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Abstract
Microplastics are one of the major contaminants of aquatic nature where they can interact with organic and inorganic pollut-
ants, including trace metals, and adsorb them. At the same time, after the microplastics have entered the aquatic environments, 
they are quickly covered with a biofilm - microorganisms which are able to produce extracellular polymeric substances (EPS) 
that can facilitate sorption of trace metals from surrounding water. The microbial community of biofilm contains bacteria 
which synthesizes EPS with antimicrobial activity making them more competitive than other microbial inhabitants. The trace 
metal trapping by bacterial EPS can inhibit the development of certain microorganisms, therefore, a single microparticle 
participates in complex interactions of the diverse elements surrounding it. The presented review aims to consider the variety 
of interactions associated with the adsorption of trace metal ions on the surface of microplastics covered with biofilm, the 
fate of such microplastics and the ever-increasing risk to the environment caused by the combination of these large-scale 
pollutants - microplastics and trace metals. Since aquatic pollution problems affect the entire planet, strict regulation of the 
production, use, and disposal of plastic materials is needed to mitigate the effects of this emerging pollutant and its complexes 
could have on the environment and human health.
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Introduction

Microplastics (MPs) are particles with size less than 5 mm 
and are one of the major contaminants of the environment, 
especially the aquatic nature. The total amount of waste plas-
tics getting into the marine environment is estimated as 8 
million tons per year (Rodrigues et al. 2019), and the number 
of pieces of plastic in the ocean is between 15 and 51 trillion 

(Bowley et al. 2021). In aquatic environments, microplastic 
particles can interact with inorganic and organic pollutants 
adsorbing them on to the surface and potentially increas-
ing the risks to environment, animals and humans. Bacteria 
exist in two different states in aquatic environments, namely, 
planktonic or free-living bacteria and sessile bacteria 
attached to biotic or abiotic surfaces. However, in the natural 
environment most bacteria live attached to different materi-
als (Khatoon et al. 2018). Therefore, as microplastics enter 
into the natural water reservoirs, they serve as a convenient 
material for colonization and quickly become covered with 
biofilms. These biofilms can have impact on MPs modifying 
their physical properties, changing their distribution in the 
water column, participation in the adsorption of inorganic 
and organic substances on the surface of the microplastic-
biofilm complex, and thus the trophic transfer and release 
of the adsorbed pollutants into environment (Rummel et al. 
2017; Stabnikova et al. 2021; Vaseashta et al. 2021). There 
are studies indicating that biofilm could play a significant 
role in the ability of microplastics to be a vector for migra-
tion of such contaminants as trace metals (Guan et al. 2020; 
Liu et al. 2021b; Wang et al. 2021).
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Currently, a number of studies on adsorption of trace 
metals on microplastics in the marine and freshwater envi-
ronments have been conducted (Ahechtia et al. 2020; Fan 
et al. 2021; Liu et al. 2021b; Turner and Holmes 2015; Wang 
et al. 2020; Zou et al. 2020). Although most of the research 
on microplastics is being carried out by its own design and 
detected parameters (Rozman and Kalčíková 2022), it is still 
possible to identify basic patterns and trends in the adsorp-
tion processes of trace metals by microplastics and their 
interactions with microbial community of biofilm covered 
microplastics.

Accumulation of trace metals 
by microplastics

In most studies, dedicated to the interaction of microplastics 
and chemical elements, the term “heavy metals” is used. 
This term was proposed in 1817 by the German chemist 
Leopold Gmelin who divided the elements into nonmetals, 
light metals, and heavy metals. However, for present there is 
no strongly accepted definition of the term “heavy metals”. 
So, a list of heavy metals according to the different defini-
tions could include different elements. For example, “heavy 
metals” could be defined to a group of elements that have an 
atomic number greater than 20 and an atomic mass higher 
than 23 (Koller and Saleh, 2018). Other definitions differen-
tiate “heavy metals” from “light metals” by atomic density 
which should be above 5 g/cm3 (Raychaudhuri et al. 2021). 
Some of these elements, such as copper, zinc, and iron, are 
essential for plants, animals, and humans, but become toxic 
at high concentrations; other ones, such as arsenic, cad-
mium, chromium, lead, and mercury, are considered as per-
sistent and toxic pollutants having carcinogenic and muta-
genic effects, and their presence even at low concentration is 
dangerous for marine habitats (Edelstein and Ben-Hur 2018; 
Tchounwou et al. 2012). The use of the term “heavy metals” 
in the scientific literature is a subject of a long-term discus-
sion and has both supporters of its use (Batley 2012; Ali 
and Khan2018) and those who consider its use inappropriate 
(Appenroth 2010; Chapman 2012; Nieboer and Richardson, 
1980). According to the International Union of Pure and 
Applied Chemistry it is considered as meaningless (Duffus 
2002), however, this term is increasingly used in the scien-
tific literature (Pourret and Hursthouse 2019). Term “heavy 
metals” especially often is used in environmental studies 
including aquatic pollution with microplastic. Meanwhile, 
the terms like “metal”, “metalloid”, “trace metal elements” 
or “potentially toxic element” are now proposed instead of 
“heavy metals” (Pourret et al. 2021). In the present paper 
we use terms “trace metals” as the most accurate instead of 
“heavy metals.

Trace metals (TMs) together with microplastics are one 
of the major pollutants of the environment, the study of their 
interaction is important for prevention and reduction of the 
risks caused by their introduction into aquatic water sys-
tems (Guan et al. 2020; Khalid et al. 2021; Liu et al. 2021b; 
Richard et al. 2019; Torres et al. 2021). TMs adsorbed on 
microplastics increase its toxicity and, thus, the danger to 
the environment is escalated. The complexation of TMs 
and MPs can also increase bioavailability of trace metals, 
and these microplastic particles having the combined toxic 
effects can pose risks to human health (Cao et al. 2021).

