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Abstract
Pseudomonas aeruginosa is a common, Gram-negative environmental organism. It can be a significant pathogenic factor of 
severe infections in humans, especially in cystic fibrosis patients. Due to its natural resistance to antibiotics and the ability to 
form biofilms, infection with this pathogen can cause severe therapeutic problems. In recent years, metabolomic studies of 
P. aeruginosa have been performed. Therefore, in this review, we discussed recent achievements in the use of metabolomics 
methods in bacterial identification, differentiation, the interconnection between genome and metabolome, the influence 
of external factors on the bacterial metabolome and identification of new metabolites produced by P. aeruginosa. All of 
these studies may provide valuable information about metabolic pathways leading to an understanding of the adaptations of 
bacterial strains to a host environment, which can lead to new drug development and/or elaboration of new treatment and 
diagnostics strategies for Pseudomonas.
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Introduction

Pseudomonas aeruginosa is a common, Gram negative 
environmental organism. It is often isolated from plants, 
fruits, soil, and water environments, such as rivers, lakes, 
and swimming pools. In particular circumstances, P. aer-
uginosa may be a significant pathogenic factor of severe 
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and often opportunistic infections in humans. It typically 
infects airways and urinary tracts, causes blood infections, 
and is the most common cause of burn injury infections, 
hot-tub dermatitis, and outer ear infections (known as 
swimmer’s ear). P. aeruginosa is the most frequent colo-
nizer of medical devices (catheters, nebulizers, humidi-
fiers) and is one of the pathogens that cause nosocomial 
infections, such as ventilator-associated pneumonia, 
meningoencephalitis, and sepsis (Bassetti et al. 2018). 
Treatment of P. aeruginosa infections can be difficult due 
to its natural and acquired resistance to antibiotics (Brei-
denstein et al. 2011).

Pseudomonas aeruginosa is one of the most common 
organisms isolated from the  respiratory tract of cystic 
fibrosis patients (Bendiak and Ratjen 2009). The occur-
rence of the infection increases with age and can reach 
80% in adults (Behrends et al. 2013). Several studies have 
shown that this infection leads to higher rates of pulmo-
nary exacerbation and hospitalization in addition to more 
rapid disease progression, which leads to irreversible 
and destructive changes in the respiratory system and as a 
consequence, to chronic respiratory failure. It is also asso-
ciated with more frequent cystic fibrosis complications, 
such as malnutrition or diabetes (Emerson et al. 2002; 
Kosorok et al. 2003; Nixon et al. 2001).

A characteristic feature of the genus Pseudomonas is 
biofilm formation and fluorescent dyes and siderophore 
production (Leon 1979; Peix et al. 2018; Winstanley et al. 
2016). Moreover, microorganisms belonging to this genus 
show a high capability of utilizing different substrates and 
a high tendency toward antibiotic resistance. P. aeruginosa 
shows significant adaptation capabilities, as in the case of 
the development of chronic infections in patients with 
cystic fibrosis (CF). At this stage, the pathogen is practi-
cally impossible to eradicate.

Research on the system biology of P. aeruginosa has 
been carried out for a long time at different levels of molec-
ular organization (genome, transcriptome, and proteome), 
resulting in detailed information about the genomic struc-
ture. The  size of the P. aeruginosa genome is around 
6.5 Mbp. However, the size range for different strains is 
between 5.2 and 7 Mbp (Schmidt et al. 1996). There are 
5021 genes with more than 70% sequence identity between 
different P. aeruginosa strains, and among them, around 
4500 genes with > 98% identity. It is suggested that about 
4000 genes are common to the majority of the P. aerugi-
nosa strains (they are so-called ‘core genome’) (Parkins 
et al. 2018). The core genome is accompanied by genes 
that are present in a smaller number of strains. It is esti-
mated that the complete set of genes found in different 
P. aeruginosa strains include between 10,000 and 40,000 
genes. The arrangement of the genome may differ between 

strains; therefore, the identification of regions suitable for 
gene markers is difficult.

Information about P. aeruginosa gene and protein data 
is available from several databases: (1) the Pseudomonas 
Genome Database, which now has more than 200 complete 
Pseudomonas genomes (Winsor et al. 2016); (2) Pseudo-
Cyc with 121 pathways and over 800 enzymatic reactions 
(Romero and Karp 2003); and (3) the SYSTOMONAS 
database for the analysis of Pseudomonas systems biol-
ogy (Choi et al. 2007). The information is also available 
in commonly used databases, such as KEGG (Kanehisa 
et  al. 2017), PubChem  (Kim et  al. 2016), and HMDB 
(Wishart et al. 2013).

