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Abstract
Recently, the scientific community is interested in the synthesis of biodegradable and bioactive packaging to replace oil-
based ones. Therefore, the present study aims to elaborate an active and biodegradable material using chitosan (CS-film) 
combined with pelargonium, tea tree, marjoram, and thyme essential oils (EOs), and then evaluate their different properties 
and biological activities. The obtained data showed an augmentation in CS-film thickness and opacity following the addition 
of EOs ranging from 17 ± 3 to 42 ± 2 μm and from 1.53 ± 0.04 to 2.67 ± 0.09, respectively. Furthermore, a significant decrease 
in the water vapor transmission rate and moisture content parameters was recorded as regards the treated CS-films. On the 
other hand, the treatment with EOs engenders random modifications in the physicochemical and mechanical characteristics 
of the material. Concerning the biological activities, the treated CS-films scavenged around 60% of DPPH radical while the 
control CS-film exhibited a negligible antioxidant activity. Finally, the CS-films containing pelargonium and thyme EOs 
exhibited the strongest antibiofilm-forming activity against Escherichia coli, Enterococcus hirae, Staphylococcus aureus, 
and Pseudomonas aeruginosa with values of inhibition greater than 70%. These encouraging results verify the effectiveness 
of CS-films containing EOs such as pelargonium and thyme EOs as biodegradable and bioactive packaging.

Keywords Bioactivities · Chitosan · Essential oils · Mechanical properties · Packaging · Physicochemical characteristics

Introduction

Recently, food loss represents a worldwide concern. The fac-
tors that mainly cause food spoilage are contact with oxy-
gen (Cichello 2015) and water (Tapia et al. 2020), and the 
proliferation of microorganisms (Abd El-Hack et al. 2022). 
The latter is responsible for the deterioration of 1.3 billion 
tons of food, more than a half million sick, and 420.000 dead 

cases annually (Gustavsson et al. 2011; Fahey et al. 2022). 
As a result, various procedures such as refrigeration, freez-
ing, and thermal processing were employed to prevent food 
spoilage and contamination (Huang et al. 2019). However, 
the freshness and minimally-processing of food are highly 
required criteria. Thereby, other alternatives are needed. The 
food industry relies principally on the utilization of physi-
cal barriers such as food packaging for food protection and 
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conservation (Gupta et al. 2022). So far, fossil-based plastics 
e. g, polyethylene, polyvinyl chloride, polyethylene tereph-
thalate, and polystyrene are the most utilized materials in the 
packaging sector due to their cost-effectiveness, abundance 
in nature, and great mechanical properties (Asgher et al. 
2020). Nevertheless, fossil-based plastics remain ecologi-
cally harmful (Jem and Tan 2020). In this context, attention 
was given to the synthesis of biodegradable, natural, and 
bioactive packaging (Phothisarattana and Harnkarnsujarit 
2022). Among the biopolymers used in packaging elabora-
tion, various researchers have studied chitosan due to its 
abundance, biological activities, biodegradability, film-
forming and mechanical properties, and visual transparency 
(Shahidi et al. 1999; Dutta et al. 2009; Wang et al. 2011). As 
regards food packaging, it is necessary to use films that are 
endowed with a good barrier property to water, UV light, 
and microorganisms in order to protect food and maintain 
its quality (Siracusa et al. 2008; Zhang et al. 2021). It was 
claimed that chitosan exhibits weaker bioactivities when it is 
used as film (Ouattara et al. 2000). Therefore, the introduc-
tion of bioactive agents into CS-film to improve the above-
mentioned properties and activities is a research need. Previ-
ous investigations have studied the mixture of chitosan and 
other biopolymers e. g, gelatin and starch (Jovanović et al. 
2021; Janik et al. 2022). Other researchers have discussed 
the impact of introducing silver and  Fe3O4 nanoparticles on 
the CS-film activities and mechanical properties (Li et al. 
2022; Yang et al. 2022; Zarandona et al. 2022). Meanwhile, 
Peng and Li (2014) and Azadbakht et al., (2018) confirmed 
the optimization of CS-film following EOs addition. EOs 
containing terpene alcohols as major constituents (pelargo-
nium, tea tree, marjoram, and thyme EOs) are recognized 
for their great antibacterial activities (Tariq et al. 2019). 
Furthermore, several works have studied the combination 
of CS-film with some of these EOs (Sánchez-González et al. 
2010; Cerempei et al. 2014; Sedlaříková et al. 2017; Vidács 
2022; Mouhoub et al. 2023b). However, the studies were 
limited to a few properties and activities.

