchers stimulated the formation of α-l-
rhamnosidase. They then sequentially extracted and purified 
various α-l-rhamnosidase from Penicillium citrinum MTCC-
3565, Penicillium citrinum MTCC-8897, and Penicillium 
corylopholum MTCC-2011 (Yadav et al. 2012a, b, 2013b). 
They also isolated and identified Penicillium griseoroseum 
MTCC-9224 from the decaying gooseberry fruit peel, which 
secretes α-l-rhamnosidase, and determined that gooseberry 
peel is the best inducer for its production of this enzyme 
(Yadav et al. 2017).

Table 1  α-l-rhamnosidase catalyzed hydrolysis of naringin, hesperidin, and rutin

Substrate Product

Chemical name Structural formula Type of linkage Chemical name Structural formula

naringin α-1,2 prunin

hesperidin α-1,6 hesperetin 7-O-glucoside

rutin α-1,6 isoquercitrin
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There are few reports on the production of α-l-
rhamnosidase by Rhizopus species. Shanmugam and Yadav 
(1995) found that Rhizopus nigricans could produce α-l-
rhamnosidase extracellularly. However, Rhizopus arrhizus 
CCF 100 could show obvious α-l-rhamnosidase activity 
only when it is induced by rutin or naringin (Monti et al. 
2004).

The genus Aspergillus contains multiple known produc-
ers of α-l-rhamnosidase, including Aspergillus terreus, 
Aspergillus aculeatus, Aspergillus niger, Aspergillus nidu-
lans, and Aspergillus oryzae. The production methods of 
α-l-rhamnosidase by Aspergillus mainly include liquid fer-
mentation and solid fermentation. At present, the main inter-
national production mode is still liquid deep fermentation. 
Weignerova et al. (2012) fermented A. terreus CCF 3059 in 
a 75 L bioreactor to mass-produce alkali- and thermo-stable 
α-l-rhamnosidase. As with other Aspergillus spp., the α-l-
rhamnocidase produced by A. niger tends to be more present 
as naringinase. Several investigations described the improve-
ment of the fermentation medium and conditions for A. niger 
DB056 to produce naringinase, and after optimization, the 
maximum activity of α-l- rhamnosidase was 1069.30 U/mL 
in a 200 L fermenter (Wu et al. 2010).

Yeasts and other fungi

Pichia angusta X349 is regarded as one of the excellent pro-
ducers of α-l-rhamnosidase (Yanai and Sato 2000). Further-
more, Cryptococcus albidus and Candida tropicalis can also 
produce α-l-rhamnosidase (Borzova et al. 2018). Clavispora 
lusitaniae has the capacity to produce α-l-rhamnosidase, 
according to Singh et al. (2015b). To improve the enzyme 
activity, the enzyme production conditions of this strain 
were further improved (Singh et al. 2015a).

Certain other fungi, in addition to molds and yeasts, can 
also produce α-l-rhamnosidase, e.g., the oat pathogenic fun-
gus Stagonospora avenae, the soil fungus Acrostalagmus 
luteoalbus, and the plant pathogen Fusarium moniliforme 
(Bleddyn Hughes et al. 2004; Rojas et al. 2011; Kumar et al. 
2019). A new α-l-rhamnosidase produced by Talaromyces 
stollii CLY-6 has been found to more easily hydrolyze the 
rhamnosidic linkage between the rhamnose and aglycone of 
epmedin C (Cheng et al. 2022).

Bacteria

Researchers have also focused a lot of emphasis on bacte-
rial sources of α-l-rhamnosidase. The first bacteria found 
to produce α-l-rhamnosidase was Bacteroides JY-6, a strain 
of human intestinal bacteria (Jang and Kim 1996). Moreo-
ver, it has been demonstrated that the human gut bacteria 
Fusobacterium K-60 and Enterococcus avium EFEL009 
secrete α-l-rhamnosidase (Park et al. 2005; Shin et al. 2016). 

Subsequent studies have revealed that some Bacillus bac-
teria, like Bacillus litoralis C44 and Bacillus amylolique-
faciens 11,568, are also able to produce α-l-rhamnosidase 
(Lyu et al. 2016; Zhu et al. 2017).

The abundance of marine and soil microorganisms has 
led to a continuous investigation of the productive properties 
of various bacteria in the ocean and soil by researchers. The 
bacterium Pseudoalteromonas sp. 005NJ, Brevundimonas 
sp. Ci19, and Novosphingobium sp. PP1Y screened from 
sub-Antarctic seawater, Beagle Channel, and contaminated 
seawater in Italy can produce α-l-rhamnosidase (Gastón 
Orrillo et al. 2007; Alvarenga et al. 2013; Izzo et al. 2014). 
As a fermentation strain, Rodrigues et  al. (2020) used 
the Acidobacterium bacterium AB60, which was isolated 
from Cerrado soils. In the medium that contained xylan as 
a carbon source, they fermented it. In addition to the pri-
mary xylan-degrading enzymes, high enzyme activity α-l-
rhamnosidase was present in the fermentation broth.

