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Abstract
Saline wastewaters are usually generated by various industries, including the chemical, pharmaceutical, agricultural, and 
aquacultural industries. The discharge of untreated high-salinity wastewater may cause serious environmental pollution 
and damage the aquatic, terrestrial, and wetland ecosystems. For many countries, the treatment of saline wastewater has 
become an important task. Generally, saline wastewaters are treated through physical and chemical methods. However, these 
traditional techniques are associated with higher treatment costs and the generation of byproducts. In contrast, biotreatment 
techniques are environmentally friendly and inexpensive. This review highlights the sources and environmental concerns 
of high-salinity wastewater and illustrates the latest problems and solutions to the use of biological approaches for treat-
ing saline wastewater. Although high salinity may inhibit the effectiveness of aerobic and anaerobic biological wastewater 
treatment methods, such strategies as selecting salt-adapted microorganisms capable of degrading pollutants with tolerance 
to high salinity and optimizing operating conditions can be effective. This mini-review may serve as a reference for future 
efforts to treat high-salinity wastewater.
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Introduction

Salinity is an important parameter for wastewater treatment 
(Kartal et al. 2006). Wastewater is defined as “high-salinity” 
or brine when the inorganic salt contents range from 1 to 
3.5% w/w, and seawater usually contains 3.5% w/w sodium 

chloride (Pernetti and Di Palma 2005). High-strength waste-
water with variable salinity and nutrient loads was produced 
in a number of industrial processes (Jesus et al. 2017), such 
as aquaculture in coastal areas, the nuclear industry, agricul-
ture and food-processing, petroleum and natural gas extrac-
tion and leather manufacturing (Calheiros et al. 2012; Lutz 
et al. 2013; Jesus et al. 2014; Lee et al. 2016; Zhang et al. 
2019a). However, the discharge of untreated high-salinity 
wastewater may cause serious environmental pollution and 
affect the aquatic life, water potability, and agriculture (Lefe-
bvre and Moletta 2006).

Therefore, it is necessary to use various methods and 
technologies to treat high salinity wastewater. Physiochemi-
cal techniques usually used to treat saline wastewater; how-
ever, they are energy-consuming with long startup time and 
high operating costs (Lefebvre and Moletta 2006). Nowa-
days, there are some documented cases where biotechnol-
ogy has been used successfully for treating saline waste-
water from multiple sources. However, a comprehensive 
assessment regarding the feasibility of using biotreatment 
for the treatment of high-salinity wastewater is not avail-
able. Therefore, the review aimed to (1) outline the major 
sources of high-salinity wastewaters and their environmental 
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influences; (2) summarize the traditional treatment technolo-
gies for high-salinity wastewater; (3) emphasize the func-
tions and mechanisms of major biotreatment technologies 
for high-salinity wastewater; and (4) put forward the future 
recommendations for biotreatment technologies for high-
salinity wastewater.

Sources and environmental concerns 
of high‑salinity wastewater

The composition and concentration of saline wastewater 
depend on their sources (Liang et al. 2017). There were 
several main sources of high-salinity wastewater: waste-
water discharged during direct seawater use, aquaculture, 
agricultural runoff from saline-alkali lands, and industrial 
processes (Fig. 1).

Due to the shortage of global freshwater resources, 
the direct use of seawater has become a feasible solution 
(Voutchkov 2018). Some coastal cities, such as Hong Kong 
and Qingdao, use seawater for fire control, road flushing, 
toilet flushing and other nondirected contacts with human 
beings, and it is considered an important option to relieve the 
pressure on fresh water (Chen et al. 2012; Li et al. 2018c). 
High-salinity wastewater discharged from the direct use of 
seawater drains into the sewer affects the subsequent waste-
water treatment plant (WWTP) degradation process (Liu 
et al. 2016). In addition, China is the world’s largest pro-
ducer of aquaculture products, but the high level of mari-
culture is associated with many environmental issues (Xiang 
2007). Inorganic nitrogen, active phosphate phosphorus, 

organics, and salts are the main pollutants in maricultural 
pollution areas (Liang et al. 2018). Seawater soda industries 
also produce a large quantity of high-salinity wastewater. For 
example, high concentrations of salts (NO3

−: 188 g/L; total 
dissolved solids (TDS):1.63 × 105 mg/L) wastewater from 
some soda ash factories discharged into Arabian Sea were 
reported by Jadeja and Tewari (2007). Most desalination 
plants use reverse osmosis (RO) to desalinate seawater and 
brackish water; thus, these processes inevitably produce RO 
concentrate. The salinity of concentrate from seawater RO 
(SWRO) desalination facilities was up to 6.5–8.5 × 103 mg/L 
(Missimer and Maliva 2018).

