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Abstract
The physicochemical pretreatment is an important step to reduce biomass recalcitrance and facilitate further processing of 
plant lignocellulose into bioproducts. This process results in soluble and insoluble biomass fractions, and both may contain 
by-products that inhibit enzymatic biocatalysts and microbial fermentation. These fermentation inhibitory compounds (ICs) 
are produced during the degradation of lignin and sugars, resulting in phenolic and furanic compounds, and carboxylic acids. 
Therefore, detoxification steps may be required to improve lignocellulose conversion by microoganisms. Several physical and 
chemical methods, such as neutralization, use of activated charcoal and organic solvents, have been developed and recom-
mended for removal of ICs. However, biological processes, especially enzyme-based, have been shown to efficiently remove 
ICs with the advantage of minimizing environmental issues since they are biogenic catalysts and used in low quantities. 
This review focuses on describing several enzymatic approaches to promote detoxification of lignocellulosic hydrolysates 
and improve the performance of microbial fermentation for the generation of bioproducts. Novel strategies using classical 
carbohydrate active enzymes (CAZymes), such as laccases (AA1) and peroxidases (AA2), as well as more advanced strate-
gies using prooxidant, antioxidant and detoxification enzymes (dubbed as PADs), i.e. superoxide dismutases, are discussed 
as perspectives in the field.
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Background

Lignocellulosic biomass is made of polysaccharides com-
prising cellulose (C6 sugar monomers) and hemicellulose 
(C5 and C6 sugar monomers), and a phenolic heteropolymer 
named lignin. The renewable production of a wide range of 
biomolecules using monomeric sugars derived from plant 
biomass is a reality, such as sugarcane bagasse conversion to 
ethanol in the so-called second-generation ethanol biorefin-
ery (Vieira et al. 2021). However, lignocellulosic materials 
are not readily accessible for bioconversion by enzymes and 
microorganisms, and thus require physical–chemical pre-
treatment steps to decrease the biomass recalcitrance (Lloyd 
et al. 2017; Suckling et al. 2017).

Several pretreatment methods have been studied and can 
be classified as mechanical, chemical, mechanical-chemi-
cal and biological. These classes include milling, pyroly-
sis, steam explosion, ammonia fiber explosion, liquid hot 
water, alkaline, acidic, organosolv, ionic liquids, enzymatic 
and microbial treatments (Cameron et al. 2015; Singh et al. 

 * Fabio Marcio Squina 
 fabio.squina@gmail.com

1 Programa de Pós-Graduação em Biociências e Tecnologia 
de Produtos Bioativos (BTPB), Universidade Estadual de 
Campinas (UNICAMP), Campinas, São Paulo, Brazil

2 School of Food Engineering, State University of Campinas 
(UNICAMP), Campinas, São Paulo, Brazil

3 Interdisciplinary Center of Energy Planning (NIPE), State 
University of Campinas (UNICAMP), Campinas, São Paulo, 
Brazil

4 Programa de Processos Tecnológicos e Ambientais, 
Universidade de Sorocaba (UNISO), Sorocaba, São Paulo, 
Brazil

5 Programa de Pós-Graduação em Biologia Funcional e 
Molecular (BFM), Universidade Estadual de Campinas 
(UNICAMP), Campinas, São Paulo, Brazil

6 School of Agriculture, São Paulo State University (UNESP), 
Botucatu, São Paulo, Brazil

http://orcid.org/0000-0001-6265-733X
http://orcid.org/0000-0002-2240-9128
http://orcid.org/0000-0002-4039-8258
http://orcid.org/0000-0003-2953-8050
http://orcid.org/0000-0002-8154-7459
http://crossmark.crossref.org/dialog/?doi=10.1007/s11274-020-02942-y&domain=pdf


 World Journal of Microbiology and Biotechnology (2020) 36:166

1 3

166 Page 2 of 11

2016; Vaidya et al. 2016; Marques et al. 2020; Lorenci 
Woiciechowski et al. 2020). For instance, the pretreatment 
of biomass at elevated temperatures (ranging from 100 to 
250 °C), and using acid as the catalyst, is widely employed 
nowadays at industrial scale to obtain a pentose (xylose and 
arabinose) and pseudo-lignin-rich hemicellulosic hydro-
lysate stream, and a solid fraction rich in cellulose, named 
cellulignin. The latter is composed mainly by cellulose and 
non-hydrolyzed lignin and can be subjected to enzymatic 
hydrolysis to obtain fermentable sugars (Suckling et al. 
2017).

