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Abstract
Coumarin is widely used in personal care products and pharmaceutical industry, which leads to the release of this compound 
into environment as an emerging contaminant. Here, a promising strain USTB-Z for biodegrading coumarin was successfully 
isolated from botanical soil and characterized as a potential novel Pseudomonas sp. based on 16S rDNA sequence analysis 
and orthologous average nucleotide identity tool. Initial coumarin up to 800 mg/L could be completely removed by USTB-
Z within 48 h at the optimal culture conditions of pH 7.3 and 30 °C, which indicates that USTB-Z has a strong capacity in 
coumarin biodegradation. The biodegradation products of coumarin were further investigated using HPLC and Q-TOF LC/
MS, and melilotic acid and 2,3-dihydroxyphenylpropionic acid were identified. The draft genome of strain USTB-Z was 
sequenced by Illumina NovaSeq, and 21 CDSs for NAD (P)-dependent oxidoreductase, 43 CDSs for hydrolase, 1 CDS for 
FAD-depend monooxygenase, 1 CDS for 3-hydroxycinnamic acid hydroxylase, 21 CDSs for dioxygenase, and 5 CDSs for 
fumarylacetoacetate (FAA) hydrolase were annotated and correlated to coumarin biodegradation. The present study provides 
a theoretical basis and microbial resource for further research on the coumarin biodegradation.
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Introduction

Coumarins (coumarin and its derivatives), consisting of an 
aromatic ring fused to a condensed lactone ring, are widely 
distributed in higher plants and microorganisms (String-
lis et al. 2019), and have been ubiquitously used in food, 
tobacco products, alcoholic beverages, pharmaceutical and 
personal care products as a flavoring and fragrance enhancer 
after chemical synthesis in 1868 (Egan et al. 1990). Based 
on containing structure of π-π conjugate system, coumarins 
are easily bound to active sites of enzymes in organisms and 
have a wide range of biological activities, such as anticancer 
(Venugopala et al. 2013), antioxidant (Joubert et al. 2017), 
antibacterial (Kapp et al. 2017), anti-parasite (Mandlik et al. 
2016). In addition, coumarins are used as fluorescence sen-
sors (Helal et al. 2011), dye sensitizers (Margar and Sekar 
2016), fluorescent whitening agent (Kothavale et al. 2017). 
It was reported by International Fragrance Association 

that the worldwide use volume of coumarin as a fragrance 
was more than 1000 metric tons per year (Api et al. 2019). 
These applications can lead to the release of coumarin into 
the environment through various sources. It was reported 
by British Geological Survey that coumarin as one of the 
emerging contaminants in groundwater was detected in sam-
ples from 20 monitored sites (Stuart et al. 2011; Montanaro 
et al. 2017). The effects of coumarin on the environment and 
human health are still uncertain. However, some researches 
have shown that coumarin can cause hepatotoxicity and 
tumor developments in rodents (Born et al. 2003) and that 
there is a percentage of the human population much more 
susceptible to its toxicity (Abraham et al. 2010). Moreover, 
coumarin metabolism can lead to the formation of toxic 
metabolites such as coumarin 3,4-epoxide and o-hydroxy-
phenylacetaldehyde (Born et al. 1997). Finally, coumarin 
has been reported to elicit estrogenic responses in mammals, 
which makes it a potential endocrine disrupting compound 
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(McLachlan et al. 2012). For these reasons, there is a need 
to find appropriate technologies for the efficient removal of 
coumarin from the environment.

At present, only few studies have addressed this issue 
by physical and chemical methods in removing coumarin 
(Montanaro et al. 2017; Tan et al. 2019), which were limited 
in application because of high cost. Microbial biodegrada-
tion is considered to be a green and economically competi-
tive technology, because microorganisms are well known as 
the efficient and selective catalysts from the environment. 
Several coumarin-degrading bacteria have been isolated 
successfully, such as Arthrobacter (Levy and Weinstein 
1964), Pseudomonas (Nakayama et al. 1973), Fusarium 
(Shieh and Blackwood 1968), Saccharomyces (Häser et al. 
2006), Aspergillus (Aguirre-Pranzoni et al. 2011), Glomer-
ella (Marumoto and Miyazawa 2011) and Cunninghamella 
(Ghadai et al. 2016). However, microbial resources of high 
efficient strains were limited, and no genome sequences of 
active strains have been reported and analyzed previously, 
and there is too limited genetic information about coumarin 
biodegradation by Pseudomonas genus.

