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Abstract
Enzymes are biocatalysts that are widely used in different industries and generate billions of dollars annually. With the 
advancement of biotechnology, new enzymatic sources are being evaluated, especially microbial ones, in order to find 
efficient producers. Endophytic fungi are promising sources of biomolecules; however, Amazonian species are still poorly 
studied as to their enzymatic production potential. In this sense, the production of hydrolases (amylases, lipases, cellulases 
and pectinases) was evaluated in endophytic fungi isolated from the leaves, roots and stems of açai palms (Euterpe precato-
ria). A qualitative test was carried out to detect the enzymatic synthesis in each isolate, and the most promising ones were 
cultivated using submerged fermentation. The enzyme extracts were quantified to determine those with the greatest activity. 
Cellulolytic and amylolytic extracts showed the highest enzymatic activities and were partially characterized. Among 50 
isolates, 82.9% produced pectinase, 58.5% produced cellulase, 31.7% produced amylase, and 12.2% produced lipase. Penicil-
lium sp. L3 was the best producer of amylase and Colletotrichum sp. S1 was the best producer of cellulase in liquid medium 
cultivation. The amylolytic extract showed the highest enzymatic activity at pH 8.0 and 45 °C, and the cellulolytic extract 
at pH 5.0 and 35 °C. The cellulase and amylase produced by the endophytes had their molecular masses estimated between 
38 and 76 kDa. These results indicate that endophytic fungi from the açai palm can be used as a new source of hydrolytic 
enzymes, which can be applied in numerous biotechnological processes.

Keywords Hydrolase · Endophytes · Penicillium · Colletotrichum · Amylase · Cellulase

Introduction

In biotechnology, discoveries in enzymology have triggered 
important advances for numerous industrial applications 
(Bilal and Iqbal 2019). Enzymes are macromolecules that 
are catalysts of high specificity to their substrates, and are 
used in food, textile, pharmaceutical, cosmetic, cleaning, 
chemical synthesis industries, among many others. Advan-
tages, such as the ability to reduce reaction time and low 
energy consumption, make these biocatalysts increasingly 
attractive to industry (Choi et al. 2015; Singh et al. 2016).

Enzymes of microbial origin are most often used for 
enabling large-scale production, due to easy manipulation, 
whether genetic or environmental. Endophytic microor-
ganisms, inhabitants of the interior of plant tissues, have 
been shown to be potential producers of mainly hydro-
lytic enzymes (Mendes et al. 2015; Orlandelli et al. 2015; 
Marques et al. 2018; Matias et al. 2021). The global market 
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value of enzymes was USD 9.9 billion in 2019 and it is 
expected to grow at a compound annual growth rate of 7.1% 
until 2027 (Grand View Research 2020).

Hydrolases comprise the group with the greatest indus-
trial application due to factors such as the ability to catalyze 
biotransformation with high chemo-, regio- and enantiose-
lectivity, and also because they do not depend on the regen-
eration of cofactors (Moran et al. 2013; Robinson 2015). 
Among the hydrolases, amylases occupy 25% of the total 
enzymes used in industry, followed by cellulases (20%), 
which are known mainly for their applications in the biofuel 
industry. Lipases and pectinases are used in the production 
of flavors and beverages, respectively (Moran et al. 2013; 
Cunha et al. 2016; Gopinath et al. 2017).

Considering the industrial importance of hydrolases, 
especially in relation to their numerous applications, it is 
deemed interesting to evaluate the potential of endophytic 
fungi associated with tropical species, whose studies are 
still scarce. Since endophytic fungi represent a promising 
alternative as a source of bioactive molecules (Fadiji and 
Babalola 2020), this study evaluated the hydrolytic potential 
of endophytic fungi isolated from açai palms (Euterpe pre-
catoria Mart.), which is an Amazonian species of great eco-
nomic importance, and known worldwide. In addition, the 
amylase and cellulase extracts were characterized, intending 
to reveal its potential industrial applications.

Materials and methods

Microorganisms

Fungi were obtained from leaves, stems, and roots of seed-
lings of Euterpe precatoria Mart. cultivated in the nursery of 
the School of Technology at the Amazonas State University 
(EST/UEA). The fungi were identified at the genus level 
using micromorphological analysis (Batista et al. 2018) and 
are deposited in the Microbiological Collections Center at 
UEA. The reactivation of the fungi was performed in potato 
dextrose agar (PDA) in a biochemical oxygen demand 
(BOD) incubator at 28 °C for 7 days. When the growth of 
fungi was identified, they were subjected to qualitative tests 
in solid medium to detect hydrolytic activity.