Molecular biology research of Microbial‑derived 
α‑l‑rhamnosidase

Cloning of α‑l‑rhamnosidase genes

At the beginning of the 21st century, researchers have gradu-
ally started to study the cloning of α-l-rhamnosidase genes. 
Initially, PCR amplification and library construction were 
the most common methods to clone α-l-rhamnosidase genes 
from microorganisms. Recently, based on the continuous 
development and advancement of sequencing technology, 
metagenomic mining has also been applied to the study of 
α-l-rhamnosidase genes. The cloned α-l-rhamnosidase 
genes in representative microorganisms are listed in Table 2. 
Numerous research has revealed that the fungal and bac-
terial genome may contain multiple genes encoding α-l-
rhamnosidase. For instance, the gene sequence of a novel 
rutin-converting flavonoid glycoside hydrolase was cloned 
from A. niger DLFCC-90 (accession number EU200666), 
and the enzyme was classified in the GH 13 family by 
sequence similarity comparison and hydrolysis characteri-
zation (Liu et al. 2012a, b).

Expression of α‑l‑rhamnosidase genes

So far, the expression of α-l-rhamnosidase of fungal and 
bacterial origin has been studied by many scholars. The 
expression of α-l-rhamnosidase from microorganisms in the 
last decade is demonstrated in Table 3. The prokaryotic (E. 
coli) expression system has been chosen for protein expres-
sion of the bacterial-derived α-l-rhamnosidase genes, and 
the pET system has been largely utilized. In E. coli BL21, 
the bacterial-derived α-l-rhamnosidase genes are expressed 



 World Journal of Microbiology and Biotechnology (2023) 39:191

1 3

191 Page 4 of 13

stably with active protein (Wu et al. 2018; Ferreira-Lazarte 
et al. 2021).

The expression of α-l-rhamnosidase gene of Aspergillus 
origin has been more studied. Lyu et al. (2019) expressed 
the codon-optimized α-l-rhamnosidase gene from n. E. coli 
and obtained 574.5 U/L of p-nitrophenol-α-rhammnoside 
(p-NPR) hydrolase activity after fermentation in a 5  L 

bioreactor. Considering some problems inherent in the 
prokaryotic expression system, such as unstable disulfide 
bonds, incorrect protein folding, and inclusion body pre-
cipitation, the eukaryotic expression system is preferable 
for fungal-derived genes to avoid this set of possible prob-
lems. Spohner et al. (2015) cloned the codon-optimized 
gene encoding Aspergillus terreus rhamnosidase, and the 

Table 2  The cloned α-l-rhamnosidase genes in representative microorganisms

Organism Name pH optima Temperature 
optima (°C)

Molecular weight Accession number References

Bacteria
Clostridium stercorarium ramA 7.5 60 95,000 AJ238748 Zverlov et al. (2000)
  Bacillus sp. GL1 rhaA 6.5–7.0 40 98,280 AB046705 Hashimoto et al. (2003)

rhaB 6.5–7.0 40 106,049 AB046706
 Sphingomonas paucimobilis 

FP2001
rhaM – – 97,400 AB080801 Miyata et al. (2005)

 Lactobacillus plantarum 
NCC245

rhaB1/rhaB2 5 60 73,000 FJ943501 Avila et al. (2009)

 Lactobacillus acidophilus 
DSM9126

ramALA 4 41 – NC006814 Beekwilder et al. (2009)

 Pediococcus acidilactici DSM 
20,284

ram 5.5 50 76,800 ZP_07367044 Michlmayr et al. (2011)

ram2 4.5 70 61,300 ZP_07366943
 Streptomyces avermitilis 

NBRC14893
sav_828 6 50 – BAC68538 Ichinose et al. (2013)

 Klebsiella oxytoca KCTC 1686 KoRha 5 – – YP_005019950 O’Neill et al. (2015)
 Bifidobacterium dentium BdRham – – – KF147170 Bang et al. (2015)
 Bifidobacterium breve ATCC 

15,700
– 6.5 55 87,000 CP006715.1 Zhang et al. (2015)

 Novosphingobium sp. PP1Y rRHA-P 6.9 45 120,000 WP_013837086.1 De Lise et al. (2016)
 Bacteroides thetaiotaomicron 

VPI-5482
BtRha 6.5 55 83,300 WP_011107561.1 Wu et al. (2018)

 Chloroflexus aurantiacus 
DSM636

– 6.0 50 105,000 A9WDK5 Shin et al. (2019)

 Dictyoglomus thermophilum 
DSM 3960

dicth_0289 5 95 106,000 – Guillotin et al. (2019)