In this paper, we aimed to carry out a global characteri-
zation of CS-films incorporated with pelargonium, tea tree, 
marjoram, and thyme EOs and to highlight the potential 
application of these films as packaging for food.

Materials and methods

Materials

The tested strains were S. aureus ATCC29213, E. hirae 
CIP5855, P. aeruginosa ATCC53, and E. coli K-12 
MG1655.

Pelargonium asperum (refractive index: 1.468, den-
sity: 0.895, optical rotation: − 11.16°), Melaleuca 

alternifolia (refractive index: 1.487, density: 0.898, opti-
cal rotation: + 9.9°), Origanum majorana (refractive index: 
1.473, density: 0.895, optical rotation: + 22.5°), and Thymus 
satureioides EOs (refractive index: 1.483, density: 0.938, opti-
cal rotation: − 10.75°) were provided by Nectarome society. 
Chitosan C3646 (DDA > 75% and Mw = 400 kDa) was pur-
chased from Sigma-Aldrich.

Growth conditions

Muller-Hinton Agar medium (MHA) and lysogeny broth (LB) 
supplemented with sucrose 1% were used in the agar diffusion 
and antiadhesion tests, respectively. The bacterial suspensions 
were adjusted to  108 cells/mL by a spectrophotometer (Jenway 
6305, UK).

EOs analysis using GC‑FID

The capillary column DB-Wax 127-7023 (20 m × 100 µm) was 
used for EOs analysis. The operating conditions details were 
highlighted in our previous study (Mouhoub, Guendouz, et al. 
2022a, b). Briefly, carrier gas (Hydrogen) flow rate was 1 mL/
min. The oven program was: 60 °C for 2 min, then 12 °C/min 
up to 248 °C, and finally held for 5 min.

Films synthesis

The film preparation was detailed in our previous work 
(Mouhoub et al. 2022a). Briefly, a combination of acetic acid 
1%, chitosan 2%, glycerol, Tween 80, and EO (2% v/v) was 
continuously stirred for 6 h using magnetic stirrer, poured 
onto supports, and then placed in an oven and allowed to dry 
overnight at 30 ℃. The film without emulsifier and EO was 
considered as control. The films were collected and then stored 
for subsequent tests (Fig. 1).

Films’ thickness and opacity

The thickness of the films was measured in 5 different areas 
by a digital caliper (INGCO HDCD01150, China). The films 
opacity was measured using an UV–Visible spectrophotometer 
(Jenway 6305, UK). The adopted blank was the empty cell 
(Siripatrawan and Harte 2010).

where  Abs600 and t refer to the absorbance at 600 nm and 
film thickness (mm), respectively.

Opacity = Abs
600

∕t
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Determination of moisture content (MC), swelling 
level (SL), and hydrosolubility

The sample (1 × 1 cm) was weighed  w1 and then placed into 
the oven (24 h at 50 °C) to determine the dry weight  w2. 
The dried film was incubated in a beaker containing distilled 
water for 24 h. The swollen film was dried superficially and 
then weighed  w3. Finally, the sample was dried again for 
24 h at 50 °C to define the final dry weight  w4. The experi-
ment was performed in triplicate. The MC, SL, and hydro-
solubility of the films were measured as follows:

Measurement of the water vapor transmission rate 
(WVTR)

The WVTR of the CS-films was measured based on He 
et al. (2021) procedure with minor modifications. Briefly, 
CS-film samples were firmly fixed over glass cups (3.14  cm2 
of transmission area) containing equal amounts of  CaCl2. 
The cups were placed inside a desiccator where the relative 
humidity and temperature were adjusted to 90% and 25 °C, 
respectively.

The cups were periodically weighed to the nearest 0.1 mg. 
The WVTR (g/h.m2) was measured as follows:

MC(%) = 100 × (w
1
− w

2
)∕w

1

SL(%) = 100 × (w
3
− w

2
)∕w

2

Hydrosolubility(%) = 100 × (w
2
− w

4
)∕w

2

where Δw
Δt

 and A represent the slope of the weight vs time and 
the effective film area, respectively.