Detection of enzyme production in solid medium

In triplicate, discs of the reactivated mycelial material of 
5 mm diameter were transferred to the center of a Petri dish, 
containing a specific medium for the induction of hydrolytic 
synthesis. For detection of amylase production, a medium 
composed of agar (1.8%), starch (1.0%) and phosphate cit-
rate buffer 0.1 M, pH 5.0 was used. For detection of cellulo-
lytic activity, agar (1.8%), carboxymethylcellulose (CMC) 

(1%) and sodium acetate buffer 0.1 M, pH 5.0 were used. 
For the detection of pectinolytic activity, agar (1.8%), citrus 
pectin (1.0%) and sodium acetate buffer 0.1 M, pH 5.0 were 
used; for the detection of lipolytic activity, peptone (6.0 g/L), 
NaCl (3.0 g/L),  CaCl2.2H2O (0.06 g/L), agar (10.8 g/L) and 
Tween 80 at 1% (v/v) were used (Souza et al. 2008; Hankin 
and Anagnostakis 1975).

After the 7 day-incubation period, the plates were stained 
with iodine 0.1 N (for detection of amylases and pectinases), 
and lugol (for detection of cellulases) to facilitate the visu-
alization of the degradation halos. The lipolytic activity was 
detected through the presence of calcium crystals forming 
around the fungal colony. Halos, indicative of enzyme pro-
duction, were measured with the aid of a caliper, as were 
as fungal colonies, for the calculation of the enzyme index 
(EI), which expresses extracellular enzyme activity. EI was 
obtained by analyzing the relationship between the diameter 
of the degradation halo and the average diameter of the fun-
gal colony (Oliveira et al. 2010). Fungi with an EI ≥ 2 were 
considered suitable for evaluation of hydrolytic production 
in liquid media.

Enzymatic production in liquid medium

The fungi selected from the enzymatic index were reacti-
vated in tubes containing potato dextrose (BD) medium for 
5 days at 28 °C. A spore suspension was prepared (1 ×  106 
spores/mL) and added to Erlenmeyer flasks containing 
50 mL of specific liquid medium to produce each enzyme. 
Afterwards, the flasks were incubated in shaker. The cul-
tures were performed in triplicate and maintained for 7 days. 
After cultivation, the fermented broths were filtered, and the 
cell-free enzyme extracts were used for the determination of 
enzyme activity.

To induce amylase production, a medium composed of 
 NaNO3 (3.0 g/L),  MgSO4.7H2O (0.5 g/L), KCl (5.0 g/L), 
 KH2PO4 (1.0 g/L),  FeSO4.7H2O (0.01 g/L),  CaCl2 (0.1 g/L) 
and starch (15.0 g/L), pH 7.0, was used. The fungi were 
incubated in shaker at 120 rpm and 30 °C (Hegde et al. 
2011). To induce cellulase production, a medium composed 
of  KH2PO4 (2.0 g/L),  (NH4)2SO4 (1.4 g/L), urea (0.3 g/L), 
 MgSO4.7H2O (0.3  g/L),  CaCl2 (0.1  g/L),  FeSO4.7H2O 
(5.0  mg/L),  MnSO4.H2O (1.6  mg/L),  ZnSO4.7H2O 
(1.4 mg/L)  CoCl2.H2O (1.6 mg/L) and CMC (10.0 g/L), 
pH 5.0, was used. The fungi were incubated in a shaker at 
120 rpm and 28 °C (Kanti and Sudiana 2017). To induce 
lipase production, a medium composed of  NH2NO3 
(0.1%),  MgSO4.7H2O (0.05%),  KH2PO4 (0.1%), peptone 
(2.0%) and olive oil (1.0%), pH 6.0, was used. The fungi 
were incubated in shaker at 160 rpm and 28 °C (Nasci-
mento et al. 2015). For induction of pectinase production, 
culture medium composed of pectin (10.0 g/L), sucrose 
(10.0 g/L), tryptone (3.0 g/L), yeast extract (2.0 g/L), KCl 
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(0.5 g/L),  MgSO4.7H2O (0.5 g/L),  MnSO4.5H2O (0.01 g/L), 
 (NH4)2SO4 (2.0  g/L) was used and supplemented with 
1 mL of a mineral solution  (CuSO4.5H2O, 0.04 g/L;  FeSO4, 
0.08 g/L;  Na2MoO4, 0.08 g/L;  ZnSO4, 0.8 g/L;  Na2B4O7, 
0.004 g/L;  MnSO4, 0.08 g/L), pH 6.0. The fungi were incu-
bated in shaker at 160 rpm and 50 °C (Jahan et al. 2017).