 Thermotoga petrophila DSM 
13,995

tpet_1682 4.5 90 101,700 CP000702.1 Xie et al. (2020)

Fungi
 Aspergillus aculeatus rhaA 5 40 92,000 AF284761 Manzanares et al. (2001)

rhaB 5 40 85,000 AF284762
 Xylaria polymorpha gh78-1 6 98,000 JN815084 Nghi do et al. (2012)
 Aspergillus terreus – JN899401 Gerstorferová et al. (2012)
 Aspergillus terreus – AFH54529 Spohner et al. (2015)
 Alternaria sp. L1 rhaL1 6 60 – JN704640 Xu et al. (2016)
 Aspergillus oryzae RIB40 AorhaA 5 70 70,000 83,768,215 Ishikawa et al. (2017)
 Aspergillus niger JMU-TS528 r-Rha1 5 60 – AGN92963.1 Li et al. (2018b)
 Aspergillus niger CCTCC M 

2,018,240
rha – – 100,000 MH779610 Wang et al. (2019)

 Aspergillus nidulans rhaE 4.5 55 95,000 FR873475.1 Lyu et al. (2019)
 Aspergillus tubingensis AT-rRha 4 60 – KX664478 Li et al. (2019)
 Talaromyces stollii CLY-6 Rhase-TS 4.5 60 87,500 MT779018 Cheng et al. (2021)
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hydrolase activity of the enzyme expressed in Pichia pasto-
ris and Kluyveromyces lactis against p-NPR was 17.6 U/mL 
and 30.6 U/mL, respectively. Moreover, it is not difficult to 
find that most of the eukaryotic expression systems of Asper-
gillus-derived α-l-rhamnosidase genes are heterologously 
expressed using Pichia pastoris, rarely involve homologous 
expression. Only Ye et al. (2022) homologously expressed 
the α-l-rhamnosidase gene of A. niger in A. niger 3.350 and 
the p-NPR hydrolase activity of the target protein obtained 
after 5 L bioreactor fermentation was 34.43 U/mg.

Properties of α‑l‑rhamnosidase

General properties and catalytic properties 
of α‑l‑rhamnosidase

α-l-rhamnosidase from different sources tends to exhibit 
different properties. For future research and application of 
this enzyme, it is advantageous to have adequate knowl-
edge of the properties of α-l-rhamnosidase from different 
sources. The general properties and catalytic properties of 
α-l-rhamnosidase from different microbial sources are sum-
marized in Tables 4 and 5, respectively.

General properties of α‑l‑rhamnosidase

Different plants and animals and microorganisms differ in 
many aspects of their genetic composition, transcription, 
translation and post-translational modifications due to their 
species differences. Various sources of α-l-Rhamnosidase 
have different levels of glycosylation and different confor-
mations of the enzyme protein due to different post-trans-
lational modification mechanisms, resulting in differences 
in their structure and properties. The enzymes of different 
sources also have different catalytic properties depending on 
the properties they carry with their production hosts. Most 
α-l-rhamnosidases have molecular weights between 50 and 
140 kDa, with the majority falling in the around 100 kDa. 
The optimum pH, optimum temperature and thermal stabil-
ity of enzymes are crucial for their industrial applications, so 
it is necessary to focus on these three properties of different 
α-l-rhamnosidases.

Three bacterial α-l-rhamnosidases have been found to 
have an acidic pH, despite the fact that the optimum pH 
range for most bacterial α-l-rhamnosidases is 5.0–8.0. 
Ram2 from Pediococcus acidilactici and TpeRha form 
Thermotoga petrophila both have an optimal pH of 4.5 
(Michlmayr et al. 2011; Xie et al. 2020). The optimum 

Table 3  Expression of α-l-rhamnosidase from microorganisms in the last decade

Organism Expression vector Expression host Enzyme Enzyme activ-
ity

References

U/mL U/mg

Bifidobacterium dentium pET-26b(+) E.coli BL21(DE3) BdRham – 23.3 Bang et al. (2015)
Novosphingobium sp. PP1Y pET-22b(+) E.coli BL21(DE3) RHA-P – 5.9 Mensitieri et al. (2018)
Bacteroides thetaiotaomicron 

VPI-5482
pET-28a E.coli BL21(DE3) BtRha – 0.57 Wu et al. (2018)

Thermotoga maritima MSB8 pET-24c(+) E.coli BL21 Star Tm_Ram106B – 40.5 Baudrexl et al. (2019)
Chloroflexus aurantiacus 

DSM636
pET-28a(+) E.coli BL21 – 0.6 304.3 Shin et al. (2019)

Thermotoga petrophila DSM 
13,995

pET-28a E.coli BL21(DE3) TpeRha – 105.03 Xie et al. (2020)

Lactobacillus plantarum 
WCFS1

pURI3-Cter E.coli BL21(DE3) Ram1 – 64.7 Ferreira-Lazarte et al. (2021)