After lignocellulosic biomass pretreatment, different 
inhibitory compounds (ICs) are formed due to the chemical 
degradation of sugars and lignin. The amount and nature of 
the formed ICs is directly related to the pretreatment method 
and feedstock used (Jönsson and Martín 2015) (Fig. 1). The 
toxicity of these compounds to fermentative microorganisms 
is a limiting factor in the production of valuable products 
from plant biomass (Newman et al. 2013). ICs are mainly 
classified as weak aliphatic acids (acetic, formic and lev-
ulinic acid), furanaldehydes (for instance, furfural—FUR 

and hydroxymethylfurfural—HMF), phenolic and aromatic 
compounds (Jönsson and Martín 2015).

The cell-inhibitory effects of weak acid ICs are related 
to the reduction of the intracellular pH, accumulating ani-
ons in the cell and causing the reduction of ATP production 
(Jönsson et al. 2013). The weak acids can be removed from 
hydrolysates through layered double hydroxides (LDHs) as 
adsorbents, amongst other techniques (Jönsson and Martín 
2015; Travália et al. 2019).

FUR and HMF can inhibit important enzymes such as 
alcohol dehydrogenase, and also promote membrane dam-
age and cofactor depletion (Tramontina et al. 2017). These 
ICs can be removed through evaporation or even microbial 
metabolization (Nakagame et al. 2020).

A mixture of toxic phenolics has been reported as lignin 
degradation products, derived from 4-hydroxybenzyl (H), 
guaiacyl (G), and siringyl (S) units (Tramontina et  al. 
2020), including vanillin, coniferyl aldehyde, syringalde-
hyde, 4-hydroxybenzaldehyde, catechol, 4-hydroxybenzoic 
acid, dihydroconiferyl alcohol and syringic acid. Phenolic 
compounds can also originate from extractive components 

Fig. 1  Lignocellulosic biomass structure and types of inhibitory by-products formed after pretreatment
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such as terpenes and tannins rather than lignin (Jönsson and 
Martín 2015).

Undissociated aromatic molecules are capable of dif-
fusing passively across bacterial cell membranes (Nichols 
and Harwood 1997). Still, it is not currently established if 
higher molecular weight species (e.g., dimers) can cross cell 
membranes (Beckham et al. 2016). Therefore, there are sev-
eral indications that lower molecular weight phenolics are 
more toxic to microorganisms (Klinke et al. 2004). These 
molecules cause biological membrane integrity loss, DNA 
damage via intracellular reactive oxygen species (ROS) 
generation, and inhibition of central metabolism enzymes 
(Jönsson et al. 2013).

Therefore, inhibitor removal prior to fermentation is cru-
cial for adequate microbial performance. Several methods 
for detoxification of lignocellulosic hydrolysates have been 
investigated including evaporation, ion exchange, adsorption 
with activated charcoal and enzyme treatments (Kumar et al. 
2020). These methods seek to minimize the deleterious ICs 
by their removal, neutralization, absorption, or metaboliza-
tion (Tramontina et al. 2020).

