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Abstract
Agricultural production is one of most important activities for food supply and demand, that provides a source of raw materi-
als, and generates commercial opportunities for other industries around the world. It may be both positively and negatively 
affected by climatic and biological factors. Negative biological factors are those caused by viruses, bacteria, or parasites. 
Given the serious problems posed by phytoparasitic nematodes for farmers, causing crop losses globally every year, the 
agrochemical industry has developed compounds with the capacity to inhibit their development; however, they can cause 
the death of other beneficial organisms and their lixiviation can contaminate the water table. On the other hand, the positive 
biological factors are found in biotechnology, the scientific discipline that develops products, such as nematophagous fungi 
(of which Purpureocillium lilacinum and Pochonia chlamydosporia have the greatest potential), for the control of pests and/
or diseases. The present review focuses on the importance of nematophagous fungi, particularly sedentary endoparasitic 
nematodes, their research on the development of biological control agents, the mass production of fungi Purpureocillium 
lilacinum and Pochonia chlamydosporia, and their limited commercialization due to the lack of rigorous methods that enable 
the anticipation of complex interactions between plant and phytopathogenic agents.

Keywords Biological control · Phytoparasitic nematodes · Nematophagous fungi · Mass production

Introduction

Plant diseases are caused by infectious agents such as fungi, 
bacteria, nematodes, flagellated protozoa, viruses, viroids, 
or, even, abiotic factors such as edaphoclimatic altera-
tions and the toxicity generated by pesticides or nutrients 
(Guzmán et al. 2012). Over the course of millions of years, 
the association between plants and nematodes has given 
rise to the evolution of phytoparasitic nematodes, patho-
gens widely distributed around the world in vascular plants 
which are often attributed to low crop yields and losses. 
The Food and Agriculture Organization (FAO) of the United 
Nations considers a pest any agent causing damage to plants 
or vegetable products (Armendáriz et al. 2015; Bernard et al. 

2017). Phytoparasitic nematodes (PPNs) are a serious global 
problem for farmers, causing estimated annual crop losses 
of $118 to $157 billion dollars (Abad et al. 2008; Degen-
kolb and Vilcinskas 2016; Khan et al. 2020). Two types of 
PPNs, root-knot nematodes (RKNs) and cyst nematodes 
(CNs) are obligate parasites of a wide range of agricultural 
crops. Table 1 presents a summarize of the chemical control 
used for PPNs, based on previous information of Nicol et al. 
(2011) and according to Evans et al. (1993), Trudgill and 
Blok (2001), Luc et al. (2005), Nicol and Rivoal (2008),, 
Armendáriz et al. (2015), Rehman et al. (2016) and Ebone 
et al. (2019). Particularly in Mexico, PPNs are a problem 
for various crops of interest, as presented in Table S1. As 
a result, farmers have found chemical products (Table 1) 
as their preferred control method, since their rapid action 
and solubility in water ensure a uniform distribution on the 
upper soil layer (Degenkolb and Vilcinskas 2016). However, 
chemical control methods raise environmental and safety 
concerns. It has been shown that the application of all the 
chemical compounds with nematicidal activity potentially 
risks environmental contamination through mechanisms like 
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direct ingress into waterways, the infiltration of groundwater, 
surface runoff into rivers, streams, lakes, and reservoirs from 
neighboring agricultural regions; aerial application and dis-
charge of wastewater from industrial pesticide producers (del 
Puerto Rodríguez et al. 2014; Zisis 2018). Moreover, these 
compounds could become toxic to humans when come into 
contact through possible routes of exposure as: acute oral 
toxicity, dermal toxicity via absorption through the skin and 
oxidative stress, inhalation and chronic toxicity causing dis-
eases such as cancer, diabetes mellitus, neurological system 
disorders, effects on the immune system, endocrine system 
disturbances and reproductive (sexual/genital) syndromes 
(Li et al. 2014; Joshi and Sukuraman 2019; Lata et al. 2021). 
Some of the main nematicides used are basamid, metam 
sodium, oxamyl, telone, carbofuran, methyl bromide, and 
thiodicarb (Armendáriz et al. 2015; Ebone et al. 2019).

This has motivated research for the development of envi-
ronmentally friendly PPN control alternatives to chemcal 
products currently on the market. Although there are control 
agents of this type available, not all of them are known to 
farmers due to the lack of information on both their mecha-
nism of action and benefits. Alternative low impact methods 
for nematode control, such as genetic and induced resistance 
or the use of biological control agents, are highly desirable 

and actively sought (Molinari 2011; Stirling 2011). Within 
the Integrated Pest Management (IPM), biological control 
has become an environmentally safe alternative for reduc-
ing the use of chemical nematicides. In this context, diverse 
microbial biological control agents such as Purpureocillium 
lilacinum, Trichoderma spp., Pochonia chlamydosporia and 
Bacillus thuringiensis, among others, have been evaluated 
to reduce nematode infestations in susceptible crops (Nor-
dbring-Hertz et al. 2006). Purpureocillium lilacinum was 
known previously as Paecilomyces lilacinus (Prasad et al. 
2015) and Pochonia chlamydosporia var. chlamydosporia 
is also known as Verticillium chlamydosporium (Kerry et al. 
1984). The present study focuses on the potential of these 
nematophagous fungi P. lilacinum and P. chlamydosporia, 
emphasizing the main challenges for their mass production 
and formulation.