Paenibacillus odorifer DSM 
15,391

pET-20b E.coli BL21(DE3) PodoRha – 49.3 Xie et al. (2022)

Dictyoglomus thermophilum pRSFDuet-1 E.coli BL21(DE3) DthRha 25.6 – Yu et al. (2022)
Alternaria sp. L1 pPIC9K P.pastoris GS115 RhaL1 2.27 – Lu et al. (2015)
Aspergillus terreus pKLacZ K.lactis GG799 – 30.6 149.4 Spohner et al. (2015)
Aspergillus terreus CCF 3059 pPICZαA P.pastoris KM71H  (MutS) A-Rha – 82 Markosova et al. (2015)
Aspergillus oryzae RIB40 pPICZαC P.pastoris GS115 AorhaA 0.36 5.4 Ishikawa et al. (2017)
Aspergillus nidulans pET-28a(+) E.coli BL21(DE3) synAnRhaE 0.57 – Lyu et al. (2019)
Aspergillus tubingensis pPIC9K P.pastoris GS115 AT-rRha – – Li et al. (2019)
Aspergillus niger CCTCC M 

2,018,240
pPIC9K P.pastoris GS115 Rha 0.47 0.57 Wang et al. (2019)

Aspergillus niger pCAMBIA A. niger 3.350 Rha-N1 0.658 34.43 Ye et al. (2022)
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pH of Ram2 from Lactobacillus plantarum WCFS1 is 
3.0, which is the lowest optimum pH reported for acidic 
α-l-rhamnosidase (Ferreira-Lazarte et al. 2021). The opti-
mum pH of fungal α-l-rhamnosidases is generally in the 

range of 5.0-6.5. Interestingly, some fungi can produce 
alkaline α-l-rhamnosidase. Aspergillus clavato-nanicus 
MTCC-9611, Fusarium moniliforme MTCC-2088, and 
Aspergillus flavus MTCC-9606 have the high optimum 

Table 4  General properties of α-l-rhamnosidase from different microbial sources

Organism Molecular 
weight (kDa)

pHopt Topt (℃) Thermal stability References

Pseudoalteromonas sp. 005NJ – 6.0 40 Thermosensitive Gastón Orrillo et al. (2007)
Lactobacillus acidophilus – 6.0 37–45 Unstable Beekwilder et al. (2009)
Streptomyces avermitilis 113 6.0 50 Stable below 40 °C Ichinose et al. (2013)
Bifidobacterium breve 87 6.5 55 Stable at 60 °C Zhang et al. (2015)
Novosphingobium sp. PP1Y 120 6.9 40.9 Stable between 25–40 °C De Lise et al. (2016)
Bacillus amyloliquefaciens 11,568 32 7.5 45 Stable below 45 °C Zhu et al. (2017)
Dictyoglomus thermophilum 100 5.0 95 Stable Guillotin et al. (2019)
Thermotoga petrophila 101.7 4.5 90 Stable Xie et al. (2020)
Paenibacillus odorifer 100 6.5 45 Stable at 40 °C Xie et al. (2022)
Fusarium moniliforme MTCC-2088 36 10.5 50 Stable at 10 °C Kumar et al. (2019)
Talaromyces stollii CLY-6 140 4.5 45 Stable below 50 °C Cheng et al. (2022)
Aspergillus flavus MTCC-9606 41 11.0 50 Unstable Yadav et al. (2011)
Aspergillus niger JMU-TS528 90 5.0 60 Stable Li et al. (2016)
Penicillium griseoroseum MTCC-9224 97 6.5 57 Unstable Yadav et al. (2017)
Aspergillus tubingensis JMU-TS529 110 4.0 50–60 Stable below 60 °C Li et al. (2019)
Aspergillus nidulans 95 4.5 55 Stable below 55 °C Lyu et al. (2019)
Aspergillus terreus CCF3059 130 6.5 65 Stable Li et al. (2022)

Table 5  Catalytic properties of α-l-rhamnosidase from different microbial sources

“Km” was detected using “p-NPR” as the substrate; + denotes that α-l-rhamnosidase has the strongest affinity for this glycosidic bond