In this study, we aimed to isolate microorganisms capable 
of biodegrading coumarin, explore the mechanism of bio-
degradation, characterize the environmental factors influenc-
ing the degradation process, and analyze the main functional 
genes at the genomic level.

Materials and methods

Chemicals, soil sample and culture medium

Coumarin with 99.98% purity was purchased from Sigma 
Aldrich Co., Ltd (Shanghai, China). All organic solvents 
were of chromatographic grade (Macklin Biochemical, 
Shanghai, China), and chemicals were of analytical grade 
(Nanjing Chemical Reagent Co., Ltd).

A soil sample collected from Beijing Botanical Garden 
in the western suburbs of Beijing, P. R. China in 2018 was 
passed through a 10-mesh sieve to remove stones and plant 
debris and allowed to air-dry overnight before experiments.

Mineral salt medium (MSM) consisted of 0.5 g NH4Cl, 
0.3 g Na2HPO4, 0.05 g KH2PO4, 0.1 g MgSO4, 0.01 g CaCl2, 
0.01 g ammonium ferric citrate, 0.5 mL trace elements per 
litre water at pH 7.3 (Karn et al. 2010).

Nutrient broth medium (NB) used in this study contains 
(g/L) peptone 10 g, Yeast extract 5 g, and sodium chloride 
10 g, glucose 10 g and the final pH is 7.2–7.6.

Enrichment of coumarin biodegrading organism

Ten grams of soil samples and 100 mL MSM were placed 
in a 250 mL Erlenmeyer flask, cultured for seven days in the 

concentration of 1000 mg/L coumarin as the sole carbon 
source. The suspension was incubated on a rotary shaker (in 
dark) operated at 150 rpm and 30 °C. An aliquot of 1 mL 
was subcultured to 99 mL fresh medium every five days, for 
three times. The final enrichment cultures were plated onto 
the coumarin-containing agar plates. Isolates were screened 
for the ability to biodegrade coumarin, and a promising bac-
terial strain USTB-Z was isolated and used.

Inoculum preparation

To prepare the inoculum, 10 mL cultures were centrifuged 
(5000  rpm, 5 min) and washed three times with sterile 
physiological saline water. The washed bacterium was then 
resuspended in 10 mL sterile physiological saline water to 
obtain the bacterial suspension used as inoculum, which was 
approximately 3.2 × 108 CFU/mL tested by plate counting 
method.

Biodegradation of coumarin by bacterial strain 
USTB‑Z

The biodegradation experiments were performed in MSM 
supplementing with coumarin on a rotary shaker operated at 
150 rpm and 30 °C. When the coumarin concentration was 
lower than 400 mg/L, all the coumarin and its products could 
be biodegraded completely within 10 h by strain USTB-Y, 
which was too rapidly to detect. Therefore, coumarin con-
centration at 400 mg/L was chosen as initial concentration. 
The growth curve and biodegradation curve were obtained 
with sampling at 0, 3, 5, 7, 9 and 12 h. The following sin-
gle-factor experiments were tested to investigate the bio-
degradation ability and the effect of environment factors on 
coumarin biodegradation by strain USTB-Z (cultured for 
12 h): coumarin concentrations (50–1000 mg/L); tempera-
ture (25 °C, 30 °C, and 37 °C); initial pH (5, 6, 7.3, 8, and 
9); inoculum size (initial cell concentration was 0.8 × 106, 
1.6 × 106, 3.2 × 106, 6.4 × 106, 9.6 × 106 CFU/mL, respec-
tively). The blank control was set in the same conditions 
without inoculating bacterium USTB-Z.

