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Abstract
With increased attention to excellent biocatalysts, evolving methods based on nature or unnatural amino acid (UAAs) 
mutagenesis have become an important part of enzyme engineering. The emergence of powerful method through expand-
ing the genetic code allows to incorporate UAAs with unique chemical functionalities into proteins, endowing proteins 
with more structural and functional features. To date, over 200 diverse UAAs have been incorporated site-specifically into 
proteins via this methodology and many of them have been widely exploited in the field of enzyme engineering, making this 
genetic code expansion approach possible to be a promising tool for modulating the properties of enzymes. In this context, 
we focus on how this robust method to specifically incorporate UAAs into proteins and summarize their applications in 
enzyme engineering for tuning and expanding the functional properties of enzymes. Meanwhile, we aim to discuss how the 
benefits can be achieved by using the genetically encoded UAAs. We hope that this method will become an integral part of 
the field of enzyme engineering in the future.

Keywords Unnatural amino acids · Site-specific incorporation · Enzyme engineering · Orthogonal translation system

Introduction

Enzymes are important biocatalysts that catalyze a variety of 
chemical reactions found in nature, which have been exten-
sively applied in the field of fine chemical, agrochemical 
and pharmaceutical (Naowarojna et al. 2021; Zheng and 
Kwon 2012). Owing to the growing market demand for bio-
catalysts with ideal properties such as high activity, stability 
and selectivity, enzyme engineering techniques are going 
on to be applied to modulate their properties for industrial 
applications (Zeymer and Hilvert 2018). Although numer-
ous achievements have been made through traditional tech-
niques such as directed evolution, they are limited to only 20 

proteinogenic amino acids building blocks for changing bio-
chemical properties and physiological functions of enzymes 
(Gargiulo and Soumillion 2021). To overcome such limita-
tions, the development of more innovative methodologies is 
essential to give rapid access to made-to-order biocatalysts 
with desired functions.

With unlocking of two rare proteinogenic amino acids 
(selenocysteine, and pyrrolysine) in some organisms, the 
concept that proteins composed of only 20 natural amino 
acids (NAAs) was rethought (Nikic-Spiegel 2020). Replac-
ing the NAAs with unnatural amino acids (UAAs) contain-
ing various chemical groups (such as bipyridine, alkynyl, 
azide) has emerged as a powerful mean to evolve enzymes 
with ideal physicochemical properties and biological func-
tions (Drienovská et al. 2020; Gao et al. 2019; Jin et al. 
2019; Mayer 2019). Generally, incorporation of UAAs can 
be achieved by two different manners including residue-
specific incorporation and site-specific incorporation (Won 
et al. 2019), which are based on “misacylation” of tRNA 
with UAAs (Agostini et al. 2017).

The residue-specific manner exploits endogenous transla-
tion machinery of auxotrophic host cells to mischarge UAAs 
into proteins in the absence of the cognate amino acid (Link 
et al. 2006). Notably, the most important prerequisite for 
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residue-specific incorporation is that UAAs must be recog-
nized by endogenous aminoacyl tRNA synthetase (aaRS), 
enabling its use by the native translational machinery; mean-
while, intracellular cognate amino acids of auxotrophic host 
cells is removed extremely to avoid the competition with 
the UAAs (isostructural analogs) (Agostini et al. 2017). 
The residue-specific manner is straightforward via selec-
tive pressure incorporation and allows the global replace-
ment of one cognate amino acid with one UAA. The most 
prominent characteristic of this manner is the multi-site 
incorporation of UAA into the enzyme, resulting in the 
synergistic effects (favorable or detrimental). To date, many 
successful cases have been reported through residue-specific 
manner to evolve enzymes. For example, the fluorinated 
ω-transaminase (FY-ω-TA) displayed improved thermosta-
bility and organic solvent tolerance by the global replace-
ment of tyrosine with 3-fluorotyrosine (Deepankumar et al. 
2014). Although the residue-specific incorporation of UAAs 
seems as an amazing strategy for manipulating biological 
functions and properties, its utility for engineering enzymes 
is still limited since it often cause large perturbations in the 
folded structure (Won et al. 2019). In addition, residue-spe-
cific incorporation is restricted to the chemical structure of 
UAAs that must be highly similar to NAAs and required 
available auxotrophic host cells that can use these UAAs in 
the absence of cognate NAAs (Agostini et al. 2017).

A powerful alternative is the site-specific manner, which 
allows diverse chemistries to be precisely introduced into a 
protein of interest (Wang and Schultz 2002). This method 
relies on introducing an orthogonal translation system (OTS) 
into the host cells for the incorporation of UAAs (Ravikumar 

et al. 2015). The OTS requires an orthogonal aaRS/tRNA 
pair which is specific for UAAs in response to the reas-
signed codon. Compared with residue-specific manner, the 
site-specific manner enables the incorporation of a UAA 
into the target protein with high fidelity. For instance, the 
incorporation of O-methyl-L-tyrosine into dihydrofolate 
reductase exhibited the fidelity of translation up to over 99% 
(Wang et al. 2001). The site-specific incorporation of UAAs 
was an innovative way for engineering of enzymes. In this 
review, we offered a brief introduction of site-specific incor-
poration of UAA and highlighted its application in enzyme 
engineering.