Dosage of the enzyme activity

To quantify the amylase and cellulase activity, a standard 
glucose curve was constructed. For lipase activity, a standard 
curve of p-nitrophenol (p-NP) was constructed and, for pec-
tinase activity, a standard curve of D-galacturonic acid was 
used. The measurement of amylolytic and cellulolytic activ-
ity was determined from the amount of reducing sugars that 
were formed during the incubation of 50 μL of the enzyme 
extract together with 50 μL of the substrate (1% starch, 
diluted in sodium acetate buffer 0.1 M, pH 6.0 (w/v) for 
amylase; 1% CMC, diluted in 0.05 M sodium citrate buffer, 
pH 5.0 (w/v) for cellulase) at 50 °C for 30 min. Then, 100 μL 
of 3,5-dinitrosalicylic acid (DNS) were added, and the mix-
ture was placed in a water bath at 100 °C for 5 min. After the 
addition of 800 μL of distilled water, the absorbances were 
read using a spectrophotometer at 540 nm (Miller 1959).

Lipolytic activity was obtained from the amount of 
p-nitrophenol formed in the incubation of 1.0 mL of the 
enzyme extract with 2.0 mL of the substrate at 37 °C. The 
substrate contained 1 mL of solution A (10 mL of isopro-
panol with 30 mg of p-NPP) and 9 mL of solution B (2 mL 
of Tween 80 mixed with 0.5 g of gum arabic in 450 mL of 
phosphate buffer 0.05 M, pH 7.0). After 15 min, absorbance 
readings were performed on a spectrophotometer at 410 nm. 
The level of pectinolytic activity was determined from the 
amount of D-galacturonic acid formed in the incubation of 
50 μL of the enzyme extract with 50 μL of the substrate 
(citrus pectin at 0.5%) at 37 °C for 40 min, followed by the 
addition of 200 μL of DNS. After 5 min at 100 °C, 700 μL 
of distilled water were added and the absorbance was read 
on a spectrophotometer at 540 nm (Roosdiana et al. 2013; 
Vasconcelos et al. 2013; Nascimento et al. 2015). A unit of 
enzymatic activity was defined as the amount of enzyme 
required to release 1 μmol of glucose or p-nitrophenol, or 
d-galacturonic acid per minute, under the conditions of the 
assays.

Commercial enzymes

In order to compare the enzymatic production of endo-
phytic fungi, the following commercially acquired hydro-
lytic enzymes were used: α-amylase from Aspergillus ory-
zae (Sigma Aldrich), activity 1.5 U/mg (prepared at 5.0 U/
mL); Ceremix® Flex amylase (NovoZymes), activity 1.83 
U/mL; Ultraflo® enzyme glucanase (NovoZymes), activity 

38.5 U/mL; Aspergillus niger cellulase (Sigma Aldrich), 
activity 30.9 U/mL; Lipase type VII of Candida rugosa 
(Sigma Aldrich), activity 700 U/mg (prepared at 5.0 U/mL); 
and Aspergillus niger pectinase (Sigma Aldrich), activity 
2.92 U/mL. The enzymes were prepared as indicated by the 
manufacturer.

Characterization of the amylolytic and cellulolytic 
extracts

The filtered enzymatic extracts were assayed to verify their 
enzymatic activity, as described previously, with variations 
of the pH of the substrate solution (starch for amylase, and 
CMC for cellulase). Sodium acetate buffer 50 mM was used 
for pHs 4.0 and 5.0, and sodium phosphate buffer 50 mM 
was used for pHs 6.0, 7.0 and 8.0.

To evaluate the optimal temperature, the filtered extracts 
were also assayed for their enzymatic activity, and the reac-
tion mixtures were incubated at temperatures varying from 
30 to 50 °C (Sindhu et al. 2011; Carrasco et al. 2017).

The molecular mass of the amylolytic and cellulolytic 
extracts was estimated using polyacrylamide gel electro-
phoresis (SDS-PAGE). After filtration, the extracts were 
precipitated with trichloroacetic acid and resuspended with 
acetone. The separating gel was prepared at a concentra-
tion of 10% (m/v), and 30 μL of sample being placed in 
the running gel together with 4 μL of molecular weight 
marker (Amersham™ ECL™ Rainbow™ Marker—Full 
Range) with molecular masses of 225  kDa, 150  kDa, 
102 kDa, 76 kDa, 52 kDa, 38 kDa, 31 kDa, 24 kDa, 17 kDa 
and 12 kDa. Finally, the electrophoresis was performed in 
a Mini-PROTEAN® Tetra Cell system (Bio-Rad) under a 
current of 200 V, 30 A, 30 W, in Tris/glycine/SDS 1× buffer, 
pH 8.3. After the run, the gel was stained with Coomassie 
Brilliant Blue G-250 (Benoliel et al. 2013).