In recent years, metabolomic studies of P. aeruginosa have 
also been performed. The metabolome is the set of all relatively 
small compounds present in the cell and released to the envi-
ronment. These low molecular weight compounds (<1500 Da) 
play different roles as substrates, intermediates, and products 
of metabolism (Fiehn 2002; Pearson 2007). The information 
about the presence and concentration of metabolites reflects 
the activity of metabolic pathways in the cell. Metabolomic 
studies usually rely on two analytical laboratory techniques 
for metabolite identification and quantification: (1) mass spec-
troscopy coupled with chromatography (C/MS) or (2) nuclear 
magnetic resonance (NMR) spectroscopy.

Metabolomic studies may help solve the scientific prob-
lems unsolved by using other approaches used in system 
biology, such as identification of new metabolic pathways 
(Patti et al. 2012). These studies can provide us with data 
regarding virulence factors and adaptation features of a 
given strain to the host environment, and thereby provide 
a useful prognostic tool in P. aeruginosa infections. Due to 
rapid culture-independent tests, diagnosis of urgent cases 
and also their targeted treatment can occur quickly. These 
types of studies may also be used in the development of 
new strategies regarding the prevention and treatment 
of infections caused by microorganisms (Xu et al. 2014).

In this article, we present a summary of the  recent 
achievements in the field of P. aeruginosa metabolomics. 
Metabolomic studies about P. aeruginosa strains com-
parison are shown in Table 1. Studies about interactions 
between two species of bacteria, such as quorum sensing 
and co-cultures, were also conducted. The individual met-
abolic profile of a strain depends on internal and external 
factors (such as genome structure and substrate availabil-
ity, respectively) (Fig. 1). 
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A closer look at an experiment 
in metabolomics

Experimental design, including metabolomic analytical 
parts, may differ depending on the  available materials, 
resources, and scientific questions to be answered. The iden-
tification of metabolomic changes resulting from different 
factors requires a distinct experimental approach. Neverthe-
less, the general experimental pattern is the same.

In metabolomics, as in many experiments, there are usu-
ally at least two sets of samples that are compared with one 
of them being the control (or reference) group. In general, 
metabolomic analyses cover two approaches to analyzing 
metabolites: (1) fingerprinting and (2) footprinting. The first 
contains the whole set of intracellular compounds, and 
the second tracks nutrient uptake and metabolite secretion 
(Behrends et al. 2014).

The typical workflow in microbiological metabolomic 
studies includes a few steps (Fig. 2).

Usually, in the first step, microorganisms are cultured 
in vitro. Appropriate disintegration (if intracellular metab-
olites studies are conducted) and an extraction method are 
then used. Metabolites from a chosen group (for instance, 
water-soluble) are isolated and concentrated. There are 
many possible approaches for metabolite sample prepara-
tion. This part of the process should be studied and depends 
on the purpose of the research.

In the next stage, metabolites are detected via analytical 
chemistry techniques. In the case of MS method, metabolites 
that are first separated by liquid or gas chromatography, then 
ionised, and detected by mass spectrometry instruments. 
This technique yields information about the mass to charge 
ratio of the analysed compounds, which could be detected 
by the most advanced instruments at very low femtomole to 
attomole detection limits. This information may be used for 
the identification of thousands of compounds in the sample 

Table 1   Metabolomic studies comparing Pseudomonas aeruginosa strains

Origin of samples Amount 
of sam-
ples

Type of metabolites Measurement method Statistic methods Metabo-
lites (in 
total)

Author, year

CF patients 179 Extracellular 1H NMR Linear modelling, 
‘sunburst’ plots

29 Behrends et al. (2013)

Reference 
strain PAO1 and CF 
isolate TBCF10839

2 Intra- and extracel-
lular

GC–MS PCA 243 Frimmersdorf et al. 
(2010)

CF patients 49 Extracellular 1H NMR PCA, PLS, OPLS-DA 85 Kozlowska et al. (2013)
CF patient (different 

breeding)
1 Living cells 1H HRMAS NMR Student’s t-test 24 Righi et al. (2018)

CF patients 3 Intra- and extracel-
lular

LC–MS PCA 221 Robroeks et al. (2010)

Clinical isolates: 
TBCF10839 and 
TBCF121838

2 Intracellular GC–MS Retention indices (RI) 80 Klockgether et al. 
(2013)

Reference 
strain PAO1 (differ-
ent breeding)

21 Intra- and extracel-
lular

1H NMR, 1H HRMAS 
NMR

PCA – Gjersing et al. (2007)

Fig. 1   Metabolomic studies of 
Pseudomonas aeruginosa 
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or used as the characteristic metabolite pattern “fingerprint,” 
in an untargeted approach to the studied specimen. NMR 
spectroscopy due to application of a magnetic field allows 
assignment of the chemical shifts of 1H and 13C nuclei in 
organic compounds. This method enables identification and 
quantification of metabolites but at a much higher concentra-
tion than MS, which is at the mM level and strongly depends 
on the duration of the experiment. The second limitation is 
the number of compounds that can be identified, which are 
in the range of several dozen. However, the NMR method 
ensures reliable compound identification via a combina-
tion of one- and two-dimensional (1D and 2D, respectively) 
spectra measurements. A more detailed description of this 
technique may be found in the review article by Dona et al. 
(2016) or in dedicated handbooks. Both of these methods 
are complementary and mostly used in metabolomic studies.