Enzymatic biological detoxification approaches have 
gained attention as a greener strategy, which can be sub-
strate-specific, and offers the possibility to increase sacchari-
fication and fermentation rates, thus reducing the processing 
time with no carbohydrate consumption, and mild reaction 
conditions (Moreno et al. 2015). Therefore, this review pre-
sents the advances and a detailed description of widely used 
enzymatic approaches to improve microbial fermentation of 
lignocellulosic hydrolysates, focusing on aromatic ICs bio-
abatement. A dedicated section of this review brings suc-
cessful cases using classical enzymes (laccases and peroxi-
dases), along with novel strategies using carbohydrate-active 
enzymes (CAZymes), and prooxidant, antioxidant, and 
detoxication enzymes (PADs), i.e., superoxide dismutases, 
were discussed as perspectives in the field.

The use of enzymes for detoxification 
of plant biomass hydrolysates

Enzymatic processes can efficiently remove phenolic com-
pounds and detoxify lignocellulosic hydrolysates while hav-
ing a minimal effect on the environment, because they are 
biogenic catalysts and require mild conditions. The enzymes 
are generally added in low concentrations (1.00–0.01% 
w/w), before the fermentation step with no need for highly 
purified preparations (Parawira and Tekere 2011). However, 
biological processes present some disadvantages, such as the 
prolonged incubation time needed for detoxification as well 
as the protein production costs, which are higher than other 
compounds used for detoxification methods (Moreno et al. 
2015; Plácido and Capareda 2015).

The first and most relevant studies with enzymatic detoxi-
fication started with laccases and peroxidases, representing 
the majority of findings in this field of study (Kurek and 
Monties 1994; Cho et al. 2009; Kapoor et al. 2015; Schroyen 
et al. 2017; García-Torreiro et al. 2018).

With the advance of omics studies, synthetic biology and 
cutting-edge chemical analyses, novel enzymes have been 
discovered which act on phenolic compounds present in 
lignocellulosic biomass, but their application in detoxifica-
tion has been demonstrated in few studies (Tramontina et al. 
2020; Granja-Travez et al. 2020). Accordingly, the following 
sections will discuss laccases and peroxidases applied for 
lignocellulosic hydrolysate bioabatement, as well as promis-
ing new enzymatic candidates of potential interest for detox-
ification processes. An overview on enzymatic detoxification 
strategies and applications is shown in Table 1.

Laccases (AA1)

A green alternative to detoxify sugar-rich streams contain-
ing phenolics and lignin-derived compounds is to employ 
lignolytic enzymes, in particular laccases. These enzymes 
belong to the family of multi-copper oxidases AA1 from 
the carbohydrate active enzymes (CAZy) database (EC 
1.10.3.2). Using oxygen as an electron acceptor, laccases are 
able to oxidize phenolic compounds and generate water as 
a by-product. They are found in plants, bacteria, and insects 
and fungi (Yang et al. 2017). In plants, laccases are glyco-
sylated proteins that exhibit low redox potential, and their 
physiological role is associated with lignin biosynthesis and 
polymerization (Arregui et al. 2019). In fungi, laccases have 
been studied in relation to their role in pigmentation and 
pathogenesis, as well as their application for plant biomass 
delignification and hydrolysate detoxification (Agrawal et al. 
2018).

While laccases are potential options to increase the fer-
mentability of lignocellulosic hydrolysates, their use should 
be carefully evaluated. Laccase-catalyzed oxidation gener-
ates radical species that can be transformed via different 
pathways (Christopher et al. 2014). Therefore, their activity 
may vary from polymerization or depolymerization, depend-
ing on the properties and characteristics of the enzyme, and 
the nature of the compounds in the hydrolysate, which could 
be monomeric phenolics or lignin-derived fragments. New 
molecules such as dimers or polymerized lignin-fragments 
can be formed via different oxidative phenol couplings, 
including homo-and cross-coupling of different phenols. 
These new compounds may stabilize, or undergo rearrange-
ment and generate new products, which can also act as oxi-
dizing agents. When combined with electron shuttles—so 
called mediators—laccases more effectively oxidize non-
phenolic substrates via different mechanisms, such as elec-
tron transfer or radical hydrogen atom transfer (Christopher 
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et al. 2014). Natural laccase redox mediators include vanillin 
or p-hydroxycinnamic acids, which are preferred to artifi-
cial mediators such as 2,2′-azinobis (3-ethylbenzthiazo-
line-6-sulfonic acid) (ABTS) and 1-hydroxybenzotriazole, 
because they are less expensive and non-toxic (Kupski et al. 
2019).

