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Abstract

The increasing influence of human activity and industrialization has adversely impacted the environment via pollution
with organic contaminants, which are minimally soluble in water. These hydrophobic organopollutants may be present in
sediment, water or biota and have created concern due to their toxic effects in mammals. The ability of microorganisms to
degrade pollutants makes their use the most effective, inexpensive and ecofriendly method for environmental remediation.
Microorganisms have the ability to produce natural surfactants (biosurfactants) that increase the bioavailability of hydro-
phobic organopollutants, which enables their use as carbon and energy sources. Due to microbial diversity in production,
and the biodegradability, nontoxicity, stability and specific activity of the surfactants, the use of microbial surfactants has
the potential to overcome problems associated with contamination by hydrophobic organopollutants.

This review provides an overview of the current state of knowledge regarding microbial surfactant production, mode of
action in the biodegradation of hydrophobic organopollutants and biosynthetic pathways as well as their applications using
emergent strategy tools to remove organopollutants from the environment. It is also specified for the first time that biosur-
factants are produced either as growth-associated products or secondary metabolites, and are produced in different amounts

by a wide range of microorganisms.
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Introduction

Increasing anthropogenic activity and industrialization
have considerably increased environmental pollution from
organic contaminants. Organic pollutants include a wide
range of organic xenobiotic chemicals, which are minimally
soluble in water and may be present in water, sediment or
biota. They include compounds such as plastics, gasoline,
paints, adhesives, polycyclic aromatic hydrocarbons (PAHs),
benzene, polychlorinated biphenyls, toluene, ethylbenzene
and pesticides, among others (Semple et al. 2003; Rasheed
et al. 2019; Bhatt et al. 2021). The presence of these hydro-
phobic organic pollutants in the environment has caused
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concern due to their toxic effects in mammals, which include
mutagenic, carcinogenic and teratogenic effects (Dsikowit-
zky and Schwarzbauer 2014; Sanchez 2021). In this context,
a bioremediation approach using living systems represents
an efficient and environmentally friendly strategy to man-
age pollutants. Microbes are present in diverse habitats, and
some have developed extraordinary strategies that allow
them to grow and adapt to extreme environments (Sarm-
iento et al. 2015; Sanchez et al. 2020). Microbial strategies
include a powerful enzymatic system composed of stable
enzymes produced under extreme conditions and an ability
to produce natural surfactants as a means to increase the
bioavailability of hydrophobic organopollutants (Kaczorek
et al. 2018). These microbial strategies allow microbes to
use complex substrates (i.e. hydrophobic organopollutants)
as carbon and energy sources. Microbial surfactants (biosur-
factants) can be found on the cell surface or are released into
the extracellular space (Ward 2010). Biosurfactants provide
increased hydrophobicity on the cell surface of the produc-
ing microorganisms, which facilitates the access and use of
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hydrophobic substrates by microbial cells (Perfumo et al.
20009; Satpute et al. 2010; Uzoigwe et al. 2015).

Some microbes secrete biosurfactants only when growing
on hydrophobic substrates, whereas others produce these
compounds during growth on both hydrophobic and hydro-
philic substrates (Gautam and Tyagi 2006). The production
of biosurfactants can be affected by growing substrate, tem-
perature, pH, nitrogen and carbon sources (Sanches et al.
2021).

Biosurfactants have advantages in relation to their chemi-
cal analogs. Microbial surfactants are biodegradable, have
high activity, are nontoxic and are stable under extreme con-
ditions (i.e. pH, temperature and salinity) (Abdel-Mawgoud
et al. 2010; Jahan et al. 2020). Therefore, biosurfactants
have enormous potential in the development of significant
biotechnological processes due to their unique properties
(Santos et al. 2016). In addition to bioremediation, biosur-
factants are employed in cosmetic formulations, food, bio-
medicine, pharmaceuticals, and nanotechnology (Jahan et al.
2020; Sanches et al. 2021). Biosurfactants are considered
important biomolecules, and their production represents a
key technology for development in the current century (San-
tos et al. 2016).

This review provides, for the first time, an overview of
the current state of knowledge about microbial surfactant
production, the mode of action in the biodegradation of
hydrophobic organopollutants and the biosynthetic pathways
of surfactants as well as their applications to hydrophobic
organopollutant remediation using emergent strategy tools
in a single document. It is also specified that biosurfactants
are produced either as a growth-associated or secondary
metabolites, and are produced in different amounts by a wide
range of microorganisms.