Phytoparasitic nematodes

Nematodes are pluricellular worm-shaped organisms that 
generally measure between 0.2 and 2.5 mm in length, 
depending on the species, and constitute the phylum Nema-
toda. It is thought that this phylum emerged during the Cam-
brian explosion (550 million years ago) in marine habitats 

Table 1  Chemical control method required for main nematode pest 
and crops described by Nicol et  al. (2011) and according to Evans 
et al. (1993), Trudgill and Blok (2001), Luc et al. (2005), Nicol and 

Rivoal (2008), Armendáriz et  al. (2015), Rehman et  al. (2016) and 
Ebone et al. (2019)

Chemical control Main nematode pests Crops

Phorate, Terbufos, Triazophos, Carbofuran, Carbosulfan, 
Thiodicarb, Abamectin

Meloidogyne spp., Pratylenchus spp., Paratrichodorus spp., 
Longidorus breviannulatus, Heterodera spp., Punctodera 
chalcoensis

Maize

Thiodicarb, Basamid Meloidogyne ssp., Anguina tritici, Pratylenchus 
spp.,Heterodera avenae 

Barley

Thiodicarb, Basamid Belonolaimus longicaudatus, Paratrichodorus spp., Pratylen-
chus spp., Criconemella spp.

Sorghum

Thiodicarb, Basamid Meloidogyne spp., Ditylenchus dipsaci, Pratylenchus spp., 
Heterodera avenae

Oat

Basamid Anguna tritici, Pratylenchus zeae. Heterodera avenae Rye
Carbofuran, Basamid Ditylenchus angustus, Aphelenchoides besseyi,., Meloidogyne 

spp., Hirschmanniella spp., Pratylenchus spp., Heterodera 
spp.

Rice

Cadusafos, Ethoproph Phorate, Fosthizate, Fluensulfone, 
Basamid

Meloidogyne spp., Nacobbus aberrans, Pratylenchus spp., 
Trichodorus spp., Globodera spp

Potato

Basamid Pratylenchus brachyurus, Rotylenchus reniformis, Helicotylen-
chus spp., Meloidogyne spp., Scutellonema bradys.

Cassava

Basamid Meloidogyne spp., Pratylenchus spp., Rotylenchus reniformis, 
Ditylenchus destructor.

Sweet potato

Phorate, Triazophos, Carbofuran, Carbosulfan, Thiodicarb, 
Basamid

Pratylenchus spp., Meloidogyne spp., Anguina tritici, Ditylen-
chus dipsaci. Heterodera spp.

Wheat

Triazophos, Carbosulfan, Thiodicarb, Abamectin, Fluensul-
fone, Basamid

Meloidogyne spp., Rotylenchuslus reniformis, Hoplolaimus 
Columbus, Pratylenchus spp., Heterodera glycines

Soybean

Metam sodium Heterodera schachitii Colza
Thiodicarb, Basamid Meloidogyne spp. Sunflower seed
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(Aguinaldo et al. 1997). Nematodes are found in land sys-
tems and marine and freshwater habitats (Bongers and Ferris 
1999). Despite their small size, their biological organization 
is highly complex, wherein circulatory, and respiratory sys-
tems are not defined instead of, their body cavity contains 
a liquid that enables circulation and respiration functions 
in these organisms. The digestive system comprises a hol-
low tube extending from the mouth, through the esophagus, 
intestine, rectum, and anus (Talavera 2003). The large part 
of these organisms is generally elongated and cylindrical. 
The adult females of some phytoparasite species change 
from their cylindrical shape to either a pear or a bag-like 
appearance. Reproduction can be sexual, hermaphrodite or 
parthenogenic, namely a form of reproduction based on the 
development of unfertilized female sex cells (Ben-Ami and 
Heller 2005). As a result, the control of the species is even 
more difficult because, once the nematode hatches during 
stage  J2, it is free-living and search for a host as a source 
of food. Phytoparasitic nematodes are generally classified 
according to their location in the vegetable tissue, known 
as the type of biotrophic relationship established with the 
host plant (Bello et al. 1994). Their persistence on tissue 
for long periods indicates the establishment of a very com-
plex host-pathogen relationship, being subject of intense 
research (Stephen et al. 1998; Sanz-Alférez et al. 2000). 
Table 2 presents the classification of phytoparasitic nema-
todes (Guzmán et al. 2012; Armendáriz et al. 2015). Seden-
tary endoparasitic nematodes that form root knots and cysts 
currently cause the most damage to agricultural crops and 
are the most difficult to control causing as well significant 
crop losses (Trudgill and Blok 2001). The life cycle of these 
organisms is described in detail below.

