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Abstract
The increasing influence of human activity and industrialization has adversely impacted the environment via pollution 
with organic contaminants, which are minimally soluble in water. These hydrophobic organopollutants may be present in 
sediment, water or biota and have created concern due to their toxic effects in mammals. The ability of microorganisms to 
degrade pollutants makes their use the most effective, inexpensive and ecofriendly method for environmental remediation. 
Microorganisms have the ability to produce natural surfactants (biosurfactants) that increase the bioavailability of hydro-
phobic organopollutants, which enables their use as carbon and energy sources. Due to microbial diversity in production, 
and the biodegradability, nontoxicity, stability and specific activity of the surfactants, the use of microbial surfactants has 
the potential to overcome problems associated with contamination by hydrophobic organopollutants.
This review provides an overview of the current state of knowledge regarding microbial surfactant production, mode of 
action in the biodegradation of hydrophobic organopollutants and biosynthetic pathways as well as their applications using 
emergent strategy tools to remove organopollutants from the environment. It is also specified for the first time that biosur-
factants are produced either as growth-associated products or secondary metabolites, and are produced in different amounts 
by a wide range of microorganisms.

Keywords Biodegradation · Biosurfactant synthesis · Hydrophobic organopollutants · Microbial surfactants

Introduction

Increasing anthropogenic activity and industrialization 
have considerably increased environmental pollution from 
organic contaminants. Organic pollutants include a wide 
range of organic xenobiotic chemicals, which are minimally 
soluble in water and may be present in water, sediment or 
biota. They include compounds such as plastics, gasoline, 
paints, adhesives, polycyclic aromatic hydrocarbons (PAHs), 
benzene, polychlorinated biphenyls, toluene, ethylbenzene 
and pesticides, among others (Semple et al. 2003; Rasheed 
et al. 2019; Bhatt et al. 2021). The presence of these hydro-
phobic organic pollutants in the environment has caused 

concern due to their toxic effects in mammals, which include 
mutagenic, carcinogenic and teratogenic effects (Dsikowit-
zky and Schwarzbauer 2014; Sánchez 2021). In this context, 
a bioremediation approach using living systems represents 
an efficient and environmentally friendly strategy to man-
age pollutants. Microbes are present in diverse habitats, and 
some have developed extraordinary strategies that allow 
them to grow and adapt to extreme environments (Sarm-
iento et al. 2015; Sánchez et al. 2020). Microbial strategies 
include a powerful enzymatic system composed of stable 
enzymes produced under extreme conditions and an ability 
to produce natural surfactants as a means to increase the 
bioavailability of hydrophobic organopollutants (Kaczorek 
et al. 2018). These microbial strategies allow microbes to 
use complex substrates (i.e. hydrophobic organopollutants) 
as carbon and energy sources. Microbial surfactants (biosur-
factants) can be found on the cell surface or are released into 
the extracellular space (Ward 2010). Biosurfactants provide 
increased hydrophobicity on the cell surface of the produc-
ing microorganisms, which facilitates the access and use of 
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hydrophobic substrates by microbial cells (Perfumo et al. 
2009; Satpute et al. 2010; Uzoigwe et al. 2015).

Some microbes secrete biosurfactants only when growing 
on hydrophobic substrates, whereas others produce these 
compounds during growth on both hydrophobic and hydro-
philic substrates (Gautam and Tyagi 2006). The production 
of biosurfactants can be affected by growing substrate, tem-
perature, pH, nitrogen and carbon sources (Sanches et al. 
2021).

Biosurfactants have advantages in relation to their chemi-
cal analogs. Microbial surfactants are biodegradable, have 
high activity, are nontoxic and are stable under extreme con-
ditions (i.e. pH, temperature and salinity) (Abdel-Mawgoud 
et al. 2010; Jahan et al. 2020). Therefore, biosurfactants 
have enormous potential in the development of significant 
biotechnological processes due to their unique properties 
(Santos et al. 2016). In addition to bioremediation, biosur-
factants are employed in cosmetic formulations, food, bio-
medicine, pharmaceuticals, and nanotechnology (Jahan et al. 
2020; Sanches et al. 2021). Biosurfactants are considered 
important biomolecules, and their production represents a 
key technology for development in the current century (San-
tos et al. 2016).

This review provides, for the first time, an overview of 
the current state of knowledge about microbial surfactant 
production, the mode of action in the biodegradation of 
hydrophobic organopollutants and the biosynthetic pathways 
of surfactants as well as their applications to hydrophobic 
organopollutant remediation using emergent strategy tools 
in a single document. It is also specified that biosurfactants 
are produced either as a growth-associated or secondary 
metabolites, and are produced in different amounts by a wide 
range of microorganisms.