Evaluation of surface free energy 
and hydrophobicity

The physicochemical characteristics of the CS-films sur-
faces were estimated based on the sessile drop method 
(Blanco et al. 1997). The contact angles of diiodomethane 
θd, distilled water θw, and formamide θf were monitored 
by a goniometer (GBX, France)- computer-camera system 
(Mouhoub et al. 2022a). The electron acceptor (γ+), and 
donor (γ−), the Lifshitz-Van der Waals component (γLW), 
and the free energy of interaction (ΔGiwi) were deter-
mined following the Young-Van Oss equation (Oss 1995).

where S refers to the solid surface and L to the liquid phases. 
The surface free energy (γS

Total) is calculated by the follow-
ing equation:

The hydrophobicity of films’ surfaces can be predicted 
qualitatively based on the water contact angle (Lekbach 
et al. 2019). θw < 65° and θw > 65° refer to hydrophilic and 
hydrophobic surfaces, respectively (Vogler 1998). Other-
wise, the procedure of Van Oss et al., (1988) was utilized 
to assess the hydrophobicity quantitatively. The surface 
is considered hydrophilic if ΔGiwi > 0 and conversely for 
hydrophobic surfaces.

Where: 

Films’ mechanical properties

The tensile strength (TS) and elongation at break (EB) 
parameters of the films were evaluated using INSTRON 
3369 electrohydraulic instrument. The films’ strips 
(20 × 50 mm) were mounted between the grips and the 
selected cross-head speed was 2  mm/min. Data were 
treated using the Bluehill program. The experiment was 
realized in quintuplicate for each sample.

WVTR =

(

Δw

Δt

)

A

�L(1 + Cos�) = 2
(
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Fig. 1  Visual appearance of A control CS-film, B CS-film treated 
with pelargonium EO, C CS-film treated with tea tree EO, D CS-film 
treated with marjoram EO, and E CS-film treated with thyme EO



 World Journal of Microbiology and Biotechnology (2023) 39:146

1 3

146 Page 4 of 12

Films’ antioxidant activity

The antioxidant activity of the CS-films was monitored as 
described by Siripatrawan and Harte, (2010). Two hundred 
milligrams of the film were submerged in 3 ml of metha-
nol. The extract solution (0.9 mL) was sampled after 24, 
48, and 72 h of the reaction and then mixed with 0.3 mL 
of the methanolic solution of DPPH 1 mM. The extract 
solution was replaced by methanol in the control. The vor-
texed mixture was incubated in dark for 30 min and then 
the absorbance was measured at 517 nm. For each sample, 
three repetitions were performed. The percentage of DPPH 
inhibition was calculated as follows:

where A represents the absorbance at 517 nm.

Films’ antibacterial activity

The antibacterial capacity of the CS-films was assessed 
using the agar diffusion method. The bacterial suspensions 
(1 mL) previously adjusted to  108 cells/mL were spread 
on the MHA surface and then the excess was withdrawn. 
The films’ discs of 6 mm diameter were UV sterilized and 
then deposited on the medium surface. The diameter of 
inhibition zones (IZ) was measured after 24 h of incuba-
tion at 30 °C. The experiment was performed in triplicate.

Coating of microplate wells using CS‑films

One hundred microliters of the solution used for the films’ 
preparation were introduced in the bottom of 96-well 
microplate wells and dried at 30 °C overnight. The coated 
microplate was sterilized by UV light for the antiadhesion 
test.

Films’ antiadhesion activity

Two hundred microliters of the bacterial suspensions  (108 
cells/mL) were introduced into each microplate well and 
then incubated at 30 °C. After 24 h, the wells content was 
transferred to another microplate and the turbidity was 
read at 630 nm by Bio-Tek ELx800 microplate reader. The 
experiment was conducted in triplicate. The coated micro-
plate was rinsed multiple times with distilled water and then 
dried for 1 h to fix the sessile cells. The wells were dyed 
by adding 200 μL of crystal violet 0.1%. After 10 min, the 
microplate was rinsed to remove the dye, and then 200 μL of 
ethanol 95% were added to each well and allowed to react for 

DPPH scavenging (%)
=
[

1 − (Asample ÷ Acontrol)
]

× 100

15 min. The wells content was transferred to a new micro-
plate and the absorbance was read at 550 nm. The experi-
ment was performed in triplicate.

Statistical analysis

Data were presented as mean ± standard deviation. The 
experimental results were subjected to an ANOVA test using 
SPSS software (version 25.0). The statistical significance 
was established at P < 0.05.