Site‑specific incorporation of UAAs

In the native translation machinery, a transfer RNA (tRNA) 
is aminoacylated specifically with its cognate amino acid by 
the corresponding aaRS and then delivered to the ribosome 
for peptide chain extension (Liu and Schultz 2010). The 
site-specific incorporation of UAAs relies on an engineered 
translation system which is orthogonal to the native one 
to warrant a reassigned codon to specify the target UAAs 
(Fig. 1) (Wals and Ovaa 2014). In the orthogonal system, 
the exploitation of the desirable orthogonal aaRS/tRNA 
pair with reassigned codon has been a challenge. An ideal 
orthogonal aaRS/tRNA pair is that imported aaRS can effec-
tively charge cognate tRNA with a given UAA in response 
to a unique codon while not cross-react with native pairs 
(Nikic-Spiegel 2020). To avoid the competition with endog-
enous tRNA, the reassignment of the stop codons including 

Fig. 1  Schematic representation 
of UAA incorporation using an 
orthogonal translation system 
by amber codon suppres-
sion. aaRS, aminoacyl tRNA 
synthetase; o-aaRS, orthogonal 
aminoacyl tRNA synthetase; 
o-tRNA, orthogonal tRNA; 
Amino acids, natural (circle) 
and unnatural (star)
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amber (TAG), ochre (TAA) and opal (TGA) is regarded as 
a good strategy which provide the stop signal to terminate 
the translation process (Kisselev et al. 2003) but not used 
for encoding any of the NAAs in the endogenous translation 
systems (Dumas et al. 2015). Typically, the amber codon has 
attracted a great deal of attention for UAAs incorporation 
due to low abundance in both prokaryotes and eukaryotes. 
In addition, the use of opal and ochre stop codons, as well 
as quadruplet codons has also been reported, especially in 
the application for incorporation of multiple distinct UAAs 
into one protein (Neumann et al. 2010; Wan et al. 2010; Yu 
et al. 2015).

The orthogonal aaRS/tRNA pair is a prerequisite to 
achieve high efficiency and specificity for UAAs incorpora-
tion. To date, numerous orthogonal aaRS/tRNA pairs such 
as the TyrosylRS/tRNA pair from Methanocaldococcus jan-
naschi (MjTyrRS/tRNACUA  pair), the TyrosylRS/tRNA pair 
from E. coli (EcTyrRS/tRNACUA  pair), the LeucylRS/tRNA 
pairs from E. coli (EcLeuRS/tRNACUA  pair) and the pyrroly-
sylRS/tRNA pair from Methanosarcina mazei (MmPylRS/
tRNACUA  pair) and Methoansoarcina barkeri (MbPylRS/
tRNACUA  pair) have been commonly applied (Chin 2017; 
Krauskopf and Lang 2020). In general, the orthogonal aaRS/
tRNA pairs are only applicable to the corresponding hosts. 
The MjTyrRS/tRNACUA  pair is suitable for E. coli system 
whereas the EcTyrRS/tRNACUA  pair and EcLeuRS/tRNACUA  
pair are fit for eukaryotes. Comparatively, the PylRS/
tRNACUA  pair manifests more flexibility due to its orthogo-
nality in both prokaryotes and eukaryotes (Hancock et al. 
2010; Wan et al. 2014). In addition, the orthogonal pairs can 
be engineered for UAAs incorporation by successive rounds 
of positive selection (based on the chloramphenicol-resist-
ance gene) and negative selection (based on lethal barnase 
gene) (Young and Schultz 2010). With these wild-type or 
evolved orthogonal aaRS/tRNA pairs, more than 200 UAAs 
could successfully be introduced into proteins, which now 
is becoming a valuable tool kit in the application of protein 
engineering and enzyme engineering (Vargas-Rodriguez 
et al. 2018).

Enzyme engineering via site‑specific 
incorporation method

In addition to traditional enzyme engineering techniques, 
genetically encoded UAAs incorporation has emerged as a 
powerful technology to open new avenues for improving 
enzyme catalytic properties, exploring enzyme mecha-
nisms and even creating enzymes with new catalytic activ-
ity, explicitly delivering their values for a variety of desired 
applications in biocatalysis (Gargiulo and Soumillion 2021; 
Mayer et al. 2019). In the following text, an overview of 
many successful attempts of UAAs mutagenesis-based 

engineering enzymes is presented and these examples are 
grouped based on the effect on enzyme properties such as 
enhanced activity, enhanced stability and altered selectivity, 
which are also displayed in Table 1. The chemical structures 
of UAAs used in these examples are mentioned by number 
(bold font); structures 1–24 is depicted in Fig. 2. In addition, 
we described a schematic representation of the distribution 
of introduced UAAs into different positions of enzymes 
(I–VI) which are also displayed in Fig. 3.

Engineering of enzyme with improved activity

The catalytic capacity of enzymes has attracted great inter-
est for chemists and biologists during the past decades. The 
main source of catalytic power of an enzyme is its active 
site, the pocket (often buried) in which the catalytic reaction 
occurs, involving in a small subset of residues that partici-
pate in substrates (and/or cofactor) binding and the catalytic 
reaction (Holliday et al. 2009). The conformation of active 
site is susceptible to changes in the global protein structure, 
and sometimes even imperceptible changes caused by resi-
dues remotion from the active site. Introducing genetically 
encoded UAAs will endow the enzymes with unprecedented 
catalytic behavior by altering the active site environment 
such as steric and electronic interactions either directly or 
indirectly, which may not be achieved by substitution of any 
of NAAs.