Characteristics and mode of action 
of microbial surfactants

Microbial surface-active or microbial surfactant compounds 
are a structurally diverse group of molecules produced by 
many microorganisms. These compounds contain a hydro-
phobic component of saturated or unsaturated hydrocar-
bon chains or fatty acids and a hydrophilic component that 
includes an acid, peptide anions, cations, or mono-, di- or 
polysaccharides (Banat et al. 2010). The majority of these 
compounds are either neutral or anionic; only a few are cati-
onic (e.g. those containing amine groups). In solutions, the 
shape of the micelles depends on the structure of the compo-
nent molecules as previously reported (Israelachvili 1992). 
The size of the hydrophilic moiety in relation to the hydro-
phobic component has an impact on packing into cylindri-
cal micelles, spherical micelles, inverted micelles or bilay-
ers (Linder et al. 2005). An important chemical-physical 

parameter of surfactants is the critical micelle concentra-
tion (CMC), which refers to the minimum concentration of 
surfactant necessary to give the minimum surface tension 
in water and form micelles (Wijaya et al. 2016). The abil-
ity to decrease the surface and interfacial tensions is facili-
tated via the adsorption of the surfactant in different phases, 
allowing dissimilar phases to mix and interact more easily 
(Uzoigwe et al. 2015). Therefore, an efficient surfactant has 
a low CMC, requiring less surfactant to decrease surface 
tension (Rufino et al. 2014).

Microbial surfactants can be grouped into low molecular 
mass compounds, known as biosurfactants (glycolipids, lipo-
peptides) and high molecular mass compounds (lipopoly-
saccharides, lipoproteins, hydrophobic proteins), known as 
bioemulsifiers or bioemulsans (Fig. 1) (Rosenberg and Ron 
1997; Smyth et al. 2010a, 2010b). Biosurfactants are able to 
reduce the surface and interfacial tensions between different 
phases (liquid–liquid, liquid–air, and liquid–solid) until the 
interface is saturated and micelles begin to form. In contrast, 
bioemulsifiers or bioemulsans are amphiphilic or polyphilic 
polymers that are able to efficiently stabilize oil-in-water 
emulsions; however, they do not substantially reduce surface 
tension (Smyth et al. 2010b).

Several studies have reported that microorganisms pro-
duce their own surfactant (which can be induced) during the 
degradation of hydrophobic organopollutants (Table 1) or 
can be produced intrinsically on conventional substrates (e.g. 
glucose and sucrose), organic materials or organic wastes 
(Tables 2 and 3). Biosurfactants are generally composed of 
sugars, fatty acids, amino acids and functional groups such 
as carboxylic acids (Uzoigwe et al. 2015) and generally have 
a molecular weight of approximately 0.5–1.5 kDa (Santos 
et al. 2016). It has been reported that particular class of bio-
surfactants called hydrophobins, which are produced exclu-
sively by fungi, have a molecular weight of approximately 
10–17 kDa (Dąbrowska et al. 2021; Puspitasari et al. 2020; 
Pothiratana et al. 2020). However, some studies have shown 
that hydrophobins can have a higher molecular weight (i.e. 
19–70 kDa) than those previously reported (Table 4). Sev-
eral hydrophobins have been isolated from different fungi. 
These biomolecules are composed of some hydrophobic 
amino acids and also possess eight Cys residues (Shuren 
and Wessels 1990; Santacruz-Juarez et al. 2021). Based on 
their differences in hydrophobic properties, morphology and 
solubility, hydrophobins are divided in class I and class II. 
Class I hydrophobins are highly insoluble, while those of 
class II hydrophobins easily can be dissolved in a variety of 
solvents (Wessels, 1994) (Table 4).

Most natural surfactants reduce surface tension to approx-
imately 30 mN/m (Table 2). It has been reported that syn-
thetic surfactants such as modified heterogeneous alcohol 
ether, fatty alcohol methyl esters of ethoxylate and Tween 
80 have surface tension values of 29.5, 33.6 and 37.8 mN/m, 
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respectively, at their respective CMC values of 14, 80 and 
14 mg/L (Li et al. 2017). Some microbial surfactants have a 
low CMC and are able to form stable emulsions. It has been 
reported that the CMCs of biosurfactants generally vary 
from 1 to 200 mg/L (Mulligan, 2005; Singh et al. 2018); 
however, recent studies have found higher CMC values for 
biosurfactants (Tables 1, 2). For example, CMCs of 1200, 
1500 and 1700 mg/L have been reported for glycolipids, 
anionic surfactants, and glycoproteins produced during the 
degradation of pyrene, burned motor oil and diesel oil by 
Acinetobacter baumannii (Gupta et al. 2020), Serratia marc-
escens (Araújo et al. 2017, 2019) and Rhizopus arrhizus 
(Pele et al. 2019), respectively. However, the CMCs of a 
hydrophobin and a lipopeptide were 10 mg/L and 12.5 mg/L 
during the degradation of crude oil by Trichoderma har-
zianum and Bacillus subtilis, respectively (Nogueira-Felix 
et al. 2019; Pitocchi et al. 2020).