Half a milliliter of culture broth was sampled and mixed 
with 0.5 mL of methanol by shaking for 1 min on a vortex. 
After centrifugation (6000 rpm, 5 min), the supernatant was 
filtered with 0.22 μm organic nylon micropore membrane 
for HPLC (Dionex Ultimate 3000, Thermo Fisher Scientific 
Inc., USA) analysis. Ten microliter of aliquot was injected 
into the HPLC system, which were equipped with a Dikema 
Diamonsil C18 reverse phase column (250 × 4.6 mm2, 5 μm 
particle size, Dikema Technology Co. Ltd., China), and a 
UV-detector at 310 nm. Methanol and water (65:35, v/v) 
were used as the mobile phase with the flow rate of 1.0 mL/
min. The temperature of column oven was 30 °C. For the 
quantification of coumarin, an external standard method 
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 Pseudomonas plecoglossicida|NBRC 103162|BBIV01000080

 Pseudomonas putida|NBRC 14164|AP013070

 Pseudomonas guariconensis|LMG 27394|FMYX01000029

 Pseudomonas fulva|NBRC 16637|BBIQ01000036

 Pseudomonas mosselii|CIP 105259|AF072688
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 strain USTB-Z
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Fig. 1   Phylogentic tree of strain USTB-Z based on 16S rDNA sequences by the neighbor-joining approach

Fig. 2   Phylogenetic analyses of eight genomes of Pseudomonas 
sp. strain USTB-Z and representative related Pseudomonas species 
by OAT. Pseudomonas putida NBRC 14164 (GCA_000412675.1), 
Pseudomonas plecoglossicida NBRC 103162 (GCA_000730665.1), 
Pseudomonas soli F279208 (GCA_900110655.1), Pseudomonas 

mosselii DSM 17497 (GCA_000621225.1), Pseudomonas guari-
conensis LMG 27394 (GCA_900102675.1), Pseudomonas fulva 
NBRC 16637 (GCA_000621265.1), Pseudomonas laurentiana 
(GCA_010671685.1) were downloaded from NCBI for phylogenetic 
analysis
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was applied and the standard curve was built following a 
six-point calibration curve (ranged from 100 to 800 mg/L, 
and the R2 was above 0.99, Online Resource 1, Fig. S1-2). 
All experiments were conducted in triplicates and were sub-
jected to statistical analysis.

Identification of coumarin biodegradation products

Two milliliters of inoculum and 198 mL MSM were added 
into a 500 mL Erlenmeyer flask with 400 mg/L coumarin, 
with sampling at 0, 3, 5, 7, 9 and 12 h to analyze the prod-
ucts. Two controls were carried out, which contained either 
bacterial cells grown on glucose inorganic medium or cou-
marin with inorganic medium.

Extraction and cleanup procedures were performed as 
follows. Two hundred milliliters of the liquid cultures was 
extracted twice with 200 mL ethyl acetate, respectively, and 
all the organic phase was combined and concentrated by 
a rotary evaporator (65 °C). The residue was resuspended 
in 4 mL acetonitrile and filtrated for HPLC (Dionex Ulti-
mate 3000) analysis. A gradient program having two mobile 
phases, ultra-pure water and acetonitrile, was used. The gra-
dient composition process was started with 95% water for 
1 min, then decreased to 5% water gradually in 20 min, kept 
for 10 min, then again was increased to 95% water in 1 min, 
and kept for 10 min. The biodegradation products were 
further analyzed based on Q-TOF LC/MS (6545, Agilent 

Technologies Inc., USA) equipped with an Agilent Eclipse 
plus C18 column (50 × 3.0 mm2, 1.8 µm particle size). The 
solvent composition consisted of 5 mM ammonium formate 
aqueous solution (A) and Methanol (B) in a flow rate of 
0.3 mL/min. The gradient composition process was started 
with 95% A and decreased to 35% A gradually in 13 min, 
then decreased to 0% A gradually in 3 min, kept for 4 min, 
then again was increased to 95% A in 2 min, kept for 2 min. 
Five microliters of aliquot was injected into the HPLC sys-
tem at 40 °C of column temperature. The MS detection con-
ditions were: capillary voltage of 4500 V, nebulizer gas (N2) 
pressure of 40 psi, desolvation gas flow rate of 11 L/min and 
desolvation gas temperature of 350 °C. MS analysis was 
full scan mass spectra (m/z 50–1700) using both positive 
and negative modes electrospray ionization (ESI + /ESI −).