Results

EOs’ chemical composition

As mentioned in Table 1. The analysis of P. asperum, M. 
alternifolia, O.majorana, and T. satureioides EOs by GC-
FID revealed the presence of 40, 33, 30, and 33 compounds, 
respectively. Qualitative resemblances accompanied by 
quantitative disparities were noticed between the four EOs 
compositions. However, terpene alcohols were the main 
compounds for all EOs. Indeed, citronellol represented 
33.98% of P. asperum EO. Whereas, terpinen-4-ol was the 
major component of O.majorana (23.37%) and M. alterni-
folia (40.33%). In contrast, T. satureioides contained mainly 
α-terpineol and borneol (43.90%).

Physical characteristics of the films

Table 2 presents the Hydrosolubility, SL, MC, opacity, 
WVTR, and thickness of the prepared films. Data showed 
high Hydrosolubility values (> 60%) for all tested films. The 
treatment by EOs increased significantly the opacity and 
thickness of the films while decreased the MC and WVTR 
parameters. Except for the film containing M. alternifo-
lia EO, the recorded SL values were considerably high 
(> 600%).

Physicochemical characteristics of the films

Table 3 compares the physicochemical characteristics of the 
prepared films. Results revealed a drop in the water contact 
angle following the treatment by EOs. Whereas, only the 
film containing M. alternifolia EO was found to be quanti-
tatively hydrophilic (ΔGiwi > 0 mJ). The treatment by EOs 
reduces the γAB values of the control film and conversely 
for γLW.

Mechanical characteristics of the films

The mechanical characteristics of the different CS-films 
are presented in Table 4. Data showed that the treated films 
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Table 1  Chemical composition of the utilized EOs

Chemical constituents EOs (concentration) Chemical constituents EOs (concentration) Chemical constituents EOs (concentration)

α-Pinene Tea tree (1.13%) 
Marjoram (0.25%) 
Thyme (0.96%) Pel-
argonium (0.40%)

Germacrene D Thyme (0.23%) Pelar-
gonium (1.03%)

Caryophyllene oxide Thyme (0.34%) Mar-
joram (0.06%)

Myrcene Tea tree (0.86%) 
Marjoram (2.15%) 
Thyme (0.50%) Pel-
argonium (0.07%)

Geranyl acetate Pelargonium (0.60%) 4-Trans-thujanol Marjoram (6.17%)

α-Phellandrene Tea tree (0.41%) 
Marjoram (0.36%) 
Thyme (0.11%) Pel-
argonium (< 0.05%)

Geranial Pelargonium (0.66%) γ-Cadinene Thyme (0.43%)

Limonene Tea tree (0.92%) 
Marjoram (2.15%) 
Thyme (1.11%) Pel-
argonium (0.21%)

Citronellol Pelargonium (33.98%) Camphor Thyme (1.40%)

β-Phellandrene Tea tree (0.80%) 
Marjoram (1.85%) 
Thyme (0.22%) Pel-
argonium (0.19%)

Nerol Pelargonium (0.64%) 4-Trans-thujanol Marjoram (4.14%)

6-Methyl-5-hepten-
2-one

Pelargonium (0.05%) Cadinene Pelargonium (0.19%) Cis-p-menth-2-en-1 ol Marjoram (0.86%)

P-cymene Tea tree (2.45%) 
Marjoram (1.20%) 
Thyme (3.51%) Pel-
argonium (0.09%)

Ceranyl isobutyrate Pelargonium (0.69%) Borneol Thyme (9.84%) Mar-
joram (< 0.05%)

3-Octanone Pelargonium (0.06%) Citronellyl butyrate Pelargonium (0.46%) Tricyclene Thyme (0.35%)
Cis-linalol-oxide Pelargonium (0.16%) Geraniol Marjoram (0.08%) 

Thyme (0.22%) Pel-
argonium (11.04%)

Thymol methyl ether Thyme (1.43%)

Trans-rose-oxide Pelargonium (0.45%) Geranyl tiglate Pelargonium (1.23%) Bornyl acetate Thyme (2.07%) Mar-
joram (< 0.05%)