Different TMs are detected on microplastic in natural 
water bodies, so MPs particles can be considered as carriers 
of trace metals. There is a lot of research devoted to the trace 
metal-microplastic interaction in water bodies. MPs have 
a hydrophobic surface and due to small size large surface 
area, making it a suitable material for adsorption of con-
taminants that increase its potential negative impact on the 
environment. Comparison of adsorption capacities of non-
degradable and degradable plastics and natural materials has 
shown that there is no significant differences in the amounts 
of adsorbed TMs. It was interesting finding that the sorption 
capacity of trace metals of degradable microplastics such as 
polybutylene succinate (PBS), polycaprolactone (PCL), and 
polylactic acid (PLA) is similar or even higher than the ones 
of non-degradable MPs such as polyethylene (PE), polyeth-
ylene terephthalate (PET), polyamide (PA), polypropylene 
(PP), polyvinyl chloride (PVC), and polystyrene (PS) (Tor-
res et al. 2021). In study by Guan et al. (2020) it was shown 
that natural substrates in the water body had greater adsorp-
tion capacity than PS particles. Richard et al. (2019) showed 
that glass pellets accumulated greater amounts of Al, Ba, 
Ca, Mg, Na, U and Zn than low-density polyethylene (LPE) 
microplastic. However, given the amount of non-degradable 
plastic entering the marine environment, the gravity of the 
problem of trace metal adsorption on microplastic surfaces 
becomes evident.

Metal adsorption depends on the type 
of microplastic particle

The surface physicochemical properties of MPs, including 
chemical structure, and electronegativity play an impor-
tant role in metal sorption (Zou et al. 2020). In a study by 
Han with co-authors (2021) it was shown that PE and PET 
had higher Cu(II), Cr(III), and Pb(II) adsorption capacity 
than PP microplastics. Comparison of four virgin micro-
plastics particles namely chlorinated polyethylene (CPE), 
PVC, LPE, and high-density polyethylene (HPE) for sorp-
tion of bivalent trace metals Cu(II), Cd(II), and Pb(II) 
showed that the sorption ability of studied MPs followed 
the sequence of CPE > PVC > HPE > LPE and Pb(II) had 
significantly stronger sorption than Cu(II) and Cd(II) (Zou 



World Journal of Microbiology and Biotechnology (2022) 38:117 

1 3

Page 3 of 16 117

et al. 2020). It has been shown that microplastics were in the 
following order in terms of Pb(II) sorption rate constants: 
PS > PE > PVC, and the maximum adsorption capacity at pH 
6.0 and a temperature of 25 °C was, μg/g, 128.5; 416.7, and 
483.1 respectively (Lin et al. 2021a, b). PP showed higher 
capacity of adsorption compared to PA, polyester (PL), PE, 
and PVC to trace metals in ground and surface water in 
India in the following order: (a) Cd > Mn > Pb > As and (b) 
Mg > Zn > As > Pb > Cu (Selvam et al. 2021). Trace metals 
Pb, Cu and Cd in seawater showed higher absorbance on 
PVC and PP particles compared with PA, PE, and polyfor-
maldehyde (Gao et al. 2019). A significant adsorption of Pb, 
Cr and Zn on PE and PVC MPs and low adsorption on PET 
in different waters have been shown (Godoy et al. 2019).

Metal adsorption depends on metal species

Comparison of Cu(II), Cr(III), and Pb(II) adsorption on PE, 
PET and PP showed that amount of Pb(II) was the largest, 
especially on PET particles (Han et al. 2021). Compari-
son of Pb, Cu, Cd, and Zn adsorption on PP microplastics 
showed that the adsorption capacities of polypropylene for 
Pb and Cu were significantly higher than that of Cd and Zn 
(Fan et al. 2021). Comparison of the adsorption of differ-
ent trace metals on PS microplastics showed that Pb had 
the greatest adsorption capacity on PS, followed by Cu, 
Zn, and Cd (Barus et al. 2021). According to the results of 
different authors, Pb had higher adsorption capability than 
other tested trace metals either in sea- and freshwater to such 
microplastics particles as PS (Barus et al. 2021), PE, PET 
(Han et al. 2021) and PP (Fan et al. 2021; Han et al. 2021). 
This indicates that Pb has the highest adsorption ability to 
various types of microplastics particles having physisorption 
onto the MPs as the main sorption mechanism (Lin et al. 
2021a).

Metal adsorption depends on size of microplastics

Generally, it is considered that microplastic particles with 
smaller size possess higher adsorption capacities for trace 
metals than larger ones because of higher surface area to 
volume ratio (Khalid et al. 2021). It was shown that the 
metal adsorption capacities of PE, PET and PP for Cu(II), 
Cr(III), and Pb(II) depended on the size of the plastic par-
ticles and increased with the decrease of particle size (Han 
et al. 2021). The metal adsorption capacity for particles with 
size less than 0.9 mm was greater than that of 0.9–2 mm and 
2–5 mm microplastics. The decrease of microplastic size 
from 2–5 mm to less than 0.9 mm resulted in the increased 
amount of adsorbed Cu(II), Cr(III), and Pb(II) in 1.8–2.2, 
1.3–1.5, and 1.94–2.83 times, respectively. This effect was 
most prominent for PE microplastic, however, for PP micro-
plastic it was relatively low (Han et al. 2021). However for 

PS microparticles with diameters of 0.02, 0.05, 0.13, and 
0.25 mm used for adsorption of lead, cadmium, copper, and 
zinc, the greater amounts of heavy metals were observed on 
the larger PS particles, and authors concluded that the par-
ticle with the larger size had the higher adsorption capacity 
(Barus et al. 2021).