Detoxification methods using laccases or laccase-medi-
ator-systems (LMS) can be performed using free or immo-
bilized enzymes, with or without oxygen. For example, 
the purified fungal laccase from Trametes versicolor was 
successfully used to detoxify a lignocellulosic hydrolysate 
derived from willow wood after pretreatment using steam 
and sulfur dioxide, which lead to improved ethanolic fer-
mentation by Saccharomyces cerevisiae (Jönsson et  al. 
1998). In this study, the mechanism of laccase detoxification 
involved removal of monoaromatic phenolic compounds and 
associated formation of high molecular weight phenolics.

In another work, the laccase from T. versicolor was able 
to remove nearly all kinds of phenolic monomers present in a 
hydrolysate derived from wheat straw pretreated with liquid 
hot water after 24 h (Kolb et al. 2012).

The laccase redox potential is a crucial parameter to be 
considered for increasing the potential to oxidize a wide 
range of soluble phenolic compounds. In this sense, the 
bacterial laccase from Streptomyces ipomoeae showed 
lower efficiency than the commercial fungal laccase from 
T. villosa to detoxify the hydrolysate derived from a steam-
exploded wheat straw slurry (De La Torre et al. 2017). The 
laccase from S. ipomoeae displays lower redox potential, 
which could explain its limited capability to oxidize syrin-
galdehyde and ferulic acid, while the fungal laccase with 
higher redox potential can oxidize these compounds, as well 
as vanillin, p-coumaric acid and other phenolics.

Immobilized laccase from T. versicolor, in combination 
with anion exchange resin, were employed to reduce the 
amount of toxic phenolic compounds, furans and organic 
acids from organosolv-pretreated wheat straw hydrolysate, 
which improved fermentability of Pichia stipitis to produce 
ethanol (Ludwig et al. 2013). The laccase from T. versicolor 
was reported to detoxify furanic and phenolic aldehyde 
derivatives, and in the presence of a redox mediator, this 
enzyme broadened its activity to phenolic ketone deriva-
tives (Saravanakumar et al. 2016). The butanol production 
by Clostridium acetobutylicum was 2.7-fold higher than the 
untreated wood hydrolysate (Allard-Massicotte et al. 2017). 
According to the previous study, a combination of hydro-
lysate flocculation and laccase treatment reduced phenolic 
concentration from 1.20 to 0.28 g/L.

Although many studies observed positive effects when 
employing different types of laccases, detrimental effects 
have also been reported. For instance, the laccase (Novo-
zymes NS-22127) treatment provided little benefit to 
improve the fermentation of sugarcane bagasse hydrolysates 

using the ethanologenic Escherichia coli LY180. However, 
laccase treatment was more effective when combined with 
alkaline and vacuum treatment (Geddes et al. 2015). In 
another study, the laccase from Myceliophthora thermophila 
was combined with a cocktail containing redox enzymes to 
detoxify a sugarcane hemicellulosic hydrolysate, but this did 
not improve butanol production by the bacteria Clostridium 
saccharoperbutylacetonicum, or ethanol production by the 
yeast Scheffersomyces stipitis (Tramontina et  al. 2020). 
According to this previous study, the absence of redox medi-
ators together with the laccase reaction system could explain 
the absence of fermentation improvements.

Unquestionably, the application of laccases is a valuable 
strategy to detoxify hydrolysates and improve fermentation 
processes for biofuels production. However, it is important 
to consider the possible challenges and limitations of using 
laccases at an industrial scale and in biorefineries, includ-
ing enzyme production cost, the need for redox mediators 
and enzyme recycling (immobilization systems). Laccase 
inactivation and removal of high molecular weight phenolics 
derived from lignin prior to fermentation are processes that 
need to be evaluated for their improvement on the overall 
fermentation performance (Cho et al. 2009; Tramontina 
et al. 2020). Genetic engineering of fermenting microor-
ganisms to increase laccase production could also promote 
improvement by eliminating steps in the overall process 
(Larsson et al. 2001).