Characteristics and mode of action
of microbial surfactants

Microbial surface-active or microbial surfactant compounds
are a structurally diverse group of molecules produced by
many microorganisms. These compounds contain a hydro-
phobic component of saturated or unsaturated hydrocar-
bon chains or fatty acids and a hydrophilic component that
includes an acid, peptide anions, cations, or mono-, di- or
polysaccharides (Banat et al. 2010). The majority of these
compounds are either neutral or anionic; only a few are cati-
onic (e.g. those containing amine groups). In solutions, the
shape of the micelles depends on the structure of the compo-
nent molecules as previously reported (Israelachvili 1992).
The size of the hydrophilic moiety in relation to the hydro-
phobic component has an impact on packing into cylindri-
cal micelles, spherical micelles, inverted micelles or bilay-
ers (Linder et al. 2005). An important chemical-physical
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parameter of surfactants is the critical micelle concentra-
tion (CMC), which refers to the minimum concentration of
surfactant necessary to give the minimum surface tension
in water and form micelles (Wijaya et al. 2016). The abil-
ity to decrease the surface and interfacial tensions is facili-
tated via the adsorption of the surfactant in different phases,
allowing dissimilar phases to mix and interact more easily
(Uzoigwe et al. 2015). Therefore, an efficient surfactant has
a low CMC, requiring less surfactant to decrease surface
tension (Rufino et al. 2014).

Microbial surfactants can be grouped into low molecular
mass compounds, known as biosurfactants (glycolipids, lipo-
peptides) and high molecular mass compounds (lipopoly-
saccharides, lipoproteins, hydrophobic proteins), known as
bioemulsifiers or bioemulsans (Fig. 1) (Rosenberg and Ron
1997; Smyth et al. 2010a, 2010b). Biosurfactants are able to
reduce the surface and interfacial tensions between different
phases (liquid-liquid, liquid-air, and liquid—solid) until the
interface is saturated and micelles begin to form. In contrast,
bioemulsifiers or bioemulsans are amphiphilic or polyphilic
polymers that are able to efficiently stabilize oil-in-water
emulsions; however, they do not substantially reduce surface
tension (Smyth et al. 2010b).

Several studies have reported that microorganisms pro-
duce their own surfactant (which can be induced) during the
degradation of hydrophobic organopollutants (Table 1) or
can be produced intrinsically on conventional substrates (e.g.
glucose and sucrose), organic materials or organic wastes
(Tables 2 and 3). Biosurfactants are generally composed of
sugars, fatty acids, amino acids and functional groups such
as carboxylic acids (Uzoigwe et al. 2015) and generally have
a molecular weight of approximately 0.5-1.5 kDa (Santos
et al. 2016). It has been reported that particular class of bio-
surfactants called hydrophobins, which are produced exclu-
sively by fungi, have a molecular weight of approximately
10-17 kDa (Dabrowska et al. 2021; Puspitasari et al. 2020;
Pothiratana et al. 2020). However, some studies have shown
that hydrophobins can have a higher molecular weight (i.e.
19-70 kDa) than those previously reported (Table 4). Sev-
eral hydrophobins have been isolated from different fungi.
These biomolecules are composed of some hydrophobic
amino acids and also possess eight Cys residues (Shuren
and Wessels 1990; Santacruz-Juarez et al. 2021). Based on
their differences in hydrophobic properties, morphology and
solubility, hydrophobins are divided in class I and class II.
Class I hydrophobins are highly insoluble, while those of
class II hydrophobins easily can be dissolved in a variety of
solvents (Wessels, 1994) (Table 4).

Most natural surfactants reduce surface tension to approx-
imately 30 mN/m (Table 2). It has been reported that syn-
thetic surfactants such as modified heterogeneous alcohol
ether, fatty alcohol methyl esters of ethoxylate and Tween
80 have surface tension values of 29.5, 33.6 and 37.8 mN/m,
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Fig.1 Some types of microbial surfactants, which can be grouped
into low molecular mass compounds, known as biosurfactants (e.g.
glycolipids, lipopeptides, proteins), and high molecular mass com-

respectively, at their respective CMC values of 14, 80 and
14 mg/L (Li et al. 2017). Some microbial surfactants have a
low CMC and are able to form stable emulsions. It has been
reported that the CMCs of biosurfactants generally vary
from 1 to 200 mg/L (Mulligan, 2005; Singh et al. 2018);
however, recent studies have found higher CMC values for
biosurfactants (Tables 1, 2). For example, CMCs of 1200,
1500 and 1700 mg/L have been reported for glycolipids,
anionic surfactants, and glycoproteins produced during the
degradation of pyrene, burned motor oil and diesel oil by
Acinetobacter baumannii (Gupta et al. 2020), Serratia marc-
escens (Aradjo et al. 2017, 2019) and Rhizopus arrhizus
(Pele et al. 2019), respectively. However, the CMCs of a
hydrophobin and a lipopeptide were 10 mg/L and 12.5 mg/L
during the degradation of crude oil by Trichoderma har-
zianum and Bacillus subtilis, respectively (Nogueira-Felix
et al. 2019; Pitocchi et al. 2020).

