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Abstract
Nitrogen and phosphorous are important inorganic water pollutants that pose a major threat to the environment and health of 
both humans and animals. The physical and chemical ways to remove these pollutants from water and soil are expensive and 
harsh, so biological removal becomes the method of choice to alleviate the problem without any side effects. The identifica-
tion of microorganisms capable of simultaneous heterotrophic nitrification and aerobic denitrification has greatly simplified 
the sequestration of nitrogen from ammonium  (NH4

+) into dinitrogen  (N2). Further, the discovery of phosphorous accumu-
lating organisms offers greater economic benefits because these organisms can favourably and simultaneously remove both 
nitrogen and phosphorous from wastewaters hence reducing the nutrient burden. The stability of the system and removal 
efficiency of inorganic pollutants can be enhanced by the use of immobilized organisms. However, limited work has been 
done so far in this direction and there is a need to further the efforts towards refining process efficiency by testing low-cost 
substrates and diverse microbial populations for the total eradication of these contaminants from wastewaters.

Keywords Nitrification · Denitrification · Simultaneous heterotrophic nitrification-aerobic denitrification · Phosphorus 
uptake · Phosphorus accumulating organisms · Wastewater

Introduction

Increasing population and subsequent industrialization over 
the past decades has created new challenges for the envi-
ronment. Every day, an enormous amount of waste from 
industries, agricultural reforms, mining activities, chemi-
cal fertilizers, pharmaceutical production plants, hospitals, 
landfills, and communal individuals is being disposed of into 
rivers and oceans (Khalaf 2016). This has increased the level 
of unwanted organic and inorganic material in the waters, 
causing pollution to exorbitant levels. As a consequence of 
this unjustified pollution, the crucial biogeochemical cycles 
of nitrogen and phosphorus have been extremely disturbed 
(Ahlström and Cornell 2018). Nitrogen mainly in the form 
of nitrate  (NO3

−) and phosphorous in the form of phosphate 
 (PO4

3−) has become the most common inorganic pollutants 
that have entered the water bodies.

The impact of these pollutants is profound and may pro-
long for many years (Ahlström and Cornell 2018). High lev-
els of nitrate pose extensive health hazards such as methe-
moglobinemia, thyroid problems, respiratory problems, 
tumours, etc. to humans and animals (Rajta et al. 2019). 
Nitrate and phosphate amalgamation in the aquatic ecosys-
tems leads to eutrophication causing an increase in biomass 
in the form of algal blooms, phytoplankton, and macro-
phytes. This adulteration changes the color of rivers, lakes, 
and the marine environment (Yang et al. 2016), reduces 
penetration of oxygen and light, and results in the deaths of 
aquatic life. This completely upsets the ecosystem balance 
and deteriorates the quality of water.

Nitrate is naturally available due to the processes of 
nitrification and mineralization of organic matter in the soil 
(Rajta et al. 2019). It is usually present in optimal concentra-
tions (Lockhart et al. 2013), however, being very soluble and 
mobile, its excessive amounts can easily seep from the sur-
face into groundwater and accumulate for decades causing 
adulteration of drinking water (Guadie et al. 2013). Exces-
sive nitrate originates from agricultural sources such as 
nitrogen-based fertilizers, waste tips, manure collected from 
the farming industry, landfills as well as non-agricultural 
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sources such as combustion of fossil fuels, domestic waste 
and industrial discharge (Savci 2012). Phosphorous is a non-
renewable resource but its agricultural utilization is ineffi-
cient. Large amounts of dissolved phosphorous (orthophos-
phate form) are lost to the soil and water bodies even though 
restricted inflow in water bodies is necessary to maintain 
high biodiversity. Non-point, anthropogenic sources such as 
natural decomposition of rocks and minerals, erosions, agri-
cultural runoff, and point sources such as household contri-
butions including human waste, laundry cleaners, household 
cleaning products and industrial waste (Parsons and Smith 
2008; Elser 2012) are responsible for phosphorus overload 
in surface and ground waters beyond ecological relevance.

Removal of nitrate and phosphate is undoubtedly a pri-
ority concern in wastewater treatment to retain the quality 
of open and ground waters (Fabro et al. 2015). Microor-
ganisms mediated simultaneous remediation of both is an 
environment-friendly and efficient strategy. The process is 
self-sustaining and has economical benefits as more than 
one pollutant can be targeted by the same microorganism. 
However, not much has been achieved so far in this direction 
and the process is still in its nascent stage of development.

This review describes the process of simultaneous nitri-
fication–denitrification and phosphorous removal (SNDPR) 
by aerobic microorganisms. Diverse microbial types that can 
perform different enzyme-mediated conversion reactions of 
nitrogen and phosphorous and the influencing factors are 
also discussed. Finally, a model for the process of SNDPR 
has been proposed. Previous reviews (Nancharaiah et al. 
2016; Winkler and Straka 2019) have mainly focussed on 
nutrient removal from wastewaters by the combined appli-
cation of biological and bio-electrochemical treatment sys-
tems to minimize energy requirements. Their large scale 
implementation is still awaited. This review enables a better 
understanding of the microbial process per se and describes 
the progress and lacunas in the simultaneous removal of 
nitrogen and phosphorous from contaminated waters by bio-
logical means.

Treatment technologies for environmental 
pollutants

Untreated waters coming from various sources may con-
tain high doses of contaminants such as calcium, iron, 
lead, chloride, magnesium, fluoride, phosphate, and nitrate 
(Sharma and Bhattacharya 2017). These wastewaters can 
be treated by different physical, chemical, and biological 
methods. Physical methods involve the application of physi-
cal forces. Clarifying the effluents by filtration, flocculation, 
floatation, and mixing (Topare et al. 2011) are some of the 
physical methods. Chemical methods involve the addition 
of chemicals. Chemical precipitation, chemical oxidation, 

and advanced oxidation are some of the chemical-based 
methods (Topare et al. 2011; De-Bashan and Bashan 2004). 
Biological treatment involves the breakdown of organic and 
inorganic wastes by several anaerobic and aerobic microor-
ganisms such as nitrifiers and denitrifiers (He et al. 2016b), 
converting them into gaseous forms. The chemical method 
is most appropriate for dealing with toxic inorganic com-
pounds. But, in turn, it further increases the chemical load 
of the waters. Moreover, these processes do not completely 
remove nitrogen and phosphorus from surface and ground-
water. Their success rate depends upon the type of operation 
and other impurities found in water (Carolin et al. 2017). 
As such, the biological approach is most acceptable for the 
complete removal of nitrogen and phosphorous compounds. 
A description of the various treatments and their advantages 
and disadvantages are summarized in Table 1.