Metal adsorption depends on microplastics aging

Aging of microplastics accelerates the process of trace 
metal adsorption. Prolonged weathering and abrasion in 
the natural environment lead to increase of specific surface 
and area available for adsorption (Khalid et al. 2021). Ini-
tially, PS were regular spheres with a smooth surface, but 
during aging treatment the surface became irregular, pores 
and voids appeared on the surface and the surface became 
rough. Similar changes of PS microplastics were reported 
by Hüffer et al. (2018). The changes in functional groups 
of PS were observed and the amount of oxygen-containing 
functional groups (C=O, C–OH, O–C=O) increased with 
increasing aging time (Mao et al. 2020). Meanwhile, due 
to photo-oxidation processes the surface on MPs becomes 
negatively charged and acquires the ability to adsorb trace 
metals. Ultraviolet light is considered an important factor 
for microplastic aging due to its oxidative degradation called 
photoaging. The increase of specific surface and forma-
tion of oxygen-containing functional groups resulted in an 
increase of the adsorption capacity of MPs for trace metals 
(Cheng et al. 2022). The adsorption of Cu in seawater on 
aged PVC microplastics was significantly higher than on 
virgin ones (Brennecke et al. 2016). Aged PE microplas-
tics adsorbed silver ions more intensively than pristine ones 
(Kalčíková et al. 2020). Photo-aged PET using UV radiation 
showed higher adsorption capacity for metal ions (Cu(II) 
and Zn(II)) in aqueous solution than pristine PET. This effect 
increased with prolonged exposure to UV radiation (Wang 
et al. 2020). It was shown that trace metals, Ag, Cd, Co, Cr, 
Cu, Hg, Ni, Pb, and Zn, suspended in river water (pH 6.5) 
adsorbed better on aged, weathered plastic pellets than on 
virgin ones (Turner and Holmes 2015).

Adsorption of trace metals  Pb2+,  Cu2+,  Cd2+,  Ni2+ and 
 Zn2+ by PS was significantly improved after microplastic 
particles were aged in pure and sea-water under UV irradia-
tion, which changes the physicochemical properties of the 
aged PS, such as the roughening and the number of oxygen-
containing groups on the surface. It was noted that environ-
mental conditions could play a key role in the microplastics 
ageing. The degree of ageing was higher for UV irradiated 
seawater than pure water, which may be due to the influence 
of salinity (Mao et al. 2020). Treatment with UV irradiation 
in seawater resulted in generation of new alcohol, carbox-
ylic acid and fatty ether functional groups: –OH, –COOH, 
and –C–O– on the surface of PE microplastic particles; only 
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alcohol functional groups were produced on the surface of 
PP microparticles; and there was no significant change in 
the surface functional groups of PET microparticles (Han 
et al. 2021). Adsorption capacity of PP microplastics was 
increased 1.7–2.5 times after MP exposure to a Xenon lamp 
for 28 days. Due to the light irradiation percentage of oxy-
gen-containing functional groups in MPs increased from 
2.80 to 20.95 wt% (Lin et al. 2021a, b).

Metal adsorption on microplastics depends 
on environmental conditions

pH

External conditions such as pH have a significant influence 
on the adsorption of trace metals on microplastics, and a 
clear dependence of metal sorption onto the MPs was dem-
onstrated (Davranche et al. 2019; Lin et al. 2021a, b; Wang 
et al. 2020; Zou et al. 2020). The increase of the adsorption 
percentages of Cu, Zn, Cd, and Pb on PP and PE microplas-
tics in aquatic environments with pH increase was shown 
(Ahechti et al. 2020). The increase of pH in river water 
resulted in increased sorption of such trace metals as Cd, 
Co, Ni and Pb and decreased sorption of Cr on plastic pellets 
while sorption of Cu did not change (Holmes et al. 2014). 
In another study, increasing pH of river water resulted in 
an increase in adsorption of Ag, Cd, Co, Ni, Pb and Zn and 
decrease in adsorption of Cr on PP pellets (Turner and Hol-
mes 2015). It was shown that the amount of adsorbed Pb and 
Cu on microplastics floating in Musi River, Indonesia, was 
higher at pH of water 6.5–6.6 than 6.2 (Purwiyanto et al. 
2020).

Meanwhile, the zeta potential of the MPs (PVC, PS, 
and PE) was strongly dependent on the pH of the environ-
ment. All of these microplastics had  pHpzc (the point of 
zero charge, meaning of the pH at which the charge of the 
particle is zero) around 3.0, so they had negative charge 
at pH from 3.0 to 11.0, and positive at pH lower than 3.0 
(Lin et al. 2021a, b). The negative charge of the surface 
of the MPs was explained by the presence of negatively 
charged groups that are bonded chemically to the MPs dur-
ing polymerization (Lu et al. 2018). pH has influence not 
only on charge of microplastics but also on forms in which 
trace metal is present in aquatic environments. In experi-
ment with Pb sorption onto PS, PE, and PVC, adsorption 
on MPs increased with the increasing pH in the range of 
2.0 to 6.0 when Pb was mainly presented as  Pb2+ (Lin et al. 
2021a, b). Meanwhile at high pH Pb is present in forms 
of Pb(OH)+, Pb(OH)2, and Pb(OH)3− (Lin et al. 2021a, 
b). Thus, an increase in Pb adsorption on microplastics 
was explained by the electrostatic attraction of positively 
charged  Pb2+ to negatively charged MPs. So, the low zeta 
potential of MPs can enhance the adsorption of cationic 

ions due to electrostatic attraction and repel anionic ions. 
It is known that the pH of marine waters is close to 8.2, 
meanwhile most natural freshwaters have pH values in the 
range from 6.5 to 8.0, and so, MPs are more likely to have 
negative charge in the water environment.

Salinity

The increase of salinity of the trace metal solution (Pb, 
Cd, Cu, and Zn) resulted in an increase of time needed for 
their adsorption on PS microparticles, and lower amounts 
of the trace metals were adsorbed (Barus et al. 2021). The 
adsorption of Cu, Zn, Cd, and Pb on PP and PE micro-
plastics in aquatic environments decreased with increase 
in salinity (Ahechti et al. 2020). At 0.15 and 30% salinity 
a gradual decrease of the adsorption rate for trace metals 
was shown (Barus et al. 2021). The authors suggest that 
this effect could be explained by cations competing for 
adsorption onto the surface of the MP (Purwiyanto et al. 
2020; Yu et al. 2019). However, generally, the effect of 
salinity on metal ion adsorption on microplastics depends 
on the type of MPs and metal speciation (Godoy et al. 
2019; Holmes et al. 2014; Yu et al. 2019).