As shown in Fig. 2, the biodegradation of hydrophobic 
organopollutants occurs via the formation of a micellar 
structure with biosurfactants, in which the hydrophilic heads 
are oriented to the aqueous water stage, and the hydrophobic 
tails are attached to hydrophobic pollutants, facilitating pol-
lutant adsorption into the microbial cell followed by intracel-
lular enzymatic degradation of the pollutant (Sun et al. 2016; 
Zhong et al. 2016; Shao et al. 2017) (Fig. 2a). Alternatively, 
some studies have reported that the biodegradation of hydro-
phobic compounds takes place once the biosurfactants have 

surrounded the substrate, allowing microbial attachment 
and increased substrate availability, and microbial growth 
and specific enzyme secretion would then allow microbial 
colonization of the substrate and its degradation (Fig. 2b) 
(Sánchez 2020, 2021; Dąbrowska et al. 2021).

Microbial surfactant production for organopollutant 
biodegradation

Various levels of biodegradation of organopollutants by bio-
surfactant producers have been reported, mainly by bacteria 
from genera such as Pseudomonas, Klebsiella, Meyerozyma, 
Bacillus, Rhodococcus, Acinetobacter, Staphylococcus, 
and Achromobacter and from fungal genera such as Tricho-
derma, Aspergillus, Agrocybe, and Candida (Table 1).

Producers of microbial surfactants have been found in 
every habitat, including marine environments (psychrotoler-
ant and halotolerant microorganisms) (Zakaria et al. 2019; 
Trudgeon et al. 2020; Pourfadakari et al. 2021; Cheffi et al. 
2020), hydrophobic pollutant-contaminated soils (Ahmadi 
et al. 2021), wastewater (Nogueira-Felix et al. 2019; Cheffi 
et al. 2020), freshwater lake ecosystems (Phulpoto et al. 
2021), lichens (Santos et al. 2019), and plants (Marchut-
Mikolajczyk et al. 2018) (Table 2).

Some studies have reported that biosurfactants are 
microbial growth-associated products. Sharma and Pandey 
(2020) reported that B. subtilis RSL2 produced a lipopeptide 

Fig. 1  Some types of microbial surfactants, which can be grouped 
into low molecular mass compounds, known as biosurfactants (e.g. 
glycolipids, lipopeptides, proteins), and high molecular mass com-

pounds, known as bioemulsifiers or bioemulsans (i.e. polymers of 
lipopolysaccharide proteins or lipoproteins and polysaccharides) 
(Mondal et al. 2015; Mnif and Ghribi 2015; Dhanya 2021)
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biosurfactant that was released primarily within the expo-
nential phase when grown on crude oil as a carbon source. 
Similarly, Datta et al. (2018) found that a lipopeptide (sur-
factin) produced by B. subtilis MG 495,086 as the primary 
metabolite reached maximum yield during the exponential 
phase using light paraffin oil as the carbon source. Moreo-
ver, B. subtilis A1 and Bacillus licheniformis AL 1.1 also 
produced a lipopeptide as a growth-associated metabolite, 
using sucrose and glucose as carbon sources, respectively 
(Coronel-León et al. 2015; Parthipan et al. 2017).

However, other biosurfactants such as glycolipids 
(i.e. rhamnolipids, trehalolipids) have been reported as 
compounds produced by microorganisms as secondary 
metabolites. Bacteria such as Acinetobacter calcoaceti-
cus, Enterobacter asburiae and Pseudomonas aeruginosa 
produced rhamnolipids during their growth on medium 
containing sodium citrate as a carbon source, enhancing 
biosurfactant production during the late stationary phase 
(Hošková et al. 2015). Furthermore, Marinobacter sp. 
MCTG107b produced a mixture of different rhamnolipids 

Table 4  Some hydrophobins produced by fungi and their characteristics

Hydrophobin Protein-encoding gene Molecu-
lar mass 
(kDa)

Class Fungal group Organism Reference

HFBII hjb2 7.2 II Ascomycete T. reesei Nakari-Setälä, et al., (1997)
SRHI srh1 7.5 II Ascomycete T. harzianum Muñoz et al., (1997)
HYPA hypA 8–9 I Basidiomycete Agaricus bisporus De Groot et al., (1996)
Vmh1, Vmh2 vmh1 and vmh2 9 Nd Basidiomycete Pleurotus ostreatus var. 

florida
Peñas et al., (2002)