Organism Km (mM) Substrate specificity Links References

Lactobacillus acidophilus 0.7 Naringin, rutin, hesperidin, narirutin α-1,2, α-1,6 Beekwilder et al. (2009)
Streptomyces avermitilis 0.03 Naringin, rutin, hesperidin, gum arabic α-1,2, α-1,6, α-1 Ichinose et al. (2013)
Bifidobacterium dentium 1.06 Naringin, poncirin, ginsenoside Re, rutin α-1,2, α-1,6+ Bang et al. (2015)
Novosphingobium sp PP1Y 0.157 Naringin, rutin, hesperidin, quercitrin α-1,2, α-1,6, α-1 Mensitieri et al. (2018)
Bacteroides thetaiotaomicron 2.87 Epimedin C, rutin, hesperidin α-1,2, α-1,6 Wu et al. (2018)
Chloroflexus aurantiacus – Naringin, rutin, hesperidin α-1,2, α-1,6+ Shin et al. (2019)
Dictyoglomus thermophilum 0.054 Naringin α-1,2+, α-1,6 Guillotin et al. (2019)
Thermotoga petrophila DSM 13,995 2.99 Epimedin C α-1,2 Xie et al. (2020)
Alternaria alternata SK37.001 4.84 Naringin, neohesperidin, rutin, hesperi-

din, quercitrin
α-1,2, α-1,6, α-1 Zhang et al. (2018)

Talaromyces stollii CLY-6 3.02 Epimedin C, naringin, neohesperidin, 
myricetrin, rutin, icariin

α-1,2, α-1,3, α-1,6, α-1 Cheng et al. (2022)

Papiliotrema laurentii ZJU-L07 1.38 Epimedin C, naringin, neohesperidin, 
rutin, hesperidin

α-1,2+, α-1,6 Lou et al. (2022)

Aspergillus awamori MTCC-2879 0.62 Naringin α-1,2 Yadav et al. (2013a)
Aspergillus niger JMU-TS528 – Naringin, myricetrin, saikosaponin C, 

rutin, hesperidin
α-1,2, α-1,3, α-1,4, α-1,6 Li et al. (2016)

Aspergillus oryzae NL-1 5.2 Naringin, rutin, hesperidin α-1,2, α-1,6 Ge et al. (2017b)
Aspergillus nidulans 3.46 Epimedin C, naringin, neohesperidin, 

rutin
α-1,2+, α-1,6 Lyu et al. (2019)

Aspergillus terreus CCF3059 0.481 icariin α-1 Li et al. (2022)
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pH of α-l-rhamnosidase, all between 10 and 11 (Yadav 
et al. 2011, 2012c; Kumar et al. 2019).

The optimum temperature for microbial α-l-
rhamnosidase is typically in the range of 40–60 °C, but 
a few cold-tolerant and thermophilic enzymes do exist. 
The optimum temperature for α-l-rhamnosidase from the 
cold-tolerant bacterium, Brevundimonas sp. Ci19, is very 
low, at 20–37 °C (Alvarenga et al. 2013). Ram2 from 
Pediococcus acidilactici, RhaL1 from Alternaria sp. L1, 
and α-l-rhamnosidase from Aspergillus terreus CCF3059 
all have an optimum temperature of 70 °C (Birgisson et al. 
2004; Michlmayr et al. 2011; (Liu et al. 2012a, b; Weign-
erova et al. 2012). TpeRha from Thermotoga petrophila 
and DtRha from Dictyoglomus thermophilum both exhibit 
much higher optimum temperature than the above-men-
tioned thermophilic bacteria and fungi, at 90 and 95 °C, 
respectively (Guillotin et al. 2019; Xie et al. 2020). More-
over, TpeRha is the best heat-stable α-l-rhamnosidases to 
date, with the residual activity of more than 40% after 1 h 
incubation at 90 °C (Xie et al. 2020). According to some 
reports, the thermal stability of enzyme proteins is closely 
related to their degree of glycosylation modification, and 
to some extent, the glycosylation level of enzyme proteins 
correlates with their thermal stability (Manzanares et al. 
2001). Besides, many other factors also affect the thermal 
stability of enzymes, such as salt bridges and hydrophobic 
interactions (Ge et al. 2018). Metal ions also have a sig-
nificant effect on α-l-rhamnosidase activity. In the pro-
cess of microbial metabolism or enzyme reaction in vitro, 
the participation of metal ions will affect the activity of 
enzyme.  Mn2+ and  Mg2+ can promote the conversion of 
naringin to prunin, while  Cu2+ naringin can inhibit the 
conversion of prunin. The important role of  Ca2+ in the 
catalytic process of α-l-rhamnosidase was revealed by 
comparing the crystal structures of the five available 
α-l-rhamnosidases. (Mensitieri et al. 2018) SaRha78A 
rhamnosidase,  Ca2+ binds to an independent domain very 
close to the catalytic domain. When the substrate binds 
to the active site of the enzyme,  Ca2+ can form coordina-
tion bonds with  O3 and  O4 of the substrate rhamnose-
thus promoting the reaction (Fujimoto et al. 2013a, b). 
Enzyme activity inhibited by the metal chelating agent 
EDTA can also be fully restored by the addition of  Ca2+. 
Several experiments have demonstrated the positive effect 
of  Ca2+ on glycosidase activity (Miake et al. 2000; Hashi-
moto et al. 1998). On the contrary,  Hg2+ and sulfur-based 
reagents can affect the sulfur-based groups of enzymes, 
thus inhibiting the activity of some α-l-rhamnosidases 
(Yanai et al. 2000). When 1 mmol/L  Hg2+ is present, the 
activity of BtRha and RamA and other glycosidases is 
significantly reduced or even completely inhibited (Zver-
lov et al. 2000; Wu et al. 2018).