To extract the  information about metabolite type and 
concentration, the  raw data must be further processed. 
The metabolic profile (list of detected metabolites with cor-
responding concentrations) of a single sample is still a large 
set of data; therefore, a comparison of samples and graphical 
representation of results is not easy using the conventional 
approach. Different statistical and chemometric methods 

are used to find differences and prepare data visualiza-
tion. The most commonly used method in multivariate data 
analysis is the principal component analysis (PCA). This 
method is used as a starting point for further analysis. PCA 
is an unsupervised method, which means that the samples 
are underlying without any additional input data. It allows 
for the determination of variability and identification of 
outliers during all of the attempts. Additionally, it enables 
to determine the relationship between groups to find dif-
ferentiating metabolites. PCA may be used on a raw figure 
without any initial metabolite identification and quantifica-
tion (Gjersing et al. 2007).

The partial and orthogonal partial least squares methods 
(PLS and OPLS, respectively) are used to develop models, 
predict differences, and search for significant markers. Both 
of these methods are supervised methods, in which individ-
ual observations are assigned based on a specific parameter 
(such as membership in a given group). A more detailed 
description of multivariate data analysis in metabolomics 
can be found in an article by Worley and Powers (2013).

Information concerning a metabolome may also be 
stored in a database. A database dedicated to the P. aer-
uginosa metabolome was created by Huang et al. (2018). 
The P. aeruginosa metabolome database (PAMDB) provides 
information about > 4370 metabolites and their chemical 
and biological functions, more than 1250 proteins includ-
ing enzymes, and almost 1000 associated pathways. Fur-
thermore, for some compounds, NMR and MS spectra are 
available. The database was created based on information 
available in other databases and in the literature (Huang 
et al. 2018).

Bacterial strain identification 
and differentiation

One way to conduct metabolomic experiments with micro-
organisms is to compare strains originating from differ-
ent sources. Most studies describing strain identification 
use pure strains cultivated in  vitro; however, a collec-
tion of a large set of metabolomic profiles is the first step 
in  the  development of methods enabling identification 
of strains without the need for bacteria isolation and culti-
vation. Such an approach would be a useful diagnostic tool 
because it would reduce the time between material collec-
tion and result delivery. For instance, preliminary research 
has proven that the analysis of volatile organic compounds 
(VOC) in a person’s breath might be useful for identification 
of respiratory tract bacterial infections; however, determina-
tion of the pathogenic strain responsible for the infection is 
still not possible (Maniscalco et al. 2019; Montuschi et al. 
2012; Robroeks et al. 2010).

Fig. 2   Diagram of metabolomic 
experiment
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Bacterial strain  identification based on the profile of 
volatile metabolites would be very useful in lung infection 
diagnoses. Nizio et al. conducted VOC profiling using gas 
chromatography/gas chromatography-time-of-flight mass 
spectroscopy (GC/GC-TOFMS) to differentiate bacteria 
associated with lung infections (P. aeruginosa, Haemophi-
lus influenzae, Streptococcus pneumoniae, Burkholderia 
cenocepacia, Stenotrophomonas maltophilia, and S. mill-
eri). Samples were analyzed in two periods: (1) short-term 
(between 2 and 5 days) and (2) long-term (between 48 and 
50 days). Moreover, bacteria were cultured in two differ-
ent growth phase conditions (stationary and logarithmic). 
The multivariate analysis showed that the VOC profile was 
sufficient for differentiation of bacteria species. However, 
the profiles were affected by sample storage conditions 
and bacterial growth phase (Nizio et al. 2016).

A similar approach for bacterial species identification 
was taken by Lawal et al. (2017). They investigated VOC 
profiles for the following bacterial species: (1) Escherichia 
coli; (2) Klebsiella pneumoniae; (3) P. aeruginosa; and (4) 
Staphylococcus aureus. These bacteria are often the cause of 
lung infections. To better simulate conditions in the respira-
tory tract, bacteria were also cultured in an artificial sputum 
medium. Comparison of VOC profiles was sufficient for 
species identification; however, profiles were considerably 
altered by the cultivation medium type (Lawal et al. 2017).