Peroxidases (AA2)

Fungal lignin peroxidases (LiP, EC 1.11.1.14), manganese 
peroxidases (MnP, EC 1.11.1.13) and versatile peroxidases 
(VP, EC 1.11.1.16) have shown potential for applications 
in detoxification of lignocellulosic hydrolysates. These 
enzymes are classified as family AA2 in the CAZy database 
and are included on the class II superfamily of plant and 
microbial peroxidases. Together with prokaryotic peroxi-
dases from class I and plant peroxidases from class III, all 
these enzymes comprise the superfamily of heme peroxi-
dases (Pandey et al. 2017).

The LiPs can catalyze the  H2O2‐dependent oxidative 
depolymerization of lignin, resulting in side-chain cleavage, 
demethylation, intramolecular addition, and rearrangements. 
(Chandra et al. 2017). The general LiP-catalyzed mechanism 
is a two-step reaction involving the native enzyme of the 
ferric state, an unstable intermediate (compound I) and the 
impartial oxoferryl intermediate (compound II) (Kumar and 
Chandra 2020).

The MnPs are heme-containing glycoproteins produced 
by almost all wood‐colonizing basidiomycetes (Pandey et al. 
2017). MnPs oxidize the one-electron donor  Mn2+ to  Mn3+, 
which in turn oxidizes phenolic substrates such as phenols 
and dyes, and have recently been employed in beech wood 
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organosolv hemicellulosic fraction detoxification (Yee et al. 
2018).

The VP is a broad heme-containing ligninolytic peroxi-
dase with different oxidation-active catalytic sites of high 
redox potential. This enzyme can oxidate lignin with no need 
of any redox mediator (Kumar and Chandra 2020).

DyPs are a new class of heme peroxidases (Sugano 2009) 
with a broad substrate specificity, and a lack of homology 
to most peroxidases. These enzymes function well in lower 
pHs, catalyzing one-electron oxidative transfers, resulting 
in free radicals. The latter can mediate the oxidation of 
non-phenolic and phenolic lignin models, as well as syn-
thetic dyes with high-redox potential, such as anthraquinone 
(Moreno et al. 2015).

The peroxidases have been applied in detoxification 
strategies to improve microbial fermentation, for example 
plant class III peroxidases, such as horseradish peroxidase 
(Tramontina et al. 2020); and from fungi such as Copri-
nus cinereus and T. versicolor DyP peroxidase (Cho et al. 
2009) (Table 1). These enzymes can remove 50 to 90% of 
total phenolics from plant biomass hydrolysates (Kurek and 
Monties 1994; Jönsson et al. 1998; Cho et al. 2009; Guo 
et al. 2013). Supplementation with  H2O2 is often applied 
in peroxidase treatments, improving phenolic compound 
removal from lignocellulosic hydrolysate (Yee et al. 2018). 
A possible strategy to avoid the peroxide supplementation is 
to combine enzymes that are known to generate  H2O2 (See 
item below), thus expanding the application of redox active 
enzymes for detoxification of lignocelullosic hydrolysates 
(Tramontina et al. 2020). In a recent study, the Pleurotus 
ostreatus class II peroxidase (AA2) had its activity enhanced 
by a lytic polysaccharide monooxygenase (LMPO—AA9), 
and the main mechanism was based on reactive oxygen spe-
cies (ROS) generation (Li et al. 2019).