Catalytic properties of α‑l‑rhamnosidase

α-l-rhamnosidase can act on a total of two types of glyco-
sidic bonds, one is the bond between glycosyl group and 
aglycone directly, that is, α-1 glycosidic bond, and the other 
is the bond between glycosyl group and glycosyl group, 
including α-1,2, α-1,3, α-1,4, and α-1,6 glycosidic bonds. 
P-NPR is a synthetic substrate, and all α-l-rhamnosidases 
can act on its α-1 glycosidic bond except very few α-l-
rhamnosidases. Therefore, p-NPR is a universal sub-
strate for the determination of the enzyme activity of α-l-
rhamnosidase. However, for quercetin, a natural glycoside 
containing the α-1 glycosidic bond, only a small fraction of 
α-l-rhamnosidase can hydrolyze it. For example, the α-l-
rhamnosidases from Streptomyces avermitilis, Novosphin-
gobium sp PP1Y, and Alternaria alternata SK37.001, while 
like most α-l-rhamnosidases, they can hydrolyze α-1,2 and 
α-1,6 glycosidic bonds (Ichinose et al. 2013; Mensitieri 
et al. 2018; Zhang et al. 2018). The specific hydrolysis is 
described by the process of hydrolysis of glycosidic bonds 
by rhamnosidase SaRha78A as an example. The amino acid 
 Glu636 acts as a proton donor to attack the O1 of the substrate 
rhamnose to protonate it, while the amino acid  Glu895 depro-
tonates the water molecules that have strong hydrogen bonds 
with the substrate and the enzyme, and the deprotonated 
water molecules attack the glycosidic bonds of the substrate 
to complete the hydrolysis reaction (Fujimoto et al. 2013a, 
b; David et al. 2000; Zhu et al. 2021).

Interestingly, different α-l-rhamnosidases may have 
higher specificity for one of the glycosidic bonds. For 
instance, the α-l-rhamnosidases from Papiliotrema lauren-
tii ZJU-L07, Dictyoglomus thermophilum, and A. nidulans 
are more specific for the α-1,2 glycosidic bond (Guillotin 
et al. 2019; Lyu et al. 2019; Lou et al. 2022); whereas the 
α-l-rhamnosidases from Chloroflexus aurantiacus and Bifi-
dobacterium dentium showed more specific hydrolysis of 
α-1,6 glycosidic bond (Bang et al. 2015; Shin et al. 2019). 
Moreover, some α-l-rhamnosidases can hydrolyze only one 
type of glycosidic bond exclusively, such as A. tubingensis 
JMU-TS529 whose α-l-rhamnosidase can only hydrolyze 
α-1,2 glycosidic bond (Li et al. 2019). The number of α-l-
rhamnosidases that can hydrolyze α-1,3 and α-1,4 glyco-
sidic bonds is small compared to α-1,2 and α-1,6 glycosidic 
bonds. Nevertheless, the α-l-rhamnosidase from A. niger 
S528 has a broad substrate spectrum, and it is the only α-l-
rhamnosidase known to hydrolyze the above four glycosidic 
bonds (Li et al. 2016).

Epimedin C also contains the α-1,2 glycosidic bond, but 
unlike the glycosidic bonds linking rhamnose and glucose 
in other compounds, the glycosidic bond in epimedin C 
links two rhamnose groups. An increasing number of α-l-
rhamnosidases have been shown to hydrolyze this α-1,2 
glycosidic bond in epimedin C, including DthRha from 
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Dictyoglomus thermophilum DSM 3960, TpeRha from 
Thermotoga petrophila DSM 13,995, and Rhase-I from 
Talaromyces stollii CLY-6, and they further hydrolyze the 
α-1 glycosidic bond between rhamnose and aglycone in the 
product icariin (Xie et al. 2020; Zhang et al. 2021; Cheng 
et al. 2022).

Modification of α‑l‑rhamnosidase

Molecular modification of α‑l‑rhamnosidase

Thermal stability and catalytic efficiency are two impor-
tant properties of enzymes, and studies aimed at improv-
ing these two properties have gradually increased in recent 
years. In particular, researchers have achieved many results 
in improving the thermal stability of r-Rha1 from A. niger 
JMU-TS528 through directed evolution and semi-rational 
design strategies (Li et al. 2018b; Liao et al. 2019). The most 
heat-stable r-Rha1 mutant available today, K406R/K573R, 
has a 3 h longer half-life at 60 °C than the wild type, which 
was obtained by replacing the two Lys on the surface of the 
enzyme with Arg (Li et al. 2018a). The affinity of r-Rha1 
has been improved by the substitution of semi-conserved 
amino acids around the active site, and the affinity is the key 
to improve the catalytic efficiency (Li et al. 2020).