As shown in Fig. 2, the biodegradation of hydrophobic
organopollutants occurs via the formation of a micellar
structure with biosurfactants, in which the hydrophilic heads
are oriented to the aqueous water stage, and the hydrophobic
tails are attached to hydrophobic pollutants, facilitating pol-
lutant adsorption into the microbial cell followed by intracel-
lular enzymatic degradation of the pollutant (Sun et al. 2016;
Zhong et al. 2016; Shao et al. 2017) (Fig. 2a). Alternatively,
some studies have reported that the biodegradation of hydro-
phobic compounds takes place once the biosurfactants have

pounds, known as bioemulsifiers or bioemulsans (i.e. polymers of
lipopolysaccharide proteins or lipoproteins and polysaccharides)
(Mondal et al. 2015; Mnif and Ghribi 2015; Dhanya 2021)

surrounded the substrate, allowing microbial attachment
and increased substrate availability, and microbial growth
and specific enzyme secretion would then allow microbial
colonization of the substrate and its degradation (Fig. 2b)
(Sanchez 2020, 2021; Dabrowska et al. 2021).

Microbial surfactant production for organopollutant
biodegradation

Various levels of biodegradation of organopollutants by bio-
surfactant producers have been reported, mainly by bacteria
from genera such as Pseudomonas, Klebsiella, Meyerozyma,
Bacillus, Rhodococcus, Acinetobacter, Staphylococcus,
and Achromobacter and from fungal genera such as Tricho-
derma, Aspergillus, Agrocybe, and Candida (Table 1).

Producers of microbial surfactants have been found in
every habitat, including marine environments (psychrotoler-
ant and halotolerant microorganisms) (Zakaria et al. 2019;
Trudgeon et al. 2020; Pourfadakari et al. 2021; Cheffi et al.
2020), hydrophobic pollutant-contaminated soils (Ahmadi
et al. 2021), wastewater (Nogueira-Felix et al. 2019; Cheffi
et al. 2020), freshwater lake ecosystems (Phulpoto et al.
2021), lichens (Santos et al. 2019), and plants (Marchut-
Mikolajczyk et al. 2018) (Table 2).

Some studies have reported that biosurfactants are
microbial growth-associated products. Sharma and Pandey
(2020) reported that B. subtilis RSL2 produced a lipopeptide
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Table 4 Some hydrophobins produced by fungi and their characteristics

Hydrophobin Protein-encoding gene Molecu- Class Fungal group Organism Reference
lar mass
(kDa)
HFBII hjb2 7.2 11 Ascomycete T. reesei Nakari-Setild, et al., (1997)
SRHI srhl 7.5 11 Ascomycete T. harzianum Muiioz et al., (1997)
HYPA hypA 8-9 I Basidiomycete Agaricus bisporus De Groot et al., (1996)
Vmhl, Vmh2 vmhl and vmh2 9 Nd Basidiomycete Pleurotus ostreatus var. Peiias et al., (2002)
florida
POH1 POHI 9 I Basidiomycete P. ostreatus Asgeirsddttir et al., (1998)
XEH1 XEH]I, 8.4 1 Ascomycete ( symbiotic  Xanthoria parietina and ~ Scherrer et al. (2000)
XPHI phenotype of the lichen-  X. ectaneoides,
forming ascomycetes) (a conglutinate)
CoHl1 coH1 10 I Basidiomycete Coprinus cinereus Asgeirsdottir et al. ( 1997)
POH3 POH3 10 I Basidiomycete P. ostreatus Asgeirsddttir et al. (1998)
CmHYD1 Cmhydl 10.57 II Ascomycete Cordyceps militaris Lietal. (2021)
CmHYD2 Cmhyd?2 10.32 I
CmHYD4 Cmhyd4 10.45 I
Fbh-1 fbhl 12 I Basidiomycete P. ostreatus var. florida Peiias et al. (1998)
Hum3 Hum3 13 I Basidiomycete U. maydis Miiller et al. (2008)
HYDPt-1 hydPt-1 13 I Basidiomycete Pisolithus tinctorius Tagu et al. (2001)
SCl1 Scl 13.5 I Basidiomycete Schizophyllum Schuren and Wessels
commune (1990); Wessels et al.
(1991); Wessels (1997)
CmHYD3 Cmhyd3 13.48 I Ascomycete C. militaris Liet al. (2021)
DGH2 DGH?2 14 I Basidiomycete Dictyonema Trembley et al. (2002)
glabratum
SC4 Sc4 14.5 I Basidiomycete S. commune Schuren and Wes-
sels(1990); Wessels
1997)
SC3 Sc3 15 1 Basidiomycete S. commune Schuren and Wessels, 1990;
Wessels, 1997
POH1 POHI 15 I Basidiomycete P. ostreatus Asgeirsddttir et al., 1998
MPG1 MPGI 15 1 Ascomycete Magnaporthe grisea Talbot et al., 1996
Rod A RODA 16 I Ascomycete Aspergillus fumigatus Paris et al., 2003
ABHI ABHI1 16 I Basidiomycete A. bisporus Lugones et al., 1996
Vmh3 vmh3 17 nd Basidiomycete P. ostreatus var. florida Peiias et al., 2002
ABH3 ABH3 19 I Basidiomycete A. bisporus Lugones et al., 1998
POH2 POH2 20 I Basidiomycete P. ostreatus Asgeirsddttir et al., 1998
Hyd 1 hydl 23 1T Basidiomycete Tricholoma Mankel et al., 2002
terreum
CFTH1 cfthl 36.5 11 Ascomycete Claviceps fusiformis de Vries et al., 1999
CPPH1 cpphl 70 I Ascomycete Claviceps purpurea Mey et al., 2003