Life cycle of sedentary endoparasitic nematodes

The lifecycle of endoparasitic nematodes comprises five 
stages (Mandal et al. 2021) (Fig. 1). The first is the juvenile 
stage  J1, established with the molting or cuticle change that 
occurs inside the egg, wherein the female RKNs lay their 
eggs directly on the roots, while the CNs eggs remain inside 
the body of gravid females, forming a protective cyst (Perry 
1989). The presence of root exudates of a host plant stimu-
lates egg eclosion and emerges during the second juvenile 
stage  J2, that is the free-living stage in the soil where nema-
tode infects its host, and once  J2-stage individuals have pen-
etrated the root, they remain fixed to hosts and subterranean 
stems (Talavera 2003). The infection process occurs when 
the nematode reaches the host plant and perforates its cell 
walls, enzymatically softening them with its oral stylet. Cyst 
nematodes migrate intracellularly, via the cortex, directed 
to the vascular cylinder, where they induce specialized 
feeding structures (Fig. 1a), while  J2-stage RKNs migrate 
intercellularly and feed on the giant cells that are formed 

via repeated cycles of mitosis without cytokinesis (Fig. 1b) 
(Jones et al. 2011; Davies et al. 2015; Rehman et al. 2016). 
Growth toward the interior of the cell wall occurs together 
with elements of xylem, which facilitates the absorption of 
nutrients in the developing syncytium (Fosu-Nyarko et al. 
2016). Nematodes grow rapidly in size and undergo molting 
while being transformed into juvenile stages  J3 and  J4, while 
the last stage of the life cycle occurs when the nematodes 
enter the adult phase, becoming sexually dimorphic, with the 
females swelling and remaining sessile throughout the para-
sitic life cycle. On the contrary, adult males recover motility 
and are attracted by the females in order to inseminate and 
fertilize the eggs (Perry 1989). Life cycle, from egg to adult 
stage, may comprise three or four weeks under optimal envi-
ronmental conditions, especially temperature, but may take 
longer in cold temperatures (Agrios 2005).

Hence, to establish an effective biological control of 
PPNs, in particular cyst-forming and root-knot nematodes, 
it should be undertaken prior to the infection of the plant, 
when nematodes are in  J2 stage, where they are free-living 
in the soil and searching for a host to feed. Meloidogyne 
spp. an RKN, is highly pathogenic and induces hypertrophy 
and hyperplasia in the root cells, forming root knots and 
damaging the plant, thus reducing its yield and predispos-
ing it to infection via other pathogens such as bacteria and 
fungi (del Cid Prado et al. 2018). The CN of maize, Punc-
todera chalcoensis, is the second most important in Mexico 
after the golden nematode, given the impact of the damage 
it causes to maize crops, reducing maize quality and yield 
by up to 90% (Sosa-Moss 1987). The seriousness of this 
damage depends on the susceptibility of the crop, density 
of the nematode population, and the adequate levels of soil 
humidity (Nicol et al. 2011). The foliar symptoms consist of 
delayed growth, chlorosis, occasional leaf necrosis, and flac-
cidity in young plants, resulting in reduced yield and even, 
death (Van Gundy et al. 1974). Juvenile nematodes of the 
first  J1 stage remain inactive in the soil for at least one year, 
until the eggs hatch in search for a host (Perry 1989). Micro-
bial agents have been reported in the literature as methods 
for the biological control of nematodes. Below, we focus 
on the nematicidal potential of the nematophagous fungi 
Purpureocillium lilacinum and Pochonia chamydosporia.

Agents for the biological control of phytoparasitic 
nematodes

Biological control can be an environmentally friendly pest 
preventer option compared to that of synthetic chemical 
nematicides, since it harnesses the power of natural control 
provided by live organisms and/or their metabolites or sub-
products. Biological control involves the use of non-native 
species derived from animals, plants, bacteria, viruses, and 
fungi to prevent, eliminate, or, even, reduce the damage 
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to plants or their products (Lopez-y-Lopez et  al. 2000; 
Armendáriz et al. 2015; Khan et al. 2020). Predatory organ-
isms, such as parasitic fungi, nematodes, microarthropods, 
and pathogens, such as viruses and bacteria, are natural 
enemies of PPNs and reduce the size of their populations. 
While the control exerted by these organisms has been found 
to be effective under laboratory conditions, effective results 

have not been completely obtained via their application in 
the field, due to environmental circumstances (Galindo et al. 
2013). Nematophagous bacteria and fungi are among the 
main microbial groups with potential as biological agents 
for the control of RKNs and CNs (Khan et al. 2020), given 
the need for environmentally beneficial and low-cost alterna-
tives to chemical measures for the control of PPNs, without 