Identification of strain USTB‑Z

Strain USTB-Z was identified using 16S rDNA sequence 
analysis. Total DNA was extracted from the purified bacte-
rium using the Bacterial Genome Extraction kit (Tiangen, 
Beijing) following the manufacturer’s instructions. Follow-
ing centrifugation, the supernatant was used as template for 
polymerase chain reaction (PCR) with the primer pair of 27F 
(5′-AGA​GTT​TGA​TCC​TGG​CTC​AG-3′) and 1492R (5′-GGT​
TAC​CTT​GTT​ACG​ACT​T-3′) (Sharma, 2020). The PCR 
products were sequenced by Shenggong Biotechnology Co., 

Fig. 3   Effects of environment factors on coumarin biodegradation by bacterium USTB-Z. a Temperatures optimum; b pH profile; c profile of 
inoculum size; d profile of different initial coumarin concentrations. Error bars indicate the standard error of three replicates
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Fig. 4   HPLC chromatograms for coumarin bodegradation by USTB-Z after the following times: a 0 h; b 7 h; c 9 h; d 12 h
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Fig. 5   Mass spectrograms of coumarin biodegradation intermediates using negative modes electrospray ionization (ESI−). Product a: Melilotic 
acid; product b: 2, 3-dihydroxyphenylpropionic acid)
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Ltd. (Shanghai, China) and deposited in the GenBank data-
base under the Accession Number MT889639. The resulting 
sequence of strain USTB-Z were aligned and compared with 
the known gene sequences in EzBioCloud database. The 
nearest neighbor sequences were aligned using Clustal W, 
and a phylogenetic tree based on the 16S rDNA sequence 
data was constructed by the neighbor-joining method with 
MEGA 7 software. To define the phylogenetic relationship, 
the genome sequences of several nearby neighbor species 
were downloaded from NCBI and the phylogenetic analysis 
with strain USTB-Z was performed using an orthologous 
average nucleotide identity tool (OAT) (Lee et al. 2016).

Whole genome sequencing (WGS) of strain USTB‑Z

Preparation of genomic DNA was carried out according to 
the same method above. The draft genome of strain USTB-
Z was sequenced by Illumina NovaSeq platform of Beijing 
Fixgene Co., Ltd. Low reads were trimmed by fastp soft-
ware. High quality reads were then assembled by Spades 
software. The genome sequence was annotated by the PGAP 
on NCBI (October, 2020). The sequence data were submit-
ted to NCBI Sequence Read Archive (https://​www.​ncbi.​nlm.​
nih.​gov/​sra/) with Accession Number JAECZP000000000 
and SRA Number SRR13221997.

Fig. 6   Proposed pathway of coumarin biodegradation in strain USTB-Z

Fig. 7   a Coumarin metabolic routes in Pseudomonas sp. 301 
(Nakayama et  al., 1973). b Proposed metabolic pathway of 
7-hydroxycoumarin in Pseudomonas sp. 7HK4 (Krikštaponis and 
Meškys 2018). 1—coumarin, 2—dihydrocoumarin, 3—melilotic 
acid, 4—2,3-dihydroxyphenylpropionic acid, 5—7-hydroxy-
coumarin, 6—3-(2,3-dihydroxyphenyl)-propionic acid, 
7—3-(2,3,5-trihydroxyphenyl)-propionic acid, 8—(2E,4E)-2,4-dihy-
droxy-6-oxonona-2,4-dienedioic acid, 9—(E)-2-hydroxy-4-oxopent-