biosurfactant that was released primarily within the expo-
nential phase when grown on crude oil as a carbon source.
Similarly, Datta et al. (2018) found that a lipopeptide (sur-
factin) produced by B. subtilis MG 495,086 as the primary
metabolite reached maximum yield during the exponential
phase using light paraffin oil as the carbon source. Moreo-
ver, B. subtilis Al and Bacillus licheniformis AL 1.1 also
produced a lipopeptide as a growth-associated metabolite,
using sucrose and glucose as carbon sources, respectively
(Coronel-Leon et al. 2015; Parthipan et al. 2017).

@ Springer

However, other biosurfactants such as glycolipids
(i.e. rhamnolipids, trehalolipids) have been reported as
compounds produced by microorganisms as secondary
metabolites. Bacteria such as Acinetobacter calcoaceti-
cus, Enterobacter asburiae and Pseudomonas aeruginosa
produced rhamnolipids during their growth on medium
containing sodium citrate as a carbon source, enhancing
biosurfactant production during the late stationary phase
(HoSkova et al. 2015). Furthermore, Marinobacter sp.
MCTG107b produced a mixture of different rhamnolipids
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Fig.2 Schematic illustration of the mechanisms of microbial degra-
dation of hydrophobic organopollutants using biosurfactants: a for-
mation of micelles and incorporation of pollutants inside the micro-
bial cell and b microbial attachment of hydrophobic pollutants

when grown on glucose as a carbon source and were sug-
gested to be secondary metabolites (Tripathi et al. 2019).
Moreover, P. aeruginosa was able to produce rhamnolipids
as secondary metabolites in a mineral medium containing
olive oil (Leite et al. 2016). In addition, Fusarium fujikuroi
produced a,B-trehalose containing glycolipid after 7 days
of growth in a glucose medium and was reported as a sec-
ondary metabolite biosurfactant (Loureiro-Dos Reis et al.
2018). Additionally, Ustilago maydis, Schizonella melano-
gramma, Candida antarctica, and Geotrichum candidum
have been reported to produce mannosylerythritol lipids
(glycolipid biosurfactants) as secondary metabolites (Das
et al. 2008).

In comparison, hydrophobins are produced by filamen-
tous fungi and have been described as the most effective
surface-active proteins (Cicatiello et al. 2016). It has been
shown that these biomolecules are expressed at different
developmental stages of fungal life, having a role as struc-
tural components in fungal growth and in environment-
fungal interactions. Therefore, hydrophobins are found in
vegetative hyphae, the fruit bodies of mushrooms and spores
(Linder et al. 2005).