Microbial proficiency for nitrogen removal

Microorganisms are the main biological components that 
help to remove nitrogenous pollutants from wastewater. 
Nitrification and denitrification are the two most impor-
tant processes involved in its biological treatment (Rajta 
et al. 2019). Conventionally, treatment methods were based 
on autotrophic nitrification and anaerobic denitrification. 
These were time-consuming and energy-intensive methods 
(Khardenavis et al. 2007) and involved treatment with dif-
ferent microorganisms having differing requirements for 
oxygen and electrons (Wan et al. 2017). In recent times, 
bacteria with a vast potential for treatment and removal of 
nitrogen under a variety of environmental conditions have 
been identified. These include diverse nitrifiers, denitrifiers, 
and those that can participate in simultaneous nitrification 
and denitrification (SND) (Bai et al. 2019). Identification 
of these microorganisms has revolutionized the wastewater 
treatment technology making it faster and more proficient 
than the conventional methods.

Nitrification implies the biological oxidation of ammo-
nium  (NH4) to nitrate  (NO3) under strict aerobic conditions 
(Thakur and Medhi 2019). Till the identification of complete 
ammonia oxidizers (Cotto et al. 2020), it was considered 
to be a two-stage process performed by different groups 
of organisms. The first stage of ammonia oxidation can be 
carried out by the autotrophic ammonia-oxidizing bacteria 
(AOB) and mixotrophic archaea and the second stage is 
performed by the nitrite-oxidizing bacteria (NOB). Ammo-
nia oxidizing archaea (AOA) predominate over the AOB 
in many environments, especially in extreme conditions, 
possess a higher affinity for oxygen and ammonia (Win-
kler and Straka 2019), and account for vigorous ammonia 
oxidation (Hou et al. 2013). AOA mainly belong to phy-
lum Thaumarchaeota with Nitrosopumilus maritimus and 
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Nitrososphaera viennensis as the dominant species (Limpi-
yakorn et al. 2011). Ammonia oxidizing bacteria (AOB) 
carry out the oxidation of ammonia to hydroxylamine by 
the enzyme ammonia monooxygenase (AMO) and hydroxy-
lamine is further oxidized by hydroxylamine oxidoreductase 
(HAO) to nitrite. Nitrite is converted to nitrate by the nitrite 
oxidase enzyme of the nitrite oxidizers (NOB) (Lei et al. 
2016). Ammonia oxidizing archaea possess the AMO genes 
but lack the HAO genes which catalyze the hydroxylamine 
oxidation process. Heterotrophic nitrification involves the 
oxidation of both inorganic and organic forms of nitrogen 
to nitrates by various heterotrophic bacteria (Stein 2011). In 
some of these microorganisms, the mechanism of ammonia 
oxidation is the same as in autotrophic ammonium oxidiz-
ing bacteria (AOB). This is supported by the observation of 
structural and functional similarity in the ammonia mono-
oxygenase and hydroxylamine oxidoreductase enzymes of 
heterotrophic nitrifiers, most particularly Paracoccus pan-
totrophus GB17, with that of ammonia-oxidizing bacteria 
(AOB) (Yokoyama et al. 2012). Other heterotrophic organ-
isms may carry out the oxidation of hydroxylamine by the 
cytochrome P460 (Zahn et al. 1994). The final step involving 
oxidation of nitrite to nitrate is catalyzed by the catalase 
enzymes (Stein 2011).

Comammox or the complete ammonia oxidizers are auto-
trophic organisms that catalyze the complete conversion of 
ammonia to nitrate by employing ammonia and nitrite as 
electron donors (Cotto et al. 2020). These organisms are 
found in both terrestrial and aquatic habitats and involve 
similar enzyme-catalyzed reactions as the AOB/AOA and 
NOB. However, the ammonia monooxygenase enzyme is 
phylogenetically distinct from that found in AOB and AOA 
(Daims et al. 2015). Sublineage II of genus Nitrospira is 
the distinctive branch responsible for complete nitrification. 
Comammox bacteria have a high affinity for ammonia and 
oxygen but a slower growth rate and offer great advantages 
in energy-saving and nitrogen polishing (Lawson and Lücker 
2018; Ren et al. 2020).

Anammox is an anaerobic process in which anaero-
bic ammonia-oxidizing bacteria use nitrite or nitrate as 
an electron acceptor to oxidize ammonium nitrogen to 
molecular nitrogen (Abbassi et al. 2014). These bacteria 
belong to the phylum Planctomycetes and include five gen-
era identified to date that play a vital role in the nitrogen 
cycle. These include Candidatus Brocadia, Candidatus 
Kuenenia, Candidatus Jettenia, Candidatus Scalindua, and 
Candidatus Anammoxoglobus (Nancharaiah et al. 2016; 
Ren et al. 2020). Initially, half of the available ammonium 
is oxidized to nitrite by oxygen. In anammox, this nitrite 
then acts as an electron acceptor and converts ammonium 
to nitrogen via the formation of two intermediates, nitric 
oxide (NO) and hydrazine  (N2H4) (van Niftrik and Jetten 
2012; Nancharaiah et al. 2016). The key enzymatic players 

in anammox are the nitrite reductase (NIR), hydrazine syn-
thase (HZS) and the hydrazine dehydrogenase (HDH). It 
is mainly an autotrophic process with a high affinity for 
ammonium and less release of greenhouse gases (Ren et al. 
2020) making it more effective than both nitrification and 
denitrification.