Exposure time

Rochman et al. (2014) suggested that there is a positive 
correlation between the accumulation of trace metals on 
microplastics and the time of their contact, plastic debris 
can accumulate more metals the longer it remains in the 
sea. Contents of Cu and Zn on PVC in sea water gradu-
ally increased during 14 days of experiment (Brennecke 
et al. 2016).

Concentration of trace metals in the environment

It was shown for Pb and Mn that degree of adsorption on 
PP and PVC microplastics positively correlated with con-
centration of these metals in the seawater in a field experi-
ment (Gao et al. 2019). However, no significant differences 
were found in adsorption of nine metals (Al, Cr, Mn, Fe, 
Co, Ni, Zn, Cd and Pb) on five plastic types (PET, HPE, 
PVC, LPE, and PP) in seawater after 12 months (Roch-
man et al. 2014). It is assumed that the influence of the 
concentration of metals in the environment on the amount 
of adsorbed metal on microplastics is especially evident in 
the initial period of contact, which can last for some days, 
and is levelled with prolonged contact, as in the study of 
Rochman with co-authors (2014).
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The presence of organic substances in the surrounding 
water

It has been shown that dissolved organic substances from 
the surrounding natural waters can play a certain role in the 
process of metal adsorption on microplastics: (a) providing 
an additional area for metal binding; and/or (b) competing 
with metal ions in adsorption on the microplastic surface 
(Godoy et al. 2019).

Mechanism of adsorption of trace metals on microplastics 
particles

It is assumed the adsorption of trace metals on microplastics 
in aqueous medium can be generally described as the elec-
trostatic interactions, van der Waals forces, and π–π interac-
tions (Fu et al. 2021; Liu et al. 2021b; Torres et al. 2021). 
However, hydrophobic interactions, pore-filling, and hydro-
gen bonding also plays a certain role in the process of inter-
action for trace metals with MPs (Torres et al. 2021). Iden-
tified mechanisms of interaction support fast process and 
stable bonding of metals on the MPs covered with biofilm. 
In natural aquatic environments microplastic particles are 
usually negatively charged because their  pHpzc is estimated 
as 3.0, meaning electrostatic interactions are of the greatest 
importance in the process of adsorption of trace metals on 
MPs (Lin et al. 2021a, b) and van der Waals forces and π–π 
interactions play a less significant role and its contribution to 
adsorption depends on the polymer type (Liu et al. 2021b). 
Godoy with co-authors studying adsorption of trace met-
als Cd, Co, Cr, Cu, Ni, Pb and Zn on five different types 
of microplastics found that the main interaction mechanism 
might be chemical adsorption (Godoy et al. 2019).

Interaction between trace metals 
and biofilm covered microplastics

Microplastics released into natural water bodies, become a 
place of microorganisms’ collection, thus forming biofilms 
(Stabnikova et al. 2021). Microplastics serve as an ecologi-
cal niche for microorganisms, transport for their moving, and 
in some cases be a carbon source for their growth. In turn, 
microorganisms of biofilms can change physico-chemical 
properties of microplastics and even biodegrade it, support-
ing appearance of new functional groups on the surface of 
microplastic particles, enabling more intensive interaction 
with metal ions. For example, significant changes in micro-
plastic properties, such as, crystallinity for PE, stiffness 
for PP, and maximum compression for PS were observed 
as a result of exposure to ambient bacterioplankton from 
the Baltic Sea during 2 weeks (McGivney et al. 2020). 
When assessing the environmental risk of microplastics, an 

important point is to clarify the effect of the presence of bio-
film on its surface on the adsorption of inorganic and organic 
substances. The role of biofilm in metal accumulation on 
microplastics was studied in few research articles (de Araújo 
and de Oliveira 2020; Richard et al. 2019; Rummel et al. 
2017), however these studies demonstrate major changes of 
properties of microplastic particles in respect to trace metals. 
It is known that in an environment highly contaminated with 
trace metals, as a result of inherited biochemical, physiologi-
cal and genetic changes, bacterial strains that are resistant to 
high concentrations of these pollutants appear (Fashola et al. 
2016). Main factors hampering better understanding of the 
biofilm development include used methods for microplastics 
isolation, requiring destruction of biofilm as well as highly 
complex structure and properties of EPS.

Influence of trace metals on microbial communities 
of biofilm covered microplastics

Biofilm forming microorganisms participate in interac-
tions of microplastics and trace metals (Liu et al. 2021a, 
b). Adsorption of trace metals on microplastics can cause 
changes in the structure and function of microbial communi-
ties of microplastic biofilms which can in turn lead to change 
of the further process of trace metal adsorption (de Araújo 
and de Oliveira 2020) (Fig. 1).

For example, a clear relation of Cu content in real sea 
water (Toulon Bay, NW Mediterranean Sea) on the diver-
sity of biofilm community and Cu bioaccumulation onto 
MPs has been observed (Djaoudi et al. 2021). Diversity of 
prokaryotic as well as eukaryotic organisms were higher in 
the biofilms formed on microplastics incubated in the most 
Cu contaminated sea water (400 nM). The higher values of 
bioaccumulated Cu per dry weight of MPs were also deter-
mined in the most contaminated site. Such facts make it 
possible to assume an essential role of the microorganisms 
on the interactions between MPs and trace metals (Liu et al. 
2021b).

