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Abstract
Acidogenic clostridia naturally producing acetic and butyric acids has attracted high interest as a novel host for butyrate and 
n-butanol production. Among them, Clostridium tyrobutyricum is a hyper butyrate-producing bacterium, which re-assimilates 
acetate for butyrate biosynthesis by butyryl-CoA/acetate CoA transferase (CoAT), rather than the phosphotransbutyrylase-
butyrate kinase (PTB-BK) pathway widely found in clostridia and other microbial species. To date, C. tyrobutyricum has 
been engineered to overexpress a heterologous alcohol/aldehyde dehydrogenase, which converts butyryl-CoA to n-butanol. 
Compared to conventional solventogenic clostridia, which produce acetone, ethanol, and butanol in a biphasic fermentation 
process, the engineered C. tyrobutyricum with a high metabolic flux toward butyryl-CoA produced n-butanol at a high yield 
of > 0.30 g/g and titer of > 20 g/L in glucose fermentation. With no acetone production and a high C4/C2 ratio, butanol was 
the only major fermentation product by the recombinant C. tyrobutyricum, allowing simplified downstream processing for 
product purification. In this review, novel metabolic engineering strategies to improve n-butanol and butyrate production by 
C. tyrobutyricum from various substrates, including glucose, xylose, galactose, sucrose, and cellulosic hydrolysates containing 
the mixture of glucose and xylose, are discussed. Compared to other recombinant hosts such as Clostridium acetobutylicum 
and Escherichia coli, the engineered C. tyrobutyricum strains with higher butyrate and butanol titers, yields and productivi-
ties are the most promising hosts for potential industrial applications.
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engineering

Introduction

Butyric acid, a short-chain volatile fatty acid with broad 
applications in the chemical industry, is currently produced 
primarily by chemical synthesis from petroleum-based 
feedstocks (Wang et al. 2016; Zigova and Sturdik 2000). 
However, there is a high demand for biobased butyric acid 
as a natural ingredient for use in animal feeds, cosmetics, 
foods, and pharmaceuticals (Dwidar et al. 2012; Jha et al. 
2014). Therefore, there is an urgent need in developing 

bacterial strains for butyric acid production from sugars and 
renewable feedstocks in fermentation (Jiang et al. 2018). 
Clostridium tyrobutyricum, a Gram-positive, strictly anaero-
bic acidogen, produces acetic and butyric acids as the main 
products from glucose (see Fig. 1). In the dairy industry, 
C. tyrobutyricum is recognized as the main microbial con-
taminant affecting cheese quality due to the off flavor from 
butyrate (D’Incecco et al. 2015; Morandi et al. 2015). On 
the other hand, C. tyrobutyricum has been considered as the 
most promising microbial cell factory for butyric acid pro-
duction because of its high metabolic flux toward butyryl-
CoA and high butyric acid tolerance (Jiang et al. 2018; Yang 
et al. 2013a, b). Compared to other butyric acid producing 
bacteria including native Clostridium butyricum (Cummins 
and Johnson 1971; Sushkova et al. 2013; Zigova et al. 1999) 
and engineered Clostridium acetobutylicum (Jang et al. 
2014; Siller et al. 2008) and Escherichia coli (Jawed et al. 
2016; Kataoka et al. 2017; Saini et al. 2014), C. tyrobutyri-
cum can produce more butyrate at a higher titer with a higher 
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product yield and purity (Jiang et al. 2018). Figure 1 shows 
the metabolic pathways involved in butyric acid biosynthesis 
from glucose and other carbon sources.

In addition to butyric acid, engineered C. tyrobutyricum 
has been affirmed as a superior host for n-butanol produc-
tion, leveraging its high metabolic flux toward butyryl-CoA 
and tolerance to butanol at high concentrations (> 15 g/L) 
(Yu et al. 2011). As illustrated in Fig. 1, n-butanol can be 
produced from butyryl-CoA via a bifunctional aldehyde/
alcohol dehydrogenase (adhE2) from C. acetobutylicum. 
Unlike traditional acetone-butanol-ethanol (ABE) fermen-
tation with solventogenic clostridia such as Clostridium 

beijerinckii and C. acetobutylicum, butanol fermentation 
with engineered C. tyrobutyricum overexpressing adhE2 
does not produce acetone. In addition, the heterologous 
n-butanol biosynthesis pathway in C. tyrobutyricum is eas-
ier to control as the fermentation does not involve a phase 
transition from acidogenesis to solventogenesis in the ABE 
fermentation, which is also suppressed by sporulation 
under butanol stress (Xu et al. 2017). In addition, industrial 
ABE fermentation is susceptible to bacteriophage infec-
tion (Jones et al. 2000), which has rarely been observed or 
reported for C. tyrobutyricum (Mayer et al. 2010). There-
fore, the engineered C. tyrobutyricum-adhE2 with a simple 

Fig. 1  Metabolic pathways in engineered C. tyrobutyricum for 
butyrate and n-butanol production from glucose, xylose, galactose, 
and sucrose. (Gene name and abbreviation: ack: acetate kinase; 
adhE2: aldehyde/alcohol dehydrogenase; adh alcohol dehydroge-
nase; bcd: butyryl-CoA dehydrogenase; buk: butyrate kinase; cat1: 
butyryl-CoA/acetate CoA transferase; ctfAB: CoA transferase; crt: 
crotonase; etf: electron transferring flavoprotein; fba: fructose-1,6-di-
phosphatase; galK: galactokinase; galE: UDP-galactose 4-epimerase; 

galT: galactose-1-phosphate uridylyltransferase; gpi: phosphoglucose 
isomerase; hbd: β-hydroxybutyryl-CoA dehydrogenase; hydA: hydro-
genase; pta: phosphotransacetylase; ptb: phosphotransbutylase; pfkA: 
phosphofructokinase; pykA: pyruvate kinase; pgm: phosphoglyc-
eromutase; scrB: sucrose-6-phosphate hydrolase; scrK: fructokinase; 
scrA: sucrose-specific PTS; thl: thiolase; xylA: xylose isomerase; 
xylB: xylulokinase; xylT: D-xylose-proton symporter; HMP pathway: 
hexose monophosphate pathway)
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and un-regulated butanol biosynthesis pathway has outper-
formed any known microbes in n-butanol production and 
achieved the highest titer (> 25 g/L) and yield (> 0.3 g/g 
from glucose) reported so far (Yu et al. 2011; Zhang et al. 
2018).