Biosurfactants can be produced by different microor-
ganisms in different amounts using different substrates. As
shown in Table 3, some species such as Aureobasidium thai-
landense, strains of Pseudomonas aeruginosa and Bacillus
pumilus produced surfactants in amounts of approximately
0.09-0.8 g/L using glucose and/or other substrates (Slivinski
et al. 2012; Leite et al. 2016; Meneses et al. 2017; Ahmadi
et al. 2021). However, some Bacillus species, Stenotropho-
monas sp Mucor hiemalis, Aspergillus niger, Rhizopus arrhi-
zus, Fusarium sp, Candida tropicalis, Aureobasidium pul-
lulans and others have been reported to produce between 1
and 10 g/L biosurfactant on a variety of substrates (Table 3)
(Qazi et al. 2014; Dhanarajan et al. 2014; Bouassida et al.
2018; Datta et al. 2018; Mendes-de Souza et al. 2018; Saur
et al. 2019; Silva-Ferreira et al. 2020; Asgher et al. 2020;
Domdi et al. 2020; Patel and Patel, 2020; Phulpoto et al.
2020; Janek et al. 2021). Other studies have shown that bac-
teria such as Candida sphaerica, Pseudomonas aeruginosa
and Starmerella bombicola were able to produce 21, 42 and
51.5 g/L of surfactant, respectively, using organic materials
or organic wastes as substrates (Luna et al. 2015; Sodagari
et al. 2018; Jadhav et al. 2019). It has been reported that P.
aeruginosa produces 240 g/L of thamnolipids under optimal
production conditions using sunflower oil as the substrate
(Bazsefidpar et al. 2019). A strain of Starmerella bom-
bicola (strain ATCC 22214) produced 342 g/L surfactant
(sophorolipids) using an efficient technology for biosur-
factant separation and using corn steep liquor, rapeseed oil
and glucose as substrates (Liu et al. 2019).

Studies on hydrophobin production have shown that
Aspergillus oryzae produced a hydrophobin, which was
extracted from the mycelium pellet using malt extract
as the substrate (Puspitasari et al. 2020). Furthermore,
Kulkarni et al. (2020) found that Pleurotus ostreatus pro-
duced higher amounts of hydrophobin in solid-state fer-
mentation (3.8 mg/g biomass) than in submerged fermen-
tation (1.86 mg/g biomass) using agro-industrial waste oil
cakes of coconut and sesame vs. yeast maltose and glucose
media, respectively. In addition, hydrophobin was extracted
(9.4 mg/g of dry weight) from the fungal biomass of Tricho-
derma reesei grown on glucose using an improved extraction
and production method (Vereman et al. 2021). These stud-
ies have shown that the type of biosurfactant and its pro-
duction depend on the strain, the formulation of the culture
medium (substrate) and the culture conditions in which the
organism grows. As shown in Fig. 3, to optimize microbial
surfactant production, it is necessary to use microorganisms
with high production capabilities growing in optimal condi-
tions on low-cost substrates employing an adequate system
for fermentation (i.e. optimization of the fermentation pro-
cess). The use of novel technological developments is also
necessary to efficiently enhance biosurfactant production.
In this context, the use of metabolomic and metagenomics

@ Springer
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Fig.3 An overview of fac-

tors influencing biosurfactant
production. The selection of
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use of adequate fermentation
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the optimization of microbial
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approaches may allow identifying efficient biosurfactant
producers as well as novel microbial surfactants. In addi-
tion, in silico analysis provides a versatile methodology for
integrating multi-omics information to enhance the biosur-
factant production (Occhipinti et al. 2018). Recombinant
DNA technology also enables overproduction of microbial
surfactants (Gaur et al. 2022). Furthermore, nanotechnol-
ogy is a promising tool in the development of biosurfactant-
based nanostructures (nano-adsorbent structures), which are
efficient nanoparticles for environmental application (Kundu
et al. 2016; Nitschke et al. 2022).

Biosynthetic pathways of microbial surfactants

It has been reported that microorganisms use independent
pathways to synthesize the hydrophobic and hydrophilic
portions of biosurfactants, which are subsequently com-
bined (Théatre et al. 2021). The biosynthetic pathway to
be used depends on the carbon source in which the micro-
organism grows. For example, for glycolipid biosynthesis
in the presence of carbohydrates as the sole carbon source,
carbon flow is used in both the lipogenic and glycolytic