The accumulation of soluble salts in the soil has caused 
land degradation, water quality deterioration and serious 
problems related to agricultural development (Cassel 
and Sharma 2018; Fang et al. 2005). More than 20% of 
agricultural land is threatened by salinization globally. 
The salinized soils covered approximately one-tenth of 
the Chinese total land area, accounting for 100 Mio. ha 
(Li 2010). However, the area of saline-alkali land is still 
expanding (Wei and Zhang 2018): saline-alkali soil area 
increased from 401.48 × 103 in 1954 to 1097.45 × 103 ha 
in 2005 in the western Songnen Plain, China (Yang et al. 
2010), and continued desertification and salinization of 
the grasslands in the source regions of the Yangtze and 
Yellow Rivers was observed from 1968 to 2008 (Na et al. 
2013). When the saline alkali soil area was over-irrigated 
or rainfall occurred, it became a source of saline waste-
water (Liang et al. 2017). Approximately 1.3–2 × 108 m3 
saline-alkaline farmland drainage flows into the south of 
Chagan Lake from the Qianguo irrigation area every year 

Fig. 1    Source and entry pathway of high salinity wastewater in the environment
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(Yang et al. 2015). Generally, the soluble salt concentra-
tion is characterized by the conductivity (EC) value or by 
measuring the TDS (Liang et al. 2017). In the Aksu Oasis 
area of Northwest China, the TDS in irrigation water 
increased from 1200 to 9.01 × 103 mg/L in drainage (Hu 
et al. 2019). In the Arys Turkestan Canal zone (South-
ern Kazakhstan), the TDS value of irrigated agricultural 
drainage exceeds 1200 mg/L, and Na+ and HCO3

− are 
the main constituents of dissolving salts (Karimov et al. 
2009). An average TDS of 1191.33 mg/L was detected in 
drainage water of the Fayoum watershed, Egypt (Abdel 
Wahed et al. 2015).

Industries such as printing, dyeing, refining, chemicals, 
mining, currieries, pharmaceuticals, and food processing 
may produce high saline wastewater. The wastewater from 
printing and dyeing practices had high pH, high turbid-
ity, poor biodegradability, complex composition, and high 
chrominance and contained inorganic contaminants, such 
as chloride, heavy metals, sulfate, sulfide, and nitrogen 
(Xu et al. 2018). Hossain et al. (2018) reported that the 
TDS values of the knit dyeing and woven dyeing indus-
tries in Bangladesh were as high as 2000–3000 mg/L and 
5000–6000 mg/L, respectively. In leather manufactur-
ing, after tanning processes, approximately 40% of the 
chromium amount remains in the solid and liquid wastes, 
especially spent tanning solutions (Fabiani et al. 1996). In 
addition, saline wastewater is discharged during soaking, 
liming, deashing, pickling, chrome tanning, and finishing 
operations (Xiao and Roberts 2010). The TDS concen-
tration in tanneries ranges from 65.4 to 1281.1 mg/L in 
Nigeria (Akan et al. 2007). In the Lokpaukwu-Ishiagu 
mining areas of southeastern Nigeria, it is conservatively 
estimated that nearly 3.3 × 104 m3 of untreated drainage 
of abandoned mines, including approximately 710,000 kg 
of dissolved solids and 586 kg of potentially toxic met-
als, ran out to the Ivo River watershed each year (Ezekwe 
et al. 2013). Pharmaceutical wastewater carries not only 
chemical oxygen demand (COD), ammonia, and sus-
pended solids but also organic and inorganic constituents 
(e.g., spent solvents, catalysts, and reactants) (Fent et al. 
2006; Lefebvre and Moletta 2006). For example, an aver-
age TDS of 22,168 mg/L with Cl−, PO4

3−, Na+, and K+ 
as the major salts were reported in pharmaceutical waste-
water of a Singapore pharmaceutical factory (producing 
penicillin family antibiotics) (Ng et al. 2014).

A large amount of high-salinity untreated wastewater 
that is discharged directly is the source of high-strength 
wastewater, which causes great damage to the environ-
ment. High-salinity wastewater strongly reduces soil pro-
ductivity, worsens the water environment, hinders eco-
nomic development and threatens food production.