Statistical analysis

A completely randomized design was utilized. For solid 
medium tests, only those samples that presented EI above 
2 were used, and the data were organized according to the 
activity. Variance analyses (ANOVA) were performed using 
the Minitab® 17.3.1 program  (Minitab© Inc. 2003–2006, 
USA), using the Tukey test for the means, at the level of 5% 
significance.

Results

Production of hydrolases in solid medium

The percentage of enzymes produced by endophytic fungi 
from the açai palm is shown in Fig. 1. The production of 
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pectinolytic enzymes in the endophytes was higher than the 
production of the other enzymes, which indicates the impor-
tance of the production of pectinases for the development of 
some of the fungi associated with E. precatoria. Cellulolytic 
activity was the second most frequent, followed by amylo-
lytic and lipolytic activity.

The enzyme indices observed after 7 days of incubation 
are shown in Fig. 2. It was notable that the same endophytic 
fungus was able to synthesize more than one type of hydro-
lase. In addition, it was also noted that the fungi isolated 
from the stems showed higher production levels of enzymes 
than those of the leaves. The isolate Guignardia sp. S22 
presented the highest amylolytic index (3.5), followed by 
the isolate Penicillium sp. L3 (3.4), as can be seen in Fig. 2a. 
In Fig. 2b, it is observed that the highest cellulolytic index 
was obtained by the isolate Guignardia sp. L11 (7.0), fol-
lowed by Colletotrichum sp. S1 (6.7). As for the pectinolytic 
index, it is possible to observe in Fig. 2c that the isolates 
R3 (unknown genus) and Aspergillus sp. R13 were the best 
producers with an EI of 9.4 and 7.6, respectively. The best 
lipolytic indices can be seen in Fig. 2d, for which the isolate 
Penicillium sp. L3 had the highest index (3.9), followed by 
Guignardia sp. L11 (3.6).

Hydrolytic production in liquid medium

The hydrolytic activity of the enzymatic extracts produced 
by the endophytic fungi isolated from E. precatoria is 
shown in Fig. 3. In Fig. 3a, the peak of the amylolytic 
activity of Penicillium sp. L3 (30.96 U/mL) was seen after 
72 h of cultivation, while the isolate Guignardia sp. S22 
showed maximum activity on the sixth day (5.86 U/mL). 
When compared with commercial amylases, it is found 

that the activity value obtained in the enzyme extract pro-
duced by the fungus Penicillium sp. L3 is quite promising, 
and this isolate demonstrates potential as a new source of 
amylase.

The quantification of cellulolytic activity performed 
in the enzymatic extracts of the isolates Colletotrichum 
sp. S1 and Guignardia sp. L11 is shown in Fig. 3b. It is 
noted that, despite the high EI obtained in solid medium 
(Fig. 2b), the fungus Guignardia sp. L11 was not able to 
produce cellulase in liquid medium under the test condi-
tions, with maximum enzymatic activity of 0.79 U/mL 
after 5 days of cultivation. Colletotrichum sp. S1 showed 
peak enzymatic activity (15.76 U/mL) after 4 days of cul-
tivation and maintained activity at this level until the end 
of the experiment. When comparing the enzymatic activity 
obtained from the S1 fungus with the activities of com-
mercial cellulases, it is perceived that there is a need to 
optimize the cultivation conditions of the endophyte to 
increase its cellulolytic production.

The pectinolytic activity of fungal isolates R3 and 
Aspergillus sp. R13 is shown in Fig. 3c. A similarity can 
be seen in the pectinase production profile in the two 
fungi. The isolate R3, whose genus was unidentified, 
showed maximum activity (0.013 U/mL) near the end of 
the assay. The R13 isolate showed peak activity on the 
fifth day (0.011 U/mL). Both isolates produced pectinases 
with less enzymatic activity than the commercial enzyme.