Fig. 1  Life cycle of a a cyst-
forming nematode and b a 
root-knot nematode at different 
stages of development
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affecting vertebrates, crops, and other non-target organisms. 
Therefore, highly specific antagonists, preferably soil-borne, 
are the most appropriate for the above-described objective. 
Diverse entomopathogenic, nematophagous, and fungicides 
have been reported for the control of soil-transmitted insect 
pests and plant pathogens; from which nematophagous 
fungi may fulfil an analogous function for the biocontrol of 
PPNs (Degenkolb and Vilcinskas 2016). Table 3 shows the 
main characteristics of nematophagous fungi, which can be 
grouped as scavengers (predators), endoparasites, parasites 
of eggs and females or toxin producers, according to their 
mode of infecting nematodes.

Although nematophagous fungi show a variable specific-
ity regarding to the nematode species they infect, in general, 
they infect vermiform and/or nematode eggs. Purpureocil-
lium lilacinum presents superior attributes for infecting 
nematode eggs, using its conidia to penetrate inside (Sagüés 
et al. 2011), while P. chlamydosporia var. chlamydosporia 
infects nematode eggs and  J2-stage juveniles by means of its 
ability to produce secondary metabolites such as aurovertins 
and pochonins, among others (Shinonaga et al. 2009; Zhou 
et al. 2010). The mechanism of interaction between fungi 
and nematode begins during the immobile stage  J1, when the 
nematode is yet to leave the egg. P. chlamydosporia hyphae 
grow towards the eggs, forming appressoria with its hyphae 
tips that penetrate the eggshell, then digesting the content 
of both immature and mature (containing juveniles) eggs 
(Nordbring-Hertz et al. 2006). Larriba et al. (2014) indicate 

that this parasitic mechanism comprises three stages: (1) 
adhesion, wherein the hyphae recognizes the surface and 
components of the chorion and secretes glycoproteins for 
egg adhesion; (2) an appressorium in the hyphae tip, via the 
secretion of proteases (P32, VCP1, and SCP1) which expose 
the chitin layer of the egg (in turn degraded by chitinases) 
that enables the penetration phase and finally, (3) the fungus 
colonization inside the egg affecting the first developmental 
stage of embryos as well as  J1 to  J2 juveniles actively devel-
oping. Subsequently, the fungus absorbs nutrients such as 
trehalose, a carbohydrate essential for the development and 
survival of the PPN and also for physiological processes, 
such as the hatching of the egg, development and growth 
during the different nematode developmental stages, sugar 
transport, energy accumulation and protection of somatic 
cells (Behm 1997; Sellito et al. 2016; Avelar et al. 2017; 
Silva-Valenzuela et al. 2020).

Figure 2 depicts some structural chemical forms related to 
a variety of metabolites produced by nematophagous fungi, 
for example, there are 139 compounds reported for P. chla-
mydosporia (Niu 2017; Silva-Valenzuela et al. 2020), from 
which aurovertins D, E, F, I and the phomalactones present 
nematicide activity against PPNs (Hellwing et al. 2003; Shi-
nonaga et al. 2009; Niu et al. 2010; Zhou et al. 2010; Kumar 
et al. 2013; Wang et al. 2015; Bogner et al. 2017; Niu 2017). 
Similarly, Fig. 3 shows the main compounds of P. lilaci-
num with nematicide activity, among which 2-ethyl butyric 
acid, phenyl ethyl alcohol, benzoic acid, benzene acetic acid, 

Table 3  Classification of nematophagous fungi

Fungi Characteristics Examples References

Scavengers
(predators)

Capture vermiform nematodes via spe-
cialized organs formed in the hypha

Use constricting rings, adhesive net-
works, and traps to capture said prey

Arthrobotrys, Dactylaria, Dactylella 
Drechslerella 
Monacrosporium. 
Gamsylella 

Sagüés et al. (2011), Li et al. (2015), 
Zhang et al. (2020)

Endoparasites Use conidia to infect nematodes, growing 
within their interior. Spores may be 
either mobile or immobile and adhesive

They have a more restricted range of 
hosts than the nemotode scavengers and 
spend their vegetative life within the 
infected nematodes

Ophiocordycipitaceae 
Catenaria anguillulae (mobile spores)
(mobile spores)
Drechmeria coniospora 
Hirsutella rhossiliensis, Haptoglossa 
(mobile or adhesive spores)
(mobile or adhesive spores)

Moosavi and Zare (2012)

Parasites of eggs 
and females

Use appressorium to carry out the infec-
tion

Present a variable specificity with regard 
to the nematode species they infect

Pochonia chlamydosporia 
Purpureocillium lilacinum 

Sagüés et al. (2011)

Toxin producers Immobilize the nematodes prior to 
penetration, using substances such as 
alkaloids, peptides, terpenoids, sterols, 
aliphatic compounds, and quinones. 
These are produced in specialized 
hypha strands located in the tips of the 
hyphae that grow chemotropically in 
the mouth of their prey and digest the 
content

Pochonia chlamydosporia 
Purpureocillium lilacinum 

Hellwig et al. (2003), Shinonaga et al. 
(2009), Zhou et al. (2010), Li and 
Zhang (2014)
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3,5-Di-t-butylphenol (Sharma et al. 2020) and ethyl acetate 
(Sharma et al. 2014) present an effective nematicide action 
against M. incognita, inhibiting the eclosion of the egg mass 
and the growth of juveniles during stage  J2.