Treatment technologies for high‑salinity 
wastewater

The treatment methods and technologies of high-salinity 
wastewater are mainly divided into physical, chemical, 
biological, ecological engineering and a combination of 
these technologies. Some examples of these methods are 
listed in Table 1. Physical and chemical technologies are 
widely used in high-salinity wastewater treatment, primar-
ily including evaporation, membrane techniques, such as 
RO and nanofiltration (NF), ion exchange, advanced oxida-
tion processes and electrochemical techniques (Hou et al. 
2019; Liang et al. 2017). However, physical and chemical 
techniques are associated with some disadvantages, such 
as high operational costs and difficulty in achieving the 
expected treatment results. Biological treatment technolo-
gies have the advantages of low operational cost, obvious 
treatment effect and no secondary pollution. Researchers 
usually change the environment of bacteria to enhance 
their salt tolerance and halophilism to improve high-salin-
ity wastewater treatment.

Use of biological technologies for treating 
high‑salinity wastewater

Biological technologies eliminate pollutants from waste-
water through the reproduction and metabolism of micro-
organisms that are economical, highly effective, stable 
and environmentally friendly (Huang et al. 2019). Saline 
wastewater from industrial and aquaculture activities is 
frequently contaminated with nutrients and organics; thus, 
microorganisms are particularly important for the removal 
of COD and NH4

+–N under high salinity conditions (Liang 
et al. 2017). However, high salinity of wastewater leads 
to osmotic pressure in microbial cells to exceed nor-
mal living conditions, and a massive die-off can change 
the sludge microbial communities (Pollice et al. 2010; 
Zhang et al. 2019b), which considerably reduces treat-
ment efficiency and limits traditional biological treatment 
technologies. Biological treatment technologies of high-
salinity wastewater generally include aerobic sludge plants 
(such as the traditional aerobic activated sludge process, 
aerobic granular sludge, the sequencing batch reaction 
(SBR) system, biofilms, and biofilters), anaerobic sludge 
plants, cultivation and domestication of salt-tolerant and 
halophilic bacteria from high salinity environment. Some 
examples of these methods are listed in Table 2. These 
reports have shown the potential use of biological tech-
nologies for saline wastewater treatment. For example, 
Ramaswami et  al. (2019) found that fixed-bed reactor 
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(FBR) with plastic media fed with NF permeate of landfill 
leachate yielded NH4

+–N removals > 97% Muñoz Sierra 
et al. (2019). reported that anaerobic membrane bioreac-
tors (AnMBR) exhibited a phenol removal of 96% at 26 g 
Na+/L. In this mini-review, we reviewed the use of bio-
technology to treat high-salinity wastewater, as well as the 
function and purification mechanisms of halotolerant and 
halophilic microorganisms under salt stress.

Aerobic sludge plants

The traditional activated sludge process has been used in 
wastewater biological treatment for more than a century 
(Bengtsson et al. 2019) and can be directly used for treating 
wastewater with salinity below 10 g/L NaCl, regarding that 
most of microorganisms in activated sludge are non-halo-
philic which cannot survive with the salinity exceed 10 g/L 
(Tan et al. 2019). The properly domesticated microbes can 
adapt to high salt conditions (Hamoda and Al-Attar 1995). 
Aloui et al. (2009) described that under NaCl concentrations 
up to 4% (w/v) and organic loading rates up to 855 mg COD/
L/d, the fish processing saline wastewater was efficiently 
treated with acclimatized activated sludge. At 2.0 wt% 

salinity, the SBR system inoculated with activated sludge 
achieved a 95% removal rate of COD, biochemical oxygen 
demand (BOD), NH4

+–N and total phosphorus (TP) with 
Candidate_division_TM7 as the dominant bacteria genus 
(Zhao et al. 2016). Some studies also reported the removal 
of heavy metals under high-salinity conditions by the aero-
bic activated sludge process. Industrial saline wastewaters 
contain heavy metals, such as refinery effluents (Soda et al. 
2011). Zhang et al. (2019b) studied the removal of selenite 
(Se4+) in artificial wastewater under high-salinity conditions 
of 70 g/L by using activated sludge in aerobic SBRs. The 
reactor removed soluble Se with relatively high efficiency in 
the beginning of the experiment. But the experiment failed 
because the activated sludge was not adapted to high salin-
ity, and the removal efficiency was recovered from the 20th 
batch. di Biase et al. (2020) studied the removal of ammonia, 
thiocyanate, and cyanate in an aerobic up-flow submerged 
attached growth reactor to treat gold mine wastewater. The 
ammonia remove efficiency was achieved over 98% and the 
residual cyanate concentrations were below 2 mg-SCN-N/L.