It was shown that the presence of biofilms on microplas-
tics had a special impact on the adsorption of some chemi-
cal substances, including trace metals. Presence of Cu in 
coastal areas has been observed worldwide (Corcoll et al. 
2019). The addition of Cu as  CuCl2⋅2H2O changed microbial 
composition of the biofilm communities in biofilms formed 
on polyethylene terephthalate glycol (PETG) slides placed 
in microcosm containing filtered natural sea water enriched 
with phosphate and nitrate. Cu was added in different con-
centrations from 0.01 to 10 μM. Periphyton from the outer 
layer of 50–60 stones and pebbles from seawater of the Gull-
mar fjord on the Swedish west coast was used as inoculum 
and the experiment lasted 18 days. It is known that addi-
tion of Cu may have a toxic effect on the formed periphyton 
microbial community but continuous exposures may lead 
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to community adaptation with changes in composition of 
species (Serra et al. 2009). The highest tolerance was found 
in the Cyanobacteria phylum, especially in the Nostocophy-
cideae and Oscilaltoriphycideae subclasses (Corcoll et al. 
2019), which agreed with previously reported results (Giner-
Lamia et al. 2016; Serra et al. 2009). However, representa-
tives of subclass Synechococcophycideae showed sensitivity 
to Cu. It was found that the most sensitive taxa to Cu were 
from the phylum Proteobacteria, and significant changes 
of bacterial community composition were observed even at 
low concentration of Cu, 0.06 μM. Meanwhile, this con-
centration is even below the current environmental quality 
standard regarding surface water for Cu (0.07 μM) accord-
ing to Swedish Marine and Water Authority's regulations. 
Under experimental conditions, authors noted Cu tolerance 
of Bacteroidetes presented in biofilms. Because a lot of spe-
cies from the phylum Proteobacteria are involved in nitri-
fication and denitrification processes, it was suggested that 
Cu pollution in marine areas could lead to impaired nitrogen 
cycles. Thus, the increase in tolerance to Cu of the biofilm 
microbial community was accompanied with the changes in 
its composition. However, no changes in the relative abun-
dance of most classes and families of fungi were observed in 
case of Cu exposure in different studies (Corcoll et al. 2019; 
Gardham et al. 2014; Yang et al. 2018).

To protect cells from toxic impact of Cu, bacteria reduced 
Cu transport enhanced efflux of Cu ions and complexation 
with cell components (Cervantes and Gutierrezcorona 
1994). It was found for the Gram-negative Escherichia coli 
that bacterial resistance to toxic activity of Cu/Ag depends 
on several factors including two intracellular proteins: mem-
brane-bound sensor CusS located in the inner cell membrane 

and its response regulator protein CusR in the extracellular 
fluid. These proteins together regulate the transcription of 
the Cus operon that plays important roles in cells’ resist-
ance to Cu/Ag toxicity mechanism. CusS in the presence 
of metal sends a signal to a regulatory protein CusR, which 
binds to DNA and activates a gene that generates transport 
proteins that remove the toxins from the cell (Fu et al. 2020). 
Meanwhile, Cu tolerance in fungi has been due to diverse 
mechanisms such as (1) Cu complexation by cell wall com-
ponents; (2) changes in Cu uptake; (3) extracellular chela-
tion or precipitation of Cu by secreted metabolites, and (4) 
synthesis of intracellular Cu-binding metallothioneins and 
phytochelatins (Cervantes and Gutierrezcorona 1994). These 
mechanisms allow fungi to survive in the presence of Cu.

Influence of biofilm on adsorption of trace metals 
on microplastics

In aquatic environments, a major part of microplastic par-
ticles are covered with biofilm. Formation of biofilm on 
the surface of microplastics could lead to the change of its 
properties (Fig. 1). Thus, it was noted that the formation of 
a biofilm on microparticles led to an increase in the number 
of hydrophilic groups on the MPs surface causing a decrease 
in the hydrophobicity of its surface, and increased the num-
ber of carboxyl and ketone groups thereby increasing the 
adsorption capacity of microplastics towards metal ions 
(Tu et al. 2020). Adsorption capacity of PS microplastics 
towards trace metals was enhanced by biofilms formed after 
being released in an eutrophic urban lake for 4 weeks (Guan 
et al. 2020). Similar results were shown for LPE pellets, sub-
merged for 28 days in an estuary (San Francisco Bay, USA) 

Fig. 1  Adsorption of trace 
metals depends on the age of 
microplastics and caused the 
changes in composition of bio-
film microbial community and 
impact on the sorption of metals
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to evaluate biofilm development: amount of accumulated 
metals on biofilm covered microplastics correlated positively 
with amount of biofilm (Richard et al. 2019).

It was shown for PLA and LPE plastic pellets that metal 
(Cu, Pb, Al, K, U, Co, Mg and Mn) concentrations positively 
correlated with the amount of biofilm formed on microplas-
tics in estuarine waters (Richard et al. 2019). Similar results 
have been obtained for PS submerged into an urban lake: 
the presence of biofilms enhanced the adsorption capacity 
of Pb(II) onto microplastics (Qi et al. 2021). It was shown 
that PS particles with the size of 4 mm covered with biofilm 
of a model freshwater fungus Acremonium strictum strain 
KR21–2 had higher adsorption capacity towards Cu(II) and 
ability to reduce Cr(VI) than those without biofilm, which 
may be related to the functional groups of biofilm EPS 
(Wu et al. 2022). Thus, it is evident that biofilm developed 
on microplastics enhances the role of MPs as a vector for 
transportation of trace metals in natural water bodies. Fur-
thermore, it was found that biofilm enhanced the combined 
toxicity of Pb(II) and microplastics, so, this combined action 
may increase environmental risk for freshwater bodies (Qi 
et al. 2021).

Extracellular polymeric substances (EPSs) 
produced by aquatic bacteria and their role 
in trace metal adsorption

Extracellular polymeric substances (EPSs) produced 
by aquatic bacteria with antimicrobial properties