Challenges for the production of the nematophagous fungi 
Pochonia chlamydosporia and Purpureocillium lilacinum

According to the information described before about how 
nematophagous fungi exert their effect on PPNs, it is impor-
tant to preserve their attributes of action, either in terms 
of their spores, chlamydospores or produced metabolites. 
However, one of the main challenges is to reduce the fer-
mentation times reported, since the evidence shows that, 
metabolites of interest are produced in more than ten days, in 
specific culture media. This could complicate industrial pro-
duction, due to the fact that longer times and greater scales 
for production implies higher energy costs of maintaining 
temperature, aeration, agitation and higher labor costs, given 
the duration of the process. Studies conducted mainly on 

submerged fermentation are presented below, along with a 
description of production conditions that could be applied to 
develop robust processes for mass production of nematopha-
gous fungi.

Dube and Smart (1987) conducted experiments of P. 
lilacinum (Thorn) Samson at flask level (500 mL) with 
periodical agitation for 10 days at 25–30 °C in soaked and 
drained sterile wheat seeds, adding 4 g of wheat seed inocu-
lated with 4 ×  107 conidia. It was observed a suppression of 
the RKNs of M. incognita, at their egg mass, and hatching 
in greenhouse experiments conducted on tomato (Lycoper-
sicon esculentum), tobacco (Nicotiana tabacum), and pep-
per (Capsicum annuum). Cabanillas and Barker (1989) pro-
duced P. lilacinum in plastic bags containing wheat kernels 
inoculated with a spore suspension (3.5 ×  107 spores/mL), 
incubated for 21 days at 25 °C, obtaining 3.5 ×  109 spores/g 
of wheat kernels. In the other hand, Cabanillas et al. (1989) 
tested the growth temperature (12, 16, 20, 24, 28, 30, 32, 34, 
and 36 °C) of 13 P. lilacinum isolates in a 125 Erlenmeyer 
flask containing 20 mL of potato dextrose broth inoculated 

Fig. 2  Structure of compounds that show nematicidal activity produced by P. chlamydosporia 
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with a 5 mm disc containing a 7-day-old PDA culture, agi-
tated manually and then incubated in the dark. They found 
that optimum temperatures for P. lilacinum ranged from 
24 to 30 °C, although they also observed similar growth 
patterns obtained varying levels of mycelium production. 
Interestingly, the best results for the control of M. incognita 
in tomato plants were obtained using an isolate from Peru 
and a mixture of P. lilacinum isolates, with the Peruvian 
strain PL 84 − 1 achieving moderate growth (3.23 mg/mL), 
lower than the 7.1 mg/mL obtained using one of the strains 
tested before.

Kerry et al. (1986) evaluated the conidia production in 
Czapek broth with the addition of trace elements from differ-
ent P. chlamydosporia strains, using a 150 mL conical flask 
with 75 mL of medium incubated at 19 °C, 180 rpm for 28 
days, obtaining large numbers of conidia (up to 8.4 ×  107/
mL) but not chlamydospores. Stirling and Smith (1998) 
developed granular formulations containing either P. chla-
mydosporia or Arthrobotrys dactyloides produced in glu-
cose-peptone yeast or glucose-corn steep, respectively, in a 
two-liter Erlenmeyer flask. They harvested 10 g of dry myce-
lia from 1-liter liquid medium, using the biomass obtained to 
produce 1 kg of granules. They also reported that A. dacty-
loides was more effective in controlling RKNs in field trials 
conducted on a tomato plantation in Queensland, Australia. 
It was also reported the evaluation of media containing 
yeast extract, peptone, soybean meal, cotton seed meal, 
crushed maize meal, neopeptone, or malt extract in com-
bination with 40 g/L glucose, which was used for the mass 
production of P. chlamydosporia at flask level, with 30 mL 

of medium incubated in 125 mL Erlenmeyer flasks at 25 °C 
and 200 rpm for 5 days (Stirling et al. 1998). They found that 
media containing either cottonseed meal or soybean flour 
were the most suitable for biomass production, obtaining 
18 g/L and 15 g/L respectively, while conidia concentrations 
of approximately 6 ×  108 conidia/mL were obtained for both 
media. Interestingly, the same study conducted fermenta-
tion with YPD medium in a 20-L bioreactor under initial 
conditions of 0.6 vvm, 200 rpm and 25 °C, making it one 
of the few studies conducted at bioreactor scale, producing 
8–11 g/L biomass over four production runs. The authors 
describe that chlamydospores were not produced in this sub-
merged culture (Stilring and Smith 1998).