Compared with the traditional activated sludge process, 
aerobic granular sludge (AGS) is denser, more compact and 
spherical, thereby occupying a lower footprint (Bengts-
son et al. 2019; Beun et al. 1999). The effectiveness and 

Table 1   Summary of high-salinity wastewater treatment methods

Type of wastewater Major contaminants Techniques Effectiveness References

Physical technologies Simulated Chromium 
tannery wastewater

Na+, Cl−, SO42− NF membrane – Yan et al. (2016)

Chemical technolo-
gies

Vinyl chloride mono-
mer and polyvinyl 
chloride manufac-
turing plant

COD, TDS Heterogeneous 
UV-assisted sono-
Fenton

COD: 87% Kakavandi and Ahmadi 
(2019)

Biological technolo-
gies

Mustard tuber waste-
water

COD, Na+, Cl− Microbial fuel cell COD: 89.0% ± 1.5%
BOD: 98.6% ± 2.0%

Zhang et al. (2019a, 
b, c)

Synthetic wastewater COD, TN, TP, 
NH4

+–N, NaCl
SBR system COD: 75%

TN, NH4
+–N: 98.5%

She et al. (2016)

Landfill site leachate NH4
+–N, Cl− FBRs (plastic carri-

ers; clay beads)
NH4

+–N: 97%; 70% Ramaswami et al. 
(2019)

Ecological engineer-
ing

Tannery wastewater COD, TDS, TSS CW COD: 58–67%
BOD: 60–77%
TSS: 52–82%
NH4

+–N: 60–86%

Calheiros et al. (2010)

Synthetic wastewater Na+, Cl−, NO3
−–N, 

NH4
+–N, PO4

3−-P
CW The best of NH4

+–N: 
85%

The best of NO3
—N: 

68%
PO4

3–-P: 100%

Jesus et al. (2017)

Combination tech-
nologies

Chemical plant 4, 4′- oxybis Capacitive deioniza-
tion-Photocatalysis

EC: 55% Ye et al. (2019)

Synthetic wastewater COD, Na+, Cl− CW-Microbial fuel 
cell

COD: 64.79 ± 1.15%
TP: 86.12 ± 0.38%
TN: 70.86 ± 0.49%
NH4

+–N: 
79.67 ± 0.45%

Xu et al. (2019)



World Journal of Microbiology and Biotechnology (2020) 36:37	

1 3

Page 5 of 11  37

stability of AGS in treating salt-containing wastewater has 
been evaluated in some studies. Pronk et al. (2014) evaluated 
the effect of stepwise increased salinity levels on nitrifica-
tion, denitrification, nitrous oxide emissions, phosphate, and 
COD removal from synthetic wastewater. Ammonia oxida-
tion was not affected at any salt concentration, but nitrite 
oxidation and phosphate removal were severely inhibited 
at 20 g Cl−/L. Hou et al. (2019) followed the performance 
and microbial characteristics of AGS under different salini-
ties and alternating salinities. These researchers found that 
alternating salinity not only increased the COD removal effi-
ciency but also generated a high concentration of granular 
biomass with good settling ability.

The effectiveness of biofilms and biofilters to treat 
high-salt wastewater has been discussed in several studies. 
Aslan and Simsek (2012) investigated the NO2–N/NOx–N 
ratio and NH4

+–N removal efficiencies under various NaCl 

concentrations (0–40 g/L) under constant environmental 
conditions in a submerged biofilter reactor. These research-
ers found that the removal rate of NH4

+–N (from 92 to 95%) 
increased with a small increase in salt concentration (1 g/L 
NaCl), and over this concentration, each NaCl addition 
induced NH4

+–N oxidation. Navada et al. (2019) found that 
the ammonia oxidation capacity of moving bed biofilm reac-
tors (MBBRs) was weakly influenced by the salinity increase 
rate, and the microbial community composition changed 
least for the largest salinity increment.