Other AAs and potential detoxifying enzymes acting 
on lignin

Auxiliary active enzymes (AAs) class from the CAZy data-
base also display several protein families related to lignin 
oxidation/detoxification (Levasseur et al. 2013). Besides the 
traditional laccases in AA1 and peroxidases in AA2, which 
act on low and high molecular weight lignin fragments, the 
families AA4 and AA6 as well as the subfamilies AA3_2, 
AA_3 and AA5_1 have enzyme members that act directly 
on mono or di-lignols (Mori et al. 2016; Gygli et al. 2018). 
Other AA families, such as AA7 and subfamilies from AA3 
and AA5 are indirectly associated with lignin degradation/
detoxification since these families have enzymes related to 
the generation of Fenton reaction components, a mechanism 
observed in brown-rot fungi for lignocellulose oxidation 
(Janusz et al. 2017).

The subfamilies AA3_2 and AA3_3 is composed by aryl-
alcohols oxidases—AAOs (EC 1.1.3.7) and methanol oxi-
dases—MOXs (EC 1.1.3.13)—respectively, while AA5_1 
harbors the glyoxal oxidases—GLOXs (EC 1.2.3.15). The-
ses enzymes act on alcohol molecules derived mainly from 
lignin oxidation (Sützl et al. 2018). For example, extra-
cellular AAO from the white-rot fungi Pleurotus eryngii 
can methoxylate benzylic metabolites secreted by itself or 
derived from lignin, generating  H2O2 which is used to supply 
peroxidases during lignin degradation (Hernández-Ortega 
et al. 2012). In addition, it is reported that AAOs from Pleu-
rotus ostreatus are able to oxidize HMF, suggesting their 
application for detoxifying liquors derived from lignocel-
lulose pre-treatments (Feldman et al. 2015). Lastly, glyoxal 
oxidases contribute to lignin detoxification via dicarbonyl 
and hydroxycarbonyl oxidation, especially in glyoxal and 
methylglyoxal alcohols derived from lignocellulose degrada-
tion and pretreatment (Goswami et al. 2013). The AA4 fam-
ily is composed by FAD-dependent vanillyl-alcohol oxidases 
(VAOs; EC 1.1.3.38) and VAOs that converts a wide range 
of para-substituted phenols, transforming them into several 
different phenolic compounds such as vanillin and coniferyl 
alcohol (Gygli et al. 2018). However, their use in lignocel-
lulose detoxification for fermentation has not been reported.

The AA6 family harbors the 1,4-benzoquinone reductases 
(EC. 1.6.5.6), mainly found in yeasts. These enzymes are 
related to detoxification of aromatic compounds, protecting 
the cells from reactive quinones (Koch et al. 2017). As an 
example, the protein Pst2p from S. cerevisiae is a NADPH-
dependent 1,4-benzoquinone oxidoreductase that enables 
yeast cells to cope with quinone-induced damage, suggest-
ing a role of the enzyme in managing oxidative stress (Koch 
et al. 2017). Another example is PsBQR, a benzoquinone 
reductase from the lignin-degrading fungus Phanerochaete 
sordida YK-624, which when overexpressed in this fungi, 
enhanced the metabolism of low-molecular weight lignin 
fragments due to the effects of quinone redox cycling to 
produce hydroxyl radicals (Mori et al. 2016).

The potential of pro‑oxidant, antioxidant 
and detoxification enzymes (PADs) on lignin 
detoxification and degradation

The PADs group was recently denominated to correlate 
the broad range of activities found in the oxidoreductase 
enzyme class with lignin detoxification and degradation 
(Franco Cairo et al. 2016). The term has been accepted by 
other researchers to complement the CAZy database as well 
(Bissaro et al. 2018). Examples of PADs include catalases 
(CAT), p450 monooxygenases, alcohol dehydrogenases 
(ADH), glutathione S-transferases (GST), superoxide dis-
mutases (SOD), aldo–keto reductases (AKR) and many 
other oxidoreductases, which were previous displayed at 
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the extinct Detoxiprot database for redox enzymes (Yang 
et al. 2011).