The quantification of lipolytic activity of enzyme 
extracts obtained from the isolates Penicillium sp. L3 and 
Guignardia sp. L11 is shown in Fig. 3d. It is noted that 
the production of lipase in liquid medium presents simi-
lar behavior in the two fungi and has little variation after 
the fourth day of cultivation. The isolate Penicillium sp. 
L3 showed the peak of activity at the end of the assay 
(0.18 U/mL), while the isolate S1 showed higher activ-
ity (0.13 U/mL) on the fourth day. On the other hand, the 
values of enzymatic activity that were obtained were low 
when compared to the commercial lipase. Therefore, the 
isolates evaluated here are not remarkable in the produc-
tion of lipase in liquid medium under these experimental 
conditions.

Characterization of the amylolytic extract

The activity of the amylolytic extract under varying pH and 
temperature ranges is shown in Fig. 4. High amylase activ-
ity can be perceived at different pH values, regardless of 
the temperature. At 30 °C (Fig. 4a), higher amylase activity 
was observed at pH 7.0; from 35 to 50 °C (Fig. 4b–e), the 
enzymatic extract showed higher amylolytic activity at pH 
8.0. The best result was observed at 45 °C with a pH value 
of 8.0 (39.6 U/mL).
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Characterization of the cellulolytic extract

The activity of the cellulolytic extract under varying pH 
and temperature ranges is shown in Fig. 5. It can be noted 
that at pH 4.0 the cellulolytic activity was low, regardless 
of the temperature. At 30 °C (Fig. 5a), the highest activi-
ties were obtained at pH 6.0, 7.0 and 8.0; while at 35 °C 
(Fig. 5b), the highest activities were observed at pH 5.0 
(12.31 U/mL) and 6.0 (12.07 U/mL). At 40 °C and 45 °C 
(Fig. 5c, d), the highest activities were found when pHs 
6.0, 7.0 and 8.0 were used; and at 50 °C, pHs 5.0, 6.0 and 
7.0 were the most adequate for the enzymatic reaction.

Molecular mass profile

The protein profile of the amylolytic and cellulolytic 
extracts is presented in Fig.  6. The amylolytic extract 
obtained from the endophytic fungus Penicillium sp. L3 
revealed three major bands that had molecular masses 
between 38 and 76 kDa. The cellulolytic extract produced 
by the endophytic fungus Colletotrichum sp. S1 presented 
four bands, with molecular masses between 38 and 52 kDa.
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Fig. 2  Enzymatic indices (EI) of amylase (a), cellulase (b), pectinase (c) and lipase (d) from endophytic fungi isolated from açai palms
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Discussion

Filamentous fungi are known for their ability to grow in 
different environments, using simple or complex sub-
strates. These microorganisms have been used for the 
synthesis of several types of enzymes used in industrial 
applications, mainly hydrolases (Cortez et al. 2017). In 
recent years, interest in endophytic fungi as new sources 
of hydrolytic enzymes has increased (Marques et al. 2018; 
Matias et al. 2021) since these are microorganisms recog-
nized for their potential for synthesis of active metabolites. 
In addition, fungi associated with different hosts have var-
ied hydrolytic potential, since the production of enzymes 
in endophytes is associated with colonization of the plant 
surface. This helps in the hydrolysis of the plant cell wall, 
as well as serving as direct protection against pathogens 

(Fadiji and Babalola 2020). Endophytic fungi isolated 
from açai palms showed versatility in the production of 
hydrolytic enzymes in solid media. The fungus Colletotri-
chum sp. S1, isolated from the stem, presented production 
of amylase, cellulase and pectinase, which are enzymes 
that are directly involved in the degradation of the plant 
cell wall. Moreover, the fact that species of this genus 
can synthesize pectinases is considered a characteristic 
indicator of the causative agent of anthracnose (Marchi 
et al. 2009).

The fungus Guignardia sp. L11, which was isolated from 
the leaf, was able to produce amylase, cellulase and lipase 
in solid medium. Romão et al. (2011) evaluated enzymatic 
profiles of the endophyte G. mangiferae and the pathogen 
G. citricarpa, and found that the pathogenic species synthe-
sized a greater amount of hydrolytic enzymes.
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Pectinolytic activity of fungus R3 (●) and Aspergillus sp. R13 (○).d 
Lipolytic activity of Penicillium sp. L3 (●) and Guignardia sp. L11 
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Pectinolytic enzymes were the most produced in solid 
media, and 83% of the evaluated fungal isolates demon-
strated the ability to synthesize these enzymes. The fact that 
most isolates from açai palms present synthesis of amylases, 
cellulases and pectinases is not unusual since the action of 
these enzymes generates assimilable glucose monomers for 
the host and for the fungus (Lopez and Pereira 2010). In 
addition, the high presence of synthesized pectinases may 
suggest the importance of pectinolytic synthesis in some 
part of the life cycle of the isolates of the açai palm (Bezerra 
et al. 2012).