Aerobic denitrification, on the other hand, converts 
nitrate into gaseous nitrogen in a series of enzyme guided 
steps, nitrate reductase being the first enzyme of the path-
way (Rajta et al. 2019). Here, co-respiration is an impor-
tant mechanism where oxygen and nitrate are simultane-
ously used as electron acceptors (Chen and Strous 2013). 
In some aerobic microorganisms mechanism of hetero-
trophic nitrification is clubbed with aerobic denitrifica-
tion (Fig. 1). Heterotrophic genera capable of SND include 
Alcaligenes (Joo et al. 2005), Bacillus (Kim et al. 2005), 
Diaphorobacter (Khardenavis et al. 2007), Providenica 
(Zhao et al. 2010), Achromobacter, Comamonas, Agrobac-
terium (Chen and Ni 2011), Pseudomonas (Qiu et al. 2012; 
He et al. 2018; Zhang et al. 2019; Su et al. 2019), Serra-
tia (Huang et al. 2017), Enterobacter (Wan et al. 2017), 
Rhodococcus, Klebsiella (Su et al. 2019), Acinetobac-
ter (Xia et al. 2020). These microorganisms have several 
advantages such as a high growth rate and their individual 
ability to convert ammonium  (NH4

+) into nitrogen  (N2). 
Identification of these microorganisms has made nitrogen 
removal from wastewaters simpler as nitrification and 
denitrification can be performed at the same time under 
the same set of conditions. While the comammox organ-
isms can potentially shorten the process of simultaneous 
nitrification–denitrification, their activity may be limited 
by the presence of organic pollutants in wastewaters. 
Ammonia oxidizing archaea, on the other hand, can con-
tribute only to ammonium oxidation during SND (Wang 
et al. 2017). Anammox organisms can be very useful for 
the complete removal of nitrogenous substances with lim-
ited requirements. However, their potential is restricted 
by their extremely slow growth rate with a doubling time 
of 11 days or even more (Lan et al. 2011) making process 
development quite difficult.

As such, simultaneous heterotrophic nitrification-aero-
bic denitrification becomes the process of choice for the 
treatment of wastewaters with a considerable organic load. 
However, there are differences in the biochemical routes 
followed by different bacteria capable of SND and this 
makes it very tough to draw generalizations. For example, 
although denitrifying enzymes are found in Thiosphaera 
pantotropha, nitrate reductase is absent in Alcaligenes fae-
calis (Chen and Ni 2011) even though it performs SND. 
Therefore, it is important to identify a wider range of 
organisms with potentially enhanced abilities and path-
ways for SND (Zhao et al. 2010).
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Factors Affecting Simultaneous 
Nitrification–Denitrification

The activity of different organisms involved in nitrogen 
removal is mainly dictated by environmental conditions. 
Type of carbon source, C/N ratio, temperature, pH, and 
levels of dissolved oxygen have a significant influence on 
nitrogen removal by SND bacteria. Accordingly, the effect of 
these parameters on simultaneous nitrification–denitrifica-
tion has been widely investigated.

On the way to accomplish simultaneous heterotrophic 
nitrification and aerobic denitrification, several carbon 
sources such as glucose, succinate, acetate, sodium citrate, 
mannitol, trehalose, and glycerol have been reported for dif-
ferent bacteria including Pseudomonas (Yang et al. 2016), 
Enterobacter cloacae (Guo et  al. 2016), Anoxybacillus 
contaminans (Chen et al. 2015b), Paracoccus denitrificans 
(Medhi and Thakur 2018), Bacillus cereus (Barman et al. 
2018), Pseudomonas putida (Zhang et al. 2019), Acineto-
bacter sp. (Xia et al. 2020). Wan et al. (2017) used six dif-
ferent carbon sources (glucose, sucrose, mannitol, formic 
acid, trehalose, and sodium acetate) on Enterobacter cloacae 
HW-15 for SND activity and observed sodium acetate to be 
the most efficient carbon source. Similarly, Rout et al. (2017) 
reported 94%  NH4-N, 97%  NO3-N, and 84%  NO2-N removal 
in 36 h by Bacillus cereus GS-5 using sodium acetate as a 

carbon source. Glucose was judged as the best carbon source 
for Paracoccus denitrificans ISTOD1 and Bacillus cereus 
(Medhi et al. 2017; Barman et al. 2018). Appropriate carbon 
source helps to attain a high rate of growth and nitrogen 
removal in simultaneous heterotrophic nitrification–deni-
trification. Besides this, the concentration of carbon directs 
the flow of electrons in the process of nitrogen removal. 
Therefore, SND is also influenced by an optimum C/N ratio. 
Extremely low or high C/N ratios can adversely affect the 
process efficiency by inhibiting the growth of bacteria (Chiu 
et al. 2007). So far, a C/N ratio between 8 and 10 has been 
reported for efficient SND (Xia et al. 2020).

Many findings have confirmed that when the level of 
dissolved oxygen (DO) exceeds its critical value the pro-
cess of nitrogen removal by aerobic bacteria gets blocked. 
For example, Hocaoglu et  al. (2011) investigated the 
effects of dissolved oxygen on simultaneous nitrification 
and denitrification in membrane bioreactors and found 
that best nitrogen removal could be achieved between 
dissolved oxygen levels of 0.15 to 0.35 mgL−1. Further 
increasing the oxygen concentration significantly reduced 
the effectiveness of nitrate removal. Jin et al. (2015) have 
reported DO value between 0.3 and 0.8 mgL−1 as most 
effective for SND whereas, Li et al. (2018a) carried out 
simultaneous nitrification and denitrification at 1.2 mgL−1 
DO. It is important to maintain DO levels according to 

Fig. 1  Simultaneous nitrification–denitrification pathway in bacteria
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specific strain requirements (Barman et al. 2018). Lei et al. 
(2019) and Xia et al. (2020) reported 6.08 mgL−1 to be 
the best dissolved oxygen concentration for Ochrobactrum 
anthropic LJ81 and Acinetobacter sp. ND7, respectively. 
Therefore the level of dissolved oxygen is critical for 
simultaneous heterotrophic nitrification-aerobic denitri-
fication process. Temperature is another important factor 
that impacts the metabolic motion of the organism and 
improves the reaction rate in simultaneous heterotrophic 
nitrification-aerobic denitrification (Guo et al. 2013). Most 
SND bacteria are sensitive to variations in temperature 
and perform best within a temperature range of 25–37 °C 
(Rout et al. 2017; Zhang et al. 2019; Xia et al. 2020). A 
longer lag phase and interruption in gene expression were 
observed in SND capable Pseudomonas mandelli when 
grown at 10 °C (Lakha et al. 2009).