While n-butanol has long been produced from sugars and 
starch in industrial ABE fermentation, currently butanol is 
almost exclusively produced via petrochemical routes and 
used mainly in industrial solvents and in the manufactur-
ing of acrylate esters, amino resins, and butylamines, with a 
worldwide market of ~ 1.5 billion gallons (4.5 million met-
ric tons) (Zhao et al. 2013). Butanol is also an attractive 
drop-in biofuel with superior fuel properties (high energy 
density, lower volatility, etc.). It has lower water miscibility, 
flammability, and corrosiveness than ethanol and is com-
patible with existing fuel infrastructures and can directly 
replace gasoline in engines without modification. Increasing 
demands for biobutanol as a green solvent in food, pharma-
ceutical, cosmetic and biofuel industries have prompted the 
search and development of novel bacterial strains for butanol 
production from renewable feedstocks (Cheng et al. 2019a; 
Wang et al. 2014; Xue et al. 2017).

This mini-review provides an overview of recent 
advances in metabolic engineering of C. tyrobutyricum for 
butyrate and n-butanol production from sugars and low-cost 
biomass feedstocks, highlighting strategies and challenges 
to enhance fermentation efficiency in order to reduce pro-
duction cost for industrial applications. We also give a brief 
introduction about C. tyrobutyricum and genetic engineering 
tools, including replicative plasmids for heterologous gene 
expression and CRISPR-Cas systems for genome editing, 
available for rational metabolic engineering of clostridia. We 
conclude with a brief discussion on perspectives for future 
research and development.

Genomics and metabolic pathway engineering of C. 
tyrobutyricum

The genomes of three C. tyrobutyricum strains have been 
fully sequenced and annotated. For the most widely studied 
strain ATCC 25755, it has a chromosome of 3,071,606 bp 
in size, a plasmid of 62,831 bp, and totally 3,220 genes (Lee 
et al. 2016). The strain CCTCC W428 has a chromosome 
of 3,011,209 bp, a similar plasmid of 62,833 bp, and totally 
3,038 genes (Wu et al. 2017a). The third strain Cirm BIA 
2237 has a slightly larger chromosome of 3,159,003 bp but 
no plasmid and 3,182 genes (Munier et al. 2019). In addi-
tion, several draft genome sequences have also been reported 
for different strains (Bassi et al. 2013; Soggiu et al. 2015; 
Storari et al. 2015a, b; Wasels et al. 2016). These genome 
sequences can provide genome-scale information about 
genes involved in various metabolic and regulatory path-
ways, which are not fully elucidated yet as many genes have 

not been annotated or their functions remained unspecified. 
Nevertheless, the available genomic information has given 
us a better understanding of the metabolism of C. tyrobu-
tyricum and facilitated rational metabolic engineering for 
creating mutant strains with superior fermentation ability to 
produce butyric acid and other chemicals such as n-butanol. 
For example, a recent genomic analysis has uncovered that 
C. tyrobutyricum re-assimilates acetic acid for butyric acid 
biosynthesis through the CoA transferase (CoAT encoded 
by cat1) pathway, rather than the phosphotransbutyrylase-
butyrate kinase (PTB-BK) pathway as in other clostridia 
including C. butyricum and solventogenic Clostridium spe-
cies (Lee et al. 2016).

Among the butyric acid producing clostridia, C. tyrobu-
tyricum has the smallest genome and a narrower substrate 
spectrum, but the highest butyric acid production potential 
based on the final titer and yield attained in fermentation 
(see Table 1). Since acetate, a major byproduct in butyrate 
fermentation, can be re-assimilated to generate butyrate via 
the CoAT pathway in C. tyrobutyricum, acetate production 
can be reduced to minimum with butyrate as the main or 
only fermentation product (Fu et al. 2017b; 2020), which 
not only increase butyrate yield but also ease downstream 
processing for product purification. Recent genomic and 
proteomic studies of C. tyrobutyricum have also suggested 
that the carbon distribution and energy conservation in C. 
tyrobutyricum favored the biosynthesis of C4 (butyrate) 
over C2 (acetate) metabolites (Lee et al. 2016; Ma et al. 
2015). Although C. tyrobutyricum is the leading candidate 
for fermentation production of biobased butyric acid and 
n-butanol, its prospects for industrial application can be 
improved by further increasing product yield, productivity, 
and titer.