Moreover, in another article, Lawal et al. showed that 
the presence of the additional pathogen in  the environ-
ment also changed the observed VOC profiles. The GC/
MS method was used to identify and compare metabolites 
in mono and co-cultures of P. aeruginosa ATCC 10,145 
and Enterobacter cloacae DSM 30,054. Among 60 VOCs 
identified, 24 had significantly increased and 13 decreased. 
Among these, under axenic cultures, bacteria-specific VOCs 
metabolites were identified as 2-methyl-1-propanol, 2-phe-
nylethanol, and 3-methyl-1-butanol for E. clonacae while 
methyl 2-ethylhexanoate was characteristic for P. aerugi-
nosa. However, in co-cultures, 2-methylbutyl acetate and 
methyl 2-methylbutyrate were found, both of which exhib-
ited antimicrobial activity (Bail et al. 2009). In the PCA 
score plot, three nonoverlapping groups were observed: (1) 
P. aeruginosa; (2) E. cloacae; and (3) co-culture (Lawal 
et al. 2018).

A similar experiment conducted by Neerincx et al. also 
used two strains of bacteria (and co-culture): (1) P. aerugi-
nosa strain ATCC 27,853 and (2) Aspergillus fumigatus 
strain AZN 8196 to compare VOCs in samples using the 
GC/MS method. They identified and examined 104 com-
pounds. The PLS score plot was constructed for three-time 
points (16, 24, and 48 h). The analysis allowed identification 
of the combinations of VOCs associated with each group 
(P. aeruginosa, A. fumigatus, and co-culture). For each time 
point, specific VOC biomarker combinations were found, 

and individual VOCs, which were present at all-time points 
(for example, 8-nonen-2-one in A. fumigatus and 2-nonanone 
in co-culture), were also assigned. What is more, the loca-
tion of the groups on the PLS score plot changed over time; 
after 48 h, the metabolic profile of the co-cultures shifted 
towards P. aeruginosa (Neerincx et al. 2016). These results 
imply that the use of VOC profiling as a diagnostic tool may 
require a cultivation model that more accurately reproduces 
the conditions in the respiratory tract.

Palama et al. compared the bacteria responsible for uri-
nary tract infections using the footprint approach. Using 
NMR, they measured the extracellular metabolites of 48 
strains belonging to six species (E. coli, P. aeruginosa, 
Proteus mirabilis, Enterococcus faecalis, S. aureus, and 
S. saprophyticus). Analysis of samples collected at differ-
ent growth stages identified 43 metabolites. Unsupervised 
multivariate data analysis showed significant discrimination 
between the studied samples. Furthermore, the PCA score 
plot showed non-overlapping groups, which originated from 
different microorganisms. This experiment demonstrated 
that metabolic profiling could be a rapid method for identi-
fying bacterial species (Palama et al. 2016).

Kozlowska et al. recovered 15 P. aeruginosa isolates 
from sputum samples and described several culture proper-
ties, such as mucoid, pigmentation, diversity, culture pH, 
and others. These properties were compared with informa-
tion about the subjects (age, sex, body mass index [BMI], 
diabetes). Analysis of the media using 1H NMR was per-
formed. Statistical methods (PCA and OPLS-DA) were 
used to identify groups of isolates. The score plot showed 
four different clusters of various strains of P. aeruginosa. 
Additionally, each cluster was related to the pH of culture. 
Furthermore, the analysis of variance (ANOVA) test was 
used to find the relationship between PCA and clinical data. 
These experiments suggest that P. aeruginosa isolates have 
a range of growth strategies. Moreover, cluster member-
ship was correlated with predicting patient lung function. 
Thus, NMR-based metabolomic profiling may be used as 
a prognostic tool in the diagnostics of P. aeruginosa infec-
tions (Kozlowska et al. 2013).

Identification of metabolic patterns 
determined by genome structure

Adaptation of bacteria metabolism is crucial for microor-
ganism survivability in different environments. In particu-
lar, pathogens change their metabolism to use available 
resources in a host organism in the most efficient way and 
to evade the host immune system (Behrends et al. 2013). 
Identification of critical metabolic pathways necessary for 
pathogen survival may open new possibilities in therapy 
development. It may lead to a breakthrough in the treatment 
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of chronic infections, such as those observed in the case of 
cystic fibrosis patients.