2-enoic acid, 10—succinic acid. Enzyme A—NAD(P)-dependent 
oxidoreductase, enzyme B—hydrolase, enzyme C—FAD-depend 
monooxygenase, enzyme D—FAD-binding monooxygenases/2-
poluprenyl-6-methoxyphenol hydroxylase, enzyme E—ring-cleavage 
dioxygenase/extradiol dioxygenases, enzyme F—fumarylacetoacetate 
(FAA) hydrolase family. The dash arrow indicates a hypothetical 
reaction

https://www.ncbi.nlm.nih.gov/sra/
https://www.ncbi.nlm.nih.gov/sra/
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Results

Isolation and identification 
of the coumarin‑biodegrading bacterium

A bacterium capable of utilizing coumarin as the sole source 
of carbon and energy was isolated from botanical garden 
soil. We designated it as USTB-Z. The colony was creamy, 
round, opaque, smooth in surface and neat in edge on a 
coumarin-containing agar plate, morphological examina-
tion under the light microscope revealed short rods (Online 
Resource 1). The cell was aerobic and gram-negative.

Basic Local Alignment Search Tool (BLAST) search 
against the EzBioCloud database showed that the 16S rDNA 
gene sequence of strain USTB-Z was > 98% identical to 
eight sequences of members of genus Pseudomonas such 
as P. alloputida Kh7 (98.65%), P. plecoglossicida NBRC 
103162 (98.50%), and > 97% identical to more than 20 
sequences of members of genus Pseudomonas such as P. 
putida NBRC 14164 (97.97%), P. soli F279208 (97.60%). 
The blast analysis was also supported by Phylogenetic tree 
based on 16S rDNA sequences as shown in Fig. 1. Further-
more, several nearby neighbor species to strain USTB-Z 
were chosen to phylogenetic tree analysis on the basis of 
the whole genome sequences by using OAT. There was no 
genome information of P. alloputida Kh7 and P. persica 
RUB6 in EzBioCloud database. The result revealed that 
strain USTB-Z shared highest identities (89.88%) to P. 
putida NBRC 14164 (Fig. 2). According to current bacterial 
taxonomy, strain USTB-Z is a potential novel species within 
Pseudomonas genus when their average nucleotide identity 
(ANI) < 95% (Kim et al. 2014).

Environment factors influencing biodegradation 
process

As shown in Fig. 3a, coumarin was biodegraded com-
pletely at pH 7.3–9.5 after 12 h, which exhibited a high 
biodegradation of coumarin and a high growth of USTB-Z 
in alkaline condition. The optimal pH value for USTB-Z 
to degrade coumarin was 7.3. The relationship between 
the biodegradation rate and temperatures for USTB-Z is 
shown in Fig. 3b. The optimum culture temperature was 
30 °C, and the biodegradation rate reached 92.62% after 
7 h. Coumarin biodegradation rate was weakly influenced 
by the inoculum size (Fig. 3c). It improved from 90.12 
to 100% when the initial bacterial cell concentration 
increased from 0.8 × 106 to 9.6 × 106 CFU/mL. When the 
initial bacterial cell concentration was ≥ 3.2 × 106 CFU/
mL, the biodegradation efficiency was above 98%. Hence 
the initial bacterial concentration of 3.2 × 106 CFU/mL was 
used in the following experiments. To further investigate 

biodegradation ability for coumarin, different initial con-
centrations (50–1000 mg/L) of coumarin were used as the 
sole carbon and energy source in MSM. When coumarin 
concentration was less than 400 mg/L, biodegradation 
rate could reach almost 100% in 12 h in the mean while 
increasing concentration of coumarin to 800 mg/L and 
1000 mg/L would cause biodegradation rate to decrease to 
52.4% and 43.2% respectively (Fig. 3d). Initial coumarin 
up to 800 mg/L could be completely removed by USTB-Z 
within 48 h.

Identification of biodegradation products

Biodegradation products were analyzed by HPLC and 
Q-TOF LC/MS to elucidate the probable biodegradation 
pathway of coumarin by USTB-Z. HPLC chromatograms 
(Fig. 4) showed that during the first 9 h of incubation, 
the peak area of coumarin (retention time at 16.065 min) 
decreased and two new peaks appeared at 13.267 min (prod-
uct A) and 10.745 min (product B), respectively, implying 
the formation of two new compounds. As the biodegradation 
proceeded, the areas of all the three peaks decreased rapidly 
and no accumulative metabolites were observed at the end 
of experiment (12 h). In the control group without strain 
USTB-Z, the concentration of coumarin was shown to be 
constant. (Figs. 5 and 6).