Mo et al. (2005) evaluated the effect of 21 carbon sources 
and 15 nitrogen sources on the mycelial growth and sporu-
lation of P. chlamydosporia, finding that sweet potato and 
l-tyrosine are the optimal carbon and nitrogen sources, 
respectively, for mycelial growth (5.1 g/L), whereas sweet 
potato and casein peptone were suitable for sporulation 
(1.71 ×  108 conidia/mL). The authors also found different 
nutritional requirements for sporulation and growth, obtain-
ing maximum conidia production (4.7 ×  107 conidia/mL) 
with a carbon:nitrogen ratio (C:N) of 10 and initial pH of 
3.7, while 9.25 g/L of biomass were produced at initial pH of 
6.8 and C:N ratio of 40. The incubation conditions were 100 
mL medium in a 250 mL conical flask at 170 rpm and 28 °C 
for seven days. Hernández and Hidalgo (2008) proposed a 
production method involving solid state fermentation in 
KlamiC® polypropylene bags using the P. chlamydosporia 
var. catenulata strain IMI SD 187, selected for its properties 

Fig. 3  Structure of compounds that show nematicidal activity produced by P. lilacinum 
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as a bioregulator for mass production, since it is able to grow 
in a pH range of 4–9 at soil temperatures among 9–38 °C. 
This method is recommended for the management of the 
Meloidogyne spp. populations that infect tomato, cucumber, 
capsicum, carrot, beet, and lettuce crops, among others.

The P. chlamydosporia strain YMF 1.00613, isolated 
from tobacco root infected with M. incognita, was used to 
isolate and identify four aurovertin-type metabolites, includ-
ing a new compound, aurovertin I (A1), and three known 
metabolites, aurovertins E, F and D (shown in Fig. 2) (Niu 
et al. 2010). The authors obtained a production level of 20 L 
in 500 mL Erlenmeyer flasks containing 200 mL of produc-
tion medium, 20% unpeeled potato, and 2% glucose, at a 
pH of 7, incubated at 28 °C, 180 rpm for 12 days. Both the 
mycelium and the fermentation broth were filtered and con-
centrated for characterization. After 48 h, aurovertins D and 
F presented a nematicide effect on the free-living nematode 
Panagrellus redivivus, with determined  LC50 values of 41.7 
and 88.6 µg/mL, respectively. However, the four aurovertins 
did not present inhibitory effects on the eclosion of M. 
incognita eggs (Niu et al. 2010). These results are impor-
tant and reveal the need of producing not only mycelium and 
spores (conidia or chlamydospores) but also the metabolites 
and enzymes involved in PPNs inhibition. Wang et al. (2015) 
cultured different P. chlamydosporia strains, including the 
YMF 1.00613 strain isolated from tobacco nodules infected 
with M. incognita, in 250 mL PDB medium contained in 
500-mL flasks incubated at 28 °C, 250 rpm for 12 days. The 
P. chlamydosporia strains that presented nematicide activity 
produced a distinctive yellow fermentation broth. Chemical 
studies have shown that yellow metabolites consist of pol-
yketides from the aurovertins D, E, E, and I, with aurovertin 
D achieving the highest mortality for the RKN M. incognita, 
with a  LC50 value of 16 µg/mL at their stage  J2 and 33.50 µg/
mL for C. elegans. It was also observed that aurovertin was 
produced from the fifth day of fermentation until the growth 
of the fungus concluded.

On the other hand, the addition of chitosan to the cul-
ture medium improved sporulation, as seen for the produc-
tion of extracellular enzymes of P. chlamydosporia, and the 
parasitic effect on RKN eggs, observed in 50 mL culture 
medium containing chitosan concentrations of 0.1 mg/mL, 
1 mg/mL, and 2 mg/mL as the nutrient source, mineral salts, 
yeast extract and 1% (w/v) glass wool (Escudero et al. 2016). 
Compared to the control (without chitosan), it was observed 
a 2-fold (0.1 mg/mL) to 4-fold (1 to 2 mg/mL) increase in 
proteolytic activity. The combinations were incubated in 
250 mL flasks for 30 days, in darkness. It was also found 
that chitosan, at a concentration of 0.1 mg/mL, does not 
affect the viability and germination of chlamydospores and 
improves mycelial growth compared to cultures without 
chitosan (Escudero et al. 2017). Silva et al. (2017) grew P. 
chlamydosporia (var. catenulata and chlamydosporia) and 

P. lilacinum fungal strains in PDA medium + streptomycin 
(0.5 g/L) for a period of 18–21 days at 26 °C ± 0.5 °C in 
darkness. The cells (spores and mycelia) obtained from 
these cultures were suspended in distilled water + Tween 80 
(0.05% v/v). The suspensions were then homogenized and 
filtered to facilitate the assays development with M. enter-
olobii nematode eggs, to evaluate their efficacy in reducing 
root infection and nematode reproduction in potted plants.