In a study conducted by Sandri et  al. (2013), which 
involved 60 isolates obtained from decomposing plant tis-
sues, the pectinolytic levels were compared with those pro-
duced by the strains of A. niger T0005007-2 and A. oryzae 
IPT 301, which are known for being pectinase producers. 
The authors found that 81% of the isolates presented pecti-
nolytic activity, and this is a similar result to that obtained in 
the present study. Furthermore, 3% of the isolates presented 
enzymatic activity similar to that of the standard fungus, and 
the highest activity (74 U/mL in 96 h) was obtained using an 
isolate of the genus Aspergillus.

Fungi belonging to the genus Aspergillus, as is the case 
of the R13 isolate, are microorganisms that are capable of 
synthesizing enzymes that assist in the degradation of vari-
ous food products. Therefore, these microorganisms have 
large-scale biotechnological potential for the synthesis of 

polygalacturonase, which in turn is used in the clarification 
of juices (Orlandelli et al. 2015; Gulhane et al. 2016).

Of all the fungi evaluated, 32% were able to produce 
amylase in solid medium. Amylases hydrolyze glycosidic 
bonds, which result in sugars and dextrins from starch 
degradation and can be used in different industrial sectors 
(Norouzian et al. 2006). These enzymes are obtained from 
endophytic fungi associated with different hosts. Onofre 
et al. (2011) identified the potential of the endophytic fungus 
Colletotrichum gloeosporioides, which was isolated from 
Baccharis dracunculifolia, as a good producer of amylases. 
El-Gendy (2012) evaluated the production of glucoamylse 
by Aspergillus sp. JAN-25, an endophytic isolate of Den-
dronephtha hamprechii. Hegde et al. (2011) observed the 
production of amylase from endophytic fungi isolated from 
Calophyllum inophyllum, for which the greatest enzymatic 
activity was presented by a Penicillium, as also observed in 
the present study. The endophytic isolate of E. precatoria, 
Penicillium sp. L3, shows promise in the production of amyl-
ase in liquid medium, corroborating studies that demonstrate 
that Penicillium species are important hydrolase producers 
(Li and Zong 2010; Schneider et al. 2014; Rodrigues et al. 
2015; Boratyński et al. 2018).

The submerged fermentation method favored the amylo-
lytic synthesis of the isolate Penicillium sp. L3, which can 
be explained by the fact that the nutrients were more readily 
available, as well as due to the supply of oxygen through agi-
tation. In addition, the genus Penicillium has been described 
as a good producer of α and β-amylases. Species of this 
genus have even managed to use alternative substrates for 
their growth, such as soybean residues, barley husks, wheat 
bran and corn husk (Dar et al. 2015; Cunha et al. 2016; 
Gopinath et al. 2017), which can improve the economic 
viability of the bioprocess.

On the other hand, lipase production in the endophytes of 
E. precatoria was low. Only 12% of the isolates synthesized 
the enzyme in a solid medium, and in a liquid medium the 
production was incipient. Studies involving endophytic fungi 
demonstrate the ability of these microorganisms to produce 
lipases. Shubha and Srinivas (2017) found that 23% of fungi 
isolated from Cymbidium aloifolium produced the enzyme, 
which is double that observed in the present study.

Species of the genera Aspergillus and Penicillium are 
known to be producers of lipases that are used in industry 
(Li and Zong 2010; Abdel-Azeem et al. 2019). This fact 
reinforces the potential observed in lipolytic detection assays 
in solid medium of isolates L3 and R13, which belong to 
the genera Penicillium and Aspergillus, respectively (Silva 
et al. 2006; Lopez and Pereira 2010; Matias et al. 2021). 
According to Cortez et al. (2017), Penicillium species can 
synthesize high levels of lipase, especially the species P. 
cyclopium, P. citrinum, P. roqueforti and P. fumiculosum. 
Therefore, the endophytic fungi Penicillium sp. L3 should 
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Fig. 6  Electrophoretic profile (SDS-PAGE) of amylolytic and cellulo-
lytic extracts produced by endophytic fungi isolated from açai palm: 
lanes 1 and 2—cellulolytic extract produced by Colletotrichum sp. 
S1; lanes 3 and 4: amylolytic extract produced by Penicillium sp. L3; 
lane 5—marker of molecular weight
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be further evaluated under different submerged cultivation 
conditions since it showed promising results in the solid 
medium assay.