Several replicative plasmids with G(+) replicons have 
been developed for clostridia, including pSOS94 (with 
pIM13 replicon from Bacillus subtilis), pJIR (with pIP404 
replicon from Clostridium perfringens), pMTL007 (with 
pCB102 replicon from C. butyricum), and pMTL80000 
series with replicons pIM13, pCB102, pCD6 (from 
Clostridium difficile), and pBP1 (from Clostridium botuli-
num), respectively (Heap et al. 2007, 2009). These plasmids 
have been successfully used for gene expression in various 
Clostridium species including C. tyrobutyricum (Yu et al. 
2011; 2012). Among them, pMTL82151 with pBP1 repli-
con gave the highest gene expression, plasmid stability, and 
transformation efficiency (Yu et al. 2012), which are criti-
cal to the development of a stable and robust recombinant 
strain for industrial fermentation. The PMTL plasmids can 
also be used with the retargeted Group II intron (ClosTron) 
for gene knockout on the chromosome (Heap et al. 2010). 
More recently, an endogenous type I-B CRISPR-Cas sys-
tem with significantly decreased toxicity was developed for 
genome editing in C. tyrobutyricum (Zhang et al. 2018). 
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Furthermore, eliminating native plasmid and type-I restric-
tion endonuclease in C. tyrobutyricum increased the trans-
formation efficiency and facilitated genome editing using 
the CRISPR-Cas9/Cpf1 system which was not applicable in 
wild-type C. tyrobutyricum (Zhang et al. 2020). The abil-
ity to perform efficient genome editing with CRISPR-Cas 
systems in C. tyrobutyricum is a major breakthrough that 
can facilitate multiple gene modifications and create stable 
strains without requiring a selection pressure (such as anti-
biotic resistance) suitable for use in industrial fermentation.

Empowered with newly available genomics data and 
genetic engineering tools, scientists constructed various C. 
tyrobutyricum mutant strains with desirable properties like 
increased butyrate/butanol titer, yield, productivity, toler-
ance, and substrate variety and utilization efficiency, which 
are discussed in the following sections.

Engineering strategies for enhancing butyrate 
production from glucose

Clostridium tyrobutyricum has been profoundly studied 
for improving butyrate production from various substrates 
through rational metabolic engineering strategies (Jiang 
et al. 2018). Table 2 summarizes metabolic engineering 

strategies applied to date with notable fermentation perfor-
mance boosts in final product titer, yield, productivity and 
purity or selectivity as indicated by the butyric acid to acetic 
acid ratio (BA/AA). So far most metabolic engineering stud-
ies have been focusing on eliminating acetic acid accumula-
tion and overexpressing genes in the butyrate biosynthesis 
pathway. An earlier attempt to knock out the pta and ack 
genes in the acetic acid biosynthesis pathway resulted in 
mutants (PTA-Em and ACK-Em) with a ~ 14% decrease in 
acetic acid production and ~ 30% higher butyrate produc-
tion in fermentation (Liu et al. 2006b; Zhu et al. 2005). For 
butyrate biosynthesis, C. tyrobutyricum uses butyryl-CoA/
acetate CoA transferase (cat1) to convert butyryl-CoA to 
butyrate, instead of the phosphotransacetylase and butyrate 
kinase (PTB-BUK) pathway commonly utilized in other 
clostridia such as C. butyricum and C. acetobutylicum (Lee 
et al. 2016). Overexpressing cat1 and crotonase (crt) in C. 
tyrobutyricum thus enhanced the flux from acetyl-CoA to 
butyrate and significantly reduced acetic acid production, 
which resulted in a 2.24-fold increase in the butyric acid to 
acetic acid ratio (BA/AA) to 15.76 g/g (Suo et al. 2018a). 
Meanwhile, overexpressing a [FeFe]-hydrogenase in C. 
tyrobutyricum increased hydrogen and butyrate production 
(Jo et al. 2010). Since hydrogen production has significant 

Table 1  Clostridial species producing butyric acid as the main fermentation product from various carbon sources

a The main fermentation products are indicated with capitalized first letter
b Butyrate production in fermentation: Butyrate product titer (g/L) and yield (g/g) from glucose as the carbon source, unless otherwise indicated
c Butyrate yield (g/g) based on total sugars present in sorghum juice and bagasse as the carbon source

Clostridium species Substrates Products a Butyrate Production b Genome (Mbp) References

tyrobutyricum Glucose, xylose, fruc-
tose, mannitol, lactate, 
acetate

Butyrate, acetate,  CO2, 
 H2

43–86.9 g/L,
0.40–0.46 g/g

3.13 Jiang et al. (2011, 2013, 
2017), Lee et al. (2016), 
Liu et al. (2006a), 
Munier et al. (2019), 
Storari et al. (2015a, 
b), Wasels et al. (2016), 
and Wu et al. (2017a)

butyricum Starch, glucose, disac-
charides, sugars

Butyrate, Acetate, succi-
nate, formate, lactate, 
 CO2,  H2

7.3–20.0 g/L,
0.24–0.30 g/g

4.54 Li et al. (2016), Mo et al. 
(2015), Sushkova et al. 
(2013), and Zigova 
et al. (1999)

acetobutylicum Starch, glucose, xylose, 
sucrose

Butanol, acetone, etha-
nol, Butyrate, acetate, 
 CO2,  H2

30.3–32.5 g/L, 
0.39–0.41 g/g

4.13 Bao et al. (2011), Jang 
et al. (2014), Siller 
et al. (2008), Xu et al. 
(2017)

beijerinckii Starch, glucose, xylose, 
sucrose

Butanol, acetone, etha-
nol, acetate, butyrate, 
 CO2,  H2

6.5 g/L,
0.13 g/g

6.00 Alam et al. (1988)

cellulovorans Cellulose, cellobiose, 
glucose, xylose, xylan, 
lactose

Butyrate, Acetate, for-
mate, lactate,  CO2,  H2

 ~ 3 g/L,
0.3 g/g

5.26 Tamaru et al. (2010); 
Yang et al. (2015)

thermobutyricum Glucose, fructose, 
xylose, maltose, cello-
biose, glucuronic acid, 
galacturonic acid

Butyrate, acetate, lac-
tate,  CO2,  H2

12.1–44 g/L,
0.35–0.41 g/g c

3.40 Wang et al. (2015)
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effects on electron balance and product distribution, add-
ing artificial electron carriers, such as benzyl viologen (BV) 
and methyl viologen (MV), in the fermentation medium 
was found to inhibit hydrogen production and shift the 
metabolism from acetic acid production to reassimilation 
for butyrate production, which resulted in a high BA/AA of 
58 g/g or a product purity of 98.3% in batch fermentation 
(Choi et al. 2012; Fu et al. 2017b).