POH1 POH1 9 I Basidiomycete P. ostreatus Asgeirsddttir et al., (1998)
XEH1 XEH1,

XPH1
8.4 I Ascomycete ( symbiotic 

phenotype of the lichen-
forming ascomycetes)

Xanthoria parietina and 
X. ectaneoides,

(a conglutinate)

Scherrer et al. (2000)

CoH1 coH1 10 I Basidiomycete Coprinus cinereus Asgeirsdóttir et al. ( 1997)
POH3 POH3 10 I Basidiomycete P. ostreatus Asgeirsddttir et al. (1998)
CmHYD1
CmHYD2
CmHYD4

Cmhyd1
Cmhyd2
Cmhyd4

10.57
10.32
10.45

II
II
I

Ascomycete Cordyceps militaris Li et al. (2021)

Fbh-1 fbh1 12 II Basidiomycete P. ostreatus var. florida Peñas et al. (1998)
Hum3 Hum3 13 I Basidiomycete U. maydis Müller et al. (2008)
HYDPt-1 hydPt-1 13 I Basidiomycete Pisolithus tinctorius Tagu et al. (2001)
SC1 Sc1 13.5 I Basidiomycete Schizophyllum

commune
Schuren and Wessels 

(1990); Wessels et al. 
(1991); Wessels (1997)

CmHYD3 Cmhyd3 13.48 I Ascomycete C. militaris Li et al. (2021)
DGH2 DGH2 14 I Basidiomycete Dictyonema

glabratum
Trembley et al. (2002)

SC4 Sc4 14.5 I Basidiomycete S. commune Schuren and Wes-
sels(1990); Wessels 
(1997)

SC3 Sc3 15 I Basidiomycete S. commune Schuren and Wessels, 1990; 
Wessels, 1997

POH1 POH1 15 I Basidiomycete P. ostreatus Asgeirsddttir et al., 1998
MPG1 MPG1 15 1 Ascomycete Magnaporthe grisea Talbot et al., 1996
Rod A RODA 16 I Ascomycete Aspergillus fumigatus Paris et al., 2003
ABH1 ABH1 16 I Basidiomycete A. bisporus Lugones et al., 1996
Vmh3 vmh3 17 nd Basidiomycete P. ostreatus var. florida Peñas et al., 2002
ABH3 ABH3 19 I Basidiomycete A. bisporus Lugones et al., 1998
POH2 POH2 20 I Basidiomycete P. ostreatus Asgeirsddttir et al., 1998
Hyd 1 hyd1 23 II Basidiomycete Tricholoma

terreum
Mankel et al., 2002

CFTH1 cfth1 36.5 II Ascomycete Claviceps fusiformis de Vries et al., 1999
CPPH1 cpph1 70 II Ascomycete Claviceps purpurea Mey et al., 2003
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when grown on glucose as a carbon source and were sug-
gested to be secondary metabolites (Tripathi et al. 2019). 
Moreover, P. aeruginosa was able to produce rhamnolipids 
as secondary metabolites in a mineral medium containing 
olive oil (Leite et al. 2016). In addition, Fusarium fujikuroi 
produced α,β-trehalose containing glycolipid after 7 days 
of growth in a glucose medium and was reported as a sec-
ondary metabolite biosurfactant (Loureiro-Dos Reis et al. 
2018). Additionally, Ustilago maydis, Schizonella melano-
gramma, Candida antarctica, and Geotrichum candidum 
have been reported to produce mannosylerythritol lipids 
(glycolipid biosurfactants) as secondary metabolites (Das 
et al. 2008).

In comparison, hydrophobins are produced by filamen-
tous fungi and have been described as the most effective 
surface-active proteins (Cicatiello et al. 2016). It has been 
shown that these biomolecules are expressed at different 
developmental stages of fungal life, having a role as struc-
tural components in fungal growth and in environment-
fungal interactions. Therefore, hydrophobins are found in 
vegetative hyphae, the fruit bodies of mushrooms and spores 
(Linder et al. 2005).