The factor determining the participation of biofilms in the 
regulation of the interaction of trace metals and micro-
plastics is the ability of certain types of microorganisms to 
synthesize extracellular polymeric substances (EPS) that 
are mostly composed of heteropolysaccharides (exopoly-
saccharides) which consist of such monomers as glucose, 
mannose, fructose, galactose, rhamnose; galacturonic, glu-
curonic, guluronic, mannuronic acids, N-acetyl-D-glucosa-
mine, and N-acetyl-D-galactosamine, and also protein, but 
sometimes include also nucleic acids and lipids. In general, 
polysaccharides represent 40–95% of the EPS (Flemming 
and Wingender 2001). EPS play an important role in the 
formation of biofilms, and bacterial biofilms could be con-
sidered as microbial communities embedded in extracellular 
polymeric substances, which determine their physicochemi-
cal and biological properties and ecological survival (Flem-
ming et al. 2016). Biofilm polysaccharides could provide a 
lot of benefits to the microbial cells such as surface adher-
ence, environmental protection and resistance, and struc-
tural integrity (Limoli et al. 2015; Wingender et al. 1999). In 
marine environments microbial exopolysaccharides may be 
present in dissolved form and, being rich in organic carbon, 

are an important source of carbon for different marine habi-
tats. They can also be in the form of aggregates in a gel-like 
slime matrix or as components of biofilms (de Carvalho and 
Fernandes 2010; Flemming and Wingender 2001). A lot of 
the microorganisms involved in biofilm formation can pro-
duce EPS (Casillo et al. 2018; Delbarre-Ladrat et al. 2014; 
Tu et al. 2020). The functions of these EPS include the pro-
duction of microbial aggregates, adhesion to biotic or abiotic 
surfaces, colonization of surfaces, sequestering of nutrients 
from the water phase, protection of the bacterial cells from 
a stress caused by environmental conditions and ensuring 
of ecosystem stability (Delbarre-Ladrat et al. 2014; Fletcher 
and Floodgate 1973; Nichols et al. 2005). EPS produced by 
bacteria are negatively charged, so adsorption capacity of 
microplastic covered with biofilm containing EPS should 
increase (Fig. 1).

Some EPS synthesized by bacteria had strong antimicro-
bial activity, which could be a factor which causes domina-
tion of these strains in biofilm covered microplastics. Exam-
ples of aquatic bacteria isolated from natural water bodies as 
producers of EPS with antimicrobial properties are shown 
in Table 1.

Lipopeptide EPS synthesized by a marine bacteria 
Bacillus circulans possessed antimicrobial activity against 
Gram-positive and Gram-negative pathogenic and semi-
pathogenic microbial strains including strains Escherichia 
coli NCIM, Micrococcus flavus NCIM 2376, Serratia marc-
escens NCIM 2397, Bacillus pumilis MTCC 2296, Proteus 
vulgaris NCIM 2857, Citrobacter freundii NCIM 2488, 
Proteus mirabilis NCIM 2300, Mycobacterium smegmatis 
NCIM 5138, Alcaligens faecalis NCIM 2105, Acetobacter 
calcoaceticus NCIM 2886, Bordetella bronchiseptica NCIM 
2267, Klebsiella aerogenes NCIM 2098, and Enterobacter 
cloacae NCIM 2164 (Das et al. 2008). The biosurfactant 
was also active against methicillin-resistant Staphylococcus 
aureus and multidrug-resistant Escherichia coli and Kleb-
siella pneumoniae (Das et al. 2008). The glycolipid EPS 
produced by Brevibacterium casei MSA19 isolated from 
the marine sponge Dendrilla nigra had bacteriostatic activ-
ity against mixed pathogenic biofilm bacteria (Kiran et al. 
2010b). Nocardiopsis lucentensis MSA04 isolated from 
marine sponge Dendrilla nigra synthesized EPS containing 
glycolipid with a hydrophobic non-polar hydrocarbon chain 
(nonanoic acid methyl ester) and hydrophilic sugar, 3-acetyl 
2,5 dimethyl furan. It was suggested that this EPS could be 
used in bioremediation processes in the marine environment 
(Kiran et al. 2010c). Fructose and fucose rich exopolysac-
charide produced by the thermophilic Bacillus licheniformis 
T14, isolated from a shallow hydrothermal vent of Panarea 
Island, Italy, was effective against biofilm formation by 
multiresistant clinical strains of Escherichia coli, Klebsiella 
pneumoniae, Pseudomonas aeruginosa, and Staphylococcus 
aureus (Spanò et al. 2016). Strain Rhodotorula mucilaginosa 
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UANL-001 isolated from the water streams of the river in 
Mexico produced EPS with high content of carbon, hydro-
gen and oxygen (93%) and did not contain nitrogen and sul-
phur. The main monosaccharide was glucose, 82%, followed 
by mannose, galactose and fucose (Vazquez-Rodriguez et al. 
2018). The exopolysaccharide effectively capped Zn and Ni 
producing biopolymer-metal nanoparticle biocomposites 
with antimicrobial properties against both wild-type and 
antibiotic-resistant strains of Staphylococcus aureus and 
Pseudomonas aeruginosa (Garza-Cervantes et al. 2019).

Marine bacteria living under extreme conditions, such as 
high or very low temperature, high pressure, or salinity, are 
often able to produce EPS which protects these microbial 
water inhabitants from stress, high salinity, and negative 
impact of trace metals (Casillo et al. 2018). Thus, it was 
shown that the exopolysaccharides produced by cyanobac-
teria in Synechocystis protected cells from death caused by 
 TiO2 nanoparticles in natural and artificial waters and salt 
concentration (De Philippis et al. 2011; Jittawuttipoka et al. 
2013; Planchon et al. 2013; Xu et al. 2021). The mesophilic 

strain Alteromonas macleodii subsp. fijiensis biovar deep-
sane isolated from deep-sea hydrothermal vents on the East 
Pacific Rise at 2600 m depth synthesized exopolysaccharide, 
containing different types of carbohydrates with sulphate, 
lactate and pyruvate substituents, named deepsane, which 
is used in cosmetics (Le Costaouëc et al. 2012). Marine 
bacterium Pseudoalteromonas tunicata produces extracel-
lular compounds with antibacterial and antifungal activities 
that inhibit different fouling organisms, including marine 
algae, bacteria, and fungi (Egan et al. 2002). So, the pres-
ence of such bacteria in microbial biofilm covered micro-
plastics should ensure their predominance in the microbial 
community.