Another study cultured P. chlamydosporia in 250 mL 
Erlenmeyer flasks with dextrose and potato broth, incubated 
at 25 °C for ten days in a rotary shaker, with the medium 
then filtered at the end of the incubation. The filtered cul-
ture was used to simulate the effect of mortality during M. 
incognita egg eclosion and at their  J2-stage, at 20, 40, 60, 
80, and 100% filtrate concentrations diluted with water and 
taken from six isolates. The impact on mortality was within 
a range of 11.3–76.3% after 72 h of filtering and increased 
in line with the concentration. The fungus PC-6 inhibited 
nematode egg eclosion by 58.17%, with PC-1 achieving the 
second highest level of inhibition (Uddin et al. 2019).

Shirazi et al. (2019) cultured the fungi P. chlamydosporia 
and P. lilacinum on solid substrates for two months, using 
wheat, barley, rice husks, and rice bran, finding that P. chla-
mydosporia produced spores in wheat, barley, and rice bran 
after 30 days and after 60 days in rice husks, with an aver-
age of 1.5 ×  108 and 7 ×  107 spores/g, respectively. P. lilaci-
num colonized all the substrates, with higher spore yields 
obtained in barley grains and rice husks, with an average of 
2.7 ×  108 and 1.5 ×  108 spores/g, respectively. The viability 
of both fungi decreased after 60 days of storage at 25 °C.

The production of P. lilacinum KU8 used five different 
agro-residues, such as wheat bran fine particles, beer waste, 
sugarcane bagasse, coffee husks and spent tea waste, with 
10 g of each substrate placed in a 250 mL Erlenmeyer flask 
along with 4 mL of a mineral salt medium. The fermenta-
tion was carried out at a pH of 4.4 and a temperature of 
30 °C for up to 12 h in order to obtain maximum biomass. 
The isolate produced a biomass of 107.46 mg/gdfs (mg of 
biomass per gram of dried fermented substrate) in rice bran. 
The experiment was conducted to evaluate the production 
of a bionematicide for the management of PPNs (Mousumi 
Das et al. 2020).

In other study, P. lilacinum 6029 spores were used in a 
medium based on karanja (a species of tree from the pea 
family Millettia pinnata) cake to inoculate Erlenmeyer flasks 
containing 100 mL Czapek-Dox broth and a karanja-cake 
based broth at a C:N ratio of 35.88 and a pH of 5.9. The 
fungal culture was incubated in darkness for 7 and 15 days 
at 27 °C, with the fermentation then filtered and used for 
in vitro bioassays to evaluate a possible nematicide effect. 
It was found that the karanja-cake-based culture medium 
killed 100% of  J2 M. incognita nematodes, while a 78.28% 
mortality was observed for the filtered Czapek-Dox broth 



 World Journal of Microbiology and Biotechnology (2021) 37:180

1 3

180 Page 10 of 14

12 h post exposure (Sharma et al. 2014). A recent study 
conducted by the same authors reported the identification 
of nematicide metabolites based on a directed fractionation 
produced using the fungus P. lilacinum grown in a defat-
ted karanja cake-based liquid medium. The mortality rate 
of M. incognita during egg mass eclosion was 94.6% by the 
fifth day, while the maximum nematicide effect observed 
for  J2 nematodes was 62% after 48 h of exposure (Sharma 
et al. 2020). The results reported by Ferreira et al. (2020) 
show that the application of ketamine, both in vitro and in 
vivo, confirms the nematicide potential of this molecule in 
the fungus P. chlamydosporia, which was cultured in a 250 
mL Erlenmeyer flask containing a dextrose and potato liquid 
medium, incubated at 28 °C, 120 rpm for 20 days, filtrating 
after to separate the extract from the mycelial mass. Sepa-
rated mass was used for the extraction process via macera-
tion, while the ketamine compound was identified by nuclear 
magnetic resonance spectroscopy.

According to the information above mentioned, the con-
ditions evaluated for cultures of nematophagous fungi at 
flask level were oriented mainly to the application against 
phytoparasitic nematodes instead of their massive produc-
tion. However, for the case of submerged fermentation, such 
conditions and raw materials are useful for the process engi-
neering in order to stablish the next approach in bioreactor 
studies at the laboratory scale and the subsequent steps for 
scaling-up the production process. In such approach, the 
effect of parameters such as agitation, aeration, dissolved 
oxygen tension, mixing, etc., on morphology, spores, 
conidia, and metabolite production must be elucidated.