Cis-rose-oxide Pelargonium (1.23%) Geranyl isovalerate Pelargonium (0.29%) Bicyclogermacrene Marjoram (1.13%)
Trans-linalol-oxide Pelargonium (0.42%) Geranyl butyrate Pelargonium (1.34%) Marjoram (< 0.05%)
Menthone Pelargonium (1.20%) Phenylethyl tiglate Pelargonium (0.95%) Spathulenol Tea tree (0.14%) Mar-

joram (< 0.05%)
Citronellal Pelargonium (0.11%) 10-Epi-γ-eudesmol Pelargonium (3.62%) Allo-aromadendrene Tea tree (0.52%)
β-Bourbonene Pelargonium (1.06%) α-Thujene Tea tree (2.44%) 

Marjoram (1.22%) 
Thyme (3.50%)

Viridiflorene Tea tree (1.01%)

α-Copaene Tea tree (0.13%) 
Thyme (0.22%) Pel-
argonium (0.45%)

β-Pinene Tea tree (0.72%) 
Marjoram (0.46%) 
Thyme (0.81%)

Trans-α-farnesene Tea tree (0.92%)

Isomenthone Pelargonium (5.12%) Sabinene Tea tree (0.27%) 
Marjoram (8.01%) 
Thyme (0.07%)

δ-Cadinene Tea tree (1.47%) 
Thyme (0.50%)

Linalool Tea tree (0.07%) 
Marjoram (1.01%) 
Thyme (3.64%) Pel-
argonium (5.16%)

α-Terpinene Tea tree (9.58%) 
Marjoram (8.47%) 
Thyme (0.62%)

Cadina-1,4-diene Tea tree (0.23%)

β-Elemene Pelargonium (0.14%) 1,8-Cineole Tea tree (2.44%) 
Marjoram (0.16%) 
Thyme (0.88%)

Calamenene Tea tree (0.17%)

β-Caryophyllene Tea tree (0.46%) 
Marjoram (1.24%) 
Thyme (6.35%) Pel-
argonium (1.55%)

γ-Terpinene Tea tree (20.51%) 
Marjoram (13.67%) 
Thyme (2.78%)

Cubenol Tea tree (0.14%)
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Table 1  (continued)

Chemical constituents EOs (concentration) Chemical constituents EOs (concentration) Chemical constituents EOs (concentration)

Citronellyl acetate Pelargonium (0.72%) Terpinolene Tea tree (3.42%) 
Marjoram (3.11%) 
Thyme (0.28%)

Camphene Thyme (7.27%)

Citronellyl formiate Pelargonium (6.91%) α-Gurjunene Tea tree (0.33%) Globulol Tea tree (0.34%)
Neral Pelargonium (0.42%) Trans-p-menth-2-en-1 

ol
Tea tree (0.40%) Mar-

joram (1.19%)
δ-3-Carene Thyme (< 0.05%)

α-Humulene Tea tree (0.09%) 
Marjoram (< 0.05%) 
Thyme (0.33%) Pel-
argonium (0.43%)

Terpinen-4-ol Tea tree (40.33%) 
Marjoram (23.37%) 
Thyme (1.77%)

Carvacrol Thyme (7.07%)

α-Terpineol Tea tree (3.00%) 
Marjoram (3.12%) 
Thyme (34.06%) 
Pelargonium 
(0.96%)

6,9-Guaiadiene Tea tree (0.27%) Thymol Thyme (2.79%)

Geranyl formiate Pelargonium (2.66%) Aromadendrene Tea tree (1.13%) Viridiflorol Tea tree (0.17%)
Linalyl acetate Marjoram (12.38%)

Table 2  Physical characteristics of the CS-films

CS-films Thickness (μm) Opacity Moisture content (%) Swelling level (%) Hydrosolubility (%) WVTR (g/h.m2)

Control film 17 ±  3d 1.53 ± 0.04d 38.25 ± 0.52a 758.64 ± 6.17b 62.58 ± 0.88d 69.38 ± 1.77a

Film with P. asperum EO 33 ±  2b 1.82 ± 0.06c 18.20 ± 0.25d 777.52 ± 8.70ab 66.58 ± 0.38c 55.92 ± 0.80c

Film with M. alternifolia EO 22 ±  1c 2.67 ± 0.09a 21.87 ± 0.13b 441.14 ± 21.37d 67.89 ± 0.24bc 60.81 ± 0.81b

Film with O. majorana EO 23 ±  2c 2.34 ± 0.04b 18.07 ± 0.26d 609.20 ± 23.20c 69.05 ± 0.24b 61.11 ± 1.01b