Nascimento et al. (2015) also state that the fungi that 
presented the highest lipolytic index were not able to pro-
duce the enzyme in liquid media. The authors performed the 
evaluation of lipolytic production in fungal isolates obtained 
from the fruit known as “macaúba” (Acrocomia aculeata 
(Jacq) Lood. Ex Mart.). Of the 19 isolates, four presented 
lipolytic activity in the qualitative assay and, in quantita-
tive assays, the isolates that showed the highest enzymatic 
activities were not the same four as those from the qualita-
tive assay. Thus, evaluating all the isolates in lipolytic liquid 
medium would be an interesting way to observe the activity 
they may present, and therefore, avoid the possibility of not 
identifying the best producers.

Although the isolates S22 and L11 (Guignardia sp.) had 
high amylolytic and cellulolytic indices, respectively, both 
had low activity in the first hours of the liquid medium cul-
tivation. In this case, it is possible to suppose that a longer 
period would be required for synthesis, since fungi of the 
genus Guignardia sp. have a growth that is characteristically 
slow. Another factor that may have influenced enzymatic 
synthesis was the variation in glucose levels, which can lead 
to catabolic repression (Ahmed et al. 2009; Romão et al. 
2011; Moran et al. 2013).

The production of cellulase in solid medium was 58% 
among the fungal isolates of the açai palm. The best pro-
ducer of cellulase in liquid medium was the fungus Colle-
totrichum sp. S1, which was a stem isolate. For this isolate, 
the cellulolytic activity increased in parallel to the growth of 
the fungus, until the fourth day of cultivation. The same was 
observed in a study involving C. capsici, which presented 
maximum cellulolytic synthesis on the tenth day, which, 
however was then followed by a sudden reduction, indicating 
the complete consumption of cellulose as a carbon source 
(Anand et al. 2008; Peeran et al. 2014).

Most industrial cellulases are derived from fungi such 
as Trichoderma, Aspergillus, and Penicillium. However, the 
universal ability of plant pathogens is that they can produce 
a variety of cell wall polysaccharide-degrading enzymes, 
which include cellulases, for cleavage of glycosidic bonds 
present in wall polysaccharides of the plant tissues. There-
fore, Colletotrichum sp. can be considered an important 
source of hydrolases (Zhou et al. 2020).

The cellulolytic and amylolytic extracts produced by 
Colletotrichum sp. S1 and Penicillium sp. L3, respectively, 
were partially characterized in relation to the optimal pH and 
temperature. The determination of the pH and temperature 
at which the extracts present the highest enzymatic activ-
ity indicates the possible industrial applications for these 
enzymes. The cellulolytic extract produced by Colletotri-
chum sp. S1 maintained its enzymatic activity above 10 U/

mL at a pH range that varied from 5.0 to 8.0, regardless 
of the temperature. Cellulases that prove to be thermosta-
ble have important applications, such as in the degradation 
of microcrystalline cellulose, which is insoluble in water 
due to its highly compact structure (Delatorre et al. 2010). 
They can also be used in the degradation of hemicellulose 
into gums, a process carried out in a pH range between 4.0 
and 5.0, and in a temperature range between 40 and 45 °C 
(Almeida et al. 2013), as well as in the production of feed for 
ruminants, in which the cellulase needs to be activated at a 
temperature between 39 and 42 °C (Cysneiros et al. 2013). 
The cellulolytic extract, however, did not present activity 
at pH 4.0, which is different from cellulases synthesized by 
fungi such as Fusarium verticillioides and Aspergillus ter-
reus, which are generally acidophilic (Almeida et al. 2013; 
Narra et al. 2014).

Zimbardi et  al. (2013) optimized the production of 
β-glucosidases in a strain of Colletotrichum graminicola 
fermented on a solid substrate, in which wheat bran was con-
sidered the best carbon source for inducing the enzymatic 
activity (109.7 U/mL). The authors found an optimal pH 
of 4.9 and temperature of 64.6 °C. In a recent study, Zhou 
et al. (2020) used the endoglucanase gene (CoCel5A) from 
Colletotrichum orchidophilum in a recombinant Pichia pas-
toris. After purification, the endoglucanase CoCel5A exhib-
ited optimal activity at 55–75 °C and high thermostability, 
with the highest activity detected betweeen pHs 4.0–5.0, 
and excellent pH stability bet pHs 3.0–6.0. Thus, it seems 
that, as observed in the present study, cellulases produced by 
Colletotrichum species are thermostable, which is an advan-
tage for industrial applications.