To increase butyrate productivity from glucose, 6-phos-
phofructokinase (pfkA) and pyruvate kinase (pykA) in the 
EMP pathway were overexpressed individually or simulta-
neously in C. tyrobutyricum to enhance glucose catabolism 
(Suo et al. 2018b). Then, genes involved in butyric acid bio-
synthetic pathway, including thiolase (thl), crotonase (crt), 

and butyryl-CoA/acetate CoA transferase (cat1), were fur-
ther investigated for enhancing the butyrate titer and yield 
(Suo et al. 2018c). Finally, C. tyrobutyricum mutant strain 
co-expressing crt, cat1, pfkA, and pykA was shown to pro-
duce the highest level of butyric acid of 46.8 g/L with a 
productivity of 0.83 g/L·h and butyrate/acetate ratio of 
13.22 g/g in batch fermentation, which were 33.7%, 69.4% 
and 83.1% increase, respectively, as compared to the wild-
type C. tyrobutyricum (Suo et al. 2018c).

Butyrate production in fermentation is strongly inhibited 
by butyric acid, which at > 10 g/L would reduce cell growth 
and metabolic activities by more than 80% (Wu and Yang 
2003; Zhu and Yang 2003). Several Class I heat shock pro-
teins (including dnaJ, dnaK, grpE, groES, groEL, and htpG) 

Table 2  Metabolic engineering of C. tyrobutyricum for butyrate production

ack: acetate kinase; cat1: butyryl-CoA/acetate CoA transferase; crt: crotonase; galK: galactokinase; galE: UDP-galactose 4-epimerase; galT: 
galactose-1-phosphate uridylyltransferase; galP: non-phosphorylating transporter of galactose; pfkA: phosphofructokinase; ppcc: groES: heat 
shock protein; pta: phosphotransacetylase; pykA: pyruvate kinase; scrA: sucrose-specific PTS; scrB: sucrose-6-phosphate hydrolase; scrK: fruc-
tokinase; sdr: short-chain dehydrogenase/reductase; thl: thiolase; treS: trehalose synthase; xylA: xylose isomerase; xylB: xylulokinase; xylT: 
D-xylose-proton symporter;
a Yield on total sugar
b Value of calculation depending on experimental data

Engineering strategy Substrate Titer (g/L) Yield (g/g) Productivity (g/L·h−1) BA/AA (g/g) References

Wild type Glucose 20‒28.6 0.33‒0.34  ~ 0.33 3.0‒5.0 Zhu et al. (2005)
Sugarcane bagasse 20.9 0.51 0.48  ~ 3.48b Wei et al. (2013)
Corn fiber 29.0 0.47 2.91 10 Zhu et al. (2002)
Corn husk 21.8 0.39 0.34b 5.02 Xiao et al. (2018)

Δpta Glucose 32.5‒51.6 0.38‒0.44 0.63 6.55 Liu and Yang, 
(2006) and Zhu 
et al. (2005)

Δack Glucose 41.7‒63.0 0.42 0.23 5.41 Liu et al. (2006a) 
and Ma et al. 
(2015)

cat1 Glucose 38.2 0.39 0.40 12.65 Suo et al. (2018a)
thl 36.2 0.37 0.38 8.89
crt 37.9 0.39 0.39 11.11
cat1, crt 37.5 0.40 0.39 15.76
cat1, crt, thl 36.9 0.40 0.40 16.04
pfkA Glucose 42.3 0.37 0.44 7.95 Suo et al. (2018b)
pykA 38.6 0.36 0.40 7.45
pfkA, pykA 48.2 0.38 0.50 8.09
cat1, crt, pfkA, pykA Glucose 46.8 0.39 0.83 13.2 Suo et al. (2018c)
treS Glucose 34.6‒54.5 0.27‒0.43 0.9‒1.2 1.9‒4.8 Wu et al. (2017b)
groES Glucose 44.1‒52.2 0.34‒0.37 0.39‒0.41 7.0‒10.4 Suo et al. (2017)

Corn straw 29.6 0.37a 0.31 5.11 Suo et al. (2018c)
Rice straw 30.1 0.37a 0.31 5.16

sdr, groES Corn cob 32.8 0.36a b 0.29 3.28b Suo et al. (2019)
xylT, xylA, xylB Glucose & Xylose 37.5 0.34a 0.72 4.57b Fu et al. (2017b)

Soybean hull 29.7 0.35a 0.67 7.43b

Sugarcane bagasse 42.6 0.36a 0.56 7.89b

scrA, scrB, scrK Cane molasses 45.7 0.39a 0.54b 9.14b Guo et al. (2020)
galK, galE, galT, galP Spent coffee grounds 34.3 0.37a 0.36 5.56b He et al. (2020)
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known to play important roles in resisting environmental 
stress were investigated for their effects on butyrate tolerance 
in C. tyrobutyricum. Among them, the overexpression of 
groESL significantly improved the butyrate tolerance and the 
mutant gave a high level of butyric acid production of up to 
52.2 g/L, which was a 15.2% increase compared to the wild 
type strain (Suo et al. 2017). Wu et al. reported that overex-
pressing trehalose synthase (TreS), which converted maltose 
to trehalose, in C. tyrobutyricum increased the host’s oxida-
tive resistance and robustness under hypoxic and aerobic 
conditions (Wu et al. 2017b). Interestingly, compared to the 
wild type strain the mutant also produced significantly more 
butyrate in batch fermentations under acidic conditions (pH 
4.0 and 5.0). In addition, many earlier studies have focused 
on enhancing cell butyrate tolerance through adaptation in 
immobilized-cell bioreactor such as the fibrous bed biore-
actor (FFB) (Jiang et al. 2011; Zhu and Yang 2003). While 
the original strain was unable to grow in the presence of 
40 g/L butyric acid, cells immobilized in a FBB were able 
to produce up to 86.9 g/L butyric acid from glucose in a 
repeated fed-batch fermentation process (Jiang et al. 2011). 
The adapted cells in the FBB had an elongated rod morphol-
ogy and significantly elevated intracellular pH, which might 
have contributed to the higher butyric acid tolerance.