Biosurfactants can be produced by different microor-
ganisms in different amounts using different substrates. As 
shown in Table 3, some species such as Aureobasidium thai-
landense, strains of Pseudomonas aeruginosa and Bacillus 
pumilus produced surfactants in amounts of approximately 
0.09–0.8 g/L using glucose and/or other substrates (Slivinski 
et al. 2012; Leite et al. 2016; Meneses et al. 2017; Ahmadi 
et al. 2021). However, some Bacillus species, Stenotropho-
monas sp Mucor hiemalis, Aspergillus niger, Rhizopus arrhi-
zus, Fusarium sp, Candida tropicalis, Aureobasidium pul-
lulans and others have been reported to produce between 1 
and 10 g/L biosurfactant on a variety of substrates (Table 3) 
(Qazi et al. 2014; Dhanarajan et al. 2014; Bouassida et al. 
2018; Datta et al. 2018; Mendes-de Souza et al. 2018; Saur 
et al. 2019; Silva-Ferreira et al. 2020; Asgher et al. 2020; 
Domdi et al. 2020; Patel and Patel, 2020; Phulpoto et al. 
2020; Janek et al. 2021). Other studies have shown that bac-
teria such as Candida sphaerica, Pseudomonas aeruginosa 
and Starmerella bombicola were able to produce 21, 42 and 
51.5 g/L of surfactant, respectively, using organic materials 
or organic wastes as substrates (Luna et al. 2015; Sodagari 
et al. 2018; Jadhav et al. 2019). It has been reported that P. 
aeruginosa produces 240 g/L of rhamnolipids under optimal 
production conditions using sunflower oil as the substrate 
(Bazsefidpar et al. 2019). A strain of Starmerella bom-
bicola (strain ATCC 22214) produced 342 g/L surfactant 
(sophorolipids) using an efficient technology for biosur-
factant separation and using corn steep liquor, rapeseed oil 
and glucose as substrates (Liu et al. 2019).

Studies on hydrophobin production have shown that 
Aspergillus oryzae produced a hydrophobin, which was 
extracted from the mycelium pellet using malt extract 
as the substrate (Puspitasari et  al. 2020). Furthermore, 
Kulkarni et al. (2020) found that Pleurotus ostreatus pro-
duced higher amounts of hydrophobin in solid-state fer-
mentation (3.8 mg/g biomass) than in submerged fermen-
tation (1.86 mg/g biomass) using agro-industrial waste oil 
cakes of coconut and sesame vs. yeast maltose and glucose 
media, respectively. In addition, hydrophobin was extracted 
(9.4 mg/g of dry weight) from the fungal biomass of Tricho-
derma reesei grown on glucose using an improved extraction 
and production method (Vereman et al. 2021). These stud-
ies have shown that the type of biosurfactant and its pro-
duction depend on the strain, the formulation of the culture 
medium (substrate) and the culture conditions in which the 
organism grows. As shown in Fig. 3, to optimize microbial 
surfactant production, it is necessary to use microorganisms 
with high production capabilities growing in optimal condi-
tions on low-cost substrates employing an adequate system 
for fermentation (i.e. optimization of the fermentation pro-
cess). The use of novel technological developments is also 
necessary to efficiently enhance biosurfactant production. 
In this context, the use of metabolomic and metagenomics 

Fig. 2  Schematic illustration of the mechanisms of microbial degra-
dation of hydrophobic organopollutants using biosurfactants: a for-
mation of micelles and incorporation of pollutants inside the micro-
bial cell and b microbial attachment of hydrophobic pollutants
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approaches may allow identifying efficient biosurfactant 
producers as well as novel microbial surfactants. In addi-
tion, in silico analysis provides a versatile methodology for 
integrating multi-omics information to enhance the biosur-
factant production (Occhipinti et al. 2018). Recombinant 
DNA technology also enables overproduction of microbial 
surfactants (Gaur et al. 2022). Furthermore, nanotechnol-
ogy is a promising tool in the development of biosurfactant-
based nanostructures (nano-adsorbent structures), which are 
efficient nanoparticles for environmental application (Kundu 
et al. 2016; Nitschke et al. 2022).

Biosynthetic pathways of microbial surfactants

It has been reported that microorganisms use independent 
pathways to synthesize the hydrophobic and hydrophilic 
portions of biosurfactants, which are subsequently com-
bined (Théatre et al. 2021). The biosynthetic pathway to 
be used depends on the carbon source in which the micro-
organism grows. For example, for glycolipid biosynthesis 
in the presence of carbohydrates as the sole carbon source, 
carbon flow is used in both the lipogenic and glycolytic 

pathways for lipid moiety and hydrophilic portion syn-
thesis, respectively (Fig. 4). As illustrated in Fig. 4, when 
glucose is present in the growth medium, glucose-6 phos-
phate is the first intermediate of glucose metabolism, 
which is one of the principal precursors of carbohydrates 
that constitute the hydrophilic part of a biosurfactant (e.g. 
sophorose, trehalose, and mannose). The hydrophobic 
part of the surfactant is synthesized by the oxidation of 
glucose to pyruvate, which is then converted into acetyl-
CoA. Acetyl-CoA is converted to malonyl-CoA, and then 
a series of reactions occurs to convert malonyl-CoA to 
fatty acids, which are then channeled into the lipid bio-
synthetic pathway (Parsons and Rock 2013; Fakas 2016). 
For example, for the sophorolipid biosynthesis, oleic acid 
is synthesized via de novo fatty acid biosynthesis, which 
is converted to ω-hydroxy fatty acid. UDP-glucose enters 
into the biosynthesis to form glucolipid and then a non-
acetylated acid sophorolipid is formed. Subsequently, a 
series of reactions occur to convert this last compound 
to lactones both in monomeric or in dimeric structures, 
since sophorolipid exists in two forms acidic and lactonic 
(Van Bogaert et al 2011; Saerens et al 2015; Wongsirichot, 