It has been reported that melilotic acid and 2, 3-dihy-
droxyphenylpropionic acid, as shown in Fig. 7, are the 
intermediates in a known coumarin metabolic pathway 
in several microorganisms (Levy and Weinstein 1964; 
Levy 1967; Shieh and Blackwood 1968; Nakayama et al. 
1973; Aguirre-Pranzoni et al. 2011). Proposed molecu-
lar formulas of coumarin and products based on Q-TOF 
LC/MS analyses were supplemented in Online Resource 
2 and 3. Figure 5 showed that Pseudomonas sp. USTB-
Z cells cultivated in the presence of coumarin produced 
melilotic acid (MA, C9H10O3, MW: 166.17) and 2, 3-dihy-
droxyphenylpropionic acid (DA, C9H10O4, MW: 182.173) 
as biodegradation products. The deprotonated molecu-
lar ion of product A was m/z 165.0651 which was m/z 
20 more than coumarin (MW: 146.15), indicating that 
product A was hydrogenated and hydrolyzed coumarin 
[M + H2 + H2O-H]−. The deprotonated product B was 
detected at m/z 181.0605 which was m/z 16 more than 
product A, coinciding with the oxygenation of product A. 
These products were not found in the coumarin inorganic 
medium without USTB-Z or bacterial culture with glucose 
inorganic medium. Therefore, coumarin was reduced at the 
double bond in the α-pyrone ring and hydrolyzed between 
the oxygen and carbonyl carbon atoms of the ring to pro-
duce MA as the first intermediate product, and then MA 
was oxidized to DA as the second intermediate product. 
And no accumulative metabolites were observed at the 
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end of experiment. Based on the above results, a tenta-
tive metabolic pathway for the degradation of coumarin by 
Pseudomonas sp. strain USTB-Z may be proposed (Fig. 6).

Overview of the Pseudomonas sp. strain USTB‑Z 
genome

The draft genome of strain USTB-Z has a single chromo-
some of 5,906,080 bp with a G+C content of 61.7%. The 
genome contains 5325 predicted protein coding genes (CDS) 
with an average size of 990 bp, giving a coding intensity 
of 88.373%. Analysis revealed 53 pseudogenes, 73 tRNA 
genes, 4 noncoding RNA (ncRNA), and 4 rRNA operons 
in the genome. Of 5325 protein coding sequences (CDSs), 
5264 could be assigned to 21 different categories of clus-
ters of orthologous groups (COGs). These results clearly 
suggested the organism’s efficient amino acid transport and 
metabolism, energy production and conversion, inorganic 
ion transport and metabolism, etc. (Online Resource 1, Fig. 
S1-3).

In the present study, Pseudomonas sp. strain USTB-Z 
was found to be able to biodegrade coumarin. According to 
genome sequence analysis and annotation (Online Resource 
4), there were 21, 43 and 1 coding sequences (CDSs) encod-
ing for NAD (P)-dependent oxidoreductase, hydrolase and 
FAD-depend monooxygenase, respectively, and 1, 21 and 
5 CDSs encoding for 3-hydroxycinnamic acid hydroxy-
lase, dioxygenase, and fumarylacetoacetate (FAA) hydro-
lase family, respectively (Online Resource 5). Importantly, 
based on a BLAST search, it was found that there were 
three continual genes which were annotated as bifunctional 
3-(3-hydroxy-phenyl) propionate/3-hydroxycinnamic acid 
hydroxylase (gene_001906, 1560 bp genes encoded 519 
amino acid proteins), vicinal oxygen chelate (VOC) family 
protein (gene_001907, 558 bp genes encoded 185 amino 
acid proteins), and fumarylacetoacetate hydrolase family 
protein (gene_001908, 852 bp genes encoded 283 amino 
acid proteins), and had the function of biodegradation aro-
matic compounds. Protein sequence alignment revealed that 
products of the three genes exhibited relatively high identity 
with the induced proteins encoded by a gene cluster hcdABC 
from 7-hydroxycoumarin-degrading Pseudomonas mandelii 
7HK4 (DSM 107615) (Krikštaponis and Meškys 2018), such 
as 77.6% sequence identity to the flavin-binding hydroxy-
lase (HcdA), 72.08% to the extradiol dioxygenase (HcdB), 
and 62.91% to the putative hydroxymuconic semialdehyde 
hydrolase (HcdC) (Online Resource 6 and 7).
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Discussions