Anaerobic sludge plants

Anaerobic processes seem more attractive than aerobic pro-
cesses because the processes consume little energy with-
out aeration and can generate new energy in the form of 

Table 2   Use of biological technologies for high-salinity wastewater treatment

Treatment methods Type of wastewater Operation parameters Removal efficiency Comments References

SBR system Synthetic wastewater HRT: 14.9 h COD: 75%
TN, NH4

+–N: 98.5%
In the salt concen-

tration range of 
5 to 37.7 g/L, the 
increase of salinity

did not inhibit ammo-
nium oxidation and 
nitrite denitrification

She et al. (2016)

FBRs: plastic carriers; 
clay beads

Landfill site leachate Upflow velocities: 8 or 
12 m/h

NH4
+–N: 97%; 70% Increased in chloride 

content did not have 
any observable detri-
mental effects on the 
performance of the 
reactors

Ramaswami et al. 
(2019)

AnMBRs Phenolic wastewater HRT: 7 d
SRT: 40 ± 2 d

Phenol: 96% (26 g 
Na+/L)

AnMBR shows higher 
stability than UASB 
under high-salinity 
conditions

Muñoz Sierra et al. 
(2019)

Aerobic SBR Tanneries effluents HRT: 2.5–5 d The best of COD: 
95%, PO4

3−: 93%, 
TKN: 96%, SS: 92%

The halophilic bacteria 
responsible for 
nitrogen removal 
were most sensi-
tive to modification 
of HRT, OLR, and 
salinity

Lefebvre et al. (2005)

Marine purple pho-
totrophic bacteria 
cultivation

High salinity domes-
tic wastewater

HRT: 22.4–25 h
SRT: 2.3–3.9 d

COD: 86 ± 1.7%
TN: 62 ± 2.0%
TP: 51 ± 2.6%

The adapted bacteria 
community was 
halophilic, with 
batch

tests having a broad 
optimum between 20 
and 70 mS/cm

Hulsen et al. (2019)

Airlift SBR Synthetic wastewater OLR: 0.18–0.36 g/
(L/d)

HRT: 8 h
SRT: 20d

COD: 90.9 ± 0.8%
NH4

+–N: 72.6 ± 4.0%
Halophile sediment 

granulation in estu-
aries resolved the 
problem of sludge 
loss in high salinity 
environment

Huang et al. (2019)
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methane or fuel alcohols (Xiao and Roberts 2010). Lefebvre 
et al. (2006) used an upflow sludge blanket reactor (UASB) 
reactor to study the anaerobic digestion of tannery soak liq-
uor, and 78% COD removal efficiency was achieved at a 
TDS concentration of 71 g/L. Chung et al. (2009) observed 
approximately 100% removal efficiency of perchlorate and 
nitrate after 35 days of operation with denitrifying upflow 
packed-bed bioreactor (10% w/v NaCl concentration). Shi 
et al. (2014) treated pharmaceutical wastewater with high 
salinity through sequential anaerobic–aerobic treatment 
process and achieved 91.8–94.7% COD removal efficiency. 
Carrera et al. (2019) studied the development and stability of 
AGS in two SBR reactors treating fish canning wastewater. 
Their results demonstrated that the presence of anaerobic 
feeding/reaction phase increased the removal efficiency of 
organics (80–90%), which was higher than that using com-
plete aerobic phase (75–85%).

In 1995, anaerobic ammonia oxidation (anammox) was 
first discovered unexpectedly in a denitrification fluidized 
bed reactor (Mulder et al. 1995). Anammox refers to the 
microbial anaerobic oxidation of ammonium by nitrite 
(NO2

−), which forms N2; it is a chemoautotrophic process 
(Reitner and Thiel 2011; Strous et al. 1998). The anammox 
process has the potential to treat saline wastewater, as stud-
ies have been conducted in the Black Sea, Golfo Dulce, and 
the tropical east Pacific, which showed that anammox was 
the main pathway to remove active nitrogen from the ocean 
(Dalsgaard et al. 2003; Kuypers et al. 2003; Lam et al. 2009). 
Numerous studies have indicated that the processes related 
to anammox have been successfully applied to treat saline 
wastewater. We summarized two strategies to treat saline 
wastewater with high ammonia nitrogen through the anam-
mox process: (1) acclimation of freshwater-derived anam-
mox bacteria (FAB) and (2) enrichment of marine anammox 
bacteria (MAB) from salt lakes or marine sediments.