Fig. 3  An overview of fac-
tors influencing biosurfactant 
production. The selection of 
microbial culture as well as the 
use of adequate fermentation 
systems and novel technological 
developments are important for 
the optimization of microbial 
surfactant production
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et al 2021) (Fig. 5). Emulsan and hydrophobins can also 
be synthetized through de novo fatty acid biosynthesis 
and amino acid formation pathways, respectively (Fig. 4). 
The biosynthetic pathways of bioemulsifiers also have 
been proposed. For example, for emulsan biosynthesis, 
fructuose 6-P would be transformed into UDP-N-acetyl-
D-glucosamine, which after a series of reactions would 

be converted to UDP-N-acetyl-L-galactosaminuronic acid 
and then to UDP-N-acetyl-D-galactosamine uronic acid. 
This last compound would undergo sequential transfer of 
sugars, acetylation, trans-amidation and trans-esterifica-
tion of fatty acids, translocation and polymerization of 
repeat units to form emulsan (Singh et al 1990; Nakar and 
Gutnick, 2001) (Fig. 6).

Fig. 4  Biosynthetic pathways for the production of different types 
of glycolipids (i.e. rhamnolipids, sophorolipds, etc.), lipopeptide 
(i.e. surfactin), hydrophobins and bioemulsifiers using carbohydrate 
substrates (redrawn and extended from Luft et al. 2020; Jimoh et al. 

2021; Fernandes-Moutinho et al. 2021). Carbon flow is used in both 
the lipogenic and glycolytic pathways for lipid moiety and hydro-
philic portion synthesis, respectively
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In contrast, when hydrocarbons are employed as a car-
bon source for biosurfactant biosynthesis, microorganisms 
employ the gluconeogenic pathway (the formation of glu-
cose from nonhexose precursors) and the lipolytic pathway 
for the production of the hydrophilic part (saccharides) and 
the hydrophobic part (fatty acids), respectively (Fig. 7). The 
gluconeogenic pathway is activated for the production of 
saccharides, which begins with fatty acid β-oxidation to 
acetyl-CoA (or propionyl-CoA, for odd-chain fatty acids). 
Acetyl-CoA undergoes reactions inverse to those performed 
in glycolysis. Acetyl-CoA is converted to oxaloacetate, 
which is decarboxylated and then phosphorylated to form 
phosphoenolpyruvate. This compound is eventually con-
verted into glyceraldehyde 3‐phosphate. Glyceraldehyde 3‐
phosphate then transforms into fructose 1,6‐bisphosphate 
via either direct conversion or through the intermediate 
dihydroxyacetone phosphate. Fructose 1,6‐bisphosphate 
transforms into fructose 6‐phosphate, which forms glu-
cose‐6‐phosphate. This compound is the precursor of the 
carbohydrates (the hydrophilic moiety) in the biosurfactant 
(Fig. 7) (Karmakar, 2017; Park et al. 2020; Luft et al. 2020; 
Jimoh et al. 2021).

Microbial biosurfactants are synthesized intracellularly 
or extracellularly, and their synthesis requires specific genes 
or enzymes to be activated in the presence of a particular 
substrate (Jimoh et al. 2021). For example, in P. aeruginosa, 
three enzymes (rhamnosyltransferase chain A, chain B and 
chain C) that catalyze rhamnolipid production in this bac-
terium are encoded by the rhlAB operon and the rhlC gene. 
The expression patterns of these genes have suggested that 
the synthesis of monorhamnolipids initially occurs early in 
the stationary phase followed by the conversion of some 
into dirhamnolipids (Wagner et al. 2003; Suh et al. 2019). 
In the fungus U. maydis, mannosylerythritol biosynthesis 
requires the enzymes mannosyltransferase, acetyltransferase 
and acyltransferase, which are encoded by the emt1, mat1 
and mac1 genes, respectively (Hewald et al. 2006). Several 
studies have reported that surfactin is produced by Bacillus 
species (Tables 1, 2 and 3). The biosynthesis of this sur-
factant is catalyzed by surfactin synthase, which involves 
joining amino acids into the surfactin peptide component 
through a thiotemplate mechanism. This process includes 
the assembly of amino acids into a peptide chain. The lipo-
peptide is then formed by linking the hydroxyl fatty acid to a 
peptide using an acyltransferase (Jimoh et al. 2021). Specifi-
cally, it has been shown that in B. subtillis, surfactin biosyn-
thesis involves srfA gene expression, which is regulated by 

repressor proteins and other transcriptional regulators (Sul-
livan, 1998; Roongsawang et al. 2010; Jimoh et al. 2021). 
In comparison, in the fungus T. reesei, the biosynthesis of 
hydrophobins depends on the hfb1 and hfb2 genes (Askolin 
et al. 2005), whereas Fusarium graminearum possesses five 
genes encoding hydrophobins (i.e. FgHyd1-5) (Quarantin 
et al. 2019). An increase in the expression of hydrophobin 
coding genes has been detected in studies on polyethyl-
ene terephthalate degradation by Trichoderma viride GZ1 
(Dąbrowska et al. 2021).