The site-specific incorporation of UAAs into substrate 
binding regions of enzymes may be beneficial for enzyme 
activity. For example, replacing phenylalanine (Phe) 124, 
a critical residue for substrate binding, with a diverse set 
of UAAs in the prodrug activator nitroreductase (NTR) 
prominently increased its catalytic properties. Among 
those variants, the NTR containing p-nitrophenylalanine, 
1, (pNF-NTR) exhibiting more than 30-fold and 2.3-fold 
improvement in the catalytic efficiency (kcat/KM), over 
that of the native NTR and the best natural mutants at the 
same site, respectively. The improved activity of pNF-NTR 
might be attribute to the effect of pi-stacking interaction 
between polarized aromatic ring of pNF and aromatic sub-
strate (Jackson et al. 2006). In addition, Tyr309, a residue 
lies in substrate binding region of Agrobacterium radio-
bacter phosphotriesterase (arPTE), was replaced by the 
L-(7-hydroxycoumarin-4-yl) ethylglycine (Hco), 2, gener-
ating an over 8-fold improvement in turnover rate towards 
the paraoxon hydrolysis compared to the native one. The 
electrostatic repulsion between negative charge associated 
with Hco and the product (4-nitrophenolate) results in an 
accelerated release of product, revealing the importance of a 
trade-off between efficient binding and turnover (Ugwumba 
et al. 2011).

Moreover, the adjustment of metal coordination environ-
ments in tunable protein scaffolds through incorporating 
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UAAs can contribute to improving the catalytic properties of 
the enzyme. Histidine is an important residue in the cataly-
sis mechanisms of many enzymes such as serine peptidases 
(Polgar 2005), arylamine N-acetyltransferase (Sim et al. 
2008) and heme enzymes (Roach et al. 2000). It partici-
pates in forming the important interactions with neighboring 
functional residues and substrates, and also act as a metal ion 
chelating ligand (Green et al. 2016; Hongsthong et al. 2004). 
The site-specific incorporation of UAAs into heme peroxi-
dases, which catalyze various oxidative transformations 
with a histidine as the axial ligand, can improve the cata-
lytic properties of the enzyme. For example, the introduc-
tion of Nδ-methyl histidine (NMH), 3, into the engineered 
ascorbate peroxidase (APX2) at position 163 and sperm 
whale myoglobin (Mb) at position 93 lead to the substan-
tial increase in total turnover number (5-fold) (Green et al. 
2016) and catalytic efficiency (kcat/KM) (3.7-fold) (Pott et al. 
2018), respectively, toward oxidation of guaiacol compared 
to the parent enzymes. Notably, manipulating coordination 

ligand environments in metalloenzymes through genetically 
encoded UAAs could be realized to evolve biocatalysts with 
augmented catalytic properties.

In addition, tyrosine (Tyr) is found to be highly conserved 
in numerous enzymes and is a crucial residue at active center 
of enzyme due to its ability to donate electron and proton in 
catalytic mechanism (Jackson et al. 2007; Kong et al. 1992). 
It’s reported that fine-tuning Tyr residues redox potential 
by genetically incorporating Tyr analogs may enhance the 
oxidase activity. For example, the introduction of 3-chloro-
tyrosine (ClTyr), 4, in the active site of a myoglobin-based 
functional oxidase models (Phe33Tyr-CuBMb) at positon 33 
caused a significant increase of the turnover number (>2.0 
fold) (Yu et al. 2015). Similarly, the substitution of 3-meth-
oxytyrosine (OMeY), 5, also led to an improvement of 
turnovers (>2.0 fold) (Yang et al. 2015). The results may be 
attribute to a change in proton-donating or electron-donating 
ability of the phenol ring by the substitution of ClTyr or 
OMeY.

Fig. 2  The structures of UAAs 
discussed in this Minireview. 
p-nitrophenylalanine (pNF),1; 
L-(7-hydroxycoumarin-4-yl) 
ethylglycine (Hco), 2; Nδ-
methyl histidine (NMH), 3; 
3-chloro-L-tyrosine (ClTyr), 4; 
3-methoxytyrosine (OMeY), 
5; p-acrylamido-phenylalanine 
(AcrF), 6; 3-bromo-L-tyrosine, 
7; 4-benzoyl-L-phenylalanine 
(pBzF), 8; O-(3bromoethyl)-
L-tyrosine (BprY), 9; 
O-(4-mercaptobutyl)-L-tyrosine 
(SbuY), 10; p-amino-phenyla-
lanine (pAmF), 11; p-acetyl-
phenylalanine (pAcF), 12; 
3-(2-napthyl) alanine (NapA), 
13; O-benzyl-tyrosine (OBnY), 
14; O-tert-butyl-L-tyrosine 
(BuOF), 15; 4-cyanophenyla-
lanine (CNF), 16; 4-methoxy-
L-phenylalanine (OMeF), 17; 
4-phenyl-L-phenyalanine, 18; 
o-chlorophenylalanine, 19; 
o-bromophenylalanine (oBrF), 
20; p-bromophenylalanine 
(pBrF), 21; (2,2’-bipyridin-5yl)
alanine (BpyA), 22; p-azido-L-
phenylalanine, 23; L-3,4-dihy-
droxyphenylalanine (DOPA), 24
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Except for the introduction of UAAs at predetermined 
positions, the genetic code expansion is considered as a 
potential tool for use in directed enzyme evolution. In term 
of catalytic activity, a single substituted mutation library 
of TEM-1 β-lactamase variants with 10 structurally distinct 
UAAs randomly throughout the protein was reported (Xiao 
et al. 2015). The β-lactamase variant with p-acrylamido-phe-
nylalanine (AcrF), 6, at position of 216 (near the active site) 
was obtained through a growth-based screening, leading to 
a substantial improvement in catalytic efficiency (∼8.0-fold). 
In comparison, it was not available with any of NAAs at this 
position to achieve similar improvement.