Acclimation of FAB to the saline environment is a prac-
tical strategy to treat saline wastewater with high ammonia 
nitrogen (Li et al. 2018b). Jin et al. (2011) demonstrated 
that the anammox upflow anaerobic sludge blanket (UASB) 
reactor performed well under 30 g NaCl /L in the continu-
ous flow. Gonzalez-Silva et al. (2017) found that stepwise 
adaptation of FAB from 0 to 3 g NaCl /L took 153 days 
while taking only 40 days from 3 to 30 g NaCl /L, and the 
dominant genera were shifted from Candidatus Brocadia 
fulgida to Ca. Kuenenia stuttgartiensis was observed at 3 g 
NaCl /L. The nitritation-anammox process (SNAP) system 
was reported to be able to treat saline (3%) ammonium rich 
(185 mg/L) wastewater after gradual adaptation, and Kuene-
nia (anammox), Nitrosomonas (ammonia oxidizing bacteria, 
AOB) and Nitrosovibrio (AOB) bacteria were salt adaptable 
microbes (Ge et al. 2019).

Nakajima et al. (2008) first successfully established an 
enrichment culture of MAB in a column-type reactor. Li 

et al. (2018a, b, c) reported that the nitrogen removal perfor-
mance of MAB in SBR was enhanced with Mn2+ and Ni2+ 
addition. Rios-Del Toro et al. (2017) raised a novel upflow 
anaerobic sediment trapped (UAST) reactor for enrichment 
of MAB and realized high nitrogen removal efficiencies 
(> 95%). The results obtained by these researchers indicated 
that Candidatus Kuenenia and Candidatus Anammoximicro-
bium had great potential for removing NH4

+–N. These stud-
ies suggest that MAB can be applied to the treatment and 
recovery of high-salinity wastewater in the future.

Cultivation and domestication 
of salt‑tolerant and halophilic bacteria

According to the microorganisms’ requirements for salt 
concentration classification, true halophilic organisms must 
grow with salt concentrations > 3 M NaCl, whereas salt-
tolerant organisms do not depend on salt for growth but 
can tolerate appreciable salt concentrations (< 1 M NaCl) 
(Mokashe et al. 2018).

The physiological and biochemical mechanisms of salt-
tolerant and halophilic bacteria to salt stress are complex. 
We are reviewed from three aspects: (1) maintain the balance 
of osmotic pressure. Mostly extremely halophilic archaea 
and bacteria accumulate compatible solutes (organic sol-
utes: trehalose, alanine, proline, glycine betaine), maintain 
high inorganic solute concentrations (K+, Mg2+, Ca2+), or 
elevate the anionic phospholipid proportion of the cellular 
membrane to maintain the hydration state of the cytoplas-
mic membrane (Mokashe et al. 2018; Mukhtar et al. 2019; 
Nath 2016). Compatible solutes are mainly neutral but polar 
compounds that are easily soluble in water without interfere 
with cell metabolism (Sharma et al. 2016) and they also have 
protein-stabilizing properties that support the correct fold-
ing of peptides inside and outside the cell under deformed 
conditions (Street et al. 2006). Patel et al. (2018) reported 
that a halophilic bacteria strain Exiguobacterium profun-
dum PHM11 accumulated L-proline to tolerate salinity. (2) 
Maintain enzyme activities by salinity. Most enzymes of 
halobacteria have robust activity and stability under hypersa-
line conditions and lose activity at salt concentrations lower 
than 2 M (Zhuang et al. 2010). Halophilic bacteria have been 
isolated from different marine and hypersaline environments 
by Setati (2010). These organisms have been shown to pro-
duce a wide array of hydrolytic enzymes, which can not only 
maintain activity at high NaCl concentrations but also have 
high resistance to denaturation. (3) Produce exopolysaccha-
rides (EPS) appear to prevent injury from free radicals. The 
EPS have unique water holding and cementing properties, 
which can enhance cell water retention and protect bacteria 
from hydric stress and water potential fluctuations (Sharma 
et al. 2016). Boujida et al. (2018) isolated ten halophilic 
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strains from different hypersaline environments, and all the 
halophilic bacteria EPS had high emulsifying and antioxi-
dant activities. Singh et al. (2019) also reported the EPS 
obtained from a strain of halophilic bacterial has a potential 
as a natural antioxidant.