One of the drawbacks of the conventional method of 
nitrogen removal was the need for maintenance of specific 
pH conditions. While mild alkaline conditions (7–8) are 
appropriate for nitrification, a weakly acidic environment is 
preferred by denitrifiers (Lei et al. 2019). pH values closer 
to either 5 or 10 resulted in no change or increase in nitro-
gen removal due to the unsuitability of the strongly acidic 
or alkaline environment for the survival of bacteria (Zhang 
et al. 2019). However, simultaneous nitrification–denitrifica-
tion creates, in a cyclic manner, pH conditions appropriate 
for the process as a whole. The acidity generated during 
nitrification is suitable for the denitrification process which 
in turn creates alkaline conditions appropriate for nitrifica-
tion (Li et al. 2018b). Kim et al. (2005) reported that a pH 
value of 7 has a positive effect on simultaneous nitrification 
and denitrification ability of Bacillus strain. There are also 
available strains like Pseudomonas putida ZN1 (Zhang et al. 
2019) which prefer pH 7 as optimum for processes aerobic 
denitrification, heterotrophic nitrification, and simultaneous 
nitrification- denitrification.

The use of heterotrophic nitrification-aerobic denitrifica-
tion technology for real wastewater treatment is still in its 
early stages. This is mainly due to the reduced processing 
efficiency of potential strains. Fluctuations in salinity and 
nitrogen concentrations in real effluents also have a signifi-
cant impact on the performance of these strains (Zhang et al. 
2012; Gui et al. 2017). Therefore, it is urgent to identify 
strains capable of performing SND in hostile environments 
such as those with high concentrations of nitrogen and salt. 
He et al. (2019) isolated and identified Pseudomonas men-
docina TJPU04 and examined its cell growth and yield. 
Results expressed that strain TJPU04 is effective in nitrogen 
removal from effluent under non-sterile conditions of high 
salt content and variable nitrogen concentrations. Chlorate 
is another inhibitor of cell growth and denitrification (Zhou 
et al. 2014). However, studies performed by Lei et al. (2019) 
using the strain Ochrobactrum anthropic LJ81 confirmed 

that the addition of chlorate only affects denitrification and 
not the nitrification process.

Different studies have employed the use of different 
organisms and successfully achieved simultaneous nitrifi-
cation and denitrification. Lee et al. (2001) used a mixed 
methanotrophic culture in a batch reactor and reported com-
plete nitrate removal within 10 h but ammonia removal at a 
slower rate. Hibiya et al. (2003) successfully and completely 
removed nitrogen and carbon components from domestic 
wastewater by simultaneous nitrification–denitrification in 
a membrane -aerated biofilm reactor using different bacte-
ria distributed horizontally and vertically in biofilms fixed 
on hollow fiber membrane in a single reactor. Similarly, Qi 
et al. (2003) also reported an efficient SND process using 
aerobic granular sludge and controlling the amount of car-
bon in a sequencing batch reactor. Khardenavis et al. (2007) 
demonstrated the ability of Diaphorobacter for simultane-
ous nitrification and denitrification under aerobic condi-
tions with 85–93% COD removal and 92–96% ammonia 
removal and suggested their application in the treatment of 
high-nitrogen-containing wastewaters. Providencia rettgeri 
exhibited the ability to heterotrophically nitrify and aerobi-
cally denitrify ammonium within 12–48 h under conditions 
of C/N 10, 30 °C, 120 rpm (Taylor et al. 2009). Compact 
suspended carrier biofilm reactor system was operated by 
Xia et al. (2010) at different C/N ratios (10:1, 5:1, and 3:1) 
and the whole process was able to achieve 83.3% effective 
nitrification–denitrification at C/N ratio 3:1.

Chen and Ni (2011) isolated three strains, Achromobacter 
sp. GAD3, Comamonas sp. GAD4 and Agrobacterium sp. 
LAD9, from landfill leachate system. Out of these, GAD4 
was able to achieve the highest aerobic nitrification–deni-
trification rate of 0.381 mmol L−1 h−1, followed by LAD9 
(0.374 mmol L−1 h−1) and GAD3 (0.346 mmol L−1 h−1). 
Qiu et al. (2012) screened Pseudomonas sp. as an aerobic 
nitrifying-denitrifying bacterium from activated sludge with 
the capability to remove 94% of 70  mgL−1  NH4

+-N and 90% 
of 50  mgL−1  NO3

−-N. Alcaligenes faecalis C16 identified 
by Liu et al. (2015) was found to have the ability to hetero-
trophically nitrify and aerobically denitrify in the presence 
of both nitrate and ammonium. High ammonium tolerance 
of the organism was associated with the use of citrate and 
acetate as carbon sources with a C/N ratio of 7 for acetate 
and 14 for citrate. Lei et al. (2016) identified heterotrophic 
Zobellella taiwanensis DN-7 for the conversion of nitrite, 
nitrate, and ammonium to  N2 as the primary end product 
and advocated it as a promising candidate for high-strength 
ammonium wastewater treatments.