Metabolic adaptation in the case of long-term infection 
is considered to be mainly the result of genomic changes. 
The comparison of closely related strains isolated from 
patients at different stages of infection development seems 
to be the best experimental approach for investigating these 
kinds of metabolomic alterations. Beherends et al. investi-
gated the adaptation of P. aeruginosa strains to lung infec-
tions among CF patients. Exometabolomic, morphology, 
growth rate, and clinical data for 179 clinical isolates were 
analyzed. The isolates were recovered from 18 individual CF 
patients for 20 years. Metabolic experiments relied on NMR 
spectroscopy and allowed 29 metabolites to be identified. 
Despite the limited set of analyzed metabolites, significant 
changes in metabolic pathways could be identified. Strains 
isolated from patients suffering from long-term infection 
showed an improvement in amino acid uptake with a high 
biosynthetic cost. NMR was used to conduct exo-metabo-
lomic analyses. This method provides a non-targeted and 
universal profile of all small-molecule metabolites present 
in cells. In total, 29 metabolites were identified, but not 
all of these were seen in all the samples. Nine metabolites 
have an association with length of infection, but most of 
the metabolites had no change. The exceptions were acetate, 
valine, serine, lysine, phenylalanine, tryptophan, trehalose, 
and tyrosine. Linear modelling for each metabolite against 
the variable ‘patient’ and ‘length of infection’ was used, 
and ‘sunburst’ plots for visual examination of the data were 
applied. This method allowed the comparison of the differ-
ences between patients and changes during infection to be 
followed. It also enabled the metabolomic profiling to iden-
tify the changing responses to long-term infection (Behrends 
et al. 2013).

A more detailed characterization of metabolome pro-
files was obtained using the GC/MS technique. However, 
the set of strains examined in this approach was relatively 
small. This approach was used by Klockgether et al. to 
compare several P. aeruginosa strains: (1) the reference 
strain (PAO1); and two strains isolated from CF patients: 
(2) TBCF10839 and (3) TBCF121838. GC/MS metabolomic 
analysis identified 80 intracellular compounds in the expo-
nential growth phase. The concentrations of 21 compounds 
differed more than threefold between strains. In the case of 
trehalose, the level observed in strain TBCF10839 was 100 
times higher than the one found in TBCF121838. The num-
ber of observed compounds in  the stationary phase was 
similar. Moreover, this is one of the most detailed compari-
sons of P. aeruginosa strains that has ever been carried out. 
Apart from endo-metabolomic analysis, the experiments 
included several parameters: (1) genomic sequencing and 
comparison; (2) proteomic and transcriptome analysis; (3) 

exopolysaccharide phosphorylation pattern determination; 
and (4) phenotypic examination (Klockgether et al. 2013).

Han et  al. tested polymyxin-resistant and -suscepti-
ble strains to check bacterial metabolic and lipid profile 
responses. In this experiment, three strains of P. aeruginosa 
(wild-type and two pmrB mutant strains) were investigated 
using LC/MS analysis together with DNA sequencing and 
genomic analysis. Various extraction methods were used for 
the lipidome analysis. The PCA graph showed that metab-
olites were grouped depending on the extraction method, 
and there was a difference between the wild-type strain and 
pmrB mutants. The metabolomic analysis allowed identi-
fication of 578 metabolites. The PCA score plot revealed 
the sample grouping for each strain. These studies show that 
mutations in the P. aeruginosa genome causing resistance 
(or lack thereof) to antibiotics are reflected in the bacterial 
metabolomic profile (Han et al. 2018).

Possible metabolic adaptations to oxidative stress were 
analyzed by Thippakorn et al. two P. aeruginosa strains, 
PAO1 and a hyperpigmented strain HP, were compared. 
Metabolites were identified using the GC/MS technique. 
The comparison of exo-metabolome revealed differences 
in the level of antimicrobial compounds (lower in the case of 
the HP strain) and antioxidant compounds (lower in the case 
of PAO1). Adaptation to oxidative stress was also observed 
at the enzyme expression level; the HP stain had a sig-
nificantly higher expression of malate synthase and isoci-
trate lyase. These enzymes produce substrates required for 
the synthesis of DHN-melanin (antioxidant dye). Surpris-
ingly, the expression of antioxidant enzymes in the HP strain 
was reduced in comparison to the PAO1 strain (Thippakorn 
et al. 2018).

Identification of metabolic changes 
in response to external factors

Metabolic changes resulting from factors other than gene 
mutations may also play an important role in bacterial adap-
tation and survival. In the case of P. aeruginosa, several 
factors affecting metabolome were investigated: (1) growth 
medium composition; (2) growth conditions; (3) the pres-
ence of specific chemical compounds (including antibiot-
ics); (4) other microorganisms; and (5) phage infection. 
Research focusing on these factors is crucial for the under-
standing of bacterial ecology and biochemistry. It may help 
to understand the mechanisms underlying phenomena, such 
as biofilm formation and antibiotic resistance (a considerable 
problem in the treatment of infections) or the mechanism 
of phage infection (possible alternative for conventional 
antibiotic therapy). Observation of metabolomic changes 
in response to a specific antibiotic compound may also help 
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in the discovery of the metabolic pathways responsible for 
microbial resistance (Han et al. 2019).