Extracellular polymeric substances (EPSs) produced 
by aquatic bacteria for trace metal adsorption

The factor determining the participation of biofilms in the 
regulation of the interaction of trace metals and micro-
plastics is the ability of certain types of microorganisms to 

Table 1  Bacteria isolated from natural water bodies as producers of EPS with antimicrobial properties

Bacteria Isolated from EPS Antimicrobial properties 
against

References

Bacillus circulans Marine water sample, India EPS (lipopeptide) Escherichia coli, Micrococ-
cus flavus, Serratia marc-
escens, Bacillus pumilis, 
Proteus vulgaris, P. mira-
bilis, Citrobacter freundii, 
Mycobacterium smegma-
tis, Alcaligens faecalis, 
Acetobacter calcoaceticus, 
Bordetella bronchiseptica, 
Klebsiella pneumoniae, K. 
aerogenes, Enterobacter 
cloacae, Staphylococcus 
aureus

Das et al. (2008)

Brevibacterium casei 
MSA19

Marine sponge Dendrilla 
nigra 

EPS (glycolipid) Bacteriostatic activity 
against mixed pathogenic 
biofilm bacteria

Kiran et al. (2010b)

Bacillus licheniformis T14 Shallow hydrothermal vent, 
Italy

EPS rich in Fru and Fuc Effective against biofilm 
formation by Escherichia 
coli, Klebsiella pneu-
moniae, Pseudomonas 
aeruginosa, Staphylococ-
cus aureus

Spanò et al. (2016)

Rhodotorula mucilaginosa 
UANL-001

The water streams of the 
river in Mexico

EPS (C, H, O, no N and 
S). Glue, 82%, Man, 
Gal, Fuc

Staphylococcus aureus, 
Pseudomonas aeruginosa

Vazquez-Rodriguez et al. 
(2018) and Garza-Cer-
vantes et al. (2019)

Pseudoalteromonas tunicata Marine surface – Marine algae, bacteria, and 
fungi

Egan et al. (2002)

Bacillus subtilis MSBN17 Marine sponge Dendrilla 
nigra

EPS (58.6% sugar; 
17.8% glycolipid 
protein)

Ag+ Bactericidal nanomate-
rial

Sathiyanarayanan et al. 
(2013)

Brevibacterium casei 
MSA19

Marine sponge Dendrilla 
nigra

EPS (glycolipid) Ag+ Bactericidal nanomate-
rial

Kiran et al. (2010a)
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synthesize EPS. The EPSs often contain different functional 
groups including uronic acid (up to 20–50%), hydroxyl, 
carboxyl and phosphate groups, sulphated units, glycerate, 
and pyruvate or succinate substituents which form a nega-
tive charge at the pH of seawater (pH ~ 8) allowing them 
to act as ligands toward dissolved cations including trace, 
and toxic metals (Banerjee et al. 2021; Escárcega-González 
et al. 2018; Gupta and Diwan 2017; Nichols et al. 2005). 
Thus, EPS have been proposed to be used for biosorption of 
trace metals in the processes of biotreatment (Banerjee et al. 
2021; Li et al. 2015; Mohite et al. 2017; Raj et al. 2018) or 
as capping agents in production of numerous metallic nano-
particles which are now widely used in biomedical sciences 
and engineering (Sathiyanarayanan et al. 2017). Interaction 
between EPS and trace metals occurs due to the reaction 
between metal cations and the charged functional groups, 
such as hydroxyl, carboxyl, phosphoric, and amine groups, 
which determines the possibility of adsorption of metals on 
exopolysaccharides, so, EPS could reduce metal ions and 
cap them. Examples of application of EPS produced by bac-
teria isolated from different aquatic environments with trace 
metals are present in Table 2.

Different trace metals such as Pb, Cu and Co were 
adsorbed by anionic EPS produced by halophilic bacteria 
Halomonas almeriensis, 24.5; 12.2, and 10.0 mg/g, respec-
tively (Llamas et  al. 2012). The Bacillus cereus strain 
KMS3-1 isolated from polluted coastal sediment produced 
EPS containing functional groups (O‒H, CH, C=O, C‒O, 
and C‒C=O). This EPS could adsorb Cd(II), Cu(II), and 
Pb(II) in quantity of 54.05, 71.42, and 78.74 mg/g, respec-
tively, and could be used as chelating agent for wastewater 
treatment (Mathivanan et al. 2021). Klebsiella spp. isolated 
from paper mill wastewater in China, produced EPS made up 
of 84.6% polysaccharides consisting of rhamnose, mannose, 
glucose and galactose at a molar ratio of 6.48:2.47:1:1.74, 
and 6.1% protein (Yin et al. 2014). The polysaccharides 
which have a large number of functional groups (hydroxyl, 
amide and carboxyl) were more likely to adsorb positively 
charged particles and showed potential for industrial appli-
cation as bioflocculant. EPS produced by a photosynthetic 
bacterium Proteiniphilum acetatigenes PSB isolated from a 
water purifying agent was effective for removal of Cu and Pb 
from aquatic environments (Hu and Liu 2021). Bacillus meg-
aterium strain PL8 synthesized acidic polysaccharide com-
posed of galactose, galacturonic acid, glucose, glucuronic 
acid and mannose at a molar ratio of 45.1: 33.8:9.3:9.2:2.4, 
respectively, and displayed high adsorption ability of Pb, Zn, 
and Ni (Pu et al. 2020). The strain Alteromonas sp. JL2810, 
isolated from surface seawater from the South China Sea, 
produced exopolysaccharide containing rhamnose, man-
nose and galacturonic acid with such functional groups as 
O–H, C=O, and C–O–C. This EPS was able to adsorb such 
trace metals as Cu(II), Ni(II) and Cr(VI) with maximum 