It should be emphasized that improving the catalytic 
efficiency needs to increase the flexibility of the structure, 
and improving the thermal stability needs to increase the 
rigidity of the structure, both of which have completely 
opposite structural requirements. Thus, it is difficult to 
improve the catalytic efficiency and thermal stability of 
α-l-rhamnosidase simultaneously by adjusting the protein 
structure. Li et al. (2021) proposed a dual screening strategy, 
which finally achieved the simultaneous enhancement of the 
thermal stability and catalytic efficiency of r-Rha1.

Immobilization of α‑l‑rhamnosidase

Immobilized enzymes can improve the thermal stability and 
affinity of the enzyme while maintaining the original proper-
ties of the enzyme, and at the same time make the enzyme 
easy to be separated and reusable. Metal-organic frameworks 
(MOFs), as an emerging porous material, have been suc-
cessfully applied in the immobilization of α-l-rhamnosidase. 
For example, the α-l-rhamnosidase from A. niger CCTCC 
M 2,018,240 and A. niger JMU-TS528 were immobilized 
on magnetic MOFs and cerium-based metal-organic frame-
works nanoparticles, respectively, and the substrate affin-
ity of the enzymes were both significantly enhanced (Peng 
et al. 2021b; Wang et al. 2021). The co-immobilization of 
α-l-rhamnosidase Rha1 and β-glucosidase Glu4 from Tal-
aromyces stollii CLY-6 was achieved based on a carrier-
free cross-linked enzyme aggregate, and the co-immobilized 

enzyme exhibited more tolerant to sugars, thus becoming the 
enzyme that can obtain the highest icaritin yield at the high-
est epimedin C concentration ever reported (Liu et al. 2022).

Applications of α‑l‑rhamnosidase

Applications in the food industry

Citrus fruits have a bitter taste due to the presence of fla-
vonoid glycosides such as hesperidin, neohesperidin, and 
naringin. Naringinase is often used for enzymatic debitter-
ing (Bodakowska-Boczniewicz and Garncarek 2019; Car-
celler et al. 2020). In fact, the presence of β-D-glucosidase 
is not required for debittering, but only the action of α-l-
rhamnosidase can reduce the bitter substances. The fungus 
JMU-TS529 was isolated from rotten pomelo compost and 
identified as A. tubingensis, whose α-l-rhamnosidase has a 
strong hydrolytic effect only on naringin, and can remove the 
bitterness of pomelo juice while still retaining the aroma of 
pomelo (Li et al. 2019).

α-l-rhamnosidase alone or in combination with β-D-
glucosidase can increase the floral flavor of orange juice, 
and the combined treatment has a more obvious effect on the 
taste and aroma quality of orange juice (Peng et al. 2021a). 
Ultrasonic action assisted α-l-rhamnosidase and β-d-
glucosidase in the fermentation broth of A. niger to debitter 
Ouguan juice, and the rate of debittering increased while 
increasing the content of sweet and fruity aroma compounds 
in the juice, which improved the flavor of Ouguan juice (Gao 
et al. 2021). In addition to improving the aroma components 
of the juice, these two enzymes could also increase the con-
tent of aroma components in tea broth (Fang et al. 2019).

The hydrolysis products of α-l-rhamnosidase, flavonoid 
monoglycosides, have higher bioavailability and enhanced 
efficacy, so the beverage after the effect of α-l-rhamnosidase 
can be used as functional beverage, such as ginkgo tea drink 
(Fang et al. 2019). The addition of sorbitol promoted the 
hydrolysis of hesperidin by A. niger α-l-rhamnosidase, 
which helped to accelerate the production of hesperetin 
7-O-glucoside, a sweetener precursor (Sun et al. 2022). The 
α-l-rhamnosidase immobilized on magnetic Fe3O4/MIL-
101(Cr) nanoparticles could hydrolyze hesperidin dihydro-
chalcone to hesperidin dihydrochalcone glucoside, which is 
a sweetener (Wang et al. 2022).

Applications in the pharmaceutical industry

Rutin is converted to isoquercitrin by the action of α-l-
rhamnosidase with the removal of one molecule of rham-
nose. Isoquercitrin has anti-inflammatory, antioxidant, 
anti-allergic, and antihypertensive effects, and has impor-
tant applications in the pharmaceutical industry. Yet, the 
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industrial production of isoquercitrin has problems such as 
high cost, slow reaction, and low yield. Ionic liquids as co-
solvents, high hydrostatic pressure treatment, addition of 
sorbitol, and addition of organic solvents have all been used 
to address these issues (Wang et al. 2013; Kim et al. 2016; 
Ge et al. 2017a; Shin et al. 2019), but the conversion rate 
of rutin or the yield of isoquercitrin still could not reach the 
standard of industrial application. Wang et al. (2020) first 
hydrolyzed rutin to isoquercitrin using α-l-rhamnosidase in 
deep eutectic solvents. 130 g/L rutin could be completely 
converted to isoquercitrin, with the yield of isoquercetin 
reaching 208.68 mm/h.