To identify metabolic response to environmental condi-
tions, two P. aeruginosa strains, PAO1 and clinical isolate 
TBCF10839 (responsible for CF infections), were analyzed 
by Frimmersdorf et al. Exo- and endo-metabolomes from 
different culture conditions were compared. GC/MS analy-
sis showed the presence of at least 243 compounds. One-
hundred forty-four of these compounds could be identified 
when compared with metabolite libraries. Sixty metabo-
lites were found in all culture conditions, and an additional 
64 were present in most of the resulting profiles. Only 65 
compounds were characteristic for specific growth condi-
tions, and the observed changes were usually dependent on 
the selected medium. Moreover, not all carbon sources were 
used, which was the case even in the stationary phase (Frim-
mersdorf et al. 2010).

The problem of great clinical importance is the develop-
ment of antibiotic resistance. Metabolomics was used by 
Han et al. to understand the molecular mechanisms underly-
ing P. aeruginosa-related polymyxin resistance. Polymyxins 
are cyclic peptides used as the last-line therapeutic option 
for treatment of difficult-to-treat Gram-negative patho-
gens. The metabolic response of two P. aeruginosa strains 
(polymyxin susceptible PAK and resistant PAKpmrB6) to 
the presence of polymyxin B (4 mg/dm3) was compared. 
The metabolites were analyzed with LC/MS techniques. 
Four-hundred twenty-seven hydrophobic and 871 hydro-
philic metabolites were identified. Most significant changes 
in the metabolic profile of both strains were observed after 
1 h of incubation with polymyxin B. Polymyxin induced 
osmotic stress in  both analyzed strains as indicated by 
the  increased level of trehalose-6-phosphate. Moreover, 
the PAK showed a significant decrease in lipopolysaccha-
ride and peptidoglycan synthesis. These results may be used 
in the development of a new generation of polypeptide anti-
biotics (Han et al. 2019).

A very interesting scientific question is the influence of 
bacteriophage infection of the bacterial metabolome. Inves-
tigation of mechanisms associated with phage infection 
may result in the development of new strategies in treat-
ing bacterial infection. The influence of phage infection on 
the metabolome of P. aeruginosa was investigated by De 
Smet et al. (2016). They used the PAO1 reference strain and 
infected it during the exponential growth state with six dif-
ferent bacteriophages. Metabolites were detected and quanti-
fied with injection-time-of-flight MS. This approach allowed 
for the  identification of 518 metabolites. Metabolomic 
profiles of infected distinguished phages relying solely on 
resources available in host cells and could actively modulate 
host biosynthesis pathways. Phage infection had a signifi-
cant influence on the concentration of 24.5% of the detected 
metabolites. However, only 2.4% of observed alterations 

were common to all investigated phages. These metabolites 
were part of the nucleotide and sugar synthetic pathways. 
Amino acid metabolism is also affected by phage infection. 
However, the observed changes are not common and differ 
between individual bacteriophages. Some of the observed 
metabolic differences could be explained by the presence 
of enzymes encoded by auxiliary metabolic genes (AMG). 
However, the authors speculate that non-enzymatic proteins 
encoded by AMGs may be of equal importance. The data 
obtained in this project is available in the open database 
(https​://www.biw.kuleu​ven.be/LoGTd​b/phage​Biosy​stems​/
Home.aspx).

Combined analyses of metabolome and the expression 
profile were carried out in the case of infection of P. aer-
uginosa PAK with PAK_P3 bacteriophage. Metabolite 
detection was done according to the protocol developed by 
De Smet et al. (2016). In this case, the pyridine metabo-
lism was severely affected by phage infection. Moreover, 
the authors found that RNA-based regulation plays a cen-
tral role in the PAK_P3 lifecycle since antisense transcripts 
are mainly produced during the early stage of infection, and 
viral small non-coding RNAs are expressed at the end of 
infection (Chevallereau et al. 2016).

In another study concerning phage infection, Zhao et al. 
investigated the changes in P. aeruginosa metabolism and 
gene expression after infection with the PaP1 phage. For 
metabolite detection, 1H NMR was used. The authors were 
able to identify and quantify 48 metabolites. In the case of 
12 compounds, the observed level was significantly altered. 
Most changes were observed in  the case of metabolites 
involved in  energy metabolism and amino acid synthe-
sis. Moreover, levels of NAD+ and betaine had consider-
ably decreased. The authors conclude that the majority 
of observed changes were the result of the regulation of 
the host gene expression by the phage. Furthermore, they 
suggest that the alteration of the betaine synthesis pathway 
may be a potential target for therapy due to the importance 
of this compound for P. aeruginosa during infection (Zhao 
et al. 2017).