biosorption capacities 140.8, 226.3, and 215.2 mg/g, respec-
tively (Zhang et al. 2017). A halophilic, thermotolerant 
strain Bacillus licheniformis B3-15, isolated from water of 
a shallow submarine hot spring off the coast of the Eolian 
Islands, Italy, produced an exopolysaccharide with manno-
pyranosidic configuration and repeating tetrasaccharide unit. 
The strain was resistant to Cd(II), Zn(II), As(II) and Hg(II) 
and could be used as a biosorbent inwastewater treatment 
(Maugeri et al. 2002). The EPS produced by Pseudoaltero-
monas sp. strain TG1 isolated from a seawater sample from 
the shores of Oban Bay, Scotland, was a glycoprotein com-
posed of carbohydrates, 32.3%, and protein, 8.2%. EPS con-
tained hexoses (rhamnose, fucose, galactose, glucose, and 
mannose), amino sugars (galactosamine, glucosamine, and 
muramic acid), uronic acids (galacturonic and glucuronic 
acid), and the pentose xylose. Major amino acids were aspar-
tic acid, glutamic acid, glycine, and alanine (Gutierrez et al. 
2008). EPS contained a high amount of uronic acid (28%), 
negative charges of the uronic acids, together with hydroxyl 
groups of monosaccharides provided the possibility for 
binding of metal ions: Na (154.5 mg/g polymer), Mg(II) 
(31.0 mg/g polymer), and K (10.6 mg/g polymer) (Gutierrez 
et al. 2008). The EPS produced by Pseudoalteromonas sp. 
MER144 isolated from Antarctic seawater contained 35% 
carbohydrates, 14% uronic acid, and 12% protein and could 
bind Hg and Cd (Caruso et al. 2018). Exopolysaccharide 
synthesized by Enterobacter A47 isolated from glycerol 
by-product aqueous solution mainly composed of neutral 
sugars, fucose, galactose and glucose, and the acidic sugar 
glucuronic acid revealing high ability for the biosorption 
of Pb, Co, Cu, and Zn cations, and has a great potential as 
biosorbent for treating waters and wastewaters (Concórdio-
Reis et al. 2020a). Xanthate-functionalized EPS synthesized 
by marine Pseudomonas aeruginosa JP-11 formed nanopar-
ticles of Cd sulphide (CdS) to remove Cd by adsorption from 
Cd-containing wastewater up to 88.7% (Raj et al. 2016).

A lot halophiles and halotolerant marine bacteria such 
as Halomonas eurihalina, H. maura, H. ventosae, H. anti-
cariensis, Alteromonas hispanice, and Idiomarina rambicola 
are known as producers of exopolysaccharides which can be 
used as viscosifying, jellying, emulsifying and metal bind-
ing substances (Elsakhawy et al. 2017). Sulphated mauran 
(MR), one of the most studied extremophilic bacterial EPSs, 
due to its fascinating rheological properties, attracts metal 
ions to form stable nanomaterials because of the uronic acid 
contents (Sathiyanarayanan et al. 2017).

Capability of bacterial EPS to trap metal ions is now 
widely used for the production of nanoparticles that possess 
antimicrobial activity (Table 3).

Table 3 summarizes examples of bacterial EPS used for 
synthesis of antimicrobial agents. Aldehyde groups in rham-
nose and pyranose sugars and hemiacetal groups of rham-
nose sugars present in the exopolysaccharides produced by 
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Escherichia coli actively participated in the reduction of 
 Ag+ to form silver nanoparticles (AgNPs) that were immo-
bilized within the EPS matrix. It was demonstrated that EPS 
produced by E. coli serves as a permeability barrier which 
protects cells from antibacterial activity of silver ions (Kang 
et al. 2013). EPS, a glyco-lipoprotein synthesized by Ochro-
bactrum rhizosphaerae, was used for the production of silver 
nanoparticles AgNPs as antimicrobial agents against Vibrio 
cholera. It was concluded that the free –CH2OH groups of 
GLP molecules were oxidized to carboxyl groups (COO–) 
which was accompanied with reduction of  Ag+ to  Ag0 and 
production of nanoparticles (Gahlawat et al. 2016). Thus, the 
presence of toxic trace metals on microplastics could be a 
factor which determines the domination of microorganisms 
which could survive due to their ability to synthesize EPS.

Bioavailability and potential toxicity of trace 
metals adsorbed on microplastics

The adsorption of trace metals on microplastics increases 
its ecotoxicity and the risk of accumulation in the environ-
ment and organisms including humans. Microplastics are 
found everywhere in aquatic ecosystems. In the case when 
there are adsorbed trace metals on biofilm covered micro-
plastics, this can lead to synergistic toxicities of these two 
contaminants together with an increase in bioavailability of 
trace metals (Ding et al. 2022; Sleight et al. 2017). Some 
authors draw attention to the need to regulate plastic produc-
tion in order to reduce environmental pollution, as well as to 
focus on the reuse or recycling of used plastic materials to 
decrease their accumulation in nature (Alimba and Faggio 
2019; Kumar et al. 2021; Liu et al. 2021a).

Conclusions

Adsorption of trace metals on biofilm covered microplastics 
is multifaceted process: (a) trace metals can be adsorbed on 
microplastics changing its properties and influencing attach-
ment of microorganisms to the MPs surface; (b) microplas-
tics in aquatic environments are covered with biofilm; (c) 
trace metals adsorbing on microplastics covered with biofilm 
changes the microbial composition of biofilm; (d) biofilm 
covered microplastics changes its surface properties and 
influences trace metal adsorption; (e) microorganisms of 
biofilm very often produce exopolysaccharides which can 
trap trace metals; (g) EPS produced by microorganisms from 
biofilm covered MPs can have antimicrobial effect which 
change the composition of microbial community of bio-
film and, in turn, adsorption capacity for trace metals; (h) 
there are a lot factors influencing the process of trace metal 
adsorption on MPs such as pH, salinity, time of exposure, M
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concentration of TMs in surrounding medium, ageing, UV-
effect. Processes of microplastics covered with biofilm alto-
gether with adsorption of trace metals on MPS or trapping 
them with EPS synthesized by microorganisms of biofilm 
are spontaneously introduced in natural water bodies. Dan-
gers and threats to the global environment provided by the 
microplastics serving as carriers for microorganisms of bio-
film and adsorbed trace metals is increasing. The numerous 
studies on the interaction of microplastics with trace metals 
indicate that there is an ever-increasing danger to the envi-
ronment of the combination of these two large-scale pollut-
ants, and today there is only one real way to deal with this 
worldwide problem: Since this problem affects the entire 
planet, laws must be developed and adopted to regulate the 
production, use, and disposal of plastic materials as well 
as new water treatment solutions must be put in place to 
eliminate microplastic and trace metal discharge into the 
environment.
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