Film with T. satureioides EO 42 ±  2a 1.90 ± 0.05c 20.97 ± 0.18c 798.10 ± 22.66a 72.94 ± 0.13a 50.54 ± 1.72 d

Table 3  Physicochemical properties of the CS-films

CS-films Contact angles (°) Surface free energy parameters and 
components (mJ/m2)

ΔGiwi (mJ/m2)

θF θW θD γ− γ+ γLW γAB γTotal

Control film 101.85 ± 2.19a 96.55 ± 0.07a 58.05 ± 0.35a 16.68 7.27 29.64 22.02 51.66 − 10.32
Film with P. asperum EO 50.05 ± 0.35d 64.30 ± 0.00c 19.40 ± 0.00e 18.31 0.09 47.86 2.57 50.43 − 24.84
Film with M. alternifolia EO 57.57 ± 0.64c 60.20 ± 0.44c 45.73 ± 0.31c 29.60 0.04 36.54 2.18 38.72 3.75
Film with O. majorana EO 47.17 ± 0.42e 59.73 ± 0.45c 40.03 ± 0.06d 21.73 0.17 39.51 3.84 43.35 − 12.48
Film with T. satureioides EO 67.70 ± 0.57b 74.50 ± 0.28b 47.50 ± 0.00b 17.68 0.30 35.58 4.61 40.19 − 18.62

Table 4  Mechanical 
characteristics of the CS-films

CS-films Tensile strength (MPa) Elongation at break (%)

Control film 5.02 ± 0.13b 153.97 ± 7.34a

Film with P. asperum EO 3.71 ± 0.17c 53.90 ± 7.91 cd

Film with M. alternifolia EO 1.53 ± 0.12d 41.98 ± 3.28d

Film with O. majorana EO 9.76 ± 0.61a 97.20 ± 4.87b

Film with T. satureioides EO 4.28 ± 1.63bc 61.98 ± 13.86c
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had low stretching ability compared to the control film. As 
regards TS parameter, the treatment with tea tree and pelar-
gonium EOs decreased the film resistance and conversely for 
marjoram EO treatment. On the hand, no significant modifi-
cation in TS was recorded between the control film and the 
one treated with thyme EO (P < 0.05).

Films’ antioxidant activity

The antioxidant activities of the different CS-films were 
statistically compared in Fig. 2. Results showed negligible 
activity in the case of the control. For all treatments, the 
antioxidant activity was stronger after 72 h of the material-
methanolic solution contact (percentage of DPPH inhibi-
tion > 55%). The film treated with Thyme EO showed a 
slightly high activity compared to the other treated films.

Films’ antibacterial activity

The methods of diffusion in liquid and solid mediums were 
utilized to assess the antibacterial effect of the prepared 
materials (Table 5). Among all tested films, only the ones 
treated with pelargonium and thyme EOs generated IZ 
against the four bacteria. The diameter of IZ variedbetween 
8 and 12.67 mm depending on the bacterial strains. The dif-
fusion in the liquid medium test revealed that the control film 
and the film treated with thyme EO exhibited the weakest 
and strongest activities, respectively.

Films’ antiadhesion activity

Figure 3 compares statistically the antiadhesion activities of 
the prepared materials. From the data, three levels of activ-
ity can be defined, strong, moderate, and weak antiadhesion 
activity in which the inhibition percentages are around 20%, 
50%, and 80%, respectively. The films containing thyme and 
pelargonium EOs showed strong activity while the ones con-
taining marjoram and tea tree EOs exhibited moderate activ-
ity. On the other hand, the weakest antiadhesion activity was 
recorded in the case of the control film.

Discussion

The assessment of the physical, physicochemical, and 
mechanical characteristics of the materials is important 
to predict their usefulness as packaging. The physical 
characteristics of the material such as opacity and thick-
ness are involved in product protection. Moreover, the film 
thickness is correlated to its mechanical parameters (Sim-
sek et al. 2020). The results confirmed that the increase in Fig. 2  DPPH inhibition (%) by the CS-films

Table 5  Antibacterial activity of the CS-films against four foodborne bacteria expressed by the IZ diameter and turbidity calculation at 630 nm

CS-films Antibacterial ativity

Pseudomonas aeruginosa 
ATCC53

Escherichia coli K-12 
MG1655

Staphylococcus aureus 
ATCC29213

Enterococcus hirae CIP5855

IZ diameter 
(mm)