Emergent strategy tools for biosurfactant 
applications in the biodegradation of hydrophobic 
organopollutants

Biosurfactants possess practical and efficient applications in 
the environmental biodegradation of hydrophobic organopo-
llutants. Studies on the use of partially purified biosurfactant 
or biosurfactant producers for hydrophobic organopollut-
ant biodegradation have been conducted ex situ (e.g. in the 
laboratory). In this context, investigations on benzo(a)pyr-
ene biodegradation were performed in contaminated water 
and soil by adding a surfactant produced by Pseudomonas 
frederiksbergensis (Guo and Wen 2021). It was observed 
that the benzo(a)pyrene in contaminated water decreased 
by 66% (2 mg/L, initial concentration) when the dosed bio-
surfactant was 3 mg/L, whereas 84.8% of this pollutant was 
biodegraded in contaminated soil by adding 0.5% (w/w) bio-
surfactant (Guo and Wen 2021). Furthermore, the cell-free 
broth containing surfactants produced by Bacillus algicola, 
Rhodococcus soli, Isoptericola chiayiensis, and Pseudoalte-
romonas agarivorans was able to desorb crude oil in oil-
polluted marine sediment (Lee et al. 2018). Moreover, the 
addition of a crude lipopeptide biosurfactant produced by 
Bacillus methylotrophicus to biodiesel-contaminated clayey 
soil at a low concentration (0.5% w/w) enhanced biodiesel 
removal by approximately 16% after 90 days (Decesaro et al. 
2021). In addition, research on PAH biodegradation revealed 
that the addition of phenol (which frequently coexists with 
PAHs) and a biosurfactant extracted from the production 
of P. aeruginosa were able to enhance PAH bioavailability 
in sludge and improve biodegradation (Zang et al. 2021). 
Furthermore, the application of rhamnolipids in a fungal-
cultured biotrickling filter for toluene removal showed sig-
nificantly improved biodegradation of this hydrocarbon (˃ 
96%) (Dewidar and Sorial 2022).

Additionally, a study on the biodegradation of petroleum 
wastewater was performed using an anoxic packed bed bio-
film reactor that was inoculated with in situ biosurfactant-
producing bacteria (Molaei et  al. 2022). Biosurfactant 
(rhamnolipid and surfactin) production and dehydrogenase 
activity increased during biodegradation, showing efficient 
biodegradation of cyclic aliphatic, aliphatic, and aromatic 

Fig. 5  Biosynthetic pathway for the production of sophorolipids. A 
series of reactions occur to convert non-acetylated acid sophorolipid 
to lactones both in monomeric or in dimeric structures. Sophorolipid 
exists in two forms acidic and lactonic (redrawn from Van Bogaert 
et al 2011; Saerens et al 2015; Wongsirichot, et al 2021)

◂
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Fig. 6  Proposed biosynthetic 
pathway for the production 
of emulsan. Fructuose 6-P 
would be transformed into 
UDP-D-GlcNAc, which after 
a series of reactions would be 
converted to UDP-D-GalNAc. 
This last compound would 
undergo sequential reactions 
to form emulsan (redrawn 
from Singh et al 1990; Nakar 
and Gutnick, 2001). GlcNAc, 
N-acetylglucosamine; ManNAc, 
N-acetylmannosamine; Gal-
NAc, N-acetylgalactosamine; 
GalNAc, N-acetylgalactosamine 
uronic acid
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Fig. 7  Metabolic pathways for the synthesis of different types of 
glycolipids (i.e. rhamnolipids, sophorolipds, etc.), hydrophobins, 
bioemulsifiers, etc., using a hydrocarbon substrate (redrawn and 
extended from Luft et al. 2020; Jimoh et al. 2021). Microorganisms 

employ the gluconeogenic pathway (the formation of glucose from 
nonhexose precursors) and the lipolytic pathway for the production 
of the hydrophilic part (saccharides) and the hydrophobic part (fatty 
acids), respectively
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hydrocarbons (Molaei et al. 2022). Moreover, the biosur-
factant producers Bacillus sp. AKS2 and P. aeruginosa 
AKS1 isolated from refinery sediments were used in bio-
degradation experiments performed in microcosm sediments 
(125 mg crude oil/10 g sand) (Chettri et al. 2021). The half-
lives for hydrocarbon biodegradation were 50 and 61 days 
for P. aeruginosa and Bacillus sp respectively (Chettri et al. 
2021).