Herba Epimedii is a famous Chinese herbal medicine. 
The total flavonoids of Epimedii (TFE) are the main active 
ingredients in Epimedii, including icariin, epimedin A, epi-
medin B, epimedin C and icariside II (Jiang et al. 2016). 
Among them, icariin has the most significant pharmacologi-
cal activities, such as anti-osteoporosis, antidepressant, and 
treatment of cardiovascular diseases (Zhang et al. 2017). 
However, the content of icariin is limited, while epimedin 
C, which structurally has only one more rhamnose than 
icariin, has a higher content, so epimedin C can be used as a 
substrate to convert it into icariin using α-l-rhamnosidase, 
which can hydrolyze the α-1,2 glycosidic bond between two 
rhamnoses. E.coli BL21 cells expressing A. nidulans synAn-
RhaE can completely convert 1 g/L of epimedin C to icariin 
within 90 min (Lyu et al. 2019). There are also many drug 
precursors or substances with multiple biological activities, 
such as tilianin and cyanidin-3-O-rutinoside, which can be 
prepared by α-l-rhamnosidase (Cui et al. 2016; Li et al. 
2023).

L-rhamnose is used in the synthesis of rare bioactive 
rhamnosylated compounds in medicine and chemistry, and 
also functions as a chiral intermediate in plant protection 
agents (Yadav et al. 2010). All of the above mentioned sub-
strates are subjected to α-l-rhamnosidase action to take off 
the terminal L-rhamnose, so α-l-rhamnosidase can be used 
to produce L-rhamnose (Wang et al. 2020). Moreover, some 
α-l-rhamnosidases can also synthesize glycosidic bonds 
through a reverse hydrolysis (Ge et al. 2017b). RhaL1 from 
Alternaria sp. L1 has been shown to perform rhamnosylation 
of anticancer drugs such as 2′-deoxy-5-fluorouridine, cyto-
sine arabinoside, hydroxyurea, etc., and the rhamnosylated 
drugs are potentially valuable in enzyme-activated prodrug 
systems (Xu et al. 2019).

Conclusion

In recent years, many scholars have studied α-l-
rhamnosidase from different levels. Firstly, the screening of 
α-l-rhamnosidase production strains and the optimization 
of fermentation conditions are becoming more and more 

mature, which provides a certain reference value for large-
scale production of α-l-rhamnosidase preparations. Sec-
ondly, the cloning and expression of α-l-rhamnosidase from 
different microorganisms were studied at the molecular level. 
The constructed engineered strains with high enzyme activ-
ity can be used for producing α-l-rhamnosidase, which is of 
great significance for increasing the yield of this enzyme. 
Meanwhile, the properties of α-l-rhamnosidase from dif-
ferent microbial sources were studied, and the enzyme was 
modified by molecular modification or immobilization tech-
niques, which is helpful to promote the practical application 
of α-l-rhamnosidase in industrial conditions. Finally, the 
catalytic ability of α-l-rhamnosidase to various natural sub-
strates was studied, which provides ideas for the application 
of α-l-rhamnosidase in different production processes.

But so far, there are few studies on the induction mecha-
nism and synthesis pathway of α-l-rhamnosidase from dif-
ferent sources. More in-depth studies on α-l-rhamnosidase 
should be carried out using structural biology and molecular 
biology techniques. Meanwhile, in order to better meet the 
demanding industrial production process, the enzyme modi-
fication work must continue to advance, and the search for 
more strategies that can simultaneously improve the cata-
lytic efficiency and thermal stability of α-l-rhamnosidase 
should be taken as a research priority in the molecular 
modification of this enzyme. Furthermore, since the main 
applications of α-l-rhamnosidase include food and drug 
fields, α-l-rhamnosidase produced by A. niger, A. oryzae, 
and other filamentous fungi recognized as safe strains by 
the U.S. Food and Drug Administration, deserve the atten-
tion of researchers. In particular, the presence of β-D-
glucosidase in the preparation of flavonoid monoglycosides 
catalyzed by α-l-rhamnosidase will cause the production of 
flavonoid aglycones as a by-product. It can be considered 
to use CRISPR/Cas9 gene editing technology to knockout 
the β-D-glucosidase gene, so that the complete transforma-
tion of flavonoid diglycosides to flavonoid monoglycosides 
can be achieved without the isolation and purification of 
α-l-rhamnosidase. The above research will continue to pro-
mote the deep understanding and further development of 
α-l-rhamnosidase in the future.
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