Absorbance 
(630 nm)

IZ diameter 
(mm)

Absorbance 
(630 nm)

IZ diameter 
(mm)

Absorbance 
(630 nm)

IZ diameter 
(mm)

Absorbance 
(630 nm)

Control film – 0.28 ± 0.1b – 0.88 ± 0.01ab – 0.32 ± 0.01b – 0.38 ± 0.01b

Film-Pelargo-
nium EO

10.17 ± 0.29b 0.24 ± 0.01c 10.33 ± 0.58b 0.57 ± 0.02c 9.00 ± 0.50b 0.24 ± 0.01d 8.00 ± 0.00b 0.26 ± 0.01d

Film-Tea tree 
EO

– 0.24 ± 0.01c 9.50 ± 0.50b 0.56 ± 0.01c 8.50 ± 0.50b 0.28 ± 0.01c – 0.27 ± 0.01d

Film-Marjo-
ram EO

– 0.28 ± 0.02ab – 0.86 ± 0.02b – 0.29 ± 0.02bc – 0.32 ± 0.01c

Film-Thyme 
EO

11.17 ± 0.29a 0.08 ± 0.02d 12.67 ± 1.04a 0.42 ± 0.01d 11.50 ± 0.50a 0.22 ± 0.01d 11.17 ± 0.29a 0.26 ± 0.01d

Positive 
control

– 0.31 ± 0.01a – 0.91 ± 0.01a – 0.38 ± 0.01a – 0.42 ± 0.01a



 World Journal of Microbiology and Biotechnology (2023) 39:146

1 3

146 Page 8 of 12

film thickness following the treatment with EOs modified 
randomly the tensile strength property and caused a drop 
in the elongation at break parameter. It was reported that 
resistant polymers possess high stretching ability (Shaikh 
et al. 2021). Nevertheless, low film thickness led to a greater 
amount of dioxygen in the package’s headspace and there-
fore the product oxidation (Del Nobile et al. 2007). As well 
as thickness, the reduction in film opacity negatively affects 
the light barrier parameter against harmful light (Zhang et al. 
2021). Numerous studies have demonstrated an increase in 
the material opacity and thickness following the incorpo-
ration of pelargonium, tea tree, marjoram, and thyme EOs 
(Sedlaříková et al. 2017; Lian et al. 2019; Coyotl-Pérez et al. 
2022; Jesser et al. 2022; Song et al. 2022; Wang et al. 2022). 
The modification of these parameters can be explained by 
the EOs impact on the material refractive index and micro-
structure, respectively. In addition to dioxygen and light bar-
rier, a food packaging material should minimize the water-
product contact. The evaluation of the WVTR parameter 
allows to define the capability of the packaging material 
to protect food in humid environment. The decrease in the 
WVTR values of the CS-film following the introduction of 
EOs could be related to the high thickness. Similar results 
were noticed in previous investigations (Priyadarshi et al. 
2018; Akhter et al. 2019). Findings revealed that the treat-
ment by the EOs decreased as well the moisture content of 
the CS-film 2-folds. Similar results were found in previous 
investigations (Ojagh et al. 2010; Hafsa et al. 2016). This 
drop in the moisture content could be associated to the inter-
action between the free OH groups of the chitosan and the 
EO components.

Basically, chitosan is known as an antimicrobial agent 
(Khan et al. 2020), The inhibitory effect against microorgan-
isms is ensured by the presence of the positively charged 

 NH3
+ groups located on the carbon C2 of the chitosan mol-

ecule. These functional groups interfere with the negatively 
charged cell surface of the microorganism leading to its dis-
organization (Riaz Rajoka et al. 2020). It has been claimed 
that the antimicrobial behavior of the chitosan was higher 
against fungi than bacteria, with Gram-positive bacteria 
being less resistant in comparison with Gram-negative bac-
teria (Orzali et al. 2017). Xing et al., (2015) explained this 
variation in the antimicrobial activity by the difference in the 
cell wall constitution and cell structure. Moreover, chitosan 
can inactivate the replication of viruses and viroids (Kulikov 
et al. 2006). Nevertheless, numerous studies reported the 
limited activities of chitosan when applied as film (Wang 
et al. 2011; Mouhoub et al. 2023a).