Engineering strategies for enhancing n‑butanol 
production from glucose

Yu et al. first introduced adhE2 into various strains of C. 
tyrobutyricum for n-butanol production from glucose, 
achieving a high butanol yield of 0.27 g/g (Yu et al. 2011). 
After optimizing the conjugative plasmid expression sys-
tem, C. tyrobutyricum Δack-adhE2 produced 20.5 g/L of 
n-butanol with a high yield of 0.33 g/g with mannitol as 
the substrate (Yu et al. 2012). However, large amounts of 
acids (acetate and butyrate) were also produced. To over-
come this problem, CoA transferase (encoded by ctfAB) 
from C. acetobutylicum was co-overexpressed with adhE2 in 
C. tyrobutyricum to facilitate the reassimilation of butyrate 
for n-butanol production, leading to over twofold increase 
in butanol productivity and yield (Yu et al. 2015a). How-
ever, acetone was also produced in the fermentation. More 
recently, using the native CRISPR-Cas system, Zhang 
et al. successfully knocked out cat1 with adhE2 insertion 
on the genome of C. tyrobutyricum and the mutant strain 
Δcat1::adhE2 produced 26.2 g/L n-butanol with a yield of 
0.23 g/g and very little butyrate production (Zhang et al. 
2018). However, large amounts of acetate and ethanol were 
also produced by this mutant in the fermentation. Additional 
metabolic and process engineering efforts are thus required 
to direct more carbon flux toward C4 compounds in order to 
further enhance n-butanol production, which might also be 
limited by NADH availability. These metabolic engineering 

strategies along with additional studies described in the fol-
lowing sections are summarized in Table 3.

Compared to butyric acid, each mole of butanol pro-
duced from butyryl-CoA requires additional two moles 
of NADH (see Fig. 1), which may cause redox imbalance. 
To increase NADH availability for butanol biosynthesis 
from glucose, Nguyen et al. (2018) knocked out the redox-
sensing transcriptional repressor gene (rexA) and replaced 
 NAD+-dependent 3-hydroxybutyryl-CoA dehydrogenase 
(hbd) with a heterologous  NADP+-dependent 3-hydroxybu-
tyryl-CoA dehydrogenase (hbd1) in C. acetobutylicum. They 
also replaced the native thiolase (thlA) with a heterologous 
acetoacetyl-CoA thiolase/synthase (atoB) to increase the 
flux from C2 (acetyl-CoA) to C4 (butyryl-CoA) and knocked 
out CoA transferase (ctfAB), butyrate kinase (buk) and phos-
photransbutyrylase (ptb). The resulting mutant produced 
n-butanol as the main metabolic product at a high yield of 
0.34 g/g glucose. Replacing  NAD+-dependent 3-hydroxy-
butyryl-CoA dehydrogenase with  NADP+-dependent one 
thus should have a positive effect on NADH availability for 
n-butanol biosynthesis in C. tyrobutyricum, which remains 
to be verified.

Some process engineering strategies have also been 
applied to improve n-butanol production. For example, add-
ing MV as an artificial electron carrier in the fermentation by 
C. tyrobutyricum Δack-adhE2 reduced acetate and butyrate 
production by more than 80–90% and increased n-butanol 
production to 14.5 g/L with a high yield of > 0.3 g/g (Du 
et al. 2015). The MV effect on increased butanol produc-
tion can be attributed to its effects on inhibiting hydrogen 
production and thus increasing available NADH for butanol 
biosynthesis. In addition, FBB was applied to immobilize C. 
tyrobutyricum adhE2, which not only dramatically increased 
cell density, but also improved butanol titer, yield, and pro-
ductivity with reduced acid production (Huang et al. 2019).

Engineering C. tyrobutyricum for butyrate/butanol 
production from low‑cost feedstocks

Although high-titer n-butanol and butyrate can be produced 
from glucose with a high yield because few byproducts are 
coproduced in the fermentation, especially with the addi-
tion of MV (Du et al. 2015), C. tyrobutyricum has a narrow 
substrate spectrum and can use only a few monosaccharides 
(glucose, xylose, and fructose), mannitol, and lactate for 
growth (Dwidar et al. 2012). This can be attributed to the fact 
that C. tyrobutyricum’s relatively small genome, compared 
to C. butyricum and C. acetobutylicum, is lacking genes for 
starch and disaccharides, such as maltose and sucrose, trans-
port and catabolism (Jiang et al. 2018). In order to expand 
the substrate spectrum of C. tyrobutyricum, heterologous 
sucrose, maltose, and galactose catabolism pathways have 
been successfully introduced into C. tyrobutyricum.
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For sucrose catabolism, sucrose-specific PTS (scrA), 
sucrose-6-phosphate hydrolase (scrB), and fructokinase 
(scrK) from C. acetobutylicum were co-expressed in C. 
tyrobutyricum (Guo et al. 2020). The mutant strain was 
able to utilize cane molasses as both nitrogen and carbon 
sources and produced 45.7 g/L butyric acid with a yield of 
0.39 g/g in fed-batch fermentation. Similarly, C. tyrobutyri-
cum was engineered to co-express adhE2 with scrK, scrB, 
and scrA for n-butanol production from sucrose (Zhang et al. 
2017a). The mutant produced 16 g/L n-butanol with a yield 
of 0.24 g/g sugars from sugarcane juice supplemented with 
corn steep liquor (CSL) (Zhang et al. 2017b). Compared 
to glucose as the substrate, the feedstock cost was reduced 
by ~ 50% when cane molasses or sugarcane juice was used 
in the fermentation.