One of the first reports of PAD enzymes acting in lignin 
degradation were the β-etherases (which belong to the GSTs 
superfamily—EC. 2.5.1.18) from Sphingomonas paucimo-
bilis SYK-6, encoded by the genes LigE and LigF (Masai 
et al. 1993). Afterwards, many other reports were published 
showing the ability of GSTs to cleave the β-O-4 aryl ether 
bond of low molecular weight lignin (DeAngelis et al. 2013; 
Masai et al. 2003; Ohta et al. 2015).

The PAD enzymes were first associated with synergistic 
lignin degradation/detoxification a decade ago (Tartar et al. 
2009), in works describing the digestion physiology of ter-
mites (Blattodea: Isoptera). Omics reports concerning the 
role of PAD and AA enzymes were published for the major 
urban pest in South America, the lower termite Coptotermes 
gestroi (Franco Cairo et al. 2016). Both reports indicated 
that PAD enzymes such as SOD, AKR, CAT and ADH could 
play a role in termite lignocellulose digestion.

Tramontina et al. (2017) depicted the role of AKR in 
the digestive physiology of the lower termite Coptotermes 
gestroi, showing multiple roles for this enzyme while work-
ing in synergy with the termite cellulase for cellulose cleav-
age. The AKR increased lignocellulose hydrolysis through 
the generation of  H2O2 and was also able to reduce FUR 
content in sugarcane hydrolysates, thus increasing fermen-
tation yields.

The role of SODs in lignin degradation was also reported 
recently. Rashid et  al. described a MnSOD as a major 
enzyme in the secretome of Sphingobacterium sp. T2 when 
grown on lignin (Rashid et al. 2015). Posteriorly, the same 
authors showed that MnSOD from Sphingobacterium per-
forms the oxidative demethylation of lignin via generation of 
hydroxyl radicals, producing lower molecular weight frag-
ments (Rashid et al. 2018).

A mixture of redox enzymes for the detoxification of a 
hemicellulosic hydrolysate derived from sugarcane bagasse 
pre-treatment was evaluated (Tramontina et al. 2020). The 
cocktail contained the PAD enzymes AKR and the Cu/Zn 
SOD from lower termite C. gestroi, horseradish peroxidase 
(HRP) and a laccase. It was shown that the synergism of 
HRP and SOD performed the degradation and reduction of 
hydroxyphenyl- and feruloyl-derived units, and also polym-
erized the lignin fragments from the hemicellulosic hydro-
lysate. This detoxification process allowed for the increase 
in butanol fermentation by the bacteria Clostridium saccha-
roperbutylacetonicum by 24-fold.

The roles of the PAD enzymes and other AA families for 
lignin detoxification certainly deserve to be better explored 
and further studies are now required to understand the mech-
anisms applied by PAD enzymes for lignin modification in 
biomass hydrolysates, as well as the techno-economic analy-
sis to use these enzyme mixtures as detoxifying cocktails.

Perspectives

The physical–chemical pretreatments are often mandatory 
for the efficient conversion of lignocellulose into biofuels 
and other bioproducts. The enzymatic detoxification can 
be adopted before the saccharification or the fermentation 
step to mitigate the harmful effects of ICs. Combining 
other detoxification treatments with enzymatic detoxifi-
cation is recommended for overall process improvements 
(Geddes et al. 2015). For instance, to include the applica-
tion of adsorbents, redox mediators, media alkalinization, 
and others, for the removal of all types of ICs (Moreno 
et al. 2015; Geddes et al. 2015; Travália et al. 2019).

The cost associated with enzyme production is the 
major obstacle for an economically feasible biocata-
lytic detoxification process (Ferreira et al. 2020). Thus, 
by developing ’tailor-made detoxification cocktails’, 
through genetic editing of fungal hosts to produce AA 
and PAD enzymes at large scale can enhance the detoxi-
fication potential and minimize overall costs of this pro-
cess. Finally, the development of enzymatic strategies 
for biomass to bioproducts applications is important to 
sustain the transition from a fossil fuel based-economy to 
a more sustainable bioeconomy, which is important not 
only because of environmental aspects related to climate 
change, but also because this action can stimulate job 
growth and economic opportunities.
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