Coumarin as a typical material of pharmaceutical and 
personal care products is produced and released into 
environment at a growing rate. As its potential toxico-
logical properties, great concerns heightened the need 
for effective removal of this emerging contaminant from 
environment. In the present study, a promising bacterial 
strain USTB-Z for biodegrading coumarin was success-
fully isolated and identified as a potential novel Pseu-
domonas sp. strain by 16S rDNA sequence analysis and 
OAT. Pseudomonas sp. isolated from environment (soils, 
intertidal sediment, sewage sludge and so on) have been 
confirmed to be capable of degrading various organic con-
taminants such as furfuryl alcohol (Kumar and Rashmi 
2017), PAHs (Obayori et al. 2008), nicotine (Chen et al. 
2008), pyridine, indole, quinoline (Fetzner 1998) and so 
on. Strain USTB-Z could efficiently biodegrade coumarin, 
with 100% of removal percentages for 400 mg/L coumarin 
within 12 h and 800 mg/L coumarin within 48 h, higher 
than that by Saccharomyces cerevisiae DSMZ 2155 and 
Bacillus cereus Delaporte and Pseudomonas orientalis 
(100% within 120 h, 50% within 150 h and 40% within 
150 h, respectively, at initial 400 mg/L coumarin) isolated 
from strawberry leaves (Häser et al. 2006). It indicated that 
Pseudomonas sp. USTB-Z is a high efficient candidate for 
biodegrading coumarin.

Environmental factors influence the biodegradation pro-
cess. The rate of coumarin biodegradation increased from 70 
to 100% when pH value was increased from 6.0 to 9.0. The 
alkaline condition at pH 7.3 was favorable for the degrada-
tion of coumarin, and it was also the optimum pH for the 
growth of strain USTB-Z. When the temperature sustained 
between 25 °C and 37 °C, 400 mg/L of coumarin was biode-
graded completely within 12 h, and the optimal temperature 
was 30 °C. These results indicated that Pseudomonas sp. 
USTB-Z has a great potential in removing coumarin in mild 
environment conditions. The laboratory conditions are far 
different from those found in nature. Based on these find-
ings, future work will be attempted to study the performance 
of biodegrading coumarin by strain USTB-Z in nature.

The key biodegradation intermediates during cou-
marin catabolism in bacteria is MA. The bioconver-
sion of coumarin to MA by microorganisms can be 
achieved in two different pathways: (a) Coumarin was 
hydrolyzed at the lactone moiety to give o-coumaric 
acid [3-(2-hydroxyphenyl)-2-propenoic acid], and then 
reduced at the double bond to yield MA, which was the 
metabolic pathway in Arthrobacter genus (Levy and 
Weinstein 1964). (b) Coumarin was reduced to dihydro-
coumarin and only then hydrolyzed to MA, which was 
the biodegradation pathway in Pseudomonas sp. 30-1 

(Nakayama et al. 1973), Aspergillus niger ATCC 11394 
(Aguirre-Pranzoni et al. 2011), Saccharomyces cerevisiae 
DSMZ 2155 and Bacillus cereus (Häser et al. 2006). MA 
was oxidized to DA by Arthrobacter and Pseudomonas 
species, and no data are available on further conversions 
of DA before into tricarboxylic acid cycle in these bac-
teria. In the present study, MA and DA were detected as 
the main biodegradation products by Pseudomonas sp. 
USTB-Z. However, dihydrocoumarin wasn’t detected at 
any sampling time. DA was further biodegraded by Pseu-
domonas sp. USTB-Z into CO2 and H2O after the tricar-
boxylic acid cycle, but its products were not detected in 
the study.