One of the most critical features of P. aeruginosa is 
its ability to form a biofilm. Gjersing et al. proved that 
the  metabolome of P.  aeruginosa planktonic cells dif-
fers from that of biofilm cells. They decided to compare 
the metabolomic profile of the reference strain, PAO1, 
with two different models of growth: (1) planktonic and 
(2) biofilm. For these two different types of growth, intra- 
and extracellular profile of the metabolites were examined. 
The 1H NMR and high resolution-magic angle spinning 
nuclear magnetic resonance (1H HRMAS NMR) methods 
were used. For both growth models, the recorded spectra 
showed different signal profiles, which showed separa-
tion between studied groups on the PCA score plot. This 
study demonstrates that the supernatants of biofilm and 

https://www.biw.kuleuven.be/LoGTdb/phageBiosystems/Home.aspx
https://www.biw.kuleuven.be/LoGTdb/phageBiosystems/Home.aspx
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batch planktonic cultures could be readily distinguished by 
PCA (for both1H NMR and 1H HRMAS NMR). The results 
showed that the levels of metabolites in the planktonic cul-
ture were higher than in biofilm types of growth. The reason 
for this could have been the culture method. The planktonic 
culture was a standard batch fermentation without medium 
replacement. In biofilm culture, the medium was continu-
ously replaced, thus metabolites produced by bacteria could 
not accumulate (Gjersing et al. 2007).

A fundamental phenomenon observed in  bacteria is 
quorum sensing (QS). QS is a cell-to-cell communication 
mechanism, which is a biochemical mechanism that allows 
different bacterial groups to coordinate gene expression in a 
variety of environments and to also control bacterial metabo-
lism. The functions controlled by QS are varied and depend 
on the needs of bacteria (Lee and Zhang 2015; Reading and 
Sperandio 2006). Such communication between cells plays 
an essential role in the creation of biofilms and infection ini-
tiation (de Kievit 2009). P. aeruginosa is one of the bacteria 
in which functioning QS plays a vital role. Reports showed 
that QS could be responsible for the central metabolism of 
this pathogen (Goo et al. 2015).

Righi et al. used 1HRMAS and 1H NMR spectroscopy to 
determine changes in the metabolome in live bacterial cells 
in response to 2-aminoacetophenone (2-AA) (Righi et al. 
2018). 2-AA is considered to be a volatile quorum-sensing 
molecule associated with the expression of virulence factors 
in P. aeruginosa and promoting the development of chronic 
infection (Kesarwani et al. 2011). To understand the impact 
of 2-AA on the metabolome, a clinically isolated P. aerugi-
nosa strain, UCBPP-PA14, was cultured with and without 
2-AA. NMR analysis used whole cells without any metabo-
lite extraction. This rapid detection method was previously 
optimized for UCBPP-PA14 strain and prove to be accurate 
for P. aeruginosa metabolomic analysis. Twenty-four metab-
olites, such as osmolytes, amino acids, and phospholipids, 
were identified. The combined use of 1D and 2D spectra 
provided complete and unambiguous metabolite identifica-
tion in the samples with the conclusion that 2-AA affects 
the metabolic profile of cells. Changes observed in metabo-
lome suggest that 2-AA may induce changes in the capsular 
polysaccharides composition and trigger cellular osmopro-
tectant mechanisms (Righi et al. 2013).

Chen et al. conducted an experiment in which they stud-
ied the QS inhibitor, resveratrol. The P. aeruginosa reference 
strain, PAO1, was cultured with and without resveratrol (con-
trol group). 1H NMR was then used to compare intracellular 
metabolites, which allowed 40 compounds to be identified. 
The PCA and PLS methods separated samples from the con-
trol cultures and resveratrol-treated cells. A reduced level of 
betaine and increased concentration of ethanolamine suggest 
the presence of oxidative stress in resveratrol-treated bacteria. 
Accumulation of succinate and branched-chain amino acids 

implies the disruption of the TCA cycle and protein synthesis 
(Chen et al. 2017).

Another experiment by Devenport et  al. compared 
the  influence of N-acyl homoserine lactone (AHL) on 
the intracellular metabolite content of two P. aeruginosa 
strains. The studies were performed using the 1H NMR, 
LC–MS, and GC–MS methods. One of the  strains was 
the wild-type while the second was double mutant Δ lasI 
rhlI, which did not allow the production of AHL signalling 
compounds. MS analysis allowed fatty acids in the samples 
to be identified. Observation of metabolic profiles in the time 
intervals (from 1 to 10 h) enabled the visualization of how 
the metabolite concentrations changed. In  the mutant’s 
supernatant, no AHL was detected. Furthermore, the mutant 
strain produced more acetate and used alanine faster than 
the wild-type strain. Moreover, PCA analysis clearly showed 
the strain grouping. The results showed that QS molecules 
influence fatty acid metabolism (Davenport et al. 2015).