In addition to the above-mentioned advantages of the 
EOs introduction into CS-film. These substances are well 
known to exhibit strong antioxidant and antimicrobial activi-
ties (Tariq et al. 2019). These biological activities essen-
tially depend on the nature and concentration of the bioac-
tive molecules present in the EO. The chemical assessment 
of the tested EOs indicates that citronellol, terpinen-4-ol, 
α-terpineol, and borneol which are all terpene alcohols, were 
the major constituents of the tested EOs. Previous results 
confirmed these findings (Fachini-Queiroz et al. 2012; Cer-
empei et al. 2014; Santana et al. 2014; Taoufik et al. 2017; 
Abbasi-Maleki et al. 2020; Song et al. 2022). In fact, terpene 
alcohols were defined as a good antioxidant and antimicro-
bial agents (Park et al. 2012; Ouedrhiri et al. 2018). Among 
all tested materials, the films containing pelargonium and 
thyme EOs exhibited the strongest bioactivities. These find-
ings confirm the results of previous studies where the anti-
oxidant and antimicrobial activities of pelargonium, tea tree, 
marjoram, and thyme EOs were compared (Teixeira et al. 
2013; Alibi et al. 2020; Milenković et al. 2021; Mouhoub, 
Guendouz, et al. 2022a, b). This disparity in biological activ-
ities could be attributed to the qualitative and quantitative 
variation of the EOs' chemical components. The antimicro-
bial and antioxidant actions of citronellol which is the main 
constituent of pelargonium EO were previously highlighted 
(Santos et al. 2019; Sharma et al. 2020). Furthermore, An 
et al., (2019) demonstrated that terpinen-4-ol and α-terpineol 
exhibited the greatest antifungal activity against Aspergillus 
niger with slightly higher activity as regards α-terpineol. 
These findings could explain the effectiveness of thyme EO 
in comparison with tea tree and marjoram EOs and confirm 
that the stronger antimicrobial activity of tea tree EO, when 
compared to marjoram EO, was related to the high percent-
age of terpinen-4-ol (40.33%).

In natural conditions, It is well known that microorgan-
isms attach to different surfaces and establish a complex 
structure called biofilm (Flemming and Wingender 2010). 
This arrangement of microorganisms enhances their resist-
ance by 2000-folds against antimicrobial agents (Tabak et al. 

Fig. 3  Antiadhesion activity of the CS-films against four foodborne 
bacteria
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2009; Wang et al. 2018). Moreover, biofilms engender dif-
ferent diseases including foodborne illnesses (Kulshrestha 
and Gupta 2022), and cause surfaces’ damage (Lv et al. 
2022) which leads to colossal economic losses. The contact 
angle analysis was realized to determine an eventual correla-
tion between the bacterial adherence rate and the physico-
chemical characteristics of the CS-films. According to the 
obtained results, a drop in the qualitative hydrophobicity was 
recorded for all the treated CS-films. However, the quantita-
tive hydrophobicity of the material was randomly modified 
following the treatment by EOs. From these findings, It is 
more accurate to attribute the antiadhesion activity of the 
treated CS-film to the direct action of the EOs. Numerous 
investigations highlighted the multiple mode of action of 
EOs and their components against biofilm formation (Guo 
et al. 2021). E. g, the anti-quorum sensing and bactericidal 
activities (Burt et al. 2014; Merghni et al. 2018; Tariq et al. 
2019), the inhibition of adhesins and binding proteins pro-
duction (Marinas et al. 2015; Kot et al. 2019), and the tar-
geting of the extracellular polymeric substrates (Zhao et al. 
2018; Kang et al. 2019).

Based on these promising findings, we conclude that the 
treatment of CS-film containing pelargonium, tea tree, mar-
joram, and thyme EOs improves the physical properties and 
enhances the antioxidant and antimicrobial activities.

Conclusion

In summary, pelargonium, tea tree, marjoram, and thyme 
EOs contain terpene alcohols as major components. The 
introduction of these EOs into CS-film improved its physi-
cal properties by increasing the thickness, opacity and 
water barrier property, and decreasing the moisture content. 
Moreover, the biological activities such as the antibacterial, 
antioxidant, and antibiofilm activities of the CS-film were 
considerably enhanced by the EOs introduction, especially 
in the case of pelargonium and thyme treatments. Overall, 
these promising results emphasize the eventual utilization 
of CS-film containing pelargonium and thyme EOs as bio-
degradable food packaging.
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