The above biodegradation mechanism of coumarin by 
Pseudomonas sp. USTB-Z was further confirmed by its 
draft genome annotation and analysis. Biodegradation of 
coumarin or 7-hydroxycoumarin can be achieved in two 
stages, the bioconversion of coumarin to DA (Stage A), 
and the metabolism of DA (Stage B) as shown in Fig. 7 
(Levy 1967; Nakayama et  al. 1973; Krikštaponis and 
Meškys 2018). Several kinds of enzymes are involved in 
the two stages (Table 1), including NAD (P)-dependent 
oxidoreductase, hydrolase and FAD-depend monooxyge-
nase in stage A (biodegradation of coumarin), and FAD-
binding monooxygenases/2-polyprenyl-6-methoxyphenol 
hydroxylase, ring-cleavage dioxygenase/dioxygenases and 
fumarylacetoacetate (FAA) hydrolase family in Stage B 
(biodegradation of 7-hydroxycoumarin). Based on the 
results of genomic analysis of strain USTB-Z, 21 CDSs 
encoding for NAD (P)-dependent oxidoreductase, 43 
CDSs encoding for hydrolase, and 1 CDS encoding for and 
FAD-depend monooxygenase, respectively, were anno-
tated, which catalyzed the coumarin conversion to DA, 
and 1 CDS encoding for 3-hydroxycinnamic acid hydrox-
ylase, 21 CDSs encoding for dioxygenase, and 5 CDSs 
encoding for fumarylacetoacetate (FAA) hydrolase fam-
ily, respectively, were found and annotated, which were 
reported and speculated to participate in biodegradation of 
DA (Krikštaponis and Meškys 2018). Especially, the FAA 
family proteins are usually involved in the last stages of 
bacterial metabolism of aromatic compounds (Roper and 
Cooper 1993; Díaz and Timmis 1995; Lim et al. 2000). 
It was suggested that there are some kinds of enzymes in 
Pseudomonas sp. USTB-Z that participates in the final 
steps of coumarin metabolism after oxidative cleavage of 
the aromatic ring.

The operon hcdABC, which encodes a flavin-binding 
hydroxylase (HcdA), an extradiol dioxygenase (HcdB), 
and a putative hydroxymuconic semialdehyde hydro-
lase (HcdC), were found for the biodegradation of 
3-(2,4-dihydroxyphenyl)-propionic acid (hydroxylation 
of DA) in Pseudomonas mandelii 7HK4 (DSM 107615) 
(Krikštaponis and Meškys 2018). It was confirmed that 
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there was three highly similar (with respect to gene organi-
zation, size, and homology) corresponding genes in USTB-
Z. Based on comparison of protein sequences, it exhibited 
relatively high identity between Pseudomonas sp. USTB-Z 
and Pseudomonas mandelii 7HK4 (62.91–77.6%). These 
findings provided biological information base for cou-
marin biodegradation by Pseudomonas sp. USTB-Z, which 
is helpful in bioremediation of the emerging contaminant 
coumarin.

Conclusions

Pseudomonas sp. USTB-Z is a high efficient bacterium for 
biodegrading coumarin. It could biodegrade almost 100% of 
coumarin of 800 mg/L in MSM in 48 h. Optimal conditions 
for the strain were 30 °C and pH 7.3 with supplementa-
tion of coumarin at 400 mg/L. The biodegradation products 
of coumarin were further investigated using Q-TOF LC/
MS and melilotic acid and 2,3-dihydroxyphenylpropionic 
acid were identified. Importantly, the draft genome analy-
sis revealed that many genes in USTB-Z encoded related 
enzymes involved in coumarin (and its analogues) biodegra-
dation. This study is helpful to the development of microbe 
resources for bioremediation of coumarin contaminated 
water and soil.
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