A study using immobilized Vibrio sp. LQ2, a biosur-
factant (phospholipid) producer in the bioremediation of 
diesel oil-contaminated seawater, was conducted (Zhou et al. 
2021). It was shown that the inoculation of biochar-immo-
bilized LQ2 resulted in 94.7% diesel oil removal (reduction 
from 169.2 mg to 8.91 mg) after 7 days. This investigation 
also revealed an increase in the degradation-related genes 
alkB and CYP450-1, which were 3.8 and 15.2 times higher in 
the immobilized LQ2 experiment than those in the free-cell 
experiment (Zhou et al. 2021).

An analysis of the utilization of biosurfactants or micro-
bial producers of biosurfactants in combination with other 
methods to improve organopollutant degradation has also 
been undertaken. In this context, a study on the use of a 
bacterial surfactant (lipopeptide) in electrokinetic remedia-
tion increased the degradation rate of crude oil-contaminated 
soil by approximately 92% (Prakash et al. 2020). In addition, 
an enhanced method for the treatment of oil-contaminated 
soil has also been reported using a biosurfactant (rham-
nolipid and surfactin)-assisted washing mechanism coupled 
with hydrogen peroxide-stimulated microbial degradation 
(Fanaei et al. 2020). Furthermore, an effective remediation 
(84%) method for diesel-contaminated soil was reported by 
integrating electrokinetics with bioremediation using the 
biosurfactant-producing bacterium Staphylococcus epider-
midis EVR4 (Vaishnavi et al. 2021). Moreover, a process 
in which aromatic hydrocarbons were removed from con-
taminated soil from industrial sites using a surface-modified 
lipopeptide biosurfactant (with enhancement of polar amino 
acids) produced by Bacillus malacitensis and an activated 
functionalized carbon matrix was investigated; a 62% total 
petroleum hydrocarbon removal efficiency was found after 
28 days (Christopher et al. 2021).

Furthermore, studies using biosurfactants in situ (i.e. 
in polluted areas) have also shown biodegradation of 
hydrophobic organopollutants. For example, a field trial 
on LaTouche Island (in Alaska) demonstrated the effec-
tiveness of the microbial surfactant PES-51, which was 
able to remove weathered crude oil from beach material. 
Hydrocarbons (semivolatile petroleum) were reduced by 
approximately 70% (Tumeo et al. 1994). In addition, a bio-
degradation experiment on crude oil-contaminated soil was 
undertaken near an oil production company, demonstrating 
that 77% of crude oil was degraded using a combination of 
rhamnolipids, nutrients and hydrocarbon-degrading bacteria 

(Tahseen et al. 2016). Furthermore, it was found that Entero-
bacter xiangfangensis STP-3 was capable of degrading 82% 
of petroleum hydrocarbons in 14 days during the biotreat-
ment of real field petroleum oil sludge with the simulta-
neous production of metabolic enzymes and biosurfactants 
(Muneeswari et al. 2021).

Concluding remarks

Biosurfactants are produced either as growth-associated 
products or secondary metabolites with diverse chemical 
structures and in varying amounts by a wide range of micro-
organisms. Microbial surfactant production can be induced 
by the presence of hydrophobic substrates or they can be 
produced intrinsically using conventional organic materials 
or organic wastes as substrates. Biosurfactants are biode-
gradable and ecofriendly, and their microbial diversity in 
production, high stability and specific activity make them 
a promising technology to clean up polluted environments 
in a green manner. The use of microbial surfactants offers 
a promising strategy to overcome the problems associated 
with contamination by hydrophobic organopollutants. How-
ever, biosurfactant production must be optimized to increase 
yield and decrease production costs. For this reason, it is 
necessary to use microbial producers with high biosurfactant 
production capabilities on low cost substrates. Addition-
ally, the use of novel technological developments (e.g. omic 
analysis, recombinant DNA technology, nanotechnology, 
computational modeling, efficient separation technology) in 
multidisciplinary research would enhance the efficient pro-
duction of biosurfactants. Further studies are needed to fully 
understand the mechanisms of biosurfactant biosynthesis, 
in which the use of bioinformatics analysis is a promising 
tool. In addition, more research is required to understand the 
interaction of biosurfactants with cells in order to improve 
our knowledge of their mechanism of action for the orga-
nopollutants degradation. The development of integrated 
strategies that combine techniques and biosurfactants is an 
interesting approach to explore the most effective treatment 
technology for the remediation of hydrophobic organopol-
lutant contamination.
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