The amylolytic extract produced by the endophytic fungi 
Penicillium sp. L3 showed the highest enzymatic activity at 
pH 8.0 and at 45 °C. In the study of Sindhu et al. (2011), 
which evaluated the activity of α- amylases from Penicillium 
janthinellum NCIM 49,960, at pH values of between 4.0 and 
10.0, and temperatures between 30 and 80 °C, the optimal 
pH was 5.0, although the enzyme remained stable in the 
range of 4.0 to 8.0. The optimal temperature was found to be 
50 °C, although the enzyme continued to present high activ-
ity in the range between 40 and 60 °C. Thus, there appears 
to be a similarity in the properties of the amylases obtained 
from Penicillium sp., and this makes them attractive for 
industrial applications.

The amylolytic extract produced by the Amazonian iso-
late may be applied in the saccharification stage of beer pro-
duction, which is carried out at temperatures between 50 and 
70 °C. In addition, the extract has possible applications in 
food processes such as the production of sweeteners, which 
is generally carried out at pHs of between 4.0 and 6.0 and at 
a temperature below 60 °C. It can also be used for the pro-
duction of glucose syrups, which use pHs that range between 
7.0 and 8.0, and temperatures between 40 and 70 °C, among 
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other industrial applications (Bon et al. 2008; Damodaran 
et al. 2008).

The amylolytic extract produced by Penicillium sp. L3 
presented two bands with molecular masses between 38 
and 52 kDa. The molecular mass of α-amylases from differ-
ent microbial sources are usually between 10 and 210 kDa, 
although most are included in the range of 30 to 70 kDa 
(Janec̆ek 1997; Espinel and López 2009; Baltas et al. 2016). 
Exoamylases, such as β-amylases, usually have a molecular 
mass in the range of 22 to 50 kDa; α-glycosidases between 
110 and 154 kDa; and glycoamylase between 70 and 76 kDa 
(Soro et al. 2007; Sagu et al. 2015). Therefore, purification 
of the extract is necessary, since it enables the determination 
of the type of amylase produced by the endophytic isolate.

The cellulolytic extract produced by the fungus Colle-
totrichum sp. S1 presented protein bands with molecu-
lar masses between 38 and 52 kDa. The cellulase family 
includes several enzymes, such as endoglucanases, cello-
biohydrolases and beta-glucosidases (Zimbardi et al. 2013). 
Endoglucanases present molecular masses of between 22 
and 50 kDa, while β-glucosidases have molecular masses of 
between 165 and 182 kDa; and, in exoglucanases, they are 
between 66 and 72 kDa (Benoliel et al. 2013). The number 
of bands in the enzyme extract indicates the variety of pro-
teins that were produced. Proteins are synthesized according 
to the environment to which the microorganism is submitted, 
thus making the synthesis of different hydrolases possible. If 
one considers the bands found in the electrophoretic profile 
of the enzymatic extract produced by the endophyte isolated 
from the açai palm, it is possible to suggest that the cellulase 
produced is an endoglucanase. However, it is important to 
purify and further confirm the type of cellulase that is pro-
duced by the fungal isolate.

Conclusion

The endophytic fungi of the açai palm presented significant 
potential for the production of hydrolytic enzymes. Most of 
the isolates synthesized the four types of enzymes, which indi-
cates the versatility of these fungi, as these can be used as new 
sources of hydrolytic enzymes. Pectinolytic activity was most 
evident in fungi grown in solid medium, while cellulolytic, 
amylolytic and lipolytic activities were less frequent. On the 
other hand, in liquid media, pectinolytic activity was low, as 
was lipolytic activity, and an optimization of the cultivation 
conditions is necessary in order to obtain greater production of 
these enzymes. The isolate Penicillium sp. L3 showed higher 
amylolytic activity in liquid medium, which is comparable 
to that of the commercially acquired enzyme. The fungus 
Colletotrichum sp. S1 showed the highest cellulolytic activity 
among the açai palm isolates. In this study, the production of 
these two enzymes appears to be very promising, and further 

studies of these fungi and other possible applications of the 
hydrolases produced are necessary.

The amylase synthesized by the isolate Penicillium sp. L3 
presents greater activity when incubated at 45 °C and pH 8.0. 
In addition, the amylolytic extract showed stability at pHs 
from 4.0 to 8.0 and at temperatures between 30 °C and 50 °C. 
The cellulolytic extract, synthesized by the isolate Colletotri-
chum sp. S1, showed higher activity at pH 5.0 and 35 °C and, 
although this extract has been shown to be slightly less toler-
ant to pH variations, when compared to amylase, its activity 
showed thermostability, which allows various applications in 
industrial processes.
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