Flat-panel air–cathode microbial fuel cell (FA-MFC) sys-
tem using Nitrosomonas and Nitratireductor sp. was devel-
oped by Park et al. (2017) for treating domestic wastewater 
and complete removal of total nitrogen was achieved at a rate 
of 0.62 kg-Nm−3 d−1. Zhang et al. (2019) performed nutrient 
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removal by a Pseudomonas putida strain and accomplished 
97.47% ammonium, 86.08% nitrate, and 71.57% nitrite 
removal by heterotrophic nitrification-aerobic denitrifica-
tion. Ochrobactrum anthropic was found to remove sole and 
mixed nitrogen sources without accumulation of nitrite dur-
ing the SND process wherein more than 80% of initial nitro-
gen was converted into gaseous nitrogen (Lei et al. 2019).

Disproportionate levels of nitrogenous pollutants in dif-
ferent ecological niches with different environmental condi-
tions highlight the need for metabolic diversity and robust-
ness among the bacterial community to achieve successful 
nitrogen removal from wastewaters. So far, the identifica-
tion and performance of SND capable microorganisms are 
quite promising, especially in the most prevalent conditions 
of variable COD levels. However, it is necessary to further 
evaluate and establish their performance under in situ stress 
conditions of heavy metals, salt, and the presence of other 
microflora.

Phosphorous accumulating microorganisms

Excessive discharge of phosphorous into water bodies 
leads to eutrophication and other perilous effects associ-
ated with it. Enhanced biological phosphorus removal 
(EBPR) is the most effective and sustainable method to get 

rid of phosphorus from wastewaters (Nielsen et al. 2019). 
It employs the phosphate accumulating organisms (PAO) 
which follow an alternative aerobic-anaerobic cycle (Liu 
et al. 2018). During the anaerobic phase, PAOs hydrolyze 
the intracellular phosphate and glycogen reserves for energy 
generation. This energy is utilized for the uptake and storage 
of volatile fatty acids in the form of polyhydroxyalkanoates 
(PHAs). PHA synthesis is accompanied by the extracel-
lular release of phosphate ions. Uptake of organic matter 
gives a competitive advantage to PAOs. During the aerobic 
phase, these organisms degrade the accumulated PHAs as a 
source of energy and use a part of this energy to accumulate 
more phosphorous into their cells than that released dur-
ing the anaerobic phase and store it as polyphosphate, thus 
removing phosphorus from wastewaters (Shen and Zhou 
2016). Diagrammatically the process is depicted in Fig. 2. 
Microbial genera capable of EBPR include Microlunatus, 
Tessaracoccus (Stokholm-Bjerregaard et al. 2017), Tetras-
phaera (Marques et al. 2018), Candidatus Accumulibacter 
(Rubio-Rincon et al. 2019) and Dechloromonas (Anuar et al. 
2020) along with Pseudomonas stutzeri (Li et al. 2015), 
Enterobacter cloacae (Wan et al. 2017), Arthrobacter sp. 
(Zhang et al. 2020). Candidatus Accumulibacter phosphatis 
is considered important for phosphorous removal since it has 
been consistently found in wastewaters (Marques et al. 2018; 
Nielsen et al. 2019). It belongs to the family Rhodocyclacea 

Fig. 2  Biological route of phosphorous removal
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of class Beta Proteobacteria (Dorofeev et al. 2019). Acti-
vated sludge from wastewater treatment plants is the most 
well-known habitat of Candidatus Accumulibacter phos-
phatis besides sediments of estuaries and freshwater bodies 
(Dorofeev et al. 2020).

Process of phosphorous uptake is catalyzed by the activity 
of the enzyme polyphosphate-adenosine diphosphate phos-
photransferase, also known as polyphosphate kinase (ppk), 
encoded by the ppk gene (Li et al. 2015). It helps in the 
elongation of the poly-P chain (Achbergerova and Nahalka 
2011). PAOs chiefly prefer volatile fatty acids (acetate and 
propionate) for the synthesis of intracellular polyhydroxy-
alkanoates (PHAs). Their activity gets augmented at a pH 
between 6.5–7.5 and temperatures between 15–30 °C (Nan-
charaiah et al. 2016). Recently, Zhang et al. (2020) tested 
different conditions of pH and temperature and achieved 
above 99% phosphorus removal by Arthrobacter sp. HHEP5 
at temperatures between 18–28 °C and pH 5.5–8.5.

PAOs have a higher capacity for intracellular phosphorus 
accumulation than the non-phosphorous accumulating het-
erotrophic bacteria (Dorofeev et al. 2020). They may be used 
in laboratory-scale reactors and full-scale wastewater treat-
ment plants forming a dominant part of the bacterial com-
munity involved in the removal of phosphorus (Nancharaiah 
et al. 2016). However, low phosphorus removal efficiencies 
have been reported in PAOs identified so far. Therefore it is 
important to focus more on the isolation and identification of 
strains of PAOs with higher efficiencies since most species 
of known PAOs are significantly rare.

DNPAOs or the denitrifying phosphate-accumulating 
organisms are a subgroup of PAOs. These microorganisms 
are metabolically similar to PAOs (Bassin et al. 2012). Most 
significant DNPAOs belong to class Beta Proteobacteria 
and are Dechloromonas and Zoogloea (Kondo et al. 2009). 
Whereas PAOs can only use oxygen as an electron acceptor 
for respiration, DNPAOs can also use nitrite or nitrate (Yuan 
and Oleszkiewicz 2010) to absorb phosphates by degrading 
PHAs (Zhang et al. 2010). However, the affinity of PAOs 
towards oxygen is higher and phosphorous uptake faster than 
the DNPAOs (Salehi et al. 2019). Even then, the chemical 
oxidation demand is a limiting factor for PAOs and is over-
come by the process of simultaneous nitrification–denitrifi-
cation and phosphorous removal (SNDPR) that can achieve 
the removal of both nitrogen and phosphorus at low carbon 
levels in wastewaters (Bassin et al. 2012).