Metabolic engineering of C. tyrobutyricum for 
n-butanol production from maltose and soluble starch was 
also studied (Yu et al. 2015b). Two α-glucosidase genes, 
agluI and agluII, from C. acetobutylicum were cloned 
and co-expressed with adhE2 in C. tyrobutyricum Δack. 
The mutant expressing agluI demonstrated robust activity 
in breaking down the α-1,4-glycosidic bonds in maltose 
and starch and produced 17.2 g/L butanol from maltose 
with a yield of 0.20 g/g and productivity of 0.29 g/L·h in 
batch fermentation. With soluble starch, 16.2 g/L butanol 
was produced with a yield of 0.17 g/g and productivity 
of 0.20 g/L·h. Because of the inherent higher butanol 

tolerance, the mutant was able to produce more butanol at 
a remarkably higher productivity as compared to C. aceto-
butylicum ATCC 824 (11.2 g/L at 0.10 g/L·h from maltose 
and 8.8 g/L at 0.10 g/L·h from soluble starch).

For galactose catabolism, the recombinant C. tyrobu-
tyricum kept was constructed by co-expressing UDP-
galactose 4-epimerase (galE), galactokinase (galK), 
phosphoglucomutase (galP), and galactose-1-phosphate 
uridylyltransferase (galT) genes from C. acetobutylicum, 
which utilized glucose and galactose simultaneously with-
out glucose-mediated carbon catabolite repression (CCR) 
(He et al. 2020). When using hydrolyzed coffee ground 
(rich in galactose) as the substrate, the mutant strain pro-
duced 34.3 g/L butyric acid with a yield of 0.37 g/g, which 
were 78.6% and 56.5%, respectively, higher than those 
from the wild-type strain.

C. tyrobutyricum can also use xylose as the sole carbon 
source in fermentation (Liu and Yang 2006). The product 
(butyrate and butanol) yields from xylose were comparable 
to those from glucose although xylose utilization involves 
the hexose monophosphate pathway that would give slightly 
less ATP but more NADH and thus somewhat different 
product profiles under different pH conditions (Zhu and 
Yang 2004). However, in the presence of glucose, xylose 
utilization was greatly inhibited by glucose-mediated CCR, 
which could be alleviated by overexpressing three xylose 
catabolism genes (xylB: xylulokinase, xylT: D-xylose-proton 

Table 3  Metabolic engineering of C. tyrobutyricum for n-butanol production

ack: acetate kinase; agluI: α-glucosidase; cat1: butyryl-CoA/acetate CoA transferase; ctfAB: butyryl-CoA/acetate CoA transferase; scrA: 
sucrose-specific PTS; scrB: sucrose-6-phosphate hydrolase; scrK: fructokinase; xylA: xylose isomerase; xylB: xylulokinase; xylT: D-xylose-
proton symporter;
a Yield on total sugar
b Value of calculation depending on experimental data

Engineering strategy Substrate Titer (g/L) Yield (g/g) Productivity 
(g/L·h−1)

References

Δack-adhE2 Glucose 10.0 0.27 0.03b Yu et al. (2011)
Mannitol 16.0 0.31 0.06b

Mannitol 20.5 0.33 0.32 Yu et al. (2012)
Glucose 14.5 0.28 0.13 Du et al. (2015)
Cassava bagasse 13.0 0.34 0.26 Huang et al. (2019)
Corn fiber, cotton stalk, soybean 

hull, sugarcane bagasse
15.0 0.30 0.30 Li et al. (2019)

Δack-adhE2, ctfAB Glucose 12.0 0.26 0.35 Yu et al. (2015a)
Δack-adhE2, scrA, scrB, scrK Sucrose 14.8 0.21 0.15 Zhang et al. (2017b)

Sugarcane juice 12.8 0.21 0.53
Δack-adhE2, agluI Maltose 17.2 0.20 0.29 Yu et al. (2015b)

Soluble starch 16.2 0.17 0.19
Δack-adhE2, xylT, xylA, xylB Glucose/Xylose 12.0 0.12a 0.17 Yu et al. (2015c)

Soybean hull 15.7 0.24 0.29
Δcat1:adhE2 Glucose 26.2 0.23 0.16b Zhang et al. (2018)

Paper mill sludge 16.5 0.26 0.17b Cao et al. (2020)
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symporter, and xylA: xylose isomerase) from C. acetobutyli-
cum (Fu et al. 2017a; Yu et al. 2015c).

Compared to C. butyricum and C. acetobutylicum, engi-
neered C. tyrobutyricum strains with heterologous galactose, 
maltose, and sucrose catabolism genes gave better fermenta-
tion performance due to their higher tolerance to butyrate 
and butanol. The engineered C. tyrobutyricum strains thus 
can provide more robust and cost-effective processes for 
industrial butyrate and butanol production from food pro-
cessing wastes such as sugarcane molasses and spent coffee 
ground.