@ Springer

Application of |
nanotechnology

Optimization

of microbial
surfactant
production

(o, Fer A e
Ptimz1 Ment, ste 9)
Mizati f?trloan SY: p'ocﬂs
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pathways for lipid moiety and hydrophilic portion syn-
thesis, respectively (Fig. 4). As illustrated in Fig. 4, when
glucose is present in the growth medium, glucose-6 phos-
phate is the first intermediate of glucose metabolism,
which is one of the principal precursors of carbohydrates
that constitute the hydrophilic part of a biosurfactant (e.g.
sophorose, trehalose, and mannose). The hydrophobic
part of the surfactant is synthesized by the oxidation of
glucose to pyruvate, which is then converted into acetyl-
CoA. Acetyl-CoA is converted to malonyl-CoA, and then
a series of reactions occurs to convert malonyl-CoA to
fatty acids, which are then channeled into the lipid bio-
synthetic pathway (Parsons and Rock 2013; Fakas 2016).
For example, for the sophorolipid biosynthesis, oleic acid
is synthesized via de novo fatty acid biosynthesis, which
is converted to m-hydroxy fatty acid. UDP-glucose enters
into the biosynthesis to form glucolipid and then a non-
acetylated acid sophorolipid is formed. Subsequently, a
series of reactions occur to convert this last compound
to lactones both in monomeric or in dimeric structures,
since sophorolipid exists in two forms acidic and lactonic
(Van Bogaert et al 2011; Saerens et al 2015; Wongsirichot,
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Fig.4 Biosynthetic pathways for the production of different types
of glycolipids (i.e. rhamnolipids, sophorolipds, etc.), lipopeptide
(i.e. surfactin), hydrophobins and bioemulsifiers using carbohydrate
substrates (redrawn and extended from Luft et al. 2020; Jimoh et al.

et al 2021) (Fig. 5). Emulsan and hydrophobins can also
be synthetized through de novo fatty acid biosynthesis
and amino acid formation pathways, respectively (Fig. 4).
The biosynthetic pathways of bioemulsifiers also have
been proposed. For example, for emulsan biosynthesis,
fructuose 6-P would be transformed into UDP-N-acetyl-
D-glucosamine, which after a series of reactions would

2021; Fernandes-Moutinho et al. 2021). Carbon flow is used in both
the lipogenic and glycolytic pathways for lipid moiety and hydro-
philic portion synthesis, respectively

be converted to UDP-N-acetyl-L-galactosaminuronic acid
and then to UDP-N-acetyl-D-galactosamine uronic acid.
This last compound would undergo sequential transfer of
sugars, acetylation, trans-amidation and trans-esterifica-
tion of fatty acids, translocation and polymerization of
repeat units to form emulsan (Singh et al 1990; Nakar and
Gutnick, 2001) (Fig. 6).

@ Springer
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«Fig.5 Biosynthetic pathway for the production of sophorolipids. A
series of reactions occur to convert non-acetylated acid sophorolipid
to lactones both in monomeric or in dimeric structures. Sophorolipid
exists in two forms acidic and lactonic (redrawn from Van Bogaert
et al 2011; Saerens et al 2015; Wongsirichot, et al 2021)

In contrast, when hydrocarbons are employed as a car-
bon source for biosurfactant biosynthesis, microorganisms
employ the gluconeogenic pathway (the formation of glu-
cose from nonhexose precursors) and the lipolytic pathway
for the production of the hydrophilic part (saccharides) and
the hydrophobic part (fatty acids), respectively (Fig. 7). The
gluconeogenic pathway is activated for the production of
saccharides, which begins with fatty acid p-oxidation to
acetyl-CoA (or propionyl-CoA, for odd-chain fatty acids).
Acetyl-CoA undergoes reactions inverse to those performed
in glycolysis. Acetyl-CoA is converted to oxaloacetate,
which is decarboxylated and then phosphorylated to form
phosphoenolpyruvate. This compound is eventually con-
verted into glyceraldehyde 3-phosphate. Glyceraldehyde 3-
phosphate then transforms into fructose 1,6-bisphosphate
via either direct conversion or through the intermediate
dihydroxyacetone phosphate. Fructose 1,6-bisphosphate
transforms into fructose 6-phosphate, which forms glu-
cose-6-phosphate. This compound is the precursor of the
carbohydrates (the hydrophilic moiety) in the biosurfactant
(Fig. 7) (Karmakar, 2017; Park et al. 2020; Luft et al. 2020;
Jimoh et al. 2021).