Identification of new metabolites

Metabolomic analysis may be a very useful tool in the iden-
tification of novel compounds produced by microorganisms. 
Identification of new compounds produced by microorgan-
isms is one of the fundamental goals of present-day micro-
biology. Microbiologically produced substances may be 
significant for medicine (new drugs), industry, and environ-
mental protection (natural biodegradable detergents) (Janek 
et al. 2010).

Nguyen et al. identified new lipopeptides produced by 
Pseudomonas strains using LC/MS-based metabolomic 
analysis. In these studies, the authors investigated 260 strains 
of Pseudomonas isolated from different locations. Massive 
extracellular metabolomic analysis based on the C/MS tech-
nique allowed identification of common and strain-specific 
compounds. For the identification of potentially novel com-
pounds, data obtained from LC–MS/MS was processed 
with Global Natural Products Social Molecular Network-
ing. Further structural analysis of strain-specific compounds 
based on NMR spectroscopy has led to the identification 
of new lipopeptides and enabled evolutionary comparisons 
between them. Four new compounds produced by Pseu-
domonas strains were identified, poaemides and banana-
mides (Nguyen et al. 2017).

Conclusions

Pseudomonas aeruginosa is a very flexible and variable 
microorganism, which allows it to adapt to various life con-
ditions. Chronic infection in patients with cystic fibrosis are 
often incurable and represent a severe problem. The adapta-
tion of P. aeruginosa to the environment is a scientifically 
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exciting problem and may be significant for therapeutic rea-
sons. Therefore metabolomic analysis used for comparison 
of P. aeruginosa strains, causing infections among people 
suffering from cystic fibrosis can be very beneficial.

The presented research shows the diversity of the carried 
out experiments. Each of them: (1) comparing metabolome 
of isolates from patients suffering from cystic fibrosis with 
healthy people (2) characterization of compounds that make 
up the metabolome (3) identification of changes in metabo-
lites during co-culture and quorum sensing; introduces a 
lot of new information on the functioning and dependence 
of this organism. The  initial research showed that there 
are metabolome differences between strains isolated from 
the patients (Kozlowska et al. 2013). Observed changes 
included improved amino-acid uptake and reduced acetate 
production in  strains responsible for chronic infection. 
However, the research also revealed great diversity between 
strains isolated even from one patient, thus it is hard to find 
any general pattern for P. aeruginosa adaptation strategy 
(Behrends et al. 2013). Moreover, it seems likely that metab-
olome is influenced more by the environment (medium type) 
than the strain genome (Frimmersdorf et al. 2010). Further 
research may give a better understanding of P. aeruginosa 
adaptation, however it must include a much bigger set of 
tested strains including environmental isolates.

Bacteriophages are considered an alternative for anti-
biotic therapy, especially in cases of antibiotic-resistant 
strain treatment. At present, the use of bacteriophages is 
an experimental therapy for individual cases. However, it is 
possible that in the future, human-designed bacteriophages 
will become more universal and more effective infection 
treatment method. The research on bacterial metabolomic 
changes during bacteriophage infection provides the foun-
dations for the  development of synthetic therapeutic 
bacteriophages.

The development of new diagnostic tools may signifi-
cantly improve the therapy for P. aeruginosa infections. 
The most important information for the physician is the type 
of bacteria causing disease and its susceptibility to antibiot-
ics. This type of information is critical at the beginning of 
therapy when a suitable and efficacious antibiotic has to be 
selected. The time required for data acquisition is crucial, 
especially in the case of life-threatening infections. Moreo-
ver, diagnostic tools are also critical in the assessment of 
therapy effectiveness. In the case of treatment effectiveness 
assessments, VOC analysis seems to be promising due to its 
noninvasive character and speed. However, the initial trials 
described in the literature were done on small groups of 
patients, and further tests are required.

In summary, complete identification and characterization 
of P. aeruginosa strain based on analytical multiplatform 
metabolic profiling is necessary. For some applications, a 
single method may be sufficient (treatment monitoring). 

The use of metabolomic analytical tools for diagnostics will 
be possible only after the development of an extensive data-
base containing metabolic profiles of different P. aeruginosa 
strains. Moreover, appropriate analytical software must be 
used for data interpretation.

Metabolomic studies of P. aeruginosa has provided new 
interesting information about the life of this microorgan-
ism. There is still much to be done before we obtain the full 
scope of P. aeruginosa capabilities. Yet there is no doubt 
that the effort must be taken, since it may help us resolve 
the health threats associated with P. aeruginosa infections.
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