Engineering strategies for using lignocellulosic 
biomass hydrolysates

Lignocellulosic biomass (LCB) is the most abundant renew-
able resource on the planet (Kumar et al. 2013). The feasibil-
ity of using LCB hydrolysates as low-cost feedstock has thus 
also been explored for butyric acid and butanol production 
by C. tyrobutyricum (Baroi et al. 2015; Cao et al. 2020; Chen 
et al. 2017; Huang et al. 2011; 2016a; 2016b; 2019; Liu 
et al. 2013; Oh et al. 2019; Sjoblom et al. 2016; Song et al. 
2011; Wei et al. 2013; Xiao et al. 2018; Zheng et al. 2018; 
Zhu et al. 2002). The application of LCB in fermentation 
requires relatively harsh chemical, physical, and/or thermal 
pretreatments before enzymatic hydrolysis of cellulose. The 
pretreatment process usually generates chemical inhibitors 
derived from the degradation of lignin and sugars (Amiri 
and Karimi 2018; Sharma et al. 2019). In general, immo-
bilized cells had better resistance to the hydrolysate inhibi-
tors, especially after adaptation in bioreactors. Compared 
to free-cell fermentation, significantly higher butyrate and 
butanol titers and productivities were obtained from LCB 
hydrolysates when C. tyrobutyricum cells were immobilized 
in fibrous bed bioreactor (FBB) (Fu et al. 2017b; Li et al. 
2019; Wei et al. 2013; Xiao et al. 2018). Various detoxifica-
tion approaches (chemical, physical or biological methods) 
have been developed to remove inhibitors in the hydrolysates 
prior to fermentation (Jönsson et al. 2013). For example, 
an in-situ detoxification process using Tween 80 as a sur-
factant was found to be effective in removing hydrolysate 
inhibitors in pretreated rice straw hydrolysate, which after 
detoxification could be directly added in C. tyrobutyricum 
fermentation broth for butyrate production with comparable 
performance to that from pristine sugars (Lee et al. 2015).

However, detoxification is not always effective and can 
be costly (Jönsson et al. 2013). Improving cell tolerance 
to LCB-derived inhibitors via metabolic engineering was 
thus investigated. One study showed that the overexpres-
sion of Class I heat shock protein genes (groESL) improved 
the fermentation performance of C. tyrobutyricum with a 
significantly higher butyrate production from glucose (Suo 
et al. 2017) as well as LCB (corn straw and rice straw) 

hydrolysates as compared to the wild type (Suo et al. 2018b). 
More recently, a short-chain reductase (SDR) and aldo/keto 
reductases (AKR) from C. beijerinckii were investigated 
for enhancing the fermentability of undetoxified corncob 
acid hydrolysate (Suo et al. 2019). SDR and AKR can cata-
lyze the reduction of furfural and 5-hyroxymethyl furfural 
(HMF) to corresponding alcohols, which are less toxic than 
the aldehydes (Suo et al. 2019). Compared to the parental 
strain, butyrate fermentation productivity was improved to 
0.29 g/L·h with the butyric acid titer increased by 28.1% 
when sdr and groESL genes were co-overexpressed in C. 
tyrobutyricum (Suo et al. 2019).

LCB hydrolysates contain glucose and xylose as two 
main types of monosaccharide. Although most of clostridia, 
including C. acetobutylicum and C. tyrobutyricum, can use 
xylose as the sole carbon source, xylose utilization in the 
presence of glucose was greatly inhibited by CCR, leading 
to poor xylose consumption and low fermentation produc-
tivity (Xiao et al. 2012). To overcome the CCR in glucose/
xylose co-fermentation, three xylose catabolism genes xylB, 
xylT, and xylA from C. acetobutylicum were expressed in 
C. tyrobutyricum Δack and Δack:adhE2 for butyrate and 
butanol production, respectively (Fu et al. 2017a; Yu et al. 
2015c). Glucose and xylose co-utilization with significantly 
reduced residual xylose was achieved in batch fermentations 
with these mutants. The mutant Ct-pTBA was evaluated 
with the hydrolysates of sugarcane bagasse, rice straw, corn 
fiber, wheat straw, and soybean hull. A high butyric acid 
titer of 42.6 g/L with a yield of 0.36 g/g and productivity of 
0.56 g/L·h was obtained from sugarcane bagasse hydrolysate 
(Fu et al. 2017b), which were significantly higher than those 
from the wild type (see Table 2). In batch fermentation with 
C. tyrobutyricum Δack:adhE2-pTBA, 15.7 g/L n-butanol 
with a yield of 0.24 g/g was produced from soybean hull 
hydrolysate (Yu et al. 2015c). Clearly, expressing xylA, xylB, 
and xylT alleviated the CCR bottleneck in C. tyrobutyricum 
and was effective in enhancing butyrate and butanol produc-
tion from LCB hydrolysates containing glucose and xylose. 
Table 3 summarizes notable metabolic engineering strate-
gies applied to C. tyrobutyricum for n-butanol production 
from various substrates.

Comparison to other bacterial hosts for butyrate 
and n‑butanol production

Compared to the best recombinant microbes engineered to 
date for butyrate and n-butanol production, engineered C. 
tyrobutyricum strains generally gave higher product titer, 
yield, and productivity and thus would have greater potential 
for industrial application (see Table 4). Native solventogenic 
C. acetobutylicum produces acetone, butanol, and ethanol as 
the main products at a mass ratio of 6:3:1 with a relatively 
low butanol titer (10 − 14 g/L) and yield (~ 0.2 g/g). After 
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multiple gene manipulations (overexpression and deletion 
of multiple genes) Nguyen et al. (2018), were able to engi-
neer C. acetobutylicum to produce mainly n-butanol without 
acetone, achieving a high butanol yield of 0.34 g/g. Several 
mutant strains of C. acetobutylicum ATCC 824 with pta, 
ctfB, and adhE1 knockouts were able to produce up to 31 g/L 
butyric acid with a high BA/AA ratio of 31.3 g/g and negli-
gible solvent production when buk was also inactivated (Jang 
et al. 2014). In addition, E. coli, which has the most well-
developed genetic tools and has been extensively studied as 
a robust host for production of a variety of chemicals, has 
also been metabolically engineered to produce butyrate and 
n-butanol. For example, Shen et al. (2011) engineered E. coli 
to express a chimeric n-butanol biosynthetic pathway with 
increased NADH availability to achieve a high n-butanol 
titer of ~ 15 g/L with a yield of 0.28 g/g (~ 70% theoreti-
cal). Metabolically engineered E. coli strains were also con-
structed to produce butyrate at a high yield (0.31 − 0.43 g/g) 
with minimal acetate production, achieving a high selectiv-
ity with the highest BA/AA ratio of 143 g/g obtained from 
20 g/L glucose and 8 g/L acetate in an LB medium (Saini 
et al. 2014). However, E. coli has relatively poor tolerance 
to butyric acid and butanol, and the highest butyrate and 
butanol titers produced so far were much lower than those 
from clostridial fermentations. Although C. tyrobutyricum 
is more difficult to engineer because of limited genetic engi-
neering tools and its relatively low transformation efficiency, 
overall it is a better host with superior fermentation perfor-
mance in product titer, yield, and productivity.