Engineering of enzyme with enhanced stability

The stability of protein relies on plenty of van der Waals, 
electrostatic interactions, hydrogen bonding and a handful 
of disulfide bonds (Gromiha 2010). The ability to maintain 
enzyme stability under harsh conditions is one of major chal-
lenges in the enzyme engineering. Despite a lot of efforts 
on enhancing enzyme stability through the traditional 
approaches such as directed evolution have been achieved, 
the application of genetically encoded UAAs by introducing 

unusual noncovalent or covalent interactions has provided a 
new avenue to evolve enzyme with improved stability.

The incorporation of halogenated amino acids has proved 
to be a very useful strategy for modifying the properties 
of proteins, especially in terms of stability (Ohtake et al. 
2015). The UAAs with the bulky halogens such as chlo-
rine and bromine can be site-specific incorporated into 
proteins, and several successful cases have been reported. 
For instance, Ohtake et al. (2015) have reported that incor-
poration of ClTyr, 4, and 3-bromo-L-tyrosine, 7, into glu-
tathione S-transferase at seven selected positions exhibited 
significantly enhanced structural stability with an increase of 
5.2 and 5.6 kcal/mol, respectively. A tightly packed protein 
interior was observed from crystal structure of the variants, 
most likely deriving from the additional halogen bond inter-
actions between inter-residue and the bulky halogen atoms. 
Similarly, engineering the T4 lysozyme by site-specific 
introducing ClTyr, 4, offered an increased thermal stability 
(∼1 °C for melting temperature and 3 kcal/mol for the melt-
ing enthalpy) (Carlsson et al. 2018). Hence, the site-specific 
incorporation of halogenated UAAs seem to be an effective 
strategy for enhancing enzyme stability as larger halogens 
may fill the void to exert stabilizing effects and form a dis-
tinctive halogen bond interaction with adjacent residues.

Fig. 3  Schematic representation of the distribution of genetically encoded UAAs in different positions of enzymes
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The disulfide bond that generated between two cysteine 
(Cys) residues is vital for the function and stability of 
numerous enzymes (Rietsch and Beckwith 1998). However, 
the reversibility and inherent redox sensitivity, as well as the 
constraints of distance and dihedral angle restrict its appli-
cations in enzyme engineering (Berkmen 2012). As such, 
selective introduction of unusual covalent bonds provides 
new avenues to address such issues. Owning the unique 
reactivity of cysteine thiol, the design of a new covalent 
bond between a genetically encoded UAA and an adjacent 
Cys residues can be readily achieved. More recently, various 
achievements have been witnessed by using this strategy. 
For instance, an evolved homoserine O-succinyltransferase 
(metA) equipped with (p-benzoylphenyl) alanine (pBzF), 8, 
at position 21, resulting in a 21 °C improvement of melting 
temperature. Phe 21 lies in an extremely flexible N-terminal 
domain and its substitute with pBzF may lead to a stabili-
zation of the native dimeric configuration of metA due to 
the cross-link between the aryl keto group of pBzF 21 and 
thiol group of Cys 90 (Li et al. 2018). The schematic dia-
gram of the engineered cysteine cross-links was shown in 
Fig. 4a. In addition, the site-specific introduction of haloal-
kane UAAs into ZSPA affibody (Afb) also exhibited signifi-
cantly improved thermal stability, because of the formation 
of intramolecular covalent linkage between alkyl halides 
and an adjacent Cys (Fig. 4b). Among those variants, the 
replacement of Phe 30 with O-(3bromoethyl)-L-tyrosine 
(BprY), 9, offered an obvious increased melting temperature, 
from 46 oC up to 60 oC (Xiang et al. 2014). Similarly, the 
β-lactamase mutants equipping with UAAs with long side-
chain thiols manifested markedly improved thermostability 
due to the formation of an unusual disulfide bond between 
Cys and UAAs (Fig. 4c). In particular, the variant R65C/
A184SbuY containing O-(4-mercaptobutyl)-L-tyrosine 
(SbuY), 10, showed a 9 °C enhancement in thermal stability, 
which was higher than most of the engineered Cys disulfide 

bonds with a common Tm increase around 5 °C (Liu et al. 
2016). These results suggested that introducing an unusual 
covalent bond between a genetically encoded UAA and a 
NAA exhibit a tremendous potential for the enhancement 
of enzyme stability.