Simultaneous Removal Of Nitrogen 
And Phosphorus

The discovery of microorganisms capable of performing 
both simultaneous nitrification–denitrification and phos-
phorous removal (SNDPR) makes single-stage removal 

of nitrogen and phosphorous an attractive strategy (He 
et al. 2016a). So far, only a few microbial species with this 
potential have been cited (Table 2). These are mostly found 
in aquaculture environments and employ the same set of 
enzymes and genes as those involved in the individual pro-
cesses of EBPR and SND (Zhang et al. 2020). A model for 
the mechanism of SNDPR is illustrated in Fig. 3. Under het-
erotrophic aerobic conditions, organisms capable of SNDPR 
are concomitantly able to convert nitrogen compounds 
(mainly ammonium and nitrate) and uptake phosphorous 
intracellularly. While phosphorous gets accumulated in the 
form of polyphosphate, ammonium and nitrate undergo a 
series of enzyme-catalyzed steps resulting in the formation 
of dinitrogen. Part of this nitrogen is used up by the organ-
ism for its growth and the rest escapes into the environment.

SNDPR strains perform stable nitrogen and phosphorus 
removal at a low C/N ratio (Chen et al. 2020). The effective 
temperature is within the mesophilic range and pH between 
7 and 8 (Wang et al. 2018; Salehi et al. 2019). Major advan-
tages associated with the SNDPR process are lower COD 
demand, lesser sludge production, and low aeration cost 
(Wang et al. 2016). The potential of SNDPR organisms 
promises to solve the problem of bacterial changes to remove 
both nitrogen and phosphorus from wastewaters (Wan et al. 
2017). Also, their success rate ensures a cost-effective and 
sustainable strategy for wastewater treatment.

Role of SNDPR organisms in bioremediation

The identification of novel bacteria with a unified potential 
of SND and EBPR has opened ways for the simultaneous 
treatment of accumulated nutrients in industrial and domes-
tic wastewaters, eutrophic lakes, and aquaculture systems. 
However, the numbers and efficiency of these bacteria 
known so far are extremely low and their applicability is 
still very limited. Yang et al. (2010) performed simultane-
ous removal of nitrogen and phosphorus in a sequencing 
batch moving bed membrane bioreactor. COD/N ratio was 
kept between 5.6–12.9 and 93.5% carbon and 82.6% nitrogen 
removal was achieved. Also, an increase in time duration by 
2 h resulted in 84.1% total phosphorus removal. It was also 
observed that dissolved oxygen (3 mg L−1) in the aerobic 
phase was a major factor contributing to the simultaneous 
removal of nitrogen and phosphorus.

Over 13  months, synthetic wastewater was treated 
under alternating anaerobic and aerobic conditions in a 
lab-scale sequencing batch reactor sown with granular 
sludge. The loading rates of organic carbon, nitrogen, and 
phosphorus were 2.7 g  CODL−1 d−1, 0.43 g NL−1 d−1, and 
0.06 g PL−1 d−1 respectively and removal efficiency of 68% 
total COD, 86% total nitrogen, and 74% total phosphorous 
were obtained indicating that granular sludge facilitated the 
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SNDPR process (Yilmaz et al. 2008). Similarly, Kishida 
et al. (2009), Lochmatter et al. (2013), and Wei et al. (2014) 
also successfully used aerobic granular sludge systems for 
simultaneously removing nitrogen and phosphorus from 
wastewaters.

Auxenochlorella protothecoides, a microalgal strain was 
examined for nutrient removal and showed 59% removal 
of total nitrogen and 81% total phosphorus removal from 
municipal wastewater in six days (Zhou et al. 2012). Rasoul-
Amini et al. (2014) used batch cultures of five microalgae 
strains for removal of  NO3-N and orthophosphate  (PO4

3-P) 
from wastewater. It was observed that Chlorella sp. (YG01) 
achieved a higher N removal (84.11%) whereas strains Chla-
mydomonas sp. (YG05) and Chlamydomonas sp. (YG04) 
achieved higher P uptake (100%) from wastewater. Simi-
larly, a microalgae-bacteria consortium was prepared by 
Delgadillo-Mirquez et al. (2011) for the removal of nutri-
ents (nitrogen and phosphorus) and achieved an average of 
72–83% nitrogen and 100% phosphorus removal, besides 

converting these nutrients into biomass. Therefore, even 
microalgae have been found helpful in the removal of nutri-
ents from wastewater.

Phosphate accumulating bacteria Pseudomonas stutzeri 
YG-24 (Li et al. 2015) and Enterobacter cloacae HW-15 
(Wan et al. 2017) have presented a great ability of nitrogen 
and phosphorus removal from real wastewaters. Achromo-
bacter and Agrobacterium also possess a versatile genomic 
potential for concurrent removal of nitrogen and phospho-
rous in a single unit system during the treatment of waste-
water (Liu et al. 2018). Rout et al. (2017) used a Bacillus 
cereus strain and reported efficient simultaneous removal 
of ammonium, nitrate, nitrite, and phosphate from domes-
tic wastewater with average rates of 2.62, 2.69, 1.16 and 
0.42 mg L−1 h−1 respectively under aerobic conditions. 
Zhang et al. (2020) isolated Arthrobacter sp. HHEP5 as 
a novel PAO from a mariculture environment and demon-
strated its ability in mariculture and domestic wastewater 
treatment with 99% phosphorus and 95% nitrogen removal 

Table 2  Microbial spp involveld in simultaneous removal of nitrogen and phosphorus

Bacterial strain Reactor Isolation site Country Type of waste-
water

Nitrogen 
removal effi-
ciency (%)

Phosphorus 
removal effi-
ciency (%)

References

Auxenochlorella 
protothecoides 
UMN280

– Saint Paul, Min-
nesota

United States Muncipal waste-
water

59% 81% Zhou et al. (2012)

Pseudomonas 
stutzeri YG-24

– Beijing China Domestic waste-
water

80% 51% Li et al. (2015)

Bacillus cereus 
GS-5

– Bhubaneswar, 
Odisha

India Domestic waste-
water

– – Rout et al. (2017)

Enterobacter 
clocae HW-15

– Beijing China Domestic waste-
water

96.16 73% Wan et al. (2017)

Pseudomonas 
denitrificans 
ISTOD1

– JNU, New Delhi India Domestic waste-
water

71% 93% Medhi and 
Thakur (2018)