Moreover, compared to C. acetobutylicum and other sol-
ventogenic clostridia used in industrial ABE fermentation, 
C. tyrobutyricum is not as susceptible to sporulation (Xu 
et al. 2017) and bacteriophage infection (Jones et al. 2000). 
Although several strains of C. tyrobutyricum (NCIMB 9582, 
NCIMB 701753 and 701756) were found to be suscepti-
ble to the phage φCTP1 isolated from a landfill site (Mayer 
et al. 2010), no bacteriophage infection of C. tyrobutyricum 
ATCC 25755 has ever been observed in a continuous or fed-
batch fermentation process operated for an extended period 
(over a month). It is noted that phage-resistant strains can 
be obtained through screening/isolation (Liu et al. 2017) or 
genetic engineering to clone and express a potent restriction/
modification system (such as using CRISPR/Cas9 technol-
ogy for double-strand DNA cleavage) targeting selected 
phage genes (e.g., endolysin) (Baltz et al. 2018).

Conclusions and prospects for further 
developments

Clostridium tyrobutyricum has attracted a great deal of inter-
est as a robust host for butyrate and butanol production. To 
date, impressive progresses in strain and process engineering 

have been achieved for butyrate and butanol production from 
low-cost lignocellulosic biomass. However, at the current oil 
prices of ~ $40/barrel, bio-butyrate and butanol production 
by fermentation with native or engineered microorganisms 
including C. tyrobutyricum is not economically competitive 
with conventional chemical synthesis routes.

There are challenges and opportunities in further engi-
neering C. tyrobutyricum for efficient utilization of lignocel-
lulosic biomass hydrolysates to attain desirable product titer, 
yield and productivity suitable for industrial application. 
Genome-scale analyses, including comparative genomics, 
transcriptomics, and metabolomics analyses, are valuable 
in guiding rational metabolic engineering at a systems level 
and have been applied to clostridia (Yoo and Soucaille 2020; 
Ou et al. 2020) but not C. tyrobutyricum yet. Further strain 
engineering may also require more sophisticated strategies 
and approaches such as multivariate modular metabolic 
engineering (Biggs et al. 2014), which would require a well-
characterized “toolbox” including replicon (ori), ribosomal 
binding sites (RBS), promoters, and reporters (Joseph et al. 
2018). Replicon plays a significant role in plasmid copy 
number and transformation efficiency (Yu et al. 2012). RBS 
and promoter are important in regulating gene expression 
and balancing metabolic flux and redox potential, which are 
critical to optimizing cell growth and metabolic activities. 
Efficient reporter systems suitable for anaerobes, such as 
the one based on a flavin mononucleotide (FMN)-dependent 
fluorescent protein Bs2 (Cheng et al. 2019b), can facilitate 
the evaluation and screening of promoters with different 
strengths and thus would be valuable in promoter engineer-
ing. These novel genetic engineering toolkits and CRISPR-
Cas9 genome-editing systems have rapidly advanced syn-
thetic biology (Kwon et al. 2020; Joseph et al. 2018) and 
should facilitate the further development of C. tyrobutyricum 
for butyrate and n-butanol production.

In addition to metabolic engineering, adaptation or evo-
lutionary engineering has also been demonstrated as an effi-
cient strategy to enhance cell tolerance to toxic chemicals 
such as butyric acid and n-butanol. Cells highly tolerant 
to butyric acid or n-butanol were obtained after prolonged 
exposure to the corresponding metabolite produced in fed-
batch or repeated batch fermentation in a FBB (Jiang et al. 
2011; Yang and Zhao 2013; Zhu and Yang 2003). Com-
parative genomic analysis revealed that the butanol toler-
ant mutant strain C. acetobutylicum JB200 had a single-
base deletion in a histidine kinase (encoded by cac3319). 
This finding led to the development of cac3319 knockout 
mutant with 45% higher butanol production (~ 18.2 g/L 
vs. ~ 12.6 g/L for the parental strain) and a 90% higher 
productivity (Xu et al. 2015). Histidine kinase is involved 
in the phosphorylation or activation of Spo0A, a global 
regulator in clostridia which is known to control not only 
sporulation but also stress response and solventogenesis 
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in C. acetobutylicum (Steiner et al. 2011). It has also been 
reported that inactivating the sporulation transcription fac-
tor (spo0A) enhanced the butanol tolerance and production 
ability of Clostridium cellulovorans after adaptation (Wen 
et al. 2019). Therefore, we can speculate that knocking out 
histidine kinase and/or spo0A in C. tyrobutyricum may also 
enhance its ability to produce more butyric acid and butanol.

Finally, the engineered C. tyrobutyricum with enhanced 
tolerance can be used in an integrated process with in situ or 
on-line product separation, such as liquid–liquid extraction 
for butyric acid (Wu and Yang 2003) and gas stripping for 
butanol (Du et al. 2015; Lu et al. 2013), to further increase 
product titer, productivity, and yield, allowing for economi-
cal production of these metabolites in fermentation (Yang 
and Lu 2013).
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