Microbial biosurfactants are synthesized intracellularly
or extracellularly, and their synthesis requires specific genes
or enzymes to be activated in the presence of a particular
substrate (Jimoh et al. 2021). For example, in P. aeruginosa,
three enzymes (rhamnosyltransferase chain A, chain B and
chain C) that catalyze rhamnolipid production in this bac-
terium are encoded by the rhIAB operon and the rhlC gene.
The expression patterns of these genes have suggested that
the synthesis of monorhamnolipids initially occurs early in
the stationary phase followed by the conversion of some
into dirhamnolipids (Wagner et al. 2003; Suh et al. 2019).
In the fungus U. maydis, mannosylerythritol biosynthesis
requires the enzymes mannosyltransferase, acetyltransferase
and acyltransferase, which are encoded by the emtl, matl
and macl genes, respectively (Hewald et al. 2006). Several
studies have reported that surfactin is produced by Bacillus
species (Tables 1, 2 and 3). The biosynthesis of this sur-
factant is catalyzed by surfactin synthase, which involves
joining amino acids into the surfactin peptide component
through a thiotemplate mechanism. This process includes
the assembly of amino acids into a peptide chain. The lipo-
peptide is then formed by linking the hydroxyl fatty acid to a
peptide using an acyltransferase (Jimoh et al. 2021). Specifi-
cally, it has been shown that in B. subtillis, surfactin biosyn-
thesis involves srfA gene expression, which is regulated by

repressor proteins and other transcriptional regulators (Sul-
livan, 1998; Roongsawang et al. 2010; Jimoh et al. 2021).
In comparison, in the fungus 7. reesei, the biosynthesis of
hydrophobins depends on the hfbI and hfb2 genes (Askolin
et al. 2005), whereas Fusarium graminearum possesses five
genes encoding hydrophobins (i.e. FgHydI-5) (Quarantin
et al. 2019). An increase in the expression of hydrophobin
coding genes has been detected in studies on polyethyl-
ene terephthalate degradation by Trichoderma viride GZ1
(Dabrowska et al. 2021).

Emergent strategy tools for biosurfactant
applications in the biodegradation of hydrophobic
organopollutants

Biosurfactants possess practical and efficient applications in
the environmental biodegradation of hydrophobic organopo-
llutants. Studies on the use of partially purified biosurfactant
or biosurfactant producers for hydrophobic organopollut-
ant biodegradation have been conducted ex situ (e.g. in the
laboratory). In this context, investigations on benzo(a)pyr-
ene biodegradation were performed in contaminated water
and soil by adding a surfactant produced by Pseudomonas
frederiksbergensis (Guo and Wen 2021). It was observed
that the benzo(a)pyrene in contaminated water decreased
by 66% (2 mg/L, initial concentration) when the dosed bio-
surfactant was 3 mg/L, whereas 84.8% of this pollutant was
biodegraded in contaminated soil by adding 0.5% (w/w) bio-
surfactant (Guo and Wen 2021). Furthermore, the cell-free
broth containing surfactants produced by Bacillus algicola,
Rhodococcus soli, Isoptericola chiayiensis, and Pseudoalte-
romonas agarivorans was able to desorb crude oil in oil-
polluted marine sediment (Lee et al. 2018). Moreover, the
addition of a crude lipopeptide biosurfactant produced by
Bacillus methylotrophicus to biodiesel-contaminated clayey
soil at a low concentration (0.5% w/w) enhanced biodiesel
removal by approximately 16% after 90 days (Decesaro et al.
2021). In addition, research on PAH biodegradation revealed
that the addition of phenol (which frequently coexists with
PAHs) and a biosurfactant extracted from the production
of P. aeruginosa were able to enhance PAH bioavailability
in sludge and improve biodegradation (Zang et al. 2021).
Furthermore, the application of rhamnolipids in a fungal-
cultured biotrickling filter for toluene removal showed sig-
nificantly improved biodegradation of this hydrocarbon (°
96%) (Dewidar and Sorial 2022).

Additionally, a study on the biodegradation of petroleum
wastewater was performed using an anoxic packed bed bio-
film reactor that was inoculated with in situ biosurfactant-
producing bacteria (Molaei et al. 2022). Biosurfactant
(rhamnolipid and surfactin) production and dehydrogenase
activity increased during biodegradation, showing efficient
biodegradation of cyclic aliphatic, aliphatic, and aromatic
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Fig.6 Proposed biosynthetic
pathway for the production

of emulsan. Fructuose 6-P
would be transformed into
UDP-D-GIcNAc, which after

a series of reactions would be
converted to UDP-D-GalNAc.
This last compound would
undergo sequential reactions

to form emulsan (redrawn

from Singh et al 1990; Nakar
and Gutnick, 2001). GIcNAc,
N-acetylglucosamine; ManNAc,
N-acetylmannosamine; Gal-
NAc, N-acetylgalactosamine;
GalNAc, N-acetylgalactosamine
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hydrocarbons (Molaei et al. 2022). Moreover, the biosur-
factant producers Bacillus sp. AKS2 and P. aeruginosa
AKSI1 isolated from refinery sediments were used in bio-
degradation experiments performed in microcosm sediments
(125 mg crude 0il/10 g sand) (Chettri et al. 2021). The half-
lives for hydrocarbon biodegradation were 50 and 61 days
for P. aeruginosa and Bacillus sp respectively (Chettri et al.
2021).