Accumulibacter 
sp

Sequencing 
batch reactor 
(SBR)

Queensland Australia Abattoir waste-
water

93% 89%, Yilmaz et al. 
(2008)

Bacillus origin 
MCC0008, 
MCC2059, 
MCC2071

Glass and Scaled 
up Bioreactor

Keshtopur, 
Kolkata

India Domestic waste-
water

94% 68% Saha et al. (2018)

Cadidatus 
Competibacter, 
Cadidatus 
Accumlibacter, 
Tetrasphaera

Partial 
nitrification 
endogenous 
denitrification 
and phospho-
rus removal 
(PNEDPR)

Beijing China Muncipal waste-
water

86.8% 90.9% Zhao et al. (2019)

Pseudorhodo-
bacter

Sequenc-
ing batch 
biofilm reactor 
(N-SBBR)

Tianjin China Domestic waste-
water

75.47% 65.87% Chao et al. (2020)

Arthrobacter sp. 
HHEP5

– – – Domestic waste-
water

95% 99% Zhang et al. 
(2020)
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in both the environments. They also reported that varying 
the environmental factors (pH, temperature, C/N ratio, P/N 
ratio, salinity, and rpm) improved the removal efficiencies 
of HHEP5.

The application of a microbial consortium is one of the 
fastest and energy-efficient technologies to date. Three dif-
ferent strains of Bacillus (MCC 0008, MCC 2059, MCC 
2071) were employed as a consortium at ambient tempera-
ture in a biofilm reactor and showed simultaneous sequestra-
tion of 94% nitrate, 68% phosphorus, 93% COD, 97% BOD 
and 73% total organic carbon (Saha et al. 2018). Zhao et al. 
(2019) appraised a novel system of nitrogen and phospho-
rus removal that could aid the removal of nitrogen deprived 
of carbon wherein Candidatus Competibacter ensured 
86.8% nitrogen removal and Candidatus Accumulibacter 
phosphatis and Tetrasphaera achieved 90.9% phosphorus 
removal. Rout et al. (2018) accomplished highly effective 
removal of nitrogen and phosphorus at the same time by 
immobilizing Bacillus cereus GS-5 strain in an inventive 
single unit multi-layered packed bed bioreactor which also 
included some packing parts containing a mixture of solid 
organic wastes and dolochar. The reactor was operated for 
70 days using both synthetic and domestic wastewater and 
was able to achieve 87–93% removal of  NH4

+-N, 69–88% 
 NO3-N removal, 84–100%  PO4

3−-P removal and also 
69.8–92% reduction of COD.

The bioremediation of nitrogen and phosphorous pol-
lutants is an economical and sustainable approach in com-
parison to other physical and chemical methods. However, 

the focus of most studies until now has been the microbial 
analysis of this system, and its adaptability and efficacy are 
quite unsatisfactory. The overall process requirements and 
time management become a lot simpler but performance 
would depend on the ability of microorganisms to increase 
removal efficiencies and overcome natural environmental 
conditions which bring in the need to explore newer strains 
with enhanced abilities for simultaneous removal of nitro-
gen and phosphorous under aerobic conditions using cost-
effective substrates.

Immobilization of biological components 
for removal of inorganic contaminants 
from water

Immobilization technology is receiving a lot of attention in 
treating wastewaters Immobilization involves the restricted 
movement of cells by natural or artificial means. Some of the 
most common immobilization techniques include covalent 
coupling, affinity immobilization, capture behind the semi-
permeable membrane, entrapment in polymers, and adsorp-
tion (Xie et al. 2020). Basic requirements for immobilized 
systems such as retention of viability, high cell density, and 
low leakage of cells from a matrix must be fulfilled for suc-
cessful water treatment. Apart from these, an ideal matrix 
for immobilization should be chosen which is resistant to 
disruption, non-toxic, and able to retain biomass. Studies 
have stated that immobilized cells can increase the removal 

Fig. 3  A model for the simultaneous nitrification–denitrification and phosphorous removal (SNDPR) in aerobic microorganisms
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efficiency of nutrients by more than 60% (Bouabidi et al. 
2019). Compared to free cells, immobilization of cells offers 
several great advantages in bioremediation such as increased 
conversion rates due to higher cell loading densities, con-
tinuous supply of nutrients without any competition with 
other organisms (De-Bashan and Bashan 2004), protection 
against environmental stress, no need for cell suppression 
(De-Bashan and Bashan 2010) and elimination of washout 
possibilities even at high dilution rates hence allowing a con-
tinuous process.

Different studies report the immobilization and co-
immobilization of organisms performing specific functions 
for the treatment of waters containing high concentrations 
of nitrogen and phosphorous (Shen et al. 2017). For exam-
ple, co-immobilization of nitrifiers and denitrifiers allows 
the two separate processes of nitrification and denitrifica-
tion to be conducted as if single staged. In this direction, 
Santos et al. (1996) prepared a simultaneous or one reactor 
system using a bubble column reactor in which Nitroso-
monas europaea and Pseudomonas denitrificans were co-
immobilized in a double layer of (25% v/v) alginate car-
rageenan beads and successfully achieved a high nitrogen 
removal rate (5.1 mmol N m−1gel s−1). Similarly, Hill and 
Khan (2008) conducted a bench-scale study using two reac-
tor systems to remove ammonia from sludge digester. One 
system comprised of immobilized nitrifiers and the other 
consisted of both co-immobilized denitrifiers and nitrifiers. 
It was seen that the co-immobilized cell reactor removed 
8.5% more total nitrogen than the cell reactor with individu-
ally immobilized nitrifiers. Large voids caused due to  N2 gas 
in several co-immobilized beads samples provided evidence 
of denitrifying activity.