Engineering of enzyme with altered regioand 
stereo‑selectivity

Apart from enhancement of activity and stability, altering 
regioand stereo-selectivity is also important for the appli-
cation of enzymes. To date, controlling regioand stereo-
selectivity of enzymes remains a great challenge in the field 
of biocatalysts. In terms of technologies, the site-specific 
incorporation of UAAs is considered as an effective comple-
ment in enzyme engineering for altering such properties. For 
example, incorporating four Tyr analogs including p-amino-
phenylalanine (pAmF), 11, p-acetyl-phenylalanine (pAcF), 
12, 3-(2-napthyl) alanine (NapA), 13, and O-benzyl-tyrosine 
(OBnY), 14, into a cytochromes P450 enzymes (P450s) at 
11 active-site positions resulted in large shifts in regioselec-
tivity of these engineered variants (Kolev et al. 2014). The 
native enzyme converts (S)-ibuprofen methylester to ben-
zylic alcohol (62%) and allylic alcohol (38%) derivatives. 
Comparatively, the variant (Ala78pAcF) containing pAcF 
at position 78 obtained 88% of benzylic alcohol and 12% 
of allylic alcohol derivatives, while another variant (Ala-
328NapA) incorporated with NapA at position 328 produced 
5% of alcohol and 95% of allylic alcohol derivatives. As 
such, introducing UAAs specifically into the active sites 
of enzymes seem to be a useful strategy in altering regio-
selectivity of the enzyme.

Also, the method allows to fine-tune enantioselectivity 
of enzymes to an ideal level. Diketoreductase (DKR), a 
homodimeric protein, is a useful biocatalyst that can reduce 
various ketones to chiral alcohols. Trp222 of DKR lie in 

Fig. 4  The schematic diagram of the engineered cysteine cross-links. a Genetically encoded UAAs containing aryl keto group. b Genetically 
encoded haloalkane UAAs. c Genetically encoded UAAs containing long-side-chain thiols
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the C-terminal hydrophobic dimeric interface and is cru-
cial to structural integrity and dimerization of the enzyme 
(Huang et al. 2012). Replacing Trp222 with Tyr analogs, 
O-tert-butyl-L-tyrosine (BuOF), 15, 4-cyanophenylalanine 
(CNF), 16, 4-methoxy-L-phenylalanine, 17, 4-phenyl-L-
phenyalanine, 18, alter the enantiopreference of DKR toward 
2-chloro-L-phenylethanone (Ma et al. 2014a). The parent 
enzyme presented a Re-preference that converts 2-chloro-
L-phenylethanone into R-alcohols with a 9.1% enantio-
meric excess (e.e.) value. The replacement with BuOF, 15, 
causes a notable change in the conformation, leading to an 
enhanced enantioselectivity of DKR with a 33.7% e.e. value. 
Interestingly, the substitution of Trp222 with CNF, 16, 
yields an enantiopreference inversion of DKR from Re- to 
Si-preference.

Except for enantioselectivity of enzymes, the diastereose-
lectivity is also an important property when multiple chiral 
centers exist in the substrates. Genetically encoded UAAs 
apply equally to manipulation of enzyme diastereoselectiv-
ity. Yu et al. (2021) proposed that the diastereoselectivity of 
Pseudomonas alcaligenes lipase (PaL) may be determined 
by certain key factors such as the flexibility of the active 
center and steric hindrance after analyzing the interactions 
between PaL active sites and the substrate L-menthol pro-
pionate with three chiral centers. Thereafter, four UAAs 
with diverse size and polarity including pAmF, 11, CNF, 
16, o-chlorophenylalanine, 19, and o-bromophenylalanine 
(oBrF), 20, were introduced in 9 selected sites at the active 
center of PaL, generating a series of variants that obviously 
enhanced diastereopreference. Among those variants, the 
substitution of Ala253 with all four UAAs exhibited higher 
conversion rate and concurrently the diastereomeric excess 
(90%–95%) was higher than parent enzyme over 40%.

Engineering of enzyme with altered substrate 
specificity

Manipulating the substrate specificity of enzymes has always 
been the research topic for enzyme engineering (Zheng et al. 
2015). In general, the synergism of substrate access and 
enzyme-substrate recognition interactions within the active 
center can affect the substrate specificity of the enzymes 
(Stevenson et al. 2000). Nowadays, various techniques utiliz-
ing NAAs or UAAs, particularly genetically encoded UAAs, 
have been applied to re-design the active site of enzymes to 
fit new substrates or poor substrates. The murine dihydro-
folate reductase (mDHFR) readily catalyzes dihydrofolate 
(DHF) into tetrahydrofolate, whereas folate (FOL) is regard 
as a relatively poor substrate for the enzyme. Zheng et al. 
introduced NapA, 13, into the active site of mDHFR at posi-
tion 31 to explored whether the enzyme substrate specific-
ity can be changed (Zheng et al. 2015). The variant exhib-
its a 2-fold improvement in binding affinity (KM) toward 

the substrate FOL. Meanwhile, it also showed a 7.6-fold 
increase in catalytic efficiency ratio ((kcat/KM for FOL)/ (kcat/
KM for DHF)) compared with the native mDHFR, demon-
strating a dramatically change in the substrate specificity of 
the variant toward FOL.