A study using immobilized Vibrio sp. LQ2, a biosur-
factant (phospholipid) producer in the bioremediation of
diesel oil-contaminated seawater, was conducted (Zhou et al.
2021). It was shown that the inoculation of biochar-immo-
bilized LQ2 resulted in 94.7% diesel oil removal (reduction
from 169.2 mg to 8.91 mg) after 7 days. This investigation
also revealed an increase in the degradation-related genes
alkB and CYP450-1, which were 3.8 and 15.2 times higher in
the immobilized LQ2 experiment than those in the free-cell
experiment (Zhou et al. 2021).

An analysis of the utilization of biosurfactants or micro-
bial producers of biosurfactants in combination with other
methods to improve organopollutant degradation has also
been undertaken. In this context, a study on the use of a
bacterial surfactant (lipopeptide) in electrokinetic remedia-
tion increased the degradation rate of crude oil-contaminated
soil by approximately 92% (Prakash et al. 2020). In addition,
an enhanced method for the treatment of oil-contaminated
soil has also been reported using a biosurfactant (rham-
nolipid and surfactin)-assisted washing mechanism coupled
with hydrogen peroxide-stimulated microbial degradation
(Fanaei et al. 2020). Furthermore, an effective remediation
(84%) method for diesel-contaminated soil was reported by
integrating electrokinetics with bioremediation using the
biosurfactant-producing bacterium Staphylococcus epider-
midis EVR4 (Vaishnavi et al. 2021). Moreover, a process
in which aromatic hydrocarbons were removed from con-
taminated soil from industrial sites using a surface-modified
lipopeptide biosurfactant (with enhancement of polar amino
acids) produced by Bacillus malacitensis and an activated
functionalized carbon matrix was investigated; a 62% total
petroleum hydrocarbon removal efficiency was found after
28 days (Christopher et al. 2021).

Furthermore, studies using biosurfactants in situ (i.e.
in polluted areas) have also shown biodegradation of
hydrophobic organopollutants. For example, a field trial
on LaTouche Island (in Alaska) demonstrated the effec-
tiveness of the microbial surfactant PES-51, which was
able to remove weathered crude oil from beach material.
Hydrocarbons (semivolatile petroleum) were reduced by
approximately 70% (Tumeo et al. 1994). In addition, a bio-
degradation experiment on crude oil-contaminated soil was
undertaken near an oil production company, demonstrating
that 77% of crude oil was degraded using a combination of
rhamnolipids, nutrients and hydrocarbon-degrading bacteria

@ Springer

(Tahseen et al. 2016). Furthermore, it was found that Entero-
bacter xiangfangensis STP-3 was capable of degrading 82%
of petroleum hydrocarbons in 14 days during the biotreat-
ment of real field petroleum oil sludge with the simulta-
neous production of metabolic enzymes and biosurfactants
(Muneeswari et al. 2021).

Concluding remarks

Biosurfactants are produced either as growth-associated
products or secondary metabolites with diverse chemical
structures and in varying amounts by a wide range of micro-
organisms. Microbial surfactant production can be induced
by the presence of hydrophobic substrates or they can be
produced intrinsically using conventional organic materials
or organic wastes as substrates. Biosurfactants are biode-
gradable and ecofriendly, and their microbial diversity in
production, high stability and specific activity make them
a promising technology to clean up polluted environments
in a green manner. The use of microbial surfactants offers
a promising strategy to overcome the problems associated
with contamination by hydrophobic organopollutants. How-
ever, biosurfactant production must be optimized to increase
yield and decrease production costs. For this reason, it is
necessary to use microbial producers with high biosurfactant
production capabilities on low cost substrates. Addition-
ally, the use of novel technological developments (e.g. omic
analysis, recombinant DNA technology, nanotechnology,
computational modeling, efficient separation technology) in
multidisciplinary research would enhance the efficient pro-
duction of biosurfactants. Further studies are needed to fully
understand the mechanisms of biosurfactant biosynthesis,
in which the use of bioinformatics analysis is a promising
tool. In addition, more research is required to understand the
interaction of biosurfactants with cells in order to improve
our knowledge of their mechanism of action for the orga-
nopollutants degradation. The development of integrated
strategies that combine techniques and biosurfactants is an
interesting approach to explore the most effective treatment
technology for the remediation of hydrophobic organopol-
lutant contamination.
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