Immobilization of microorganisms involved in nitrogen 
and phosphorous removal has also been carried out using 
different organic and inorganic carrier materials with a high 
success rate. Rhodobacter sphaeroids was immobilized on 
a porous ceramic plate for denitrification of sewage water 
and a high nitrate removal rate of 5.04 kg m−3 d−1was 
obtained (Nagadomi et al. 2000). Phosphate accumulating 
strain Pseudomonas stutzeri YG-24 was isolated from Taihu 
Lake, China, and immobilized in polyvinyl alcohol -sodium 
alginate beads. Even though both the free and immobilized 
cells were able to remove 97% to 100% phosphorus from 
synthetic wastewater, the removal process was faster using 
immobilized cells (8 h) than the free cells (12 h) (Li et al. 
2012). Similarly, Wang et al. (2013) isolated and immobi-
lized denitrifying Pseudomonas using polyvinyl-alcohol and 
reported that immobilized pellets had a significantly higher 
nitrate removal rate than the non-immobilized bacteria. 
Complete nitrate removal was achieved when pellets were 
reused in 12 h.

Ma et al. (2015) used three different supports, sodium 
alginate beads, mycelial pellets, and polyurethane foam 

cubes for immobilization of Pseudomonas stutzeri and 
achieved excellent nitrogen removal. Immobilization 
in sodium alginate beads had 57.25% nitrogen removal 
as compared to 29.7% by free cells. However, Tang 
et  al. (2020) used gel beads of sodium alginate, gra-
phene oxide, and polyvinyl-alcohol as a carrier material 
for Pseudomonas fluorescens Z03 to improve nitrogen 
removal efficiency at very low temperatures of 6–8 °C 
and found graphene oxide beads to be most effective with 
a removal efficiency of 96.38–97.24% and 98.82–99.12% 
for  NH4

+−N and  NO3
−−N respectively.

Chen et al. (2015a) incorporated biomass entrapped 
in bio-plates having cellulose triacetate structure into a 
reactor basin for carrying out simultaneous nitrification 
and denitrification and observed that bio-carriers were 
able to achieve 74% total nitrogen removal in domestic 
effluent without any supplemental carbon or alkalinity. 
This demonstrated the immobilization of biomass to be a 
very efficient mechanism for wastewater treatment plants. 
Simultaneous removal of nitrogen and phosphorus was 
achieved by Yin et al. (2015) using a sequencing batch 
reactor-biofilm system with an average removal of 95% 
COD, 94% total nitrogen, and 97% total phosphorus over 
3 months. Li et al. (2016) used a bio-trickling filter packed 
with biochar from porous palm residues and inoculated 
with microbial consortia for treatment of nitrogen and 
phosphorus-rich wastewater and achieved 80% ammonium 
and 68% phosphorus removal. Acinetobacter sp. TX5 was 
immobilized on the spent Hypsizygus marmoreus sub-
strate for simultaneous nitrification and denitrification 
of raw piggery wastewater (Yang et al. 2018). In a batch 
system, the immobilized Acinetobacter sp. TX5 achieved 
89%  NH4

+−N removal in 8 h; and in a continuous system 
it achieved 94–95%  NH4

+-N, 73–93% total nitrogen and 
54–82% COD removal in 96 h.

Katam and Bhattacharyya (2019) compared the use of 
immobilized microalgae and suspended activated sludge 
to suspended co-culture for nitrogen and phosphorous 
removal and concluded that immobilization of algae in 
alginate beads was synergistically better than suspended 
co-culture. Nancharaiah and Sarvajith (2019) and He et al. 
(2020) have promoted the use of aerobic granular sludge 
composed of self-immobilized microbial groups to achieve 
simultaneous nitrogen and phosphorus removal (SNDPR) 
from industrial and domestic wastewaters. Therefore 
the performance of microorganisms involved in nutrient 
removal from wastewaters has been enhanced using dif-
ferent immobilization matrices. However, the nature of the 
immobilization material can further influence the removal 
process which may also depend on the type of microbial 
species, wastewater, and environmental conditions.
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Conclusion

The bioremediation of polluted waters is imperative to 
maintain water quality. Among the diverse range of organ-
isms that can participate in the biological removal of inor-
ganic pollutants from wastewaters, the potential of bacteria 
with the ability for simultaneous heterotrophic nitrifica-
tion aerobic denitrification is far-reaching. Faster growth, 
simpler process requirements, conversion from ammonium 
to nitrogen, and the ability to perform under a variety of 
environmental conditions, places them ahead of other 
organisms with similar functions. Further, identification 
of novel phosphate accumulating bacteria that can remove 
both phosphorous and nitrogen has opened ways for the 
simultaneous treatment of accumulated nutrients. The 
success of SNDPR organisms ensures an economical and 
sustainable strategy and promises to overcome problems 
encountered in wastewater treatment such as the need for 
a shift in the microbial community due to different process 
requirements. However, studies about their adaptability 
and applicability are still very limited. Performance would 
depend on the ability of these microorganisms to increase 
removal efficiencies and overcome natural environmental 
conditions. The use of immobilized microorganisms over 
free cells can further enhance the removal rates. Therefore, 
it is urgent to explore newer strains with enhanced abili-
ties for simultaneous removal of nitrogen and phospho-
rous using cost-effective and environmentally responsive 
substrates for the total eradication of contaminants from 
wastewater.

Future prospects

The dangers of nutrient pollution need to be addressed to 
find long-term, economical solutions. Although the dis-
covery of aerobic heterotrophic bacteria that can simul-
taneously remediate both nitrogen and phosphorous in a 
single unit is a boon to a great extent, there are still defi-
ciencies that need to be overcome to achieve complete 
removal. There is a persistent requirement of extensively 
researched efficient strains that can withstand different 
environmental conditions to treat real wastewaters. The 
role of various genes and variability in metabolic path-
ways followed in aerobic organisms also need further 
understanding. Knowledge of the ecological interactions 
of these organisms with other microbiota can assist in the 
development of efficient consortia which can be applied 
to treat several other contaminants as well. There is an 
increasing need to focus on improving the performance 
and applicability of these organisms and the use of various 

natural carbon sources to reduce process costs. Thus, till 
the time these gaps are filled, the process of simultaneous 
nitrification–denitrification by phosphate accumulating 
microorganisms remains a partially fulfilled task in the 
treatment of contaminated waters.
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