Market opportunity

Pesticide market is predicted to reach USD $70.89 billion 
by 2025 (Industry ARC 2020). The biopesticides represent 
only 3% with a market of USD $2.2 billion globally and 

it was estimated to grow over 5% between 2020 and 2026 
(Global Markets Insights 2019). For the case of bionemati-
cides market, in 2015 it was valued over USD $143 million 
with an increment of 4% annual (Global Markets Insights 
2015), whereas nematicide market in 2020 was valuated 
at USD $1.3 billion (Market and Market 2020). Hence, 
there is a huge market opportunity to replace synthetic 
pesticides with bionematicides. Table 4 presents the cost 
comparison between the principal raw materials reported 
in fermentation process for nematophagous fungi produc-
tion, the price of biobased nematicides with nematopha-
gous fungi, the cost of synthetic products commercialized 
in Mexico (local providers), and doses of application. 
Given these prices, the bionematicides can be competi-
tive compared to synthetic products. It seems logical that 
agro-based low-cost raw materials can be used for large 
scale production of nematophagous fungi. However, there 
are intrinsic steps of pre-treatments for such raw materi-
als and local availability that increases the total process 
cost. Additionally, the time required for many processes 
described for cultures of nematophagous fungi comprises 
several days, and some efforts must be made to reduce 
such time. A system for the production and formulation of 
the biological control agent should be developed to obtain 
a product with a suitable long shelf life, providing it cer-
tain competitive advantages in the environment in which it 
will be applied. Subsequently, the process should be esca-
lated to pilot level to obtain enough product that allows to 
evaluate its activity in both the greenhouse and the field. 
Finally, if the product achieves the required attributes and 
its production is viable at both technical and economic 
terms, it will be registered and commercialized (Janisie-
wicz and Korsten 2002). Placing more biobased products 
with a high activity on the market will not only be an eco-
nomic benefit but also a huge profit for the environment 
and human well-being.
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Conclusions

Given the growing concerns on the environment, pollution, 
and health risks caused by many conventional agrochemi-
cals, the demand for natural biological products is con-
stantly increasing in all markets. It is expected that the use 
of chemical nematicides could be eliminated completely 
and substituted for biological alternatives, such as the use 
of fungi and bacteria which, further to killing nematodes, 
they promote plant growth without causing environmental 
damage. The aim is to raise awareness of bionematicides 
on the market in order to increase sustainable agriculture. 
The development of any biological control agent should 
take into consideration the life cycle of the target organism 
to develop the best formulation and application strategies. 
In order to achieve mass production, biomass, conidia or 
chlamydospore development is necessary, as it is the pro-
duction of enzymes and metabolites from nematophagous 
fungi to evaluate which of them better inhibit PPNs in the 

short term to prevent the infection of the plant. The devel-
opment of media for both submerged fermentation and 
solid-state strategies for production may be a significant 
step for achieving a robust production process. However, 
there is also a lack of research on the operating conditions 
for fermenters at a scale that could satisfy the needs for the 
application of this technology, which, as we have reported 
here, depends on the strains, the isolation source, and their 
ability to maintain its nematicidal activity.
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Table 4  Cost comparison between some examples of raw materials reported for nematophagous fungi production, biobased products, and syn-
thetic control agents

Presentation Strain Biological control 
product

Synthetic chemical 
product

Raw material/active 
ingredient

Quantity Dose Price
USD

Potato Dextrose Agar 500 g 102.49
Potato Dextrose 

Broth
450 g 77.75

Yeast extract 1 kg 16.47
Casein peptone 300 g 46.40
Dextrose 1 kg 4.2
Wheat 1 kg 0.45
Rice husk 1 kg 0.23
Barley 1 kg 0.45

Liquid suspension Paecilomyces lilaci-
nus LAL P832

Pacilomic® 1 L 1 L/ha 33.08

Paecilomyces lilaci-
nus 

SPECTRUM Pae L® 1 L 4 L/ha 35

Paecilomyces 
fumosoroseus 
y Paecilomyces 
lilacinus

Bio Delta Plus ® 1 L 2–4 L/ha 14.80

Powder Pochonia chlamydo-
sporia IMI SD 187

KlamiC® 1 L 0.5 kg/ha 70

Paecilomyces lilaci-
nus 

Nematrof® 1 kg 2 kg/ha 17.33

Paecilomyces lilaci-
nus y Pochonia 
chlamydosporia

IMPERIUM® 1 kg 1–2 kg/ha 44.20

Emulsifiable
concentrate

NEMACUR ® 400 
CE

Fenamiphos 1 L 10–15 L/ha 49.95

MOCAP® CE Ethoprophos 1 L 5.5-7 L/ha 42.50
Verango Prime® Fluopyram 1 L 1 L/ha 325

Powder Coster 5G® Terbufos 5 kg 20–25 kg/ha 21.5
Granulate Velfuran 5.G® Carbofuran 20 kg 40–50 kg/ha 75.45

https://doi.org/10.1007/s11274-021-03151-x
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