The inhibitory effects of substrates, products, and other 
compounds on enzyme activities are a rather common phe-
nomenon in the field of biocatalysis. In particular, the com-
petitive inhibitors usually compete with the substrates for the 
active sites of an enzyme due to highly structural similari-
ties between substrate and inhibitor (Alam et al. 2017). To 
selectively weaken the binding of inhibitors without com-
promising enzyme substrate binding is a huge challenging. 
Rationally introducing UAAs into the active sites of enzyme 
can be a promising strategy to control the binding affinity 
of inhibitors. For instance, Zheng and his co-workers set a 
model system including the enzyme mDHFR, its substrate 
DHF and inhibitor methotrexate to selectively control the 
inhibitory effect (Zheng and Kwon 2013). Replacing the key 
phe31 with NapA, 13, and p-bromophenylalanine (pBrF), 
21, resulted in a significantly reduced binding affinity toward 
the inhibitor with a negligible impact on the catalytic effi-
ciency toward the substrate DHF.

Expanding the reaction scope of enzyme

The posttranslational modification (PTM) such as glyco-
sylation, acetylation, phosphorylation and methylation of 
the amino acid side chains is a conventional approach to 
expand the catalytic repertoire and regulate the function 
of enzymes (Okeley and van der Donk 2000; Walsh et al. 
2005; Zhang et al. 2017; Zheng et al. 2018). However, it 
is difficult to introduce the specific modifications into the 
desired sites of the enzymes via PTM. Catalytic promiscu-
ity, an inherent property of natural enzymes, is a catalytic 
ability of enzyme for markedly different chemical transfor-
mations (Bornscheuer and Kazlauskas 2004). Making use 
of the catalytic promiscuity provides access to create reac-
tivities unrelated to the native function of an enzyme and 
even generate new biocatalysts with the ability to catalyze 
abiological transformation. The catalytic promiscuity of 
enzymes can sometimes be augmented with the re-design of 
the hydrophobic pore through enzyme engineering technol-
ogy. Since site-specific incorporation allow various UAAs 
with diverse functional groups into enzymes at any desired 
site, it is considered as a promising approach for mimicking 
nature PTM and affording novel functions that would not be 
readily achievable with NAAs.

Embedding genetically encoded UAAs as a catalytic 
residue into the enzyme may endow it with novel catalytic 
ability that are naturally unavailable (Drienovská and Roe-
lfes 2020). For instance, the incorporation of pAmF, 11, 
into the hydrophobic pore of Lactococcus lactis multidrug 
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transcriptional regulator (LmrR), enables the enzyme to 
catalyze the abiological hydrazone and oxime formation 
reaction. The catalytic proficiency is attribute to a promiscu-
ous binding pocket generating from the combination effects 
of the reactive pAmF residue (a potentially novel catalytic 
residue) and the hydrophobic interactions in proteinaceous 
scaffold (Drienovská et al. 2018). Repurposing solar energy 
into chemical energy has attracted a tremendous interest. 
However, it is hard to improve and expand the functions 
of photosensitizers through enzyme engineering. Liu et al. 
(2018) utilize the genetic codon expansion technology to 
incorporate a UAA pBzF, 8, into a superfolder yellow fluo-
rescent protein (sfYFP) at position 66. Tyr66 is an important 
chromophore residue in the native sfYFP that generate a 
highly fluorescent p-hydroxybenzylidene-5-imidizolinone 
species through the spontaneous transformation of its tripep-
tide, Gly65-Tyr66-Gly67. Then, the variant was followed by 
multisite mutations and combined with organic nickel-terpy-
ridine complex and the final variant PSP2T2 was obtained. 
This designed  CO2-reducing enzyme exhibited a  CO2/CO 
conversion quantum efficiency of 2.6%, which is over most 
reported  CO2 photoreduction catalysts.

Cyclopropane compounds can be chemically synthe-
sized through the metal-catalyzed cyclopropanation of ole-
fins with diazo compounds (Nakagawa et al. 2015). More 
recently, several engineered enzymes such as haem proteins 
have emerged as  promising alternatives for catalyzing the 
abiological reactions such as carbene-transfer reaction (Car-
minati and Fasan 2019). In terms of enzyme engineering 
technology, the genetically encoded UAAs has been proved 
to be effective to realize the non-natural reactions. For 
example, the substitution of a His residue of the myoglobin 
variant Mb (H64V, V68A) at position 93 with the NMH, 
3, augments the enzyme’s promiscuous carbene-transfer 
chemistry, endowing the ability of the enzyme to convert 
the electron-rich styrene to the cyclopropane product with-
out reductant and under aerobic conditions (Hayashi et al. 
2018). The use of NMH as the axial haem ligand enables to 
capture an unusual bridging Fe (III)–C(carbene)–N(pyrrole) 
configuration, which participates in the cyclopropanation of 
substrate. The electron-rich olefins can be readily converted 
to cyclopropane compounds by using these engineered bio-
catalysts. However, the cyclopropanation of electron-defi-
cient olefins remains an unmet goal in nature. To overcome 
such limitation, introducing unnatural components (cofac-
tors and UAAs) into the enzyme may enable it to be a best-
of-both-worlds catalyst (Agostini et al. 2017). A variant Mb 
(H64V, V68A) was designed by site-specific incorporating 
a UAA NMH and an unnatural iron-porphyrin cofactor to 
form a variant (Mb (H64V, V68A, H93NMH) [Fe (DADP)]). 
The variant exhibited high efficiency for the asymmetric 
cyclopropanation of electron-rich olefins, even for the elec-
tron-deficient alkenes (Carminati and Fasan 2019). These 

results suggest that introducing a metal coordinating resi-
due into the active sites of the enzyme by modulating metal 
coordination environments may be a practical strategy to 
extend the capabilities of enzymes for abiological chemical 
transformations.

Apart from a metal coordinating residue, incorporating 
a metal-binding residues may also be another strategy to 
achieve this goal (Drienovská and Roelfes 2020; Drienovská 
et al. 2015) designed an artificial metalloenzymes by intro-
ducing of a metal-binding amino acid (2, 2’-bipyridin-5yl) 
alanine (BpyA), 22, at various positions, which was able 
to bind a transition metal ion into the LmrR. The resulting 
artificial metalloenzymes offered a novel catalytic activity, 
enabling the asymmetric vinylogous Friedel–Crafts alkyla-
tion reactions of indoles derivatives with α, β-unsaturated 
2-acylimidazoles. The best variant (LmrR_LM_M89X_
F93W) showed an 83% e.e. value for the product. It con-
tained a BpyA at position 89, which lie in the hydrophobic 
pore of the enzyme.

Overall, incorporating UAAs into enzymes through the 
genetically encoded technology has a considerable effect on 
the field of enzyme engineering to acquire make-to-order 
biocatalysts with novel catalytic properties that have no 
equivalent in nature nowadays.

Application of site‑specific incorporation in enzyme 
immobilization

Amino acids featuring reactive functional groups offer a 
chemical handle to immobilize it to a solid support. Immo-
bilizing enzymes with various advantages such as improved 
longevity, enhanced stability, excellent reusability and easy 
separation from the reaction mixtures, have received great 
attention on industrial applications. In general, the enzyme 
immobilization methods are divided into four types includ-
ing adsorption, covalent bonding, entrapment and cross-
linking (Nguyen and Kim 2017). Among them, covalent 
immobilization is the preferred method to form covalent 
bonds leading to the stability of enzyme. Although the 
conventional covalent immobilization has been frequently 
applied, its randomization may cause unwanted covalent 
linkage between enzyme and matrix. To overcome this issue, 
site-specific immobilization by incorporating UAAs into the 
enzyme is easy to install the reactive handle at a predefined 
position (Wang et al. 2016). For example, p-azido-L-phe-
nylalanine (pAzF), 23, was firstly inserted at different sites 
of lipase to make it easy to be coupled with support using 
strain-promoted azide-alkyne cycloaddition. Among these 
rational immobilized lipases, several variants presented 
better thermo-stability and higher relative activity such as 
AzPhe-Lip243 (6.0-fold improvement) and AzPhe-Lip274 
(6.8-fold improvement) than those lipases with traditional 
immobilization using glutaraldehyde (Wang et al. 2016). 
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In addition, L-3,4‐dihydroxyphenylalanine (DOPA), 24, 
is regard as a selective chemical cross-linker and the site-
specifc incorporation of DOPA into enzymes enables the 
enzymes to specifically crosslink with polysaccharides or 
amino-group containing materials. The ω-transaminases (ω-
TA) equipped with DOPA were successfully anchored in 
chitosan or polystyrene beads, resulting in a great reusability 
(10 cycles) in the kinetic resolution of chiral amines (Deep-
ankumar et al. 2015). These reports manifested that UAA-
mediated bioconjugation can be an efficient and unique tool 
addressing unmet needs in enzyme engineering, especially 
rational immobilization.

Challenges and outlook

The incorporation of UAAs into proteins has proved to be a 
prospective strategy to improve and alter the properties of 
enzymes such as activity, stability, selectivity. Despite UAAs 
incorporation for enzyme engineering would increase versa-
tility and possibilities of enzyme catalysis, there are many 
issues waiting to be coped. How to rapidly and precisely pre-
dict the “hot spots” to evolve the enzyme with ideal proper-
ties remains a formidable challenge in enzyme engineering. 
Therefore, it is of great significance to sum up some prac-
tical strategies based on the existing successful examples. 
With these exciting examples, some superficial rules may 
be helpful for engineering enzymes. For instance, introduc-
ing a metal-binding UAA and a UAA possessing a unique 
reactive side chains as a catalytic residue were demonstrated 
to be good tactics to extend the reaction scope of enzyme. 
In addition, introducing halogenated UAAs or UAAs that 
can spontaneously cross-link with Cys may be beneficial to 
enhance stability. The positions outside the active sites may 
fit better for enzyme immobilization.

Nowadays, continued efforts have been invested in 
accelerating the evolution of enzyme through incorpora-
tion of UAAs (Gargiulo and Soumillion 2021; Mayer 2019; 
Ribeiro et al. 2019). Nevertheless, the applications of UAA 
mutagenesis-based enzyme engineering are still restricted. 
There are significant challenges currently being addressed 
including the expensive and commercial unavailable UAAs 
and poor protein yields as well as unattainable incorporation 
of multiple UAAs (Gao et al. 2019).

The high cost of UAAs and their commercial unavailabil-
ity can preclude researchers from considering the use of this 
method to engineer enzymes, let alone for further utilization 
of UAAs in industrial applications. It is reported that the 
total synthesis cost of green fluorescent protein containing 
p-Propargyloxyphenylalanine is up to USD 0.658 per 100 µg 
protein (Shrestha et al. 2014). One valuable way to over-
come such limitations is exploiting synthetic methodolo-
gies for chiral amino acids. Notably, enzymatic asymmetric 

synthesis of UAAs has attracted extensive attention (Xue 
et al. 2018). For example, tyrosine phenol lyase exhibits its 
potential for synthesis of tyrosine analogs, such as L-DOPA 
(Kim et al. 2018), halogenated tyrosine, methoxytyrosine 
(Nagasawa et al. 1981) and 2-amino-3-(8-hydroxyquinolin-
5-yl) propanoic acid (Liu et al. 2013). With ongoing efforts 
on asymmetric synthesis of UAAs via chemical and enzy-
matic methods, it will be a cheap and accessible commodity, 
which will greatly promote the application of the incorpo-
ration of UAAs into proteins. Another way to address such 
limitation is designing the host cells to enable biosynthesis 
of UAAs in vivo. Evolving metabolic pathways of host cells 
to produce UAAs from cheap sources and simultaneously 
fetching them into desired enzymes will facilitate the appli-
cations of engineered enzymes (Chen et al. 2018; Ma et al. 
2014b).

Although great value of genetically encoded UAAs has 
been exhibited in the field of biocatalysis, the limitation 
of poor protein expression levels was still not be tackled. 
In view of this problem, the coordinate optimization of 
aaRS, tRNA, codons, the ribosome and elongation factor 
may improve the UAAs incorporation efficiency (Jin et al. 
2019; Park et al. 2011; Young and Schultz 2010). Of par-
ticular importance to incorporate UAAs is the optimization 
of o-aaRS/tRNA pairs and codon utilization (Gao et al. 
2019). The common OTS have depended on the reassign-
ment of ‘non-sense’ codons, however the competitions are 
unavoidable between this commonly used system and ter-
mination machinery of the host cell, leading to truncated 
proteins and lower protein yields. In prokaryote, the incor-
poration efficiency of UAAs at the amber codon is robustly 
repressed by termination machinery, due to recognition of 
amber stop codon by release factor 1 (RF1) in protein trans-
lation (Yanagisawa et al. 2014). To relieve the dependence 
on RF1 for termination, Lajoie et al. (2013) engineered a E. 
coli MG1655 strain by converting all 321 amber codons to 
synonymous ochre codons and concurrently deleting prfA 
gene (encodes RF1). Finally, this genomically recoded strain 
exhibits a higher UAAs incorporation efficiency than the 
native one. Another valuable method to improve incorpora-
tion efficiency of UAAs is using cell-free protein synthesis 
system which is a protein synthesis methodology without 
living cells (Lu 2017). The system requires the purified or 
unpurified transcriptional and translational components from 
cells, and also contains other essential components, includ-
ing energy sources, cofactors, salts, buffers, nucleotides, and 
amino acids for protein production (Gao et al. 2019). To 
enable UAAs incorporation into proteins, UAA and its cor-
responding orthogonal aaRS/tRNA pair are also needed (Cui 
et al. 2020). The cell-free protein synthesis system has paved 
the way to efficiently incorporate of UAAs into proteins as 
it abolishes the transmembrane transport and cytotoxicity 
of UAAs.
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The incorporation of UAAs through genetic codon expan-
sion approach provides a useful toolbox for tailoring the 
protein properties and biochemical studies of protein func-
tion. However, introduction of multiple unique UAAs simul-
taneously into a single protein is still a formidable obstacle 
(Dumas et al. 2015). In general, the site-specific manner 
enables the incorporation of a UAA into one protein rely-
ing on the amber codon suppression. To date, tremendous 
efforts have been focused on introduction of multiple UAAs, 
and the uses of distinct stop codons and evolved quadruplet 
codons as well as mining new aaRS/tRNA pairs seem to be 
potential strategies to increase diversity of protein modifi-
cations. For example, Wan et al. (2010) developed a handy 
system for incorporation of two distinct UAAs (Nε-acetyl-
L-lysines and p-azido-L-phenylalanine) at two defined 
sites of one protein in E. coli by combining the mutated 
PylRS–tRNAPyl pair to suppress the ochre (UAA) codon and 
an evolved MjTyrRS–tRNACUA  pair.

In conclusion, the site-specific incorporation of UAAs is 
proved to open a promising new window in enzymes engi-
neering. With future development of such technology, it will 
act as a standardized toolkits to evolve enzyme with desired 
properties and has a big impact on industrial applications 
including biopharmaceuticals, drug discovery and clinical 
trials.
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