The treatment of high-salinity wastewater in a biological 
reactor acclimates common activated sludge by gradually 
increasing the salinity of wastewater, which undoubtedly 
increases the treatment time and cost. Halophiles prefer salt 
and thrive on saline or hypersaline environments. The culti-
vation and domestication of salt-tolerant and halophilic bac-
teria growing in extreme high-salinity environments (such 
as salt lakes, bay salt fields, saline-alkali soils, and pickled 
food factories) used directly to treat high-salinity wastewater 
is currently the research hotspot. A strain of Halomonas, 
isolated from coastal sediments, was able to anaerobically 
degrade 100% of Reactive Brilliant Red K-2BP in the pres-
ence of 10–15% NaCl (Guo et al. 2008). Abou-Elela et al. 
(2010) isolated a salt-tolerant microorganism (Staphylococ-
cus xylosus) from a vegetable pickled plant wastewater and 
they found that the COD removal efficiency was up to 88% 
when S. xylosus was applied as solo inoculum for biodegra-
dation in the case study to treat vegetable pickled acid waste-
water with 7.2% salinity. Wu et al. (2013) adopted halophilic 
microorganisms (Bacillus sp. strain) in the aerobic process to 
treat pretreated wastewater in ethyl chloride production with 
4% NaCl and achieved 58.3% COD removal. Maharja et al. 
(2017) used halophilic bacteria in sequential oxic-anoxic 
bioreactor to remove dissolved organics and suspended 
soilds from tannery saline soak liquor. Tan et al. (2017) 
found a good biodegradability of the domesticated marine 
activated sludge in treating the industrial phenolic waster, 
and the removal of phenol, COD and NH4

+–N achieved 99%, 
80% and 68%. Halophilic purple phototrophic bacteria (PPB) 
isolated from Brisbane river sediments were reported to be 
able to remove COD, nitrogen, and phosphorus from high 
salinity domestic wastewater (Hulsen et al. 2019). These 
observations indicate that biological treatment techniques 
inoculated with specific halophilic microorganisms provide 
a promising avenue for the treatment of saline wastewater.

Future recommendations

Published investigation on the biotreatment of high-salinity 
wastewater indicated that the cultivation and domestication 
of salt-tolerant and halophilic microorganisms could be a 
promising technique. However, unfortunately, study on the 
practical manufacturing wastewater in saline conditions is 
scarce. Synthetic wastewater has single pollutant compo-
nent and low salt concentration compared to actual waste-
water. Therefore, it is necessary to characterize salt-tolerant 
or halophilic strains able to degrade contaminant in actual 

high salinity wastewater and future efforts are required to 
transition from lab to on field applications.

Many researchers studied the removal efficiency of dif-
ferent industrial sectors by biotreatment technologies. Most 
of them focus on the traditional high salinity wastewater 
resources such as currieries and food processing industries, 
however, different target pollutants in different types of high-
salt wastewater. High-salinity wastewater from many indus-
tries such as the nuclear industries, petroleum and natural 
gas extraction, and mining has not been studied, therefore 
shock loading from different industrial sectors is warranted 
to enrich biological treatment process for efficient removal 
of targeted contaminants under high salinity conditions.

Many studies involving biodegradation of specific com-
pounds by the pure and mixed culture of microbes under 
high-salinity conditions has been conducted. But, the com-
plete degradation pathway, microbial catabolic enzymes 
involved in the degradation process and the interactions 
between salt, specific contaminants and microbes are still 
unknown. Identification and development of bacterial meta-
bolic enzymes and their corresponding degradation pathway 
under high-salinity conditions are strongly recommended 
for future study.

Conclusion

Biological technologies are resource-saving and environ-
mentally friendly and have been widely employed in differ-
ent types of wastewater treatment. Saline wastewaters from 
different sources usually contain complex pollutants, such 
as NaCl, and high concentrations of various salts, organic 
compounds, heavy metals, pesticides, antibiotics and so on. 
These pollutants can cause land degradation, water quality 
deterioration and serious problems related to agricultural 
development. The current status and potential of biologi-
cal treatment of high-salinity wastewaters were reviewed 
in this paper. Although high salinity inhibits the growth 
of microbes, prior studies have shown that the acclimated 
microorganisms can gradually adapt to the environment 
of high salinity and can be used to treat saline wastewater. 
However, more studies are needed to investigate the different 
types of target contaminants and the interactions between 
salt and specific contaminants in activated sludge. In addi-
tion, it is suggested to carry out the purification culture and 
domestication of salt-tolerant and halophilic bacteria under